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Abstract We begin with the reference measure P° induced by simple, symmetric nearest neighbor continuous
time random walk on Z< starting at 0 with jump rate 2d and then define, for 8 > 0, t > 0, the Gibbs probability
measure Pg; by specifying its density with respect to PY as

dPg ¢

= Z@’t((])_leﬁfg So(ws)ds (0.1)

where Zg ,(0) = E° [e? Io %0(zs)ds] This Gibbs probability measure provides a simple model for a homopolymer
with an attractive potential at the origin. In a previous paper (Cranston and Molchanov, 2007), we showed
that for dimensions d > 3 there is a phase transition in the behavior of these paths from the diffusive behavior
for B below a critical parameter to the positive recurrent behavior for 8 above this critical value. The critical
value was determined by means of the spectral properties of the operator A + Bdp, where A is the discrete
Laplacian on Z%. This corresponds to a transition from a diffusive or stretched-out phase to a globular phase for
the polymer. In this paper we give a description of the polymer at the critical value where the phase transition

takes place. The behavior at the critical parameter is dimension-dependent.
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1 Introduction

In this paper we complete a picture of a homopolymer model, some of whose properties were discussed in
the previous work of Cranston and Molchanov [2]. We can now give a fairly complete description of the
polymer behavior at the critical parameter in all dimensions. Interest in polymer models is well developed.
An early work on the subject [4] has been followed by myriad contributions and we refer the reader to
an interesting paper [5] and its extensive bibliography. In contrast to other work on the homogeneous
pinning model, our approach uses spectral theory and resolvent analysis in place of renewal theory. With
our approach we are able to establish quite simply some interesting results about the behavior of the
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pinned homopolymer at the critical parameter which gives the point where a phase transition occurs. In
order to describe the model, denote by X the space right continuous, left limit paths on [0, 00) into Z9¢. A
typical element of 3 will be denoted by = and its position at time s by x,. Sometimes we shall consider the
restriction of elements of ¥ to the interval [0, t] and use X; to denote these paths endowed with the natural
o-field Fo; = o(zy, : 0 < u < t). We will later use the o-fields Fs; = o(z, : s <u<t) for 0 < s <t < oo
generated by information from the paths on the interval [s,¢]. The mapping 6; : ¥ — ¥ will be the
usual shift operator. Qur reference measure on ¥ shall be P°, where P* denotes the measure induced by
simple, symmetric nearest neighbor continuous time random walk on Z? satisfying P*(zg = =) = 1. This
is the Markov process with generator the discrete Laplacian, i.e.,

Aple)y= D> () — ()
yEZe:|z—y|=1
Define for 8 > 0 and t > 0 the Gibbs (probability) measure Pg; on (X, Fo) by specifying its density
with respect to P° as

dPst _ Z5.4(0) 168 s dole)ds, (1.1)

where
Zﬁ,t(o) = Eo[eﬁ fo 50(15)(15]

is the usual normalizing factor called the partition function. Setting
Zp(z) = B7[e? I ole

enables us to define the Gibbs measure P§, on paths started at = by

= Zp o) "1eP Jo Solmds, (1.2)

When z = 0 we will write Zg in place of Zg .(0). In the previous work [2], we demonstrated the existence
of a phase transition in the parameter 5 at a particular parameter value which we shall denote by S4. In
all dimensions and all 5 > B4, we proved that there is in a certain sense a limiting measure Pgﬁ o~ To be
precise, for any A € Fy ¢, the limit

lim Pgr(A) = P§ (A)

T—o0
determines a measure Pg  on Foo. For d =1 or d = 2, the process under the polymer measure is null
recurrent for 5 = 0 and positive recurrent for § > 0. In dimensions d > 3, there is a dimension-dependent
constant 84 > 0 such that the process under the polymer measure P __ is positive recurrent, for g > (4,
the globular phase. For 3 < 4, the so-called diffusive phase, z;/+/# is asymptotically normal with respect
to Pg,. We also proved there is a limit distribution for z; /V/t at B = B, in dimensions 3 and 4. In this
paper, we will recall our results about dimensions 3 and 4 and give a new proof which makes the result
intuitively clear. We will establish the existence of Pg . at 8 = B4 when d > 5 and give the value of (.
The phase transition described above corresponds to a transition for the operator

