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Population model with immigration in continuous space
Elena Chernousovaa, Ostap Hrynivb, and Stanislav Molchanovc,d
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University), Dolgoprudny, Moscow Region, Russia; bDepartment of Mathematical Sciences, Durham
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ABSTRACT
In a population model in continuous space, individuals evolve
independently as branching randomwalks subject to immigration.
If the underlyingbranchingmechanism is subcritical, themodel has
a unique steady state for each value of the immigration intensity.
Convergence to the equilibrium is exponentially fast. The resulting
dynamics are Lyapunov stable in that their qualitative behavior
does not change under suitable perturbations of the main para-
meters of the model.
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1. Introduction

One of the simplest model with a steady state, also known as space-time
equilibrium, is the contact model in R

d (Kondratiev and Skorokhod, 2006;
Kondratiev et al., 2008). For this model, the corresponding point field has
multiplicity one, so that the population dynamics can be described as
a Markov process in the space of infinite but locally finite point configura-

tions in R
d (Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008). In

contrast, the dynamics of lattice point fields of multiplicity one are not
Markovian, which complicates their analysis (Liggett, 1985).

The contact model is unstable with respect to small random perturbations,
notably local ones, of the rates of splitting and death. We introduce a related
model, where the steady state is stable in the strongest Lyapunov sense,
which means that the stochastic equilibrium survives under sufficiently
small (in L1-norm) perturbations of the rates. In Section 1.1, we describe

the time evolution of a population in R
d, subject to immigration, and whose

individuals evolve independently as branching random walks. We demon-
strate that the qualitative behavior of this model persists under perturbations,
possibly heterogeneous over space, of the key parameters.

We present the main results in Section 1.3 with emphasis on the stationary
case of rates constant in space and over time. In Section 2, we derive
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equations for the correlation functions. As in Kondratiev and Skorokhod
(2006) and Kondratiev et al. (2008), the space is continuous and the field of
particles has multiplicity one. In Section 3, the uniform estimates on the
correlation functions and the Carleman condition allow us to prove the
existence of a unique steady state. We show that the correlation functions
converge to their limiting values exponentially fast and therefore the initial
condition quickly loses influence on the current state.

Molchanov and Whitmeyer (2017) and Han et al. (2017) review several
classes of population models on discrete graphs, including lattices. Our
analysis applies to a large class of population models in R

d, in particular
isotropic models, which do not exist in the lattice setting.

1.1. Model

Populations in R
d, d � 1, are realizations of a point field, where nðt; ΓÞ

denotes the total number of particles in a region Γ 2 BðRdÞ at time t � 0.

BðRdÞ denotes the Borel sigma-field in R
d. Initially, the configuration nð0; ΓÞ

is a realization of the Poisson point field in R
d of constant intensity λ> 0,

that is,

Pðnð0; ΓÞ ¼ mÞ ¼ ðλjΓjÞm
m!

e�λjΓj (1)

for integer m � 0, where jΓj is the Lebesgue measure of Γ. Each of the nðt; ΓÞ
individual particles in Γ evolves independently as a branching random walk.
Particles can:

immigrate: given a constant γ> 0, particles independently appear in R
d

according to a Poisson point field of intensity γ, so that a particle appears
infinitesimally close to x during a time interval ½t; t þ dtÞ with probability
asymptotically equal to γdxdt.

move around: given a constant κ> 0 and a symmetric probability kernel

aðzÞ, z 2 R
d, that is,

aðzÞ � 0 ; aðzÞ;að�zÞ ;
ð
R

d
aðzÞdz ¼ 1 ; (2)

individual particles jump independently with generator

κLaψðxÞ ¼ κ

ð
R

d
ðψðxþ zÞ � ψðxÞÞaðzÞdz : (3)

