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Abstract We begin with the reference measure P 0 induced by simple, symmetric nearest neighbor continuous

time random walk on Zd starting at 0 with jump rate 2d and then define, for β > 0, t > 0, the Gibbs probability

measure Pβ,t by specifying its density with respect to P 0 as

dPβ,t

dP 0
= Zβ,t(0)

−1eβ
∫ t
0 δ0(xs)ds, (0.1)

where Zβ,t(0) ≡ E0[eβ
∫ t
0 δ0(xs)ds]. This Gibbs probability measure provides a simple model for a homopolymer

with an attractive potential at the origin. In a previous paper (Cranston and Molchanov, 2007), we showed

that for dimensions d > 3 there is a phase transition in the behavior of these paths from the diffusive behavior

for β below a critical parameter to the positive recurrent behavior for β above this critical value. The critical

value was determined by means of the spectral properties of the operator ∆ + βδ0, where ∆ is the discrete

Laplacian on Zd. This corresponds to a transition from a diffusive or stretched-out phase to a globular phase for

the polymer. In this paper we give a description of the polymer at the critical value where the phase transition

takes place. The behavior at the critical parameter is dimension-dependent.
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1 Introduction

In this paper we complete a picture of a homopolymer model, some of whose properties were discussed in

the previous work of Cranston and Molchanov [2]. We can now give a fairly complete description of the

polymer behavior at the critical parameter in all dimensions. Interest in polymer models is well developed.

An early work on the subject [4] has been followed by myriad contributions and we refer the reader to

an interesting paper [5] and its extensive bibliography. In contrast to other work on the homogeneous

pinning model, our approach uses spectral theory and resolvent analysis in place of renewal theory. With

our approach we are able to establish quite simply some interesting results about the behavior of the
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pinned homopolymer at the critical parameter which gives the point where a phase transition occurs. In

order to describe the model, denote by Σ the space right continuous, left limit paths on [0,∞) into Zd. A

typical element of Σ will be denoted by x and its position at time s by xs. Sometimes we shall consider the

restriction of elements of Σ to the interval [0, t] and use Σt to denote these paths endowed with the natural

σ-field F0,t = σ(xu : 0 6 u 6 t). We will later use the σ-fields Fs,t = σ(xu : s 6 u 6 t) for 0 6 s < t 6 ∞
generated by information from the paths on the interval [s, t]. The mapping θt : Σ → Σ will be the

usual shift operator. Our reference measure on Σ shall be P 0, where P x denotes the measure induced by

simple, symmetric nearest neighbor continuous time random walk on Zd satisfying P x(x0 = x) = 1. This

is the Markov process with generator the discrete Laplacian, i.e.,

∆ψ(x) =
∑

y∈Zd:|x−y|=1

(ψ(y)− ψ(x)).

Define for β > 0 and t > 0 the Gibbs (probability) measure Pβ,t on (Σt,F0,t) by specifying its density

with respect to P 0 as

dPβ,t

dP 0
= Zβ,t(0)

−1eβ
∫ t
0
δ0(xs)ds, (1.1)

where

Zβ,t(0) ≡ E0[eβ
∫ t
0
δ0(xs)ds]

is the usual normalizing factor called the partition function. Setting

Zβ,t(x) = Ex[eβ
∫ t
0
δ0(xs)ds]

enables us to define the Gibbs measure P x
β,t on paths started at x by

dP x
β,t

dP x
= Zβ,t(x)

−1eβ
∫ t
0
δ0(xs)ds. (1.2)

When x = 0 we will write Zβ,t in place of Zβ,t(0). In the previous work [2], we demonstrated the existence

of a phase transition in the parameter β at a particular parameter value which we shall denote by βd. In

all dimensions and all β > βd, we proved that there is in a certain sense a limiting measure P x
β,∞. To be

precise, for any A ∈ F0,t, the limit

lim
T→∞

P x
β,T (A) = P x

β,∞(A)

determines a measure P x
β,∞ on F0,∞. For d = 1 or d = 2, the process under the polymer measure is null

recurrent for β = 0 and positive recurrent for β > 0. In dimensions d > 3, there is a dimension-dependent

constant βd > 0 such that the process under the polymer measure P x
β,∞ is positive recurrent, for β > βd,

the globular phase. For β < βd, the so-called diffusive phase, xt/
√
t is asymptotically normal with respect

to P x
β,t. We also proved there is a limit distribution for xt/

√
t at β = βd in dimensions 3 and 4. In this

paper, we will recall our results about dimensions 3 and 4 and give a new proof which makes the result

intuitively clear. We will establish the existence of P x
β,∞ at β = βd when d > 5 and give the value of βd.

The phase transition described above corresponds to a transition for the operator

Hβ = ∆+ βδ0.