,O0

Hy = A+ B

In dimensions d = 1 or d = 2, this operator has a positive eigenvalue \o(5) > 0 for all § > 0. Thus we
define 8; = B2 = 0. In dimensions d > 3, for 5 > 4, Hp has a positive eigenvalue A\o(8). Curiously, for
d > 5, Ao(B4) = 0 is an eigenvalue at the edge of the absolutely continuous part of the spectrum of Hpg
which is [—4d, 0]. However, the situation in d < 4 is that there is no eigenvalue in the spectrum of Hg at
B = Bg4. In dimensions d = 3 or d = 4, the polymer paths at § = 4 exhibit unusual behavior midway
between the cases of d < 2 and d > 5.

We remark that for d > 3, the value 84 marks a transition in the free energy which is defined as

1
F(B) = lim n InZg,.

t—o0
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Namely, for 8 < B4 the free energy is F() = 0 while for 5 > f4 one has F(8) = Ao(8) > 0. In
addition, this corresponds to the fact that fooo do(zs)ds is an exponentially distributed random variable
with parameter 2dry where ry = PY (znever returns to the origin). One simply notes that

oo N
/ do(zs)ds = ZTj,
0 =

where N, the number of visits to the origin, is a geometric random variable with parameter 1 — ry which
is independent of the i.i.d. sequence 7;, j > 1 of sojourn times at the origin which are i.i.d. exponentially
distributed random variables with parameter 2d. Thus

Z,B,OO = E10[eﬁfoOO 50($s)d5] < 00

for B < 2drg4 while this is infinite for 8 > 2d r4 which shows that 8y = 2d ry.

2 Behavior of the polymer at 8 = 34

We now consider the behavior of the polymer at 8 = 4. For d = 1 or 2, 53 = 0 and so the polymer
measure Pg, « is just P and there is nothing new to add, but perhaps it is worth pointing out that the
continuous time, simple, symmetric random walk is null recurrent in these dimensions. That the polymer
in this case is weakly diffusive means x;//t has a nondegenerate limiting distribution, which is of course
Gaussian, yet x; is recurrent.

For d = 3 or d = 4, the polymer is in a “weakly” diffusive phase at 8 = [4. The potential has a
weak, yet non-negligible, long-term effect in these dimensions at the critical value of the parameter [,
but not strong enough to give a stationary probability distribution as is the case under Pg, o, when d > 5
described below. Here, we will show that the effect of the potential shows up in the behavior of o;/t,
where

o =sup{s < t:xs =0}.

In dimensions 3 and 4 the variables o4/t have a limiting distribution under Pg,; as ¢ — oo. This
distribution is more concentrated near 0 in dimension 3 than in dimension 4. For example, the mean of
this limiting distribution is 1/3 when d = 3 and 1/2 when d = 4. We can derive the limiting distribution
explicitly as well as that of z;/v/t with respect to Pgs, + as t — oo. This relies on specifying the limiting
distribution of o;/¢t. In these dimensions, the limiting distribution of z;/ Vt in the critical case f = B4
is a mixture of Gaussians. This was first established in [2]. Here, we give a new proof showing how
the mixture of Gaussians arises from the limiting behavior of o;/t. The reason is that the polymer is
“free” of the influence of the potential after time o; and as a result, conditional on oy, the position x;
is approximately Gaussian with variance ¢ — oy = t(1 — o¢/t). This will be made precise with a path
decomposition at the time o;. One can think of the potential as providing a “sticky” boundary point in
the critical case, but not “sticky” enough to create a bound state as in the cases d > 5.

