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Abstract—Utility providers are gradually deploying social net-
works as a useful addition to the Smart Grid in order to help
engage consumers in energy management and efficient usage.
Besides its benefits, is there any negative impact to the Smart
Grid? In this paper, we investigate the vulnerability of Smart
Grid when integrating into social networks, where attackers
utilize misinformation propagation in social network to alter elec-
tricity customer’s behavior with the goal of causing degradation
to power infrastructure. Stand in both perspectives of power
facility administrator and adversary, we model the vulnerability
assessment of the system under an optimization problem, which
enables us to provide theoretical analysis and behavior investi-
gation of the system based on the complexity theory. As solving
the problem is challenging, we propose heuristic solutions and
show their efficiency on assessing the system’s vulnerability in
the presence of misinformation attacks. Therefore, we conclude
that misinformation attacks must be considered when developing
the security model for Socially-enabled Smart Grid technology
and planning mitigation techniques.

I. INTRODUCTION

Recent advances in extending existing power grids to
Smart Grids and incorporating social networks into the en-
ergy ecosystem have revolutionized the landscape of energy
management. This opens up a number of opportunities for
utility providers to improve energy efficiency by setting prices
such that their customers are encouraged to use demanding
appliances outside of peak hours. It also allows customers to
react to this pricing change by determining a suitable time to
use their appliances. Furthermore, with the incorporation of
social networks, peak load could be reduced by 6% [1] and
overall energy usage could be reduced by roughly 9% [2]. The
prospect of taking advantage of social information diffusion to
spread energy-saving and efficiency tips has led to a number
of recent proposals [3], [4] to integrate data from home Energy
Management Systems (EMSs) into social networks.

However, cooperating social network to Smart Grids also
opens up a new channel for the attackers to attack the power
grid infrastructure. Attackers through social network can use
the crowd-shifting strategy [5], [6] as well as misinformation
propagation [7], [8], [9] among customers to manipulate their
habits of power usage. By misleading a sufficiently large
number of users, the attackers are able to create a sudden
spike in power load change. Previous works have shown that
information, i.e. price rate decreases, can make the new peak
in demand up to 60% higher than normal [10], [11]. This
significant but unexpected change of loads creates pressure
onto the power infrastructure, which, even in the presence
of mitigation methods, e.g. load shedding, could cause power
components unstable and, in the worst case, lead to a cascading
failure. Therefore, in this work, we investigate the disad-
vantages of integrating social networks into Smart Grid. In
particular, we address the following questions: How dangerous
is a misinformation attack on the Social Smart Grid (SSM)?

How do we know our power infrastructure is vulnerable to this
kind of attack? How will adversaries launch their attacks?

Assessing the vulnerability of SSM is quite challenging,
unfortunately, due to several reasons. First of all, the cas-
cading failure in power grid itself is complicated to model.
The integration of social networks brings this complicated
behavior to the next level because of their interdependency
between social networks and power networks. Failures from
one network can be cascaded back and forth between two
networks. And finally, it is difficult to capture the behaviors
of users reaction to misinformation onto power grids.

In the context of social-power network vulnerability, Pan et
al. [12] has studied a problem that given the interdependency
between a social network and power network, identify k users
in social network to spread misinformation, which would lead
to maximum number of failed nodes in power network. Our
work extends from that problem in which we consider the
interdependence between social network and Smart Grid, an
advance extension of power grid with self-protection mecha-
nisms in response to potential failure detection. Furthermore,
by formulating the problem of identifying potential attacks
in Social-Smart Grid under an optimization problem, we are
able to investigate the complex behaviors of the attack based
on the complexity theory. Although the problem is proved
to be hard to optimize, we propose two heuristic solutions,
showing that they can scale up to cripple the large-scale
networks. Intuitively, the goal of finding destructive attacks
is to assess how robust the Social-Smart Grids is; the more
destructive attack we can find, the more vulnerable the system
is to this kind of attack. Experimental results has shown the
effectiveness of our method, thereby confirming that a fully
study on the disadvantages of such social network integration
is a must.