In dimensions d = 1 or d = 2, this operator has a positive eigenvalue λ0(β) > 0 for all β > 0. Thus we

define β1 = β2 = 0. In dimensions d > 3, for β > βd, Hβ has a positive eigenvalue λ0(β). Curiously, for

d > 5, λ0(βd) = 0 is an eigenvalue at the edge of the absolutely continuous part of the spectrum of Hβ

which is [−4d, 0]. However, the situation in d 6 4 is that there is no eigenvalue in the spectrum of Hβ at

β = βd. In dimensions d = 3 or d = 4, the polymer paths at β = βd exhibit unusual behavior midway

between the cases of d 6 2 and d > 5.

We remark that for d > 3, the value βd marks a transition in the free energy which is defined as

F (β) = lim
t→∞

1

t
lnZβ,t.
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Namely, for β < βd the free energy is F (β) = 0 while for β > βd one has F (β) = λ0(β) > 0. In

addition, this corresponds to the fact that
∫∞
0
δ0(xs)ds is an exponentially distributed random variable

with parameter 2d rd where rd = P 0 (xnever returns to the origin). One simply notes that∫ ∞

0

δ0(xs)ds =
N∑
j=1

τj ,

where N, the number of visits to the origin, is a geometric random variable with parameter 1− rd which

is independent of the i.i.d. sequence τj , j > 1 of sojourn times at the origin which are i.i.d. exponentially

distributed random variables with parameter 2d. Thus

Zβ,∞ = E0[eβ
∫ ∞
0

δ0(xs)ds] <∞

for β < 2d rd while this is infinite for β > 2d rd which shows that βd = 2d rd.

2 Behavior of the polymer at β = βd

We now consider the behavior of the polymer at β = βd. For d = 1 or 2, βd = 0 and so the polymer

measure Pβd,∞ is just P 0 and there is nothing new to add, but perhaps it is worth pointing out that the

continuous time, simple, symmetric random walk is null recurrent in these dimensions. That the polymer

in this case is weakly diffusive means xt/
√
t has a nondegenerate limiting distribution, which is of course

Gaussian, yet xt is recurrent.

For d = 3 or d = 4, the polymer is in a “weakly” diffusive phase at β = βd. The potential has a

weak, yet non-negligible, long-term effect in these dimensions at the critical value of the parameter β,

but not strong enough to give a stationary probability distribution as is the case under Pβd,∞ when d > 5

described below. Here, we will show that the effect of the potential shows up in the behavior of σt/t,

where

σt = sup{s 6 t : xs = 0}.

In dimensions 3 and 4 the variables σt/t have a limiting distribution under Pβd,t as t → ∞. This

distribution is more concentrated near 0 in dimension 3 than in dimension 4. For example, the mean of

this limiting distribution is 1/3 when d = 3 and 1/2 when d = 4. We can derive the limiting distribution

explicitly as well as that of xt/
√
t with respect to Pβd,t as t → ∞. This relies on specifying the limiting

distribution of σt/t. In these dimensions, the limiting distribution of xt/
√
t in the critical case β = βd

is a mixture of Gaussians. This was first established in [2]. Here, we give a new proof showing how

the mixture of Gaussians arises from the limiting behavior of σt/t. The reason is that the polymer is

“free” of the influence of the potential after time σt and as a result, conditional on σt, the position xt
is approximately Gaussian with variance t − σt = t(1 − σt/t). This will be made precise with a path

decomposition at the time σt. One can think of the potential as providing a “sticky” boundary point in

the critical case, but not “sticky” enough to create a bound state as in the cases d > 5.

In dimensions d > 5, the process under the polymer measure P x
βd,∞ is positive recurrent. This curious

case is due to the existence of 0 as an eigenvalue for the operator Hβd
. The associated eigenfunction for

dimensions d > 5, denoted by ψβd
, provides the stationary probability measure for the time-homogeneous

Markov process under Pβd,∞ in the form

πβd
=

∑
x∈Zd

ψ2
βd
(x)

∥ψβd
∥2
L2(Zd)

δx.

This measure has fairly heavy tails, in the sense that only moments of order up to d−5 exist. By contrast,

in the case β > βd, all moments exist for the analogously defined measure πβ . This is why we say the

polymer is in the “weakly” globular phase at β = βd for d > 5.