In dimensions d > 5, the process under the polymer measure Pg . is positive recurrent. This curious
case is due to the existence of 0 as an eigenvalue for the operator Hg,. The associated eigenfunction for
dimensions d > 5, denoted by 15,, provides the stationary probability measure for the time-homogeneous
Markov process under Pg, o in the form

V3, (@)

—d ..
rezZd HwﬁdH%Z(Zd) ’

TBa =

This measure has fairly heavy tails, in the sense that only moments of order up to d—5 exist. By contrast,
in the case § > f4, all moments exist for the analogously defined measure mg. This is why we say the
polymer is in the “weakly” globular phase at 8 = 34 for d > 5.

For d = 3 and d = 4, the following theorem describes the behavior at criticality.
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Theorem 2.1.  For o3(du) = 2\1[du 0<u<l,

tli)m Pg, 1(0/t € du) = o3(du), (2.1)

1
. x b2 (1—n
tl;m Eg,. t{exp {1<¢,\/%>H :/0 1MV oo (du), ¢ e R®. (2.2)
For o4(du) = du, 0 <u <1,

tlim Pg, +(o/t € du) = o4(du), (2.3)

1
% Eﬁ{’{p{@%m = [ e, et (2.4)

For0<s<1,0<t<oo,let FeFys and G € Fsi v be bounded random variables. Then we have
the path decomposition for d = 3,4, with p the uniform distribution on {£e; : j =1,...,d} where e; are
the unit vectors in Z?,

Eg, 1[FG|oyft =3s] = Pg, (F|oy/t = 8)EF[Gob_g |y #0,0 <u<(1—9). (2.5)

The situation at criticality for d > 5 is described in the following theorem.
Theorem 2.2.  Ford > 5 and 8 = B4, there is a measure Pg, o on ¥ such that as t — oo the process
(37, Fo,r, Pa,t) converges in law to (X1, For,Ps,00). The process (£, F0.00; Psy00) 15 a stationary
Markov process with Q-matriz

0, if |x—y|l>1,
qa(z,y) = zzd%’ if |lv—yl=1, (2.6)

Bado(x) —2d, if y=u=,
and the generator

Ap, f( chz z,y)(f(y) — f(x)),

where g, denotes the eigenfunction of Hg, corresponding to M\o(Ba) = 0. The transition density for this
ergodic, pure jump, Markov process on Z¢ is given by

Psg (53 &€, y)i,bgd (y)
’(/}ﬂd (SL’) . (27)

Tﬁd(sv €, y) =

Its invariant probability distribution is

Z U, (@ (2.8)

l’
AL \2

The 2k-th moment of mg, is finite if and only if d > 2k + 5.
The distribution of the endpoint of the polymer, xy, with respect to Pg, . satisfies

lim Pg, ¢ (zy =2) = Y5al2) (z)

i T (2.9)

3 Resolvent analysis

Our analysis rests on properties of the resolvent, for A > 0,

oo
RO,/\((E7y) = / e_)‘spo(s,x,y)ds,
0
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where we have included a subscript of 0 in the notation since later the Gibbs measure with parameter g3
will be introduced which will have a parameter 8 and the quantities just defined will correspond to the
parameter value 8 = 0. The resolvent satisfies the equation

(A =N Rox(x,y) = —dy(x). (3.1)

For ¢ € T4, the d-dimensional torus, with coordinates ¢ = (¢1,...,dq), we use

d
@) = 22(1 — €os ¢;)

to denote the symbol (Fourier transform) of —A. A useful fact is that ®(¢) ~ ||¢||* as ¢ — 0. On applying
the Fourier transform to (3.1), one obtains

N ei<¢yy>
Roa(9,y) = AT+ D(d) (3:2)
On inversion of (3.2), we have the representation
Roa0,0) =ty [ oo (33)
’ (2m)¢ Jpa A+ P(¢)

Since the function (of A at y = 0) in (3.3) plays a central role in our development, we denote it for
simplicity by