Related Work. Previous methods of causing load redistri-
bution have included man-in-the-middle attacks on the Smart
Grid communication network, which fabricate electricity price
signal to manipulate scheduling settings into causing load
spikes [13]. This differs significantly from our work in that the
users are receiving false information directly from an authori-
tative source, rather than propagating second-hand information
over a social network. Also, in our problem, instead of fixing
number of attacked targets in power network, the misinfor-
mation propagation make it more complicate as demand load
increases proportionally with number of influenced users in
social network. Yuan et al. [14] studied optimal attacks on
the SCADA control server via manipulating load at individual
buses. Further work has included Soltah et al. [15], Pan et
al. [12] and Nguyen et al. [16]. Notably, prior work has not
considered the role of user behavior in these attacks. Instead
the authors assume demand automatically increase when rate
reduces. Most of these works assume the absence of self-



protection mechanisms such as load-shedding.

Organization. The rest of the paper is structured as follows.
Section II presents how misinformation attack happens in
social smart grid and introduces our new optimization model,
followed by its inapproximability and non-monotonicity study
in section IIl. Two heuristic solutions to the problem are
presented in Section IV. Finally experimental evaluation is
detailed in Section V and Section VI concludes our paper.

II. THE MISINFORMATION ATTACK ON THE SMART GRID

In this section, we describe the models of the social network,
Smart Grid and the misinformation attack.

A. Smart Grid

A Smart Grid is a communication network built into the
power infrastructures to give greater control to both the utility
provider and consumer. We model the flow of power in the
network with the linearized DC power model, which have been
widely used in literature [13], [15], [12]. In the linearized DC
model, we are given a power grid represented by a network
Gp = (Vp, Ep) with Vp is a set of buses (|Vp| = n) and Ep
is a set of power line that connecting buses (|Ep| =

« For each line e = (i,7) € Ep, denote its capac1ty Ce, its
reactance z., and its power flow f.. In some cases, we
use fij,Cij, x;; instead of fe,ce, z.

The supply or demand of each bus in Vp on the network

is given by the load vector § € R", where 3; > 0 if i is

a generator, 3; < 0 if 4 is a consumer, otherwise (3; = 0.

o At each bus ¢ € Vp, the phase angle is given by 0.
6 € RIVI*1 is vector of phase angles.

The power flow is given by the system of equations:

Nf=p (1)

NTo—Xf=0 )

where N is the incidence matrix of Gp and X = diag{x.}.
If Y. 8; =0, system (1)(2) has a unique solution.

We can rewrite this system as a matrix equation by defining
the admittance matrix A of the power network:

0 if u#vand {u,v} ¢ F
gy = 4 —1/Tun if u#vand {u,v} € E (3)
weN (u) Quw ifu=v

Then the matrix equivalent of the power flow system is
A9=P “4)

We denote the Moore-Penrose Pseudo-Inverse matrix (see e.g.
[15]) of A as A" and use af, to represent its elements.

We next examine a common means by which Smart Grids
are protected: load shedding. Load shedding has been shown
to be an effective method to preserve the power grid in the
presence of cascading line failures [17], [18]. The central idea
of load shedding is that when a problem is detected in the
power grid, some amount of load will be intentionally “shed”
to eliminate the overload in the system, thereby stopping
the fault propagation. Zhou Lu et al. [19] introduced two
load shedding methods: global and local. Experimental results
[19] have shown that local load shedding performs better
than global shedding in practical settings. Therefore, in this
paper, we focus on local load shedding as our countermeasure
when failures are detected. In particular, when a power line
e = (u,v) is overloaded (f. > c.), the loads of node « and v
are shed, i.e. 8, = B, = 0.

Algorithm 1: Cascading Failure

Input : Power Network Gp = (Vp, Ep)

1 while Network is not stable do

2 Balance the supply with the current demand within each
connected components of the network.

3 Use equations (1) (2) to calculate power flows in Ep.

4 If there is edge e such that f. > c., shed load connecting
to e

5 If no load shedding, remove edge e that fe > ce

6 If no line fails and no load shedding, then network is

stable, break the loop.
7 end

Lastly, we describe our model of cascading failure on the
power network. Even under load-shedding countermeasures,
the failure of one line may cause failures in other lines on the
network [19], [20]. Therefore, we model cascading failure as in
Alg. 1. To be specific, the local load shedding is implemented
when detecting overloaded line. Then, the power flows are
recalculated. This process is repeated until the system reaches
the state that there is no other nodes to shed (nodes who are
incident with overloaded lines but have load 0). Then, we
check whether there exists any line e = (u,v) whose f. > ¢,
if yes, we disconnect such lines, i.e. E), = Ep \ {e} and
recalculation power flow with the new graph G» = (Vp, Ep).
All these processes are repeated until there is no more node
to shed and no more overloaded lines, the power network is
now stable.