For d = 3 and d = 4, the following theorem describes the behavior at criticality.
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Theorem 2.1. For σ3(du) ≡ 1
2
√
u
du, 0 6 u 6 1,

lim
t→∞

Pβ3,t(σt/t ∈ du) = σ3(du), (2.1)

lim
t→∞

Eβ3,t

[
exp

{
i

⟨
ϕ,
xt√
t

⟩}]
=

∫ 1

0

e−|ϕ|2(1−u)σ3(du), ϕ ∈ R3. (2.2)

For σ4(du) ≡ du, 0 6 u 6 1,

lim
t→∞

Pβ4,t(σt/t ∈ du) = σ4(du), (2.3)

lim
t→∞

Eβ4,t

[
exp

{
i

⟨
ϕ,
xt√
t

⟩}]
=

∫ 1

0

e−|ϕ|2(1−u)σ4(du), ϕ ∈ R4. (2.4)

For 0 < s < 1, 0 < t < ∞, let F ∈ F0,st and G ∈ Fst,t be bounded random variables. Then we have

the path decomposition for d = 3, 4, with µ the uniform distribution on {±ej : j = 1, . . . , d} where ej are

the unit vectors in Zd,

Eβd,t[FG |σt/t = s] = Pβd,t(F |σt/t = s)Eµ[G ◦ θ−st |xu ̸= 0, 0 6 u 6 (1− s)t]. (2.5)

The situation at criticality for d > 5 is described in the following theorem.

Theorem 2.2. For d > 5 and β = βd, there is a measure Pβd,∞ on Σ such that as t→ ∞ the process

(ΣT ,F0,T , Pβd,t) converges in law to (ΣT ,F0,T , Pβd,∞) . The process (Σ,F0,∞, Pβd,∞) is a stationary

Markov process with Q-matrix

qd(x, y) =


0, if |x− y| > 1,
ψβd

(y)

ψβd
(x)

, if |x− y| = 1,

βdδ0(x)− 2d, if y = x,

(2.6)

and the generator

Aβd
f(x) =

∑
y

qd(x, y)(f(y)− f(x)),

where ψβd
denotes the eigenfunction of Hβd

corresponding to λ0(βd) = 0. The transition density for this

ergodic, pure jump, Markov process on Zd is given by

rβd
(s, x, y) =

pβd
(s, x, y)ψβd

(y)

ψβd
(x)

. (2.7)

Its invariant probability distribution is

πβd
=

∑
x∈Zd

ψ2
βd
(x)

∥ψ2
βd
∥2
δx. (2.8)

The 2k-th moment of πβd
is finite if and only if d > 2k + 5.

The distribution of the endpoint of the polymer, xt, with respect to Pβd,t satisfies

lim
t→∞

Pβd,t (xt = x) =
ψβd

(x)

⟨ψβd
,1⟩

. (2.9)

3 Resolvent analysis

Our analysis rests on properties of the resolvent, for λ > 0,

R0,λ(x, y) =

∫ ∞

0

e−λsp0(s, x, y)ds,
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where we have included a subscript of 0 in the notation since later the Gibbs measure with parameter β

will be introduced which will have a parameter β and the quantities just defined will correspond to the

parameter value β = 0. The resolvent satisfies the equation

(∆− λ)R0,λ(x, y) = −δy(x). (3.1)

For ϕ ∈ Td, the d-dimensional torus, with coordinates ϕ = (ϕ1, . . . , ϕd), we use

Φ(ϕ) = 2
d∑

j=1

(1− cosϕj)

to denote the symbol (Fourier transform) of −∆. A useful fact is that Φ(ϕ) ∼ ∥ϕ∥2 as ϕ→ 0. On applying

the Fourier transform to (3.1), one obtains

R̂0,λ(ϕ, y) =
ei⟨ϕ,y⟩

λ+Φ(ϕ)
. (3.2)

On inversion of (3.2), we have the representation

R0,λ(0, y) =
1

(2π)d

∫
Td

ei⟨ϕ,y⟩

λ+Φ(ϕ)
dϕ. (3.3)

Since the function (of λ at y = 0) in (3.3) plays a central role in our development, we denote it for

simplicity by

I(λ) ≡ 1

(2π)d

∫
Td

1

λ+Φ(ϕ)
dϕ = R0,λ(0, 0). (3.4)

The fundamental solution of the heat equation for Hβ is the solution of

∂pβ
∂t

(t, x, y) = Hβpβ(t, x, y), pβ(0, x, y) = δy(x). (3.5)

By the Feynman-Kac formula,

∂Zβ,t

∂t
(x) = HβZβ,t(x), Zβ,0(x) ≡ 1.

This implies that the relation between Zβ,t(x) and pβ is given by

Zβ,t(x) =
∑
y∈Zd

pβ(t, x, y). (3.6)

Analogously to the preceding development, define for β > 0, λ > 0,

Rβ,λ(x, y) =

∫ ∞

0

e−λtpβ(t, x, y)dt,

R̂β,λ(ϕ, y) =
∑
y∈Zd

Rβ,λ(x, y)e
i⟨ϕ,x⟩.

Taking the Laplace transform in t of (3.5) yields the equation for the resolvent

HβRβ,λ − λRβ,λ = −δy(x),

which implies that the Fourier transform

R̂β,λ(ϕ, y) =
∑
y∈Zd

Rβ,λ(x, y)e
i⟨ϕ,x⟩
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satisfies the equation

−R̂β,λ(ϕ, y) (Φ(ϕ) + λ) + βRβ,λ(0, y) = −ei⟨ϕ,y⟩.