1 1
I\ = do = Ro.2(0,0). 3.4
N =Gt | 5w~ o 0.0) (3.4)
The fundamental solution of the heat equation for Hg is the solution of
Ops

By the Feynman-Kac formula,

0Z3+
ot

(:E) = H[;Z@,t(l‘), Zﬁ}o(l’) =1.
This implies that the relation between Zs(x) and pg is given by

Zg(x Z pa(t, z,y). (3.6)
yeZd

Analogously to the preceding development, define for > 0, A > 0,

L A

Rgx(d,y) = > Rgalw,y)e®r).
yeZd

Taking the Laplace transform in ¢ of (3.5) yields the equation for the resolvent
HgRpx — ARp x = —0,(2),
which implies that the Fourier transform

Roa(dy) = Y Roa(w,y)e®?

yezZ?
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satisfies the equation
~R5x(0.4) (B(9) +X) + SR 5(0,y) = —e/®¥).
Solving for Rs x(¢,y) one arrives at

. Rz (0, o)
Roa(,y) = RO

Integrating over T and combining this with (3.3) and (3.4), we get

R A (0,y) = BI(AN)Rpx(0,y) + Rox(0,y)
and so

_ RO,/\(Ov y)
1—8I(N)
From the resolvent formula (3.7), we can read off the value for 84 in terms of the function I. In dimensions
d=1ord=2,it is easy to see that I(0) = co and so for every 8 > 0, the value A which satisfies 8 = ﬁ
provides a singularity for the resolvent and this A is therefore the eigenvalue for Hg. Thus, 84 = 0 for
these dimensions. For d > 3, we have I(0) < oo and given 8 > 0, the equation SI(\) = 1 can only be
solved for A when (8 > ﬁ. It follows that 8; must satisfy 541(0) = 1. Below we shall relate 84 to the
parameter 4. The following result enables one to derive large time asymptotics for pg(¢,0,0) by means

R (0,y) (3.7)

of a Tauberian theorem.
Theorem 3.1.  The following A — 0 asymptotics hold for I(\). For d =3 or d =4, 1(0) < 0o and

A
-2 s

1) ~ .
10)~ g}, d=4.

Proof.  For d = 3, this was established in [2, Theorem 3.2]. For d = 4, it was proved in [2] without
specifying the constant so we only prove this result for d = 4. For d = 4,

A 1
10-10 = 5 [ Grsam

272\ /6 r3 d
@3 Jy Otz

A0
~— —d
47T 0 )\ + T2 "
A | 1
~—In—.
8T A
Solving for I(\) gives
ALl
= _ — 1 —
I(\) =1(0) 87rn)\+
This completes the proof. O

According to Theorem 3.1, since 841(0) = 1, for d = 3, the Laplace transform of pg, satisfies

_ 1M

1= pB3I(N)

N 471(0)
BsvVA

4
=T oo, (3.8)

AV

Rﬁsﬁ)\(o’ O)
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while for d = 4,

_ I
1= BaI(N)
8r1(0)

T B L
87
~ BiAInt’

R, 7(0,0)

A — 0. (3.9)

We obtain the following lemma by standard Tauberian arguments (see [3, Theorem 2, p.443]). This
was [2, Lemma 6.1] but without paying attention to constants. We need the exact constants in order to
specify B4 so we reproduce the proof here with more attention to detail.