The probability that a particle at x jumps out of its location during the time
interval ½t; t þ dtÞ approximately equals κdt; the probability that the particle
lands infinitesimally close to xþ z approximately equals aðzÞdz. For simpli-
city, the Fourier transform âðkÞ of the kernel aðzÞ is assumed integrable:
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âðkÞ ¼
ð
R

d
eikzaðzÞ dz 2 L1ðRdÞ ; (4)

so that the kernel aðzÞ is uniformly continuous.
split: the probability that a particle at x generates an offspring during the

time interval ½t; t þ dtÞ approximately equals β dt, with fixed birth rate β> 0.
The probability that offspring appears infinitesimally close to xþ z is bðzÞ dz,
where bðzÞ, z 2 R

d, is a symmetric probability kernel with properties as in
Eq. (2) and (4), that is,

bðzÞ � 0 ; bðzÞ;bð�zÞ ;
ð
R

d
bðzÞdz ¼ 1 ;

bbðkÞ ¼ ð
R

d
eikzbðzÞdz 2 L1ðRdÞ :

(5)

As in Eq. (3), we introduce the corresponding generator

βLbψðxÞ ¼ β

ð
R

d
ðψðxþ zÞ � ψðxÞÞ bðzÞ dz : (6)

die: individual particles die independently at constant rate μ> 0, that is, the
probability that a given particle dies within the time interval ½t; t þ dtÞ is
asymptotically equal to μ dt. We assume that μ> β, so that the branching
mechanism is subcritical.

Unlike in the lattice case, the local limit theorem for densities does not
necessarily follow from the central limit theorem. Pestman et al. (2016)
give an example of a density with compact support (and thus satisfying the
central limit theorem) but with unbounded convolutions of all orders (and
thus not satisfying the local limit theorem). The technical condition of
multiplicity one in Kondratiev and Skorokhod (2006) and Kondratiev et al.
(2008), as the condition that âðkÞ and b̂ðkÞ are integrable, exclude cases
where the local density of particles remains unbounded. Our densities aðzÞ
and bðzÞ are uniformly continuous, and hence bounded in R

d, implying
that neither migration nor dispersal can lead to local accumulations of
particles.

Sewastjanow (1974, 1971 Chap. X) studies diffusive branching random
processes in bounded domains. His analysis does not apply to jump processes
in the whole space.

1.2. Correlation functions

Correlation functions encode stochastic properties of population dynamics. For
integer n � 1 and a collection of distinct points fx1; . . . ; xng � R

d, the n-th

correlation function kðnÞt ðx1; . . . ; xnÞ is the density of the probability
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Pðnðt; x1 þ dx1Þ ¼ 1; . . . ; nðt; xn þ dxnÞ ¼ 1Þ (7)

that an infinitesimal neighborhood of each point x1 ; . . . , xn contains a single
particle. By the choice of the initial distribution, we have

kðnÞ0 ðx1; . . . ; xnÞ ¼ λn ; n � 1 : (8)

In the setting of the contact model, Kondratiev and Skorokhod (2006) and
Kondratiev et al. (2008) define the correlation functions and construct the
corresponding dynamics.

The first correlation function kð1Þt ðxÞ is the density of the particles at
location x at time t,

Pðnðt; xþ dxÞ ¼ 1Þ ¼ kð1Þt ðxÞ dx : (9)

Therefore, the average total number of particles in Γ 2 BðRdÞ at time t is

m1ðt; ΓÞ ¼ E nðt; ΓÞ ¼
ð
Γ
kð1Þt ðxÞ dx : (10)

Write ðnÞl :¼ nðn� 1Þ . . . ðn� lþ 1Þ for the falling factorial of order l � 1.
Then the l-th factorial moment of n ¼ nðt; ΓÞ is

ml ðt; ΓÞ ¼ E ðnðt; ΓÞÞl ¼
ð
Γ
. . .

ð
Γ
kðlÞt ðx1; . . . ; xlÞ dx1 . . . d xl : (11)

For the initial configuration,

ml ð0; ΓÞ ¼ ðλjΓjÞl ; l � 1 ; Γ 2 B ðRdÞ : (12)

1.3. Results

We use the fact that the family of correlation functions kðnÞt ðx1; . . . ; xnÞ,
n � 1, satisfies a system of parabolic equations with initial conditions

kðnÞ0 ðx1; . . . ; xnÞ ¼ λn. We have posited the stability assumption μ> β.