Solving for R̂β,λ(ϕ, y) one arrives at

R̂β,λ(ϕ, y) =
βRβ,λ(0, y) + ei⟨ϕ,y⟩

λ+Φ(ϕ)
.

Integrating over Td and combining this with (3.3) and (3.4), we get

Rβ,λ(0, y) = βI(λ)Rβ,λ(0, y) +R0,λ(0, y)

and so

Rβ,λ(0, y) =
R0,λ(0, y)

1− βI(λ)
. (3.7)

From the resolvent formula (3.7), we can read off the value for βd in terms of the function I. In dimensions

d = 1 or d = 2, it is easy to see that I(0) = ∞ and so for every β > 0, the value λ which satisfies β = 1
I(λ)

provides a singularity for the resolvent and this λ is therefore the eigenvalue for Hβ . Thus, βd = 0 for

these dimensions. For d > 3, we have I(0) < ∞ and given β > 0, the equation βI(λ) = 1 can only be

solved for λ when β > 1
I(0) . It follows that βd must satisfy βdI(0) = 1. Below we shall relate βd to the

parameter rd. The following result enables one to derive large time asymptotics for pβ(t, 0, 0) by means

of a Tauberian theorem.

Theorem 3.1. The following λ→ 0 asymptotics hold for I(λ). For d = 3 or d = 4, I(0) <∞ and

I(λ) ∼


I(0)−

√
λ

4π
, d = 3,

I(0)− λ

8π
ln 1

λ , d = 4.

Proof. For d = 3, this was established in [2, Theorem 3.2]. For d = 4, it was proved in [2] without

specifying the constant so we only prove this result for d = 4. For d = 4,

I(0)− I(λ) =
λ

(2π)3

∫
T3

1

(λ+Φ(ϕ))Φ(ϕ)
dϕ

∼ 2π2λ

(2π)3

∫ δ

0

r3

(λ+ r2)r2
dr

∼ λ

4π

∫ δ

0

r

λ+ r2
dr

∼ λ

8π
ln

1

λ
.

Solving for I(λ) gives

I(λ) = I(0)− λ

8π
ln

1

λ
+ · · · .

This completes the proof.

According to Theorem 3.1, since βdI(0) = 1, for d = 3, the Laplace transform of pβ3 satisfies

Rβ3,λ(0, 0) =
I(λ)

1− β3I(λ)

∼ 4πI(0)

β3
√
λ

=
4π

β2
3

√
λ
, λ→ 0, (3.8)
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while for d = 4,

Rβ4,λ(0, 0) =
I(λ)

1− β4I(λ)

∼ 8πI(0)

β4λ ln
1
λ

=
8π

β2
4λ ln

1
λ

, λ→ 0. (3.9)

We obtain the following lemma by standard Tauberian arguments (see [3, Theorem 2, p. 443]). This

was [2, Lemma 6.1] but without paying attention to constants. We need the exact constants in order to

specify βd so we reproduce the proof here with more attention to detail.

Lemma 3.1. For d = 3 and c3 = 8
√
π

β2
3
,

pβ3(t, 0, 0) ∼
c3√
t
, (3.10)

Zβ3,t ∼ 2c3β3
√
t, t→ ∞. (3.11)

For d = 4 and c4 = 8
√
π

β2
4
,

pβ4(t, 0, 0) ∼
c4
ln t

, (3.12)

Zβ4,t ∼ c4β4
t

ln t
, t→ ∞. (3.13)

Proof. The asymptotics for pβ3(t, 0, 0) and pβ4(t, 0, 0) are direct applications of a Tauberian theorem

to Theorem 3.1.

For d = 3 at β = β3, by (3.6) and (3.10), we have

Zβ3,t =
∑
x∈Zd

pβ3(t, 0, x)

= p̂β3(t, 0, 0)

= 1 + β3

∫ t

0

pβ3(s, 0, 0)ds

∼ 2c3β3
√
t, t→ ∞. (3.14)

For d = 4 at β = β4, by (3.6) and (3.12), we have

Zβ4,t =
∑
x∈Zd

pβ4(t, 0, x)

= p̂β4(t, 0, 0)

= 1 + β4

∫ t

0

pβ4(s, 0, 0)ds

∼ c4β4
t

ln t
, t→ ∞. (3.15)

This completes the proof.

4 Spectrum of Hβ

In this section we discuss the spectrum of the operator Hβ which plays a major role in the behavior of

the measure Pβ,t. The operator H0 = ∆ has purely absolutely continuous spectrum equal to [−4d, 0]. The

spectrum of Hβ consists of an absolutely continuous part, [−4d, 0], and at most one simple eigenvalue
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λ0(β) which, for d > 5, can be 0, i.e., on the edge of the absolutely continuous part of the spectrum there

is an embedded eigenvalue. The first part of the next result, about the β > βd case, was established in [2]

and we state it here for comparison purposes with the case β = βd in dimensions d > 5.