B. Social Network

We model the social network as a weighted directed graph
Ggs = (Vs, Fs,w) with a node set Vs and a directed edge set
Eg, where a node v € Vg represents a user and an edge
(u,v) € Eg exists if v follows w (that is, v can receive
information from w). Each (u,v) is associated with a value
w(u,v) € [0,1] to denote the probability of information
propagation. In order to model the information propagation
in the social network, we will focus on the widely-applied
Independent Cascade (IC) model [21], [22], [23], [24].

In the IC Model, initially no nodes adopt the misinforma-
tion. Given a seed set S, the misinformation diffusion proceeds
in rounds. In round 0, all nodes v € S are activated by the
misinformation and all other nodes remain inactive. In round
t > 1, all nodes activated at round ¢ — 1 will try to activate
their neighbors based on the edge weights. A node u activated
at round ¢— 1 has probability w(u, v) to activate an inactivated
neighbor v at time ¢. w cannot activate any neighbors at any
time ¢’ > ¢ and it stays activated till the end. The process
stops when no more nodes can be activated.

C. Attack model and Problem definition

In this sub-section, we formulate how misinformation at-
tack happens in social smart grid. Given a social network
Gs = (Vg,Eg) and power network Gp = (Vp, Ep), each
bus up € Vp is a customer in the power utility service
(e.g. a residential house, industrial building) while each node
ug € Vg is corresponding to a social network user. The
interdepency between G and G p is represented as follows:

o Each bus in the power network could be associated to
multiple users in social network, which indicates multiple
users are allowed to manipulate the load or demand of a
bus, e.g. a residential house could have multiple members.

¢ Each social network user is associated to at most one bus
in the power grid. To justify that association, we assume



that even a person can relate to multiple buses (e.g. she
owns multiple houses) but at a certain time, she is only
capable of manipulating load of at most one bus.

o Each social user ug, linked with a bus in power network,
is also associated with a demand D(ug). The demand of
a power bus in Vp, therefore, is the sum of demand of
social users that are linked with it.

« Each social user ug is also associated with p(ug) - which
indicate the change of demand of user ug when she get
influenced by the misinformation, i.e. the demand of ug
becomes D(ug) x pu(ug) when ug is influenced.

o For each power bus up, when one social user asso-
ciated with up is activated by misinformation, other
users associated to up are activated as well (i.e. edges
connecting those users in Gg have weight 1). This could
be justified by the fact that those users tend to have close
relationship, e.g. family members. Therefore, the total
demand of a power bus is within two values: total demand
of associated social users when no one or all are activated
by misinformation.

When there is a large amount of users are impacted by
misinformation and change their demand simultaneously, the
spike of loads pushes pressure on power infrastructure and in
the worst case, if overheating happens, the cascading failure
occurs as in Alg. 1.

Motivated by this observation, a savvy attacker may exploit
the rapid spread of misinformation in the social network to
manipulate demand in the power network in order to degrade
the power performance. Therefore, studying these attack to
have a suitable protection on power systems is a must. A
problem is that we have to capture the behavior of power
systems and social network when there is misinformation
propagation as well as know how attackers will launch their
attack. Therefore, we propose an optimization model on which
we stand in attacker’s perspective to cause maximal damage
to power network. We assume the following:

« The objective of the attacker is to damage power system
as much as possible. We measure destructiveness of the
attack by the number of buses which are deprived of
electricity after attack (e.g. get load shed or no connection
to power generator because of line disconnection). We
call these buses failed buses or failed nodes.

o Attackers can propagate misinformation from multiple
sources, limited by their budget k € Z*.

We formally define attacker’s objective as follow:

Definition 1. Misinformation Attack on the Social Smart-Grid
(MASS): Given smart grid G p and overlay social network G g
and a budget limit k € 7, find a set of k users in the social
network that, when influenced, maximize the number of failed
buses in the smart grid.

In the next sections, we investigate the complexity of MASS
problem and propose heuristics to solve the problem.

III. INAPPROXIMABILITY AND NON-MONOTONICITY

Given these models of the social and power networks, we
are now ready to analyze the attacker’s ability to optimally
conduct the MASS attack. Finding the optimal solution for
MASS is very important, which could help us devising effi-
cient protection mechanism for the system against the attack.
However, it is also a extremely challenging task. First, the
behavior of the system in response to such attack is very
complicate, which comes from the fact that the objective
of MASS is not monotone (Theorem 1). Second, taking

theoretical approaches, we show that the optimal objective
is inapproximable in polynomial time (assuming P # N P)
within a factor of O(n'~¢) (Theorem 2).