Theorem 1. For each integer n � 1 and for all ðx1; x2; . . . ; xnÞ 2 ðRdÞn with

pairwise distinct xi, there exists k
ðnÞ
1 ðx1; . . . ; xnÞ such that, as t ! 1,

kðnÞt ðx1; . . . ; xnÞ ! kðnÞ1 ðx1; . . . ; xnÞ : (13)

Moreover, there exists a positive constant C ¼ Cðλ; μ; β; γÞ such that
for each integer n � 1,

k kðnÞ k :¼ sup
t�0

sup
x1;...;xn

jkðnÞt ðx1; . . . ; xnÞj � n! Cn : (14)

4 E. CHERNOUSOVA ET AL.



We compute the limiting correlation fkðnÞ1 ðx1; . . . ; xnÞg in a recursive way
using Eq. (72) and (73) below. The upper bound in Eq. (14) does not depend
on κ, which is consistent with the heuristic argument that more intense
diffusion mixes the configuration faster and prevents the local density of
the field from growing too large.

An important corollary of Theorem 1 is that, for all κ � 0 and γ � 0, the
model of a branching randomwalk with immigration, introduced in Section 1.1,
possesses a steady state:

Theorem 2. For all Borel Γ 2 BðRdÞ,

nðt; ΓÞ ! nð1; ΓÞ (15)

in law, as t ! 1. The distribution of fnð1; ΓÞ : Γ 2 BðRdÞg is the unique
steady state for the population dynamics of Section 1.1.

While deriving an explicit description of the steady state from the limiting
correlation functions fkðnÞ1 ðx1; . . . ; xnÞg might not be immediate, we show
below that its first moment is constant in space and its second moment is
invariant by translation. The latter property also persists to higher moments.

Under the key assumption μ> β, by Eq. (11), the factorial moments

mnðt; ΓÞ also converge: for each Γ 2 BðRdÞ,
mnðt; ΓÞ ! mnð1; ΓÞ as t ! 1 : (16)

Moreover, the uniform estimate of Eq. (14) implies the bound on the
factorial moments:

jmnðt; ΓÞj � n! ðCjΓjÞn ; 0 � t � 1 ; (17)

which, by Carleman’s condition (Feller, 1971, section VII.3):X
n�1

ðm2nðt; ΓÞÞ�
1
2n ¼ 1 ; (18)

implies the existence of a unique distribution fnðt; ΓÞ : Γ 2 BðRdÞg for each
t 2 ½0;1�. Alternatively, a slightly weaker condition (Feller, 1971, section XV.4,
Eq. (4.15)),

lim sup
n!1

1
n
ðmnðt; ΓÞÞ

1
n <1 ; (19)

is also applicable here.
Each individual alive at t ¼ 0 as well as each immigrant arriving at t > 0

generates a subpopulation, which evolves according to the rules of Section 1.1

MATHEMATICAL POPULATION STUDIES 5



with γ ¼ 0 (no immigration). Therefore each of the nðt; ΓÞ individuals in Γ at
time t > 0 can be tracked back to its earliest ancestor, either present at t ¼ 0
or arrived as an immigrant. Then nðt; ΓÞ is the sum of subpopulation sizes,
where each subpopulation evolves as a (subcritical) branching random walk
with migration governed by Eq. (3), with birth governed by Eq. (6) and
mortality at fixed rate μ> 0:

nðt; ΓÞ ¼
X
i

nðt � ti; yi; ΓÞ ; (20)

where the sum runs over all individual ancestors, with ðyi; tiÞ 2 R
d � ½0; t�

denoting the location and the time of their individual arrivals, and where
nðt � ti; yi; ΓÞ is the corresponding total number of descendants in the Borel
set Γ at time t � 0. The choice of the initial population and the immigration
process guarantee that the total number of possible ancestors arriving during
the time interval ½0; t� is countable.