Lemma 3.1. Ford=3 and c3 = 8‘/2;,

3
cs

Zg,1 ~ 2c3B3Vt,  t— o0. (3.11)

Ford=4 and cy = 8%/2;,
4

4

Psu(£,0,0) ~ 3=, (3.12)
t

28t ™~ 64641th’ t — oo. (3.13)

Proof.  The asymptotics for pg,(¢,0,0) and pg,(¢,0,0) are direct applications of a Tauberian theorem
to Theorem 3.1.
For d = 3 at § = (33, by (3.6) and (3.10), we have

2Bt = Z pps(t, 0, )

rcZd

= Dps (¢,0,0)
t
=1+ ﬂg/ P, (s,0,0)ds
0
~ 2c3B3Vt, t— o00. (3.14)

For d =4 at 8 = B4, by (3.6) and (3.12), we have

Zpst = Z ppa(t,0, )

reZ
= pp.(t,0,0)
t
=1+ 64/ P, (s,0,0)ds
0
t
C4B41nt, t — 00 (3 5)
This completes the proof. O

4 Spectrum of Hg

In this section we discuss the spectrum of the operator Hg which plays a major role in the behavior of
the measure Pg ;. The operator Hy = A has purely absolutely continuous spectrum equal to [—4d, 0]. The
spectrum of Hpg consists of an absolutely continuous part, [—4d, 0], and at most one simple eigenvalue
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Ao(B) which, for d > 5, can be 0, i.e., on the edge of the absolutely continuous part of the spectrum there
is an embedded eigenvalue. The first part of the next result, about the 5 > 84 case, was established in [2]
and we state it here for comparison purposes with the case = B4 in dimensions d > 5.

Theorem 4.1.  For any d and any B > B4, the operator Hg has one simple eigenvalue Ao(B) > 0. This
eigenvalue is the root of the equation BI(\) = 1. Corresponding to this eigenvalue there exists a unique
eigenfunction, g, with the Fourier transform

S p
Vp(o) = WXtk (4.1)

This eigenfunction has the representation

B el(®:m)
@) = 5o | o TEE 4.2)

For B > B4, the invariant measure

V5 (x)
"= 2 TR
z€Z4 B2
forrg,(s,x,y) defined at (2.7) has finite moments of all orders.
Ford >5 and B = B4, Ao(Ba) =0 is an eigenvalue. Its eigenfunction g, has the Fourier transform

Ba
P(¢)

The function ®(¢)~" is in L>(T?) and so 1[)&1 € L*(T?). The measure g, has moments of order 2k only
for k <d-5.

Proof.  The claims for 8 > f3; were established in [2, Theorem 4.1], so we will not prove them here.

To see that q)ﬁ(j)) is in L2(T9), just observe that ®2(¢) ~ [|¢[|4, [|¢|| ~ 0 and integrating in polar

coordinates introduces a factor of ||¢||?~! and thus ®2(¢) becomes integrable for d > 5. Thus

1&5d(¢) = (4.3)

- 6cr(d) e i(®)
o) = i | oy

is an eigenfunction corresponding to the eigenvalue 0.

The other claim is about the moments of 73. Assuming that d > 5 and > f.,, we see that for any

(j1,j2s -, ja) € N9,
o - i 1
(H del >w" (@)= <H del ) Ao(B) + ®(¢)

i=1 =1

has moments of all orders, since the denominator is bounded from 0 and the integration is over the
compact space T<. Since this is the Fourier transform of (H?:1 xj,)¢p(x), Plancherel’s identity implies
that the latter has finite second moments, which is the claim to be proved. However, at § = (4, since
Ao(Ba) =0,

(1152 )= (1% o

i=1 =1
The rest of the proof is just verification; for example, when k& =1,

0 1  2sing,
00; ®(¢)  @(¢)?
P R
(03 +D2is; 97)?
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~3/2

~ <§¢) |

01 o
96, 5() < - (T

where ¢; = ¢; (32, ., #?). Thus,

if and only if
-2

¢]2 < 2) 2 d
YRRV b; € L°(T),
I\ & )

which depends only on the integral near 0. Thus, we check in cylindrical coordinates,

g 2 6/\/ 224 j¢ 2 —5/2 N
Lol [ [ () Vi
S, 02<62Jo (¢j+Zi¢j o) iy 02<82J0 7/’ +1)* Py

5
gc/ rd=2p=54p
0

and the last integral is finite if and only if d > 7. The full claim that the 2k-th moment is finite if and
only if d > 2k + 5 is a routine (though tedious) calculation which we shall omit. O