Theorem 1 (Non-Monotonicity). For any p € (0,00), there
exists a instance of MASS (GS,GP) and two set S, T with

S C T C G, such that the ratio X3} > p with A(S) or

A(D)
A(T) is number of failed nodes in power network Gp if we
attack nodes of S or T on social network Gg.

Proof. For this proof, we need only consider the case where
a target set of users S is directly influenced by the attacker.
Given the power network Gp = (V| E), there are two gener-
ators g1 and go which can generate infinite supply. We create
N user nodes u1, usg,...uy where the maximum load of each
node is —fmaz(u;) = 26 — 6 Vi € [1, N] where § < € < ﬁ
Vi € [1, N], set ¢(g1,u;) = 2¢ and ¢(go, u;) = € — 0. We then
create user node ug whose maximum load iS —B,,42 (ug) = 2
and lines (g1, ug) (g2, uo) with capacity ¢(g1,up) = 1—9 and
¢(ga,ug) = 1+ 0. Suppose the resistance of each line is 1. At
first each user’s load is 0.

Consider S = {up}. We raise load of node wug to its
maximum. By applying (1)-(2), f(g1,u0) = f(g2,u0) = 1
which fails line (g1, up). We continue to recalculate the power
flow of each line after (g1, wuo) fails. This gives f(ga,up) =
2 > ¢(g2,up), which causes (g2, ug) fail and vy becomes iso-
lated. Moreover, the power flows f(g1,u;) = f(ui, g2) = +
Vi € [1,N], which is larger than c(g1,u;) = 2¢ < 1/N
and c(u;,g2) = € — 6. Therefore, all nodes wu; become
isolated. Therefore, the total failed buses if we attack S is
A(S)=N+1.

Consider T' = {ug,uy,...uy}. All user nodes change
demand to maximum. By applying (1)-(2), the power flows
of edges (g1,uo) and (uo,g2) are f(gi,uo0) = f(g2,u0) =
1, which causes line (g1,uo) fail. Meanwhile, f(g1,u;) =
flg2,wi) = € — /2 Vi € [1,N], which is larger than
¢(ga2,u;) = € — J. Hence, every line (u;, g2) is broken. We
then recalculate the power flow. Only line (g2, ug) fail because
flg2,u0) =2 >146. f(g1,u;) =2 —0 < c(g1,u;) = 2€
Vi € [1, N]. Hence, only uq becomes isolated if we attack 7,
AT) =1.

Therefore, if we choose N > p — 1 then % > p. 0

The lack of monotonicity already greatly hinders optimiza-
tion of MASS. We further show that even in the absence of
load-shedding, no algorithm can approximate the MASS attack
within O(nt=").

Theorem 2. There is no O(n'~")-approximation algorithm
for the MASS attack unless P = N P, where n is the number
of power demand nodes, for any 0 <n <1

Proof. Consider an instance of set cover (U, S, k) where U
is the universe, S is collection of subsets of U, and k is the
cardinality we are to test. The decision version of set cover,
which is NP-complete, asks whether there is a set C' C S
such that |C] < k and union of all sets C; € C is U. We
construct a reduction from MASS to set cover as follows: In
the social layer, for each S; € S create node vg, and for each
e; € U, create node v.,. If e; € S;, create edge (vs, ) Ve, )
with probability 1, which means if vs, is activated, ve, will
be affected.

In the power layer, for each e; € U, create demand node
ue,; which is mapped with its corresponding element node
in social network. For each u.; create a generator node g,
and an edge between them with capacity c(ge,,ue;) = 1 — ¢



and resistance x(gej,uej) = 1. Initially, the load of wu., is
B(ue;) = 0. The maximum load Braz(ue;) = 1. We then
create an additional generator node gy and edges connecting
it to g.. with resistance r and capacity oco. Create neutral node
no and edges connecting it to each u., with resistance r and
capacity 1 — e. Finally, We create an additional ! > u nodes
uq..u; and connect them to gy and ng with capacity u/l—e and
resistance 7. [ will be defined later in the proof. The number
of demand node is n = u + [. It is possible to choose r large
enough such that when —j3(uc;) = B(ge;) = 1, almost all
power flow will cross edge (ge;,u.;) and only a negligible
amount will use other paths that have lines with capacity 7.