Theorem 4.1. For any d and any β > βd, the operator Hβ has one simple eigenvalue λ0(β) > 0. This

eigenvalue is the root of the equation βI(λ) = 1. Corresponding to this eigenvalue there exists a unique

eigenfunction, ψβ, with the Fourier transform

ψ̂β(ϕ) =
β

λ0(β) + Φ(ϕ)
. (4.1)

This eigenfunction has the representation

ψβ(x) =
β

(2π)d

∫
Td

ei⟨ϕ,x⟩

λ0(β) + Φ(ϕ)
dϕ. (4.2)

For β > βd, the invariant measure

πβ ≡
∑
x∈Zd

ψ2
β(x)

∥ψβ∥22
δx

for rβd
(s, x, y) defined at (2.7) has finite moments of all orders.

For d > 5 and β = βd, λ0(βd) = 0 is an eigenvalue. Its eigenfunction ψβd
has the Fourier transform

ψ̂βd
(ϕ) =

βd
Φ(ϕ)

. (4.3)

The function Φ(ϕ)−1 is in L2(Td) and so ψ̂βd
∈ L2(Td). The measure πβd

has moments of order 2k only

for k 6 d− 5.

Proof. The claims for β > βd were established in [2, Theorem 4.1], so we will not prove them here.

To see that βd

Φ(ϕ) is in L2(Td), just observe that Φ2(ϕ) ∼ ∥ϕ∥4, ∥ϕ∥ ∼ 0 and integrating in polar

coordinates introduces a factor of ∥ϕ∥d−1 and thus Φ−2(ϕ) becomes integrable for d > 5. Thus

ψβd
(x) =

βcr(d)

(2π)d

∫
Td

e−i⟨ϕ,x⟩

Φ(ϕ)
dϕ

is an eigenfunction corresponding to the eigenvalue 0.

The other claim is about the moments of πβ . Assuming that d > 5 and β > βcr, we see that for any

(j1, j2, . . . , jd) ∈ Nd, ( d∏
i=1

∂ji

∂ϕjii

)
ψ̂β(ϕ) =

( d∏
i=1

∂ji

∂ϕjii

)
1

λ0(β) + Φ(ϕ)

has moments of all orders, since the denominator is bounded from 0 and the integration is over the

compact space Td. Since this is the Fourier transform of (
∏d

i=1 xji)ψβ(x), Plancherel’s identity implies

that the latter has finite second moments, which is the claim to be proved. However, at β = βd, since

λ0(βd) = 0, ( d∏
i=1

∂

∂ϕjii

)
ψ̂β(ϕ) =

( d∏
i=1

∂

∂ϕjii

)
1

Φ(ϕ)
.

The rest of the proof is just verification; for example, when k = 1,

∂

∂ϕj

1

Φ(ϕ)
=

2 sinϕj
Φ(ϕ)2

∼ c
ϕj

(ϕ2j +
∑

i̸=j ϕ
2
i )

2
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= c
ψj

(ψ2
j + 1)2

(∑
i̸=j

ϕ2i

)−3/2

,

where ψj = ϕj(
∑

i̸=j ϕ
2
i ). Thus,

∂

∂ϕj

1

Φ(ϕ)
∈ L2(Td)

if and only if
ψ2
j

(ψ2
j + 1)2

(∑
i̸=j

ϕ2i

)−2

∈ L2(Td),

which depends only on the integral near 0. Thus, we check in cylindrical coordinates,∫
∑

i̸=j ϕ2
i<δ2

∫ δ

0

ϕ2j
(ϕ2j +

∑
i̸=j ϕ

2
i )

4
=

∫
∑

i̸=j ϕ2
i<δ2

∫ δ/
√∑

i̸=j ϕ2
i

0

ψ2
j

(ψ2
j + 1)4

(∑
i̸=j

ϕ2i

)−5/2

dψj
ˆdϕj

6 c

∫ δ

0

rd−2r−5dr

and the last integral is finite if and only if d > 7. The full claim that the 2k-th moment is finite if and

only if d > 2k + 5 is a routine (though tedious) calculation which we shall omit.