5 Proofs of Theorems 2.1 and 2.2

In this section we give the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1.  For the asymptotic distribution of o/t described in (2.1) and (2.3) we observe,
when d = 3, for s € (0,1) and € > 0 small enough so that s + € € (0,1),

Pp, t(0r € (st, (s +€)t)) = Pgy 4 (Tst = 0,T(sqe¢ = €1, 74 # 0, (s + €)t <u < t) + o(e)

E9[eBs 50(mu)du6 )| P (2, 0,0 < u < t)6et
_ [e 0 o(Zst)] (2 # u < (1—(s+€))t)be + ofe),
Bs,t

where the term 6et arises from the rate of jumping from 0 to the neighboring unit vectors, 2d = 6
neighbors and the time interval has length et. Since the non-return probability is the same for all the
neighbors of 0, we use e; € Z? in this expression. As t — oo, the term

Pz, #0,0<u < (1 - (s+¢€))t) = r3 €(0,1)

due to the transience of the 3-dimensional random walk. Thus,

Pﬁs,t <ot—t < dS) = Zg;tEO[eBS f(;t 60($u)du50($5t)]67‘3td8
- B_sl,t Pps (St, 0, 0)6T3tds,

y (3.10) and (3.14) we have for s € (0,1),

-1

t t

hm Zﬁ tpgg(st 0,0)6rst = lim caV/st_brs
t—o0 26353\/£

. 67’3
2B3v/s

and since this is a probability density we derive that r3 = 683 and so

. Ot 1
tlgglo Pg, <t € ds> = Tﬁds’ s€ (0,1)
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as desired. Thus, (2.1) is proved.
For the distribution of o/t when d = 4 we observe as before, for s € (0,1) and € > 0 small enough so
that s+ €€ (0,1),

Pg, t(or € (st,(s +€)t) = P, t(xst = 0,2 (54t = €1,24 # 0, (s + €)t <u <) +o(e)

E°[e% [o" 0 du 5y (40) P (24 # 0, 0 S w < (1= (s + €))t)8et

= ! +0€’
Zos (€)

where again the term 8et arises from the rate of jumping from 0 to the neighboring unit vectors in Z% in
the time interval (st, (s + €)t). The term

Pz, #0,0<u< (1= (s+e))t) > rs€(0,1)
due to the transience of the 4-dimensional random walk. Thus,
g - st T u
Foas <tt © ds) = 25, Bl Jg dote)dugy (z.)]8ryt ds
= Z[;:’tpg‘l(st, 0,0)8r4t ds.

By (3.12) and (3.15) we have for s € (0,1),

¢y 8ryt/In st
1 7z t t= lim —————
lm B, tp[h (8 0 0) t—o0 645425/ Int
87”4

" B

from which we derive, since this is a density on [0, 1], that 84y = 84 and so

lim Pg, t(gtt € ds> =ds, se€(0,1)

t—o0

as claimed at (2.3).
For the proof of the path decomposition (2.5), first take 0 > € and approximate G € Fg;+ by a random
variable G5 € F(s15),- Then if
1
=57 2 v

llvl=1

we have for either d = 3 or d = 4 that as € — 0,

Eg, 1 [FGs o/t € [s,s + €]
_ Eg,4[FGs;o¢/t € [s,5+ €]
Pa,i(o¢/t € [s, s+ €])
_ 2 8t BraalFO5i 2t =050 =00 £ 0, (s + )t S u < 2det + of
30 =t Dot (@ = 0.3 ar = v,0u £ 0, (s + )t < u < H)2det + ofe)
_ EO[Feﬁd s éo(mu)dU(So(xst)]Ef [Gso00_st, 2, 0,0 < u < (1= (s+€)t)] + o(1)
— Eo[eﬁd ot 50(5Eu)du60(ﬂjst)]P#(xu £0,0<u< (1 . (S N €)t)) i 0(1)
EO[FePa I 60(96“)(1”50(%15)]

E[Gs o0 o lae#£0,0<u<(l—s)t
- P (5L.0,0) (s 0bs|ow#0,0<us (=8}

Z,BdSt
= —2 _Fg o|Foo(xst)|E*[Gs00_gp |2y 0,0 < u < (1—38)t
By o[BG 00t |5 0,0 S u < (1= 51

=Eg, st[F|zg =0|E*[Gs00_5 |z 0,0 < u< (1—9)t].