Suppose there is a solution to the set cover problem, then
every node v, in social network would be activated. This
lead to every demand node w., in power network raising their
load to the maximum. We balance supply/demand by letting
B(ge;) = 1. That makes f(ge,,uec;) > ¢(ge,,Ue,), Which
cause these lines to fail. We then recalculate the power flow:
the in-flow of gy would be u. Hence the power flow of each
line f(go,u;) =u/l > ¢(go,u;). Therefore, all demand nodes
in power network become failed.

Suppose there is no solution to set cover, which means
the maximum number of elements covered is v — 1. Similar
to previous part, lines corresponding to nodes (g ,u.;) fail
where e; is an element being covered. In this case, the in-flow
of gop would be at most u—1 and there are at least /41 paths to
supply power for nodes being covered. Therefore, the power
flow f(go,u:) < Y53 < ¢(g0,ui). Moreover, f(no,ue;) = 1
where e; is a node being covered, which causes these lines
fail. Therefore, the number of failed node when there is no set
cover would be at most u — 1.

Let I > (u— 1)n'~" — u and assume there is O(n'~")-
approximation algorithm T for MASS problem. If there is set
cover solution, the algorithm will find a solution which cause
more than v — 1 nodes to fail:

A(S’]]‘) > A(SOPT) _ u+1 > u

-1
nl=n ni-n

where A(-) is number of failed nodes and St is solution of T
and Sopr is optimal solution.

On the other hand, if there is no set cover, the returned
solution is at most u — 1. Hence, we can use T to decide the
Set Cover problem in polynomial time. O

As the outcome of a MASS attack is both difficult to
optimize and predict, we now turn our attention to a pair of
reasonable heuristics of the MASS problem to understand how
damaging such an attack may be.

IV. HEURISTIC ATTACKS

Although we have proposed the self-protection mechanism
of smart grid in section II, in reality such systems may
not be deployed [13], [15], [12]. Therefore, for each attack
solution, we have two versions: one with load-shedding and
one without. Interestingly, experiments show that attacks with
load shedding in some cases can be more destructive than
without protection — a direct result of the non-monotonicity
and unpredictability shown in the previous section.

A. Sequential Node Attack (SENO)

In this solution, we iteratively identifies which user in social
network, who - if being activated - can cause maximum
damage to the power system. The impact of a user ug is
estimated by: (1) using forward sampling to identify which
users can be influenced by misinformation spreaded by ug;

(2) estimate the impact on power system using Alg 1 when
those users increase their demand.

Exact estimation of the impact caused by a user is very
expensive, which required us to consider 2/”sl deterministic
instances of the social network (Gg. Therefore, we reduce the
runtime of the estimation by using forward sampling, which
similar to the concept of Breadth-First Search as follows: Start-
ing at ug, we activate a neighbor vg of ug with probability
w(ug,vg). Then with each activated neighbor, we consider
activating its not-yet-activated neighbors with corresponding
probabilities of their edges. This process is repeated until there
is no more activated users. Then, we raise the demand of
activated users and recalculate the system’s state as in Alg.
1. Each sampling, thus, lets us know how many failed buses
that can be caused by activating ug.

This sampling estimation is repeated in M times and the
overall impact of ug is estimated by taking the mean over
all samples. Then the user with highest estimated impact is
selected, we then spread the misinformation from that user,
observe the misinformation propagation and power system’s
reaction. After the system is stable, we finds the next user to
attack using the same techniques (i.e. sampling, attack and
observe) until running out of budget k. The detail of the
solution is described in Alg. 2.

Algorithm 2: Sequential Node Attack

Input H Gs(VS, E’s‘)7 GP(VP, Ep), k and M
Olltpql)lt: Attack sequence S = {u1,..ur} C Vg
1S =
2 while |S| < k do

3 for each us € Vs do
4 for M interations do
5 Random sampling the set of activated node I(us)
by spread misinformation from ug
6 Change demands of nodes in G p that are
associated with nodes in I(ug)
7 A(ug) < number of failed buses in Gg after
changing demand (use Alg. 1)
8 end
9 A(us) + average number of failed buses causing by
us in M estimations.
10 end B
1 v < argmax,,c v A(u)
12 S« Su{v}
13 Spread misinformation from v, observe the activated nodes
and change their demand.
14 Recalculate power system state using Alg. 1.
15 end
16 Return S

The only difference between SENO solution with and with-
out self-protection in Smart Grid is how to estimate the failed
buses in each sampling step. In SENO with load shedding,
the algorithm finds failed buses as in Alg 1. Meanwhile, the
number of failed buses when load shedding is not applied
is computed by modifying Alg 1 as follows: when line e is
overloaded, ¢ is disconnected and no load is shed.