5 Proofs of Theorems 2.1 and 2.2

In this section we give the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. For the asymptotic distribution of σt/t described in (2.1) and (2.3) we observe,

when d = 3, for s ∈ (0, 1) and ϵ > 0 small enough so that s+ ϵ ∈ (0, 1),

Pβ3,t(σt ∈ (st, (s+ ϵ)t)) = Pβ3,t(xst = 0, x(s+ϵ)t = e1, xu ̸= 0, (s+ ϵ)t 6 u 6 t) + o(ϵ)

=
E0[eβ3

∫ st
0

δ0(xu)duδ0(xst)]P
e1(xu ̸= 0, 0 6 u 6 (1− (s+ ϵ))t)6ϵt

Zβ3,t
+ o(ϵ),

where the term 6ϵt arises from the rate of jumping from 0 to the neighboring unit vectors, 2d = 6

neighbors and the time interval has length ϵt. Since the non-return probability is the same for all the

neighbors of 0, we use e1 ∈ Z3 in this expression. As t→ ∞, the term

P e1(xu ̸= 0, 0 6 u 6 (1− (s+ ϵ))t) → r3 ∈ (0, 1)

due to the transience of the 3-dimensional random walk. Thus,

Pβ3,t

(
σt
t

∈ ds

)
= Z−1

β3,t
E0[eβ3

∫ st
0

δ0(xu)duδ0(xst)]6r3tds

= Z−1
β3,t

pβ3(st, 0, 0)6r3tds.

By (3.10) and (3.14) we have for s ∈ (0, 1),

lim
t→∞

Z−1
β3,t

pβ3(st, 0, 0)6r3t = lim
t→∞

c3
√
st

−1
6r3t

2c3β3
√
t

=
6r3

2β3
√
s

and since this is a probability density we derive that r3 = 6β3 and so

lim
t→∞

Pβ3,t

(
σt
t

∈ ds

)
=

1

2
√
s
ds, s ∈ (0, 1)
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as desired. Thus, (2.1) is proved.

For the distribution of σt/t when d = 4 we observe as before, for s ∈ (0, 1) and ϵ > 0 small enough so

that s+ ϵ ∈ (0, 1),

Pβ4,t(σt ∈ (st, (s+ ϵ)t)) = Pβ4,t(xst = 0, x(s+ϵ)t = e1, xu ̸= 0, (s+ ϵ)t 6 u 6 t) + o(ϵ)

=
E0[eβ4

∫ st
0

δ0(xu)duδ0(xst)]P
e1(xu ̸= 0, 0 6 u 6 (1− (s+ ϵ))t)8ϵt

Zβ4,t
+ o(ϵ),

where again the term 8ϵt arises from the rate of jumping from 0 to the neighboring unit vectors in Zd in

the time interval (st, (s+ ϵ)t). The term

P e1(xu ̸= 0, 0 6 u 6 (1− (s+ ϵ))t) → r4 ∈ (0, 1)

due to the transience of the 4-dimensional random walk. Thus,

Pβ4,t

(
σt
t

∈ ds

)
= Z−1

β4,t
E0[eβ4

∫ st
0

δ0(xu)duδ0(xst)]8r4t ds

= Z−1
β4,t

pβ4(st, 0, 0)8r4t ds.

By (3.12) and (3.15) we have for s ∈ (0, 1),

lim
t→∞

Z−1
β4,t

pβ4(st, 0, 0)rt = lim
t→∞

c4 8r4t/ ln st

c4β4t/ ln t

=
8r4
β4

from which we derive, since this is a density on [0, 1], that 8r4 = β4 and so

lim
t→∞

Pβ4,t

(
σt
t

∈ ds

)
= ds, s ∈ (0, 1)

as claimed at (2.3).

For the proof of the path decomposition (2.5), first take δ > ϵ and approximate G ∈ Fst,t by a random

variable Gδ ∈ F(s+δ)t,t. Then if

µ =
1

2d

∑
∥v∥=1

δv,

we have for either d = 3 or d = 4 that as ϵ→ 0,

Eβd,t[FGδ |σt/t ∈ [s, s+ ϵ]]

=
Eβd,t[FGδ;σt/t ∈ [s, s+ ϵ]]

Pβd,t(σt/t ∈ [s, s+ ϵ])

=

1
2d

∑
∥v∥=1Eβd,t[FGδ;xst = 0, x(s+ϵ)t = v, xu ̸= 0, (s+ ϵ)t 6 u 6 t]2dϵt+ o(ϵ)

1
2d

∑
∥v∥=1 Pβd,t(xst = 0, x(s+ϵ)t = v, xu ̸= 0, (s+ ϵ)t 6 u 6 t)2dϵt+ o(ϵ)

=
E0[F eβd

∫ st
0

δ0(xu)duδ0(xst)]E
µ[Gδ ◦ θ−st, xu ̸= 0, 0 6 u 6 (1− (s+ ϵ)t)] + o(1)

E0[eβd

∫ st
0

δ0(xu)duδ0(xst)]Pµ(xu ̸= 0, 0 6 u 6 (1− (s+ ϵ)t)) + o(1)

→ E0[F eβd

∫ st
0

δ0(xu)duδ0(xst)]

pβd
(st, 0, 0)

Eµ[Gδ ◦ θ−st |xu ̸= 0, 0 6 u 6 (1− s)t]

=
Zβd,st

pβd
(st, 0, 0)

Eβd,st[Fδ0(xst)]E
µ[Gδ ◦ θ−st |xu ̸= 0, 0 6 u 6 (1− s)t]

= Eβd,st[F |xst = 0]Eµ[Gδ ◦ θ−st |xu ̸= 0, 0 6 u 6 (1− s)t].