Letting § — 0 completes the proof.
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Using the path decomposition at (2.5), we now give a different proof of (2.2) and (2.4) than the one
given in [2]. This proof clarifies the relation between (2.1) and (2.2) and as well, the relation between
(2.3) and (2.4). Again working in dimensions 3 or 4, from the central limit theorem, it follows that for
each fixed u > 0,

T(l—s)t—u >

E“[eiw’T ] — e~ =9el® -y oo (5.1)
Also, if 79 = inf{t > 0 : z; = 0} then

. T(1—s)t i T(1—s)t
Eu[ew—ﬂ >] = E"e (6 =7 >'To < (1= s)t]

)

T(1—s)t

+ E“[ei<¢’7>; 70 > (1 — s)t]. (5.2)
But, by the strong Markov property,
. T(1—s)t i TA—s)t—
EFNO T iy < (1= )] = BREC[NY T Ve i < (1 s)tl.

Now, by (5.1) and the fact that
Plro<(1—8)t) >1—ry as t— oo,

we have by dominated convergence that

TA—s)t—7g

EMEC[N T i < (1= s)t] = (1 —rg)e” 0991 ¢ o0, (5.3)

From (5.1)—(5.3) and limy_, o P*(19 > (1 — s)t) = rq, we conclude

L T(—s)t

E“[el<¢’ i) |0 > (1—3)t] = e~ =9)lel® ¢y oo, (5.4)

Thus, taking FF =1 and G = ) we can apply (2.5) and (5.4) to get
Bpyole )] = / B[V |00/t = )Pa, {00/t € ds)
0
1 i<¢’1(173)t>
= E*e Vi 1o > (1 — 8)t|Pa, (o /t € ds)
0

1
— / e~ (=991 5 (ds), (5.5)
0

which completes the proof of (2.2) and (2.4). O

Remark 5.1.  The proof of (2.2) and (2.4) in [2] used the easily verified perturbation formula, which
holds for any d,

t
pa,(t,0,2) =po(t,0,z) + 5d/ po(t —s,0,2)pgs,(s,0,0)ds. (5.6)
0

In order to derive the asymptotic distribution of z;/v/t for d = 3, evaluate pg,(t,0,€) at £ = ¢/\/t
with ¢ € R? to get, by means of (5.6), the central limit theorem for the simple symmetric random walk,

t
Pas <t7 0, ji) = e (14 0(1)) + 0353/ (14 o(1))e P A= (1 4 )~1/24s.

0

After normalization by Zg, ; ~ 2c3 B3/ it follows that

o oy Das (60,5 g 1
EﬂB,t[elwﬂ ﬂ>] = u — 5/ eil(blz(liu)ﬁdu.
0

The proof for (2.4) was similar.
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Proof of Theorem 2.2.  The semigroup generated by pg, is

Quf(@) = 3 poslt.z,y)F(y) = eMou f(a)

yeZ4

and @Q; acts on the space of bounded functions. Since 13, is the eigenfunction corresponding to Ao(84) = 0,

Qtw,@d (:C) =g, (:C)

The computation of the limiting transition densities follows from considering for s + u < ¢, on letting
t — 00, We see

_ 't
Pﬁd,t(xs =T, Lopy = y) — Zﬁdl,tEO[eﬁd jo 50($r)dr;ms =T, Topy = y]
= 7} 0[P Jo 2o, o — 4
x B* [eﬁd I 50(””"')6”; Ty =Y