B. Sequential Batch Attack Scenario (SEBA)

In this solution, instead of attacking nodes separately, we
targets a batch of critical buses in the power infrastructure
who, if increasing demand, could cause enormous damage in
the network. The natural question now is How to identify such
set of nodes and how to make sure the budget to cause the
associated nodes in social network does not exceed k?.



Algorithm 3: Sequential Batch Attack

Input : Gs(Vs, Es)7 GP(VP, Ep)7 k and M
Output: Attack sequence S = {u1,...ur} C Vg

1 S=0

2 while |S| < k£ do

3 for each up € Vp do

4 F(up) < the number of failed buses if up fails

(using Alg. 1)

5 end

6 vp < argmax,, , oy, F'(up)

7 T < minimum number of nodes, whose if increasing
demand causes failure of vp. (Equ. 6 if no load shedding
or Equ. 9 if there is load shedding)

8 R < minimal set of social user whose activation causes
associated nodes of 7" influenced (Binary search and
WIM)

9 S+ SUR

10 Activate R, observe misinformation propagation and power
network reaction until being stable.

11 end

12 Return S

With the first question, it is trivial that scanning through
all possible set is not a good strategy, which costs us to try
2IVP| sets. We restrict the searching space by observing that
there are nodes in power network which are more important
than the others, e.g. substation versus residential buses. Failing
those nodes can cause failure to other nodes, leading to a
huge damage to power system. Therefore, to measure the
importance of a power node up, we use Alg. 1 to identify
number of failed nodes if initially failing up. We denote the
failed nodes caused by failure of up as F(up). The attacker
then target to fail vp = argmax, .y, F(up). To fail the
target bus vp, we devise 2 methods, one is when there is
load shedding and one is when there is no load shedding.

If there is no load shedding, two ways to fail vp are (1)
isolating vp from any generators (in case of demand buses);
or (2) disconnecting vp out of Gp (in case of generators).
Suppose L,, is the minimal set of lines that need to be
disconnected to fail vp.

e With (1), L,, is found by solving max flow with the
pseudo-source s connects to every generator g and the
sink is vp, treating each (s,g) edge as having infinite
capacity and each remaining edge with capacity 1.

o With (2), L, is simply a set of all edges connecting to
vp. Now, the problem is to identify the minimal set of
power buses, whose demand increase will disconnect all
edges in L.

We have the following lemma:

Lemma 1. The change in power flow across edge e = (i, j) €
FE when there is load change in bus u is calculated by:

A = o [Bntetu— o)+ X et —af)] ©
veVa

where Ap; is the change in load of bus i, AfY is change
in power flow of edge e, Vi is set of generators, and ajj are
entries in Moore-Penrose pseudo-inverse of admittance matrix.
Note that the load change of u causes the supply change in
generators (i.e. Ap, for all v € Vi) to balance the supply-
demand.

Proof. As >y, Bi = 0 holds, Ap, + > oy, Apy = 0
and equations (1)-(2) always have a unique solution. Based on
Moore-penrose pseudo-inverse property [15]: if (1)-(2) has a

feasible solution, @ = A™ 3 is such a solution. By substituting
in the new demand vector, we get 8. = f; + Ap;. The
remainder follows directly by taking the difference.

The lemma 1 shows the relation between change in power
flow, change in user load, and change in generator supply.
By following the rule of demand-supply adjustment given by
Soltan et al. [15], we get that Ap; = (Ap, x 5;)/T Vi € V&
where ' = Z”E‘/G By. Then Eqn. (5) becomes:

Bu(af, —G;Z))
T

Af: = Apu X |flij X (aju - a;; + Z

veVg

Therefore, the minimal set of power buses (let’s call T'),
whose demand increase can disconnect edges in L, ,, can be
identified by solving the following Integer Programming.

min Z Zu 6)
ueVp
st |fe+ Z Aflz,| > ce Ve € Ly, (1)
ueVp
zy €{0,1} YueVp  (8)

where z,, is a variable indicating whether v € 7.

If there is a load shedding, vp fails if at least one line
connecting to vp is overloaded. We call E,, is set of edges
connected to vp. For each edge e, by using the greedy
algorithm and Lemma 1, we can find a set of buses K. whose
load change makes e overloaded. Then, the minimal set of
power buses (called 7T'), whose demand increase causes vp
failed, can be obtained by:

T = arg min | K| )
KeieeN,

With the second question, we directly apply results on the
Weighted Influence Maximization (WIM) problem [25], which
is defined as: Given a social network (Gg, each node v € Gg
is assigned a benefit b(v). Find a set S C Vg of size k such
that the total benefit of influenced nodes is maximized.