Letting δ → 0 completes the proof.
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Using the path decomposition at (2.5), we now give a different proof of (2.2) and (2.4) than the one

given in [2]. This proof clarifies the relation between (2.1) and (2.2) and as well, the relation between

(2.3) and (2.4). Again working in dimensions 3 or 4, from the central limit theorem, it follows that for

each fixed u > 0,

Eµ[e
i⟨ϕ,

x(1−s)t−u√
t

⟩
] → e−(1−s)∥ϕ∥2

, t→ ∞. (5.1)

Also, if τ0 = inf{t > 0 : xt = 0} then

Eµ[e
i⟨ϕ,

x(1−s)t√
t

⟩
] = Eµ[e

i⟨ϕ,
x(1−s)t√

t
⟩
; τ0 6 (1− s)t]

+ Eµ[e
i⟨ϕ,

x(1−s)t√
t

⟩
; τ0 > (1− s)t]. (5.2)

But, by the strong Markov property,

Eµ[e
i⟨ϕ,

x(1−s)t√
t

⟩
; τ0 6 (1− s)t] = Eµ[E0[e

i⟨ϕ,
x(1−s)t−τ0√

t
⟩
]; τ0 6 (1− s)t].

Now, by (5.1) and the fact that

Pµ(τ0 < (1− s)t) → 1− rd as t→ ∞,

we have by dominated convergence that

Eµ[E0[e
i⟨ϕ,

x(1−s)t−τ0√
t

⟩
]; τ0 6 (1− s)t] → (1− rd)e

−(1−s)∥ϕ∥2

, t→ ∞. (5.3)

From (5.1)–(5.3) and limt→∞ Pµ(τ0 > (1− s)t) = rd, we conclude

Eµ[e
i⟨ϕ,

x(1−s)t√
t

⟩ | τ0 > (1− s)t] → e−(1−s)∥ϕ∥2

, t→ ∞. (5.4)

Thus, taking F ≡ 1 and G = e
i⟨ϕ, xt√

t
⟩
we can apply (2.5) and (5.4) to get

Eβd,t[e
i⟨ϕ, xt√

t
⟩
] =

∫ 1

0

Eβd,t[e
i⟨ϕ, xt√

t
⟩ |σt/t = s]Pβd,t(σt/t ∈ ds)

=

∫ 1

0

Eµ[e
i⟨ϕ,

x(1−s)t√
t

⟩ | τ0 > (1− s)t]Pβd,t(σt/t ∈ ds)

→
∫ 1

0

e−(1−s)∥ϕ∥2

σd(ds), (5.5)

which completes the proof of (2.2) and (2.4).

Remark 5.1. The proof of (2.2) and (2.4) in [2] used the easily verified perturbation formula, which

holds for any d,

pβd
(t, 0, x) = p0(t, 0, x) + βd

∫ t

0

p0(t− s, 0, x)pβd
(s, 0, 0)ds. (5.6)

In order to derive the asymptotic distribution of xt/
√
t for d = 3, evaluate p̂β3(t, 0, ξ) at ξ = ϕ/

√
t

with ϕ ∈ R3 to get, by means of (5.6), the central limit theorem for the simple symmetric random walk,

p̂β3

(
t, 0,

ϕ√
t

)
= e−|ϕ|2(1 + o(1)) + c3β3

∫ t

0

(1 + o(1))e−|ϕ|2(1− s
t )(1 + s)−1/2ds.

After normalization by Zβ3,t ∼ 2c3β3
√
t it follows that

Eβ3,t[e
i⟨ϕ, xt√

t
⟩
] =

p̂β3(t, 0,
ϕ√
t
)

Zβ3,t
→ 1

2

∫ 1

0

e−|ϕ|2(1−u) 1√
u
du.

The proof for (2.4) was similar.
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Proof of Theorem 2.2. The semigroup generated by pβd
is

Qtf(x) =
∑
y∈Zd

pβd
(t, x, y)f(y) = etHβd f(x)

andQt acts on the space of bounded functions. Since ψβd
is the eigenfunction corresponding to λ0(βd) = 0,

Qtψβd
(x) = ψβd

(x).