When combined with stochastic monotonicity of the solution nðt; ΓÞ,
Theorems 1 and 2 imply stability of the evolution with respect to small
perturbations of the rates (a random variable X is stochastically smaller
than a random variable Y (denoted X≼Y) if PðX � zÞ � PðY � zÞ for all
z 2 R). Indeed, if βx and μx satisfy

βx ¼ βþ ε�x ; μx ¼ μþ εηx ; where sup
x2Rd

ðj�xj; jηxjÞ � 1 ; (21)

with possibly random ð�x; ηxÞx2Rd , for the particle field nðt; ΓÞ corresponding
to birth and death rates ðβx; μxÞx2Rd , the particle field n�ðt; ΓÞ corresponding to
the constant rates ðβþ ε; μ� εÞ, and the particle field n�ðt; ΓÞ corresponding
to the constant rates ðβ� ε; μþ εÞ, we have:

Theorem 3. If μ� β> 2ε> 0 and the rates ð�x; ηxÞx2Rd are given by Eq. (21),

then, for all t � 0 and Γ 2 BðRdÞ, the stochastic order

n�ðt; ΓÞ≼nðt; ΓÞ≼n�ðt; ΓÞ (22)

holds.

We verify the stochastic order of Eq. (22) by constructing the three
processes n�, n, and n� on a common probability space; this procedure is
known as coupling (Lindvall, 1992). Thanks to the decomposition in Eq. (20)
into the sum of the subpopulations, it is sufficient to verify the stochastic
comparison of Eq. (22) for individual subpopulations with common ancestor.
Because
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β� ε � βx � βþ ε and μþ ε � μx � μ� ε ; (23)

this comparison is achieved as described in Lindvall (1992). This implies the
Lyapunov stability of Theorem 3.

We present the construction on the example of n� and n� for a single

subpopulation starting from x 2 R
d at time t ¼ 0. Then n�ð0; ΓÞ≼n�ð0; ΓÞ

and we show that the point field for the process n� is a subset of the point
field for the process n� for all t � 0. Because, until extinction, the total

number of particles n�ðt;RdÞ in a single subpopulation forms a linear con-
tinuous-time birth-and-death process, at every time t � 0 its size is almost
surely finite, which implies that the processes n� and n� are well defined.

Assume that, for fixed t � 0, the configuration n� is contained in that of n�

and that the next jump occurs at time s > t. If this jump occurs at a location
belonging to n� only, it follows the rules of Section 1.1 with γ ¼ 0. Otherwise,
it originates at a location y common to both processes, and is determined by
the smallest of the five independent exponential variables

�1,Expðμ� εÞ ; �2,Expðβ� εÞ ; �3,ExpðκÞ ;
�4,Expð2εÞ ; �5,Expð2εÞ : (24)

If �1 is the smallest, the particle at y dies in both processes n� and n�. If it is
�2, an offspring is created in both processes at location yþ z, where z is
generated by the kernel bð 	 Þ. If it is �3, the particle moves in both processes
from y to yþ z, where z is generated by the kernel að 	 Þ. If it is �4, the
particle dies in n� (but not in n�). If it is �5, an offspring is created in n� at
location yþ z, where z is generated by the kernel bð 	 Þ. Then the changes in
n� have rates ðβ� ε; μþ εÞ while the changes in n� have rates ðβþ ε; μ� εÞ;
after the jump, all particles are almost surely in distinct locations, and the
configuration of n� is still a subset of n�. This construction goes further by
induction until the subpopulation dies out in both processes. Because indi-
vidual subpopulations evolve independently of one another, the full config-
uration of n� is a subset of the full configuration of n�, and therefore
n�ðt; ΓÞ≼n�ðt; ΓÞ for all t � 0. The argument for Eq. (22) is analogous.

The stochastic order in Eq. (22) also results from varying the immigration
rate. Indeed, consider the particle field nðt; ΓÞ corresponding to birth, death
and immigration rates ðβ; μ; γxÞx2Rd , the particle field n�ðt; ΓÞ