Therefore, to find a minimal set of users in social network,
who - if being activated - can influence associated users of
nodes in 7', we assign benefit to each nodes u, with b(u) = 1
if u is associated to a node in 7" and O otherwise. Let T
is a set of social users that associate with buses in 7. Then,
we find a minimum set R of users such that total benefit of
activated users by R is at least |Ts| by conducting a binary
search on k and solving WIM as a sub-problem. Overall, the
SEBA method is described in detail by Alg. 3.

V. ATTACK SIMULATION & EXPERIMENTAL RESULTS

In this section, we simulate each attack solution we have
described to develop an understanding of the level of risk it
poses as well as the complicate behavior of the system in
response to each attack. While there are no complete real-
world datasets modeling the interdependent social and power
networks, we construct reasonable facsimiles by connecting
real-world OSN data with real power network topologies. In
order to represent our model, we use power systems as the base
layer and build the social network on the top of its. Power
system datasets are chosen from MATPOWER library [26].
The datasets we use are IEEE 300 buses, Pegase 1354 buses
and Polish 3120 bus.

To link the social network with power network, for each
demand bus in power network, we randomly link it with a



social network and a couple of unlinked neighbors of that
node. This linkage is motivated by observation that users
who share a same bus tend to have close relationship in
social network (e.g. family members tend to be “friends” in
Facebook). We assume each user has the same ratio x4 of load
change when being influenced by the misinformation.

To model information propagation in the social network,
we use real-world Facebook network topology from SNAP
repository [27], which contains 4039 users. When u and v are
associated with the same power bus, the probability u or v
influences the other is set to be 1. Otherwise, the probability
of user u influences user v, where u and v are friends, is set
as ——o—— where degree(v) is the in-degree of node v.

gree(v)

We compare with three attack scenarios from [12], which
are SPA-C, SPA-S and Social to gain a better understanding
of the relative danger these attacks pose. However, we note
that these three methods work only when there is no load
shedding. The number of estimations on SENO is set to be
M = 1000. We restrict the runtime to be within 1 hour. Any
methods that exceed such limitation with be terminated. This
runtime restriction is to simulate the scenario in which the
system administrators do not have enough time to react in
response to the attack.

A. Vulnerability of the Social-Smart Grid

In our first experiment, we examine the impact of the change
in demand ratio ; on the number of failed buses in the power
network. For this test, we set the capacity of each edge e to be
ce = 2f. where f. is the stable power flow on e and 2 is the
factor of safety « [15], i.e. the factor by which the stable flow
of the line must increase in order to fail the line. The number of
attacked nodes is 10, 20, and 30 on each of the IEEE 300 bus,
Pegase 1354 bus, and Polish 3120 bus topologies, respectively.
For a realistic comparison, we test with x significantly smaller
than the factor of safety (from 1.1 to 1.5).
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(a) IEEE 300 Bus (b) Polish 3120 Bus

Fig. 1: Impact of each attack with different values of the
demand change ratio.
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Fig. 2: Impact of each attack with varied values of the factor
of safety a.

From Fig. 1 and 2 we see that although users’ load change is
negligible (only 10%), cascading failure and fault propagation

in the power network still occurs. Another observation is that:
both our proposed methods SENO and SEBA are more effi-
cient than existing methods in term of identifying destructive
attacks. Furthermore, they can scale up to run on large-sized
power systems such as the Polish 3120-bus dataset, which
SPA-S, SPA-C and SOCTAL cannot successfully finish within
timing constraint.

Next, we investigate the reduction in efficacy as the factor
of safety is increased. We fix the change ratio of demand
i = 1.5 and vary the factor of safety o from 2 to 4. As
seen in Fig. 2, even there is a notable drop in performance
when we cross to 2p threshold of 3.0, there still exists node
failures with o« = 4.0, which indicates that we need much
more higher a to guarantee the cascading failure does not
happen. Therefore, investment in improving the power lines
themselves may effectively mitigate the attacks but cause
significant expense.