% EY [eﬁd oo EU(IT)dr]

— PBa (Sa Oa x)ZBmt(m) PBa (U, Z, y)Zﬁd,t—s—u(y)

Zﬁdvt Zﬁd,t(x)
Ppq (Sa 07 x)wﬁd (J?) Ppq (Sa x, ZU)WBd (y)
wﬁd (O) ?/fﬁd ((5) ’

which establishes (2.7).
Now the kernel
PBa (ta &, y)wﬂd (y)
r t? x’ y =
b o) = @)

generates a semigroup, which we denote by R; and R;1 = 1. The generator Ag, of R; is calculated by
the formula

Ay, fla) = ]111\2% Rhf(x)}; f(ff)

Making the computation, we find, using the facts that pg, (¢, z,y) solves (3.5) and that A¢(84) = 0, that

Rpf(x) = flx) 1

Jim . = 0 s @)
1
= ST W) ) = s, (@) f(2)) ) + Bado(w) f(2)
Vg, () (lyml—l )
1
= > Wpuy) — s, (2)) f(2)
,(/Jﬁd(x) (|y—$|_1 )
n ¢1()( Y (fw) - f(x»wﬁd(y)) + Bado(a) £ (@)
Ba\T) Ny =1
wﬁd (y)
= > (fly) — f(2)).
Iy >afi=1 ¥84(®)

This results in the expression

Apof(x) = Y aalz,y)(fy) - f(2),

ly—z|=1

as claimed in Theorem 2.2. The last step regarding the @-matrix involves the diagonal term which is
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determined by the condition Zy qa(z,y) = 0. Since

o Z/JBd y)
Z Qd(l',y) - Z wﬁd .Z‘)

yiyF£ yyF£T

_ W,i y) wﬂd( )
B Z wﬁd(ﬂﬂ) 2

quﬁd( ) +2d

y: yaéx

/lljﬂd( )
= —Bado(r) + 2d,

it follows that gq(x, ) = B4do(x) — 2d.
Using the asymptotic formula, which comes from the spectral theorem (recall the absolutely continuous
part of the spectrum of Hg, is [—4d, 0]),

pﬂd(t,x,y) ~ ¢/3d (x),(/)ﬂd(y)7 t — o0,

together with the definition of rg, (¢, z,y) we see that both

. 2
tli)rgo T34 (t; z, y) = ’lz)ﬂd (y)

and

> 3, (@)rs,(tx,y) = ¥3,(v).

z€EZ?

This proves that mg, defined in the theorem gives the stationary probability distribution. Also, the
endpoint distribution Pg, ;(z+ = ) can be handled using the spectral theorem as follows:

In order to obtain weak converge of the measures Pg, ; on the space of trajectories up to time 7' we need
to establish tightness. According to [1], this requires control of the oscillations. Set

wr(@,[ti-1,t:)) = sup [z — a4
s,t€[ti—1,ti)

and

Wh(x,8) = gllf} lrgfmgxer(x, [tiz1,t:)),

where the inf is taken over finite sets {¢;} such that
O=tog<ti <---<t, =T, ti —ti_1 > 0.

Then, since our paths all start at 0 under Pg, ;, tightness will follow provided for each positive € and 7,
there exist 6 € (0,1) and Ty such that

Ppp(wp(x,0) 2 €) <n, t=To.
However, we have

- t X S
Pﬂd,t(le“($75) >e€) = Zﬁdl,tEO[eﬁd Jo bo(zs)d 1{w%(r,6)>e}]



1476 Cranston M et al. Sci China Math  August 2019 Vol. 62 No.8

T t—T
= Zy B0l 0 00 o gy BT [P0 e

Zﬁd,th

01.BuT
< EV[7 1w (2.6)>e}) Zs

d,t
<M PO (W (w,6) > €)

— 0, t— o0.

This proves the convergence in distribution of the process on [0,7] under Pg,; as t — co. O
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