The computation of the limiting transition densities follows from considering for s + u < t, on letting

t→ ∞, we see

Pβd,t(xs = x, xs+u = y) = Z−1
βd,t

E0[eβd

∫ t
0
δ0(xr)dr;xs = x, xs+u = y]

= Z−1
βd,t

E0[eβd

∫ s
0
δ0(xr)dr;xs = x]

× Ex[eβd

∫ u
0

δ0(xr)dr;xu = y]

× Ey[eβd

∫ t−s−u
0

δ0(xr)dr]

=
pβd

(s, 0, x)Zβd,t(x)

Zβd,t

pβd
(u, x, y)Zβd,t−s−u(y)

Zβd,t(x)

→ pβd
(s, 0, x)ψβd

(x)

ψβd
(0)

pβd
(s, x, y)ψβd

(y)

ψβd
(x)

,

which establishes (2.7).

Now the kernel

rβd
(t, x, y) =

pβd
(t, x, y)ψβd

(y)

ψβd
(x)

generates a semigroup, which we denote by Rt and Rt1 = 1. The generator Aβd
of Rt is calculated by

the formula

Aβd
f(x) = lim

h↘0

Rhf(x)− f(x)

h
.

Making the computation, we find, using the facts that pβd
(t, x, y) solves (3.5) and that λ0(βd) = 0, that

lim
h↘0

Rhf(x)− f(x)

h
=

1

ψβd
(x)

Hβ(ψβd
f)(x)

=
1

ψβd
(x)

( ∑
∥y−x∥=1

(ψβd
(y)f(y)− ψβd

(x)f(x))

)
+ βdδ0(x)f(x)

=
1

ψβd
(x)

( ∑
∥y−x∥=1

(ψβd
(y)− ψβd

(x))f(x)

)

+
1

ψβd
(x)

( ∑
∥y−x∥=1

(f(y)− f(x))ψβd
(y)

)
+ βdδ0(x)f(x)

=
∑

∥y−x∥=1

ψβd
(y)

ψβd
(x)

(f(y)− f(x)).

This results in the expression

Aβd
f(x) =

∑
|y−x|=1

qd(x, y)(f(y)− f(x)),

as claimed in Theorem 2.2. The last step regarding the Q-matrix involves the diagonal term which is
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determined by the condition
∑

y qd(x, y) = 0. Since

∑
y:y ̸=x

qd(x, y) =
∑

y:y ̸=x

ψβd
(y)

ψβd
(x)

=
∑

y:y ̸=x

ψβd
(y)− ψβd

(x)

ψβd
(x)

+ 2d

=
1

ψβd
(x)

∆ψβd
(x) + 2d

= −βdδ0(x) + 2d,

it follows that qd(x, x) = βdδ0(x)− 2d.

Using the asymptotic formula, which comes from the spectral theorem (recall the absolutely continuous

part of the spectrum of Hβd
is [−4d, 0]),

pβd
(t, x, y) ∼ ψβd

(x)ψβd
(y), t→ ∞,

together with the definition of rβd
(t, x, y) we see that both

lim
t→∞

rβd
(t, x, y) = ψ2

βd
(y)

and ∑
x∈Zd

ψ2
βd
(x)rβd

(t, x, y) = ψ2
βd
(y).

This proves that πβd
defined in the theorem gives the stationary probability distribution. Also, the

endpoint distribution Pβd,t(xt = x) can be handled using the spectral theorem as follows:

Pβd,t (xt = x) =
pβd

(t, 0, x)

Zβd,t

→ ψβd
(x)∑

y ψβd
(y)

=
ψβd

(x)

⟨ψβd
,1⟩

.

In order to obtain weak converge of the measures Pβd,t on the space of trajectories up to time T we need

to establish tightness. According to [1], this requires control of the oscillations. Set

ωT (x, [ti−1, ti)) ≡ sup
s,t∈[ti−1,ti)

|xt − xs|

and

ω′
T (x, δ) ≡ inf

{ti}
max
16i6r

ωT (x, [ti−1, ti)),

where the inf is taken over finite sets {ti} such that

0 = t0 < t1 < · · · < tr = T, ti − ti−1 > δ.

Then, since our paths all start at 0 under Pβd,t, tightness will follow provided for each positive ϵ and η

there exist δ ∈ (0, 1) and T0 such that

Pβd,t(ω
′
T (x, δ) > ϵ) 6 η, t > T0.

However, we have

Pβd,t(ω
′
T (x, δ) > ϵ) = Z−1

βd,t
E0[eβd

∫ t
0
δ0(xs)ds1{ω′

T (x,δ)>ϵ}]
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= Z−1
βd,t

E0[eβd

∫ T
0

δ0(xs)ds1{ω′
T (x,δ)>ϵ}E

xT [eβd

∫ t−T
0

δ0(xs)ds]]

6 E0[eβdT 1{ω′
T (x,δ)>ϵ}]

Zβd,t−T

Zβd,t

6 eβdTP 0(ω′
T (x, δ) > ϵ)

→ 0, t→ ∞.

This proves the convergence in distribution of the process on [0, T ] under Pβd,t as t→ ∞.
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