B. Blackout Maximization Under Load Shedding

In this section, we analyze the impact of our two attack
scenarios when self-protection via load shedding is applied.
Figure 3 shows the yield (ratio between remained load after
attack and initial load) as the factor of safety is increased,
with o again fixed at 1.5. In contrast to the cases without
load shedding, SEBA outperforms SENO in all cases. To be
precise, in experiments on the Polish 3120-bus dataset, the
load shedding mechanism seem to be exceptionally effective
at protecting power grid under SENO scenario as the power
grid loses only 2% of its yield in this case. This can be ex-
plained by the fact that SENO attacks each node individually,
which is often insufficient to overcome the protection of load-
shedding. On the other hand, SEBA attacks in batches, which
can overcome the self protection by failing multiple lines
simultaneously. Therefore, SEBA should be a more effective
method to measure the system vulnerability under attack when
there is load shedding.

Under the SEBA attack, the difference in yield between
having or not having load shedding is quite small in each case.
Notably, the Polish 3120 bus network seems relatively resilient
to each attack: the maximum difference in yield between the
with- and without-load-shedding is 8%. Oddly, we also see
that the SEBA attack in this case is more effective with load-
shedding. Attackers could take advantage of the fact that load
shedding aims to protect physical infrastructure rather than
keeping high yield to maximize destructiveness of their attack,
in an other word, deprive people of electricity.

100 /‘_’—.—.—‘—. 100

094 -
SEBA without load shedding
s SEBA with load shedding
092 —a— SENO without load shedding
—s— SENO with Ioad shedding

20 24 28 32 36 40 20 24 28 32 36 40
Factor of safety Factor of safety

(a) Pegase 1354 Bus (b) Polish 3120 Bus

SEBA without load shedding
—» SEBAwith load shedding
—a— SENO without load shedding
—s— SENO with load shedding

Fig. 3: Yield with varied values of the factor of safety «

C. Relaxing the Attack Assumptions

We now consider several more difficult attack scenarios.
Previously, we had assumed that users who get influenced by
misinformation would increase their demand simultaneously.



We now consider the possibility that they instead increase their
demand for a period during a discounted interval by assuming
that all know about the claimed discount period but that they
may not act at the same time. This has the effect of reducing
the impact of activating each user. We model this situation as
follows: for each influenced user, we randomly select a time
interval in which she change her demand. Thus, the overall
demand of a bus can receive multiple values rather than only
two as stated in Section II. Otherwise, all settings are identical
to the above. We call this scenario No-sim. In this scenario,
we use SEBA as the attack method. Table I shows the result
of our attack scenario within this situation. In general:

TABLE I: Percentage of failed buses when relaxing comparing
with original results

Method | TEEE 300-bus | Pegase 1354-bus [ Polish 3120-bus
No-sim 71.13% 94.91% 103.38%
No-act 45.57% 90.42% 98.79%

o Although people do not react simultaneously, the pro-
posed attack can still cause blackouts.

o The experimental results on the Polish 3120-bus dataset
indicate that more nodes are failed in this scenario
(103.38% of the original number of failed nodes). This
highlights the non-monotonicity of the MASS attack
shown in our theoretical results.

We next consider the possibility that although a user may be
influenced by and propagate the misinformation, they may not
act on it. We call such scenario No-act. This can occur when
users share content specifically to inform friends rather than
because they intend to make use of it, or by users forgetting
to schedule tasks to run during this time. We model this
with a probablity p, that this customer reacts when being
activated by misinformation selected uniformly at random for
each user. Experiments with E[p,,] = 0.5 are presented in table
I. Although on the 300 bus dataset there is a notable drop in
performance, in each case a significant number of buses are
still failed. On the larger datasets, the level of failure remains
remarkably similar to the scenario wherein every activated user
is guaranteed to act on the information.

VI. CONCLUSION

In this paper, we have investigated the negative impacts
of integrating a social network into the Smart Grid. Notably,
we have shown that a misinformation attack that alters user
demand can cause overload in the power network and po-
tentially lead to cascading failure. Thus, finding destructive
attacks to the system is of great importance for further
protection. Therefore, we model the problem of finding the
attack under an optimization problem, whose optimality are
very challenging to obtain. Motivated by this observation, we
propose two heuristic solutions to the problem, which have
shown to be efficient to identify attack strategy with signifi-
cant damage. Further, this result holds even in the presence
of common mitigation techniques (notably: load-shedding).
These solutions can be use as efficiently methods to assess the
system vulnerability under misinformation attack. Also, this
leads us to the conclusion that as Smart Grids are integrated
into Social Networks, great care must be taken to preserve the
integrity and stability of critical power infrastructure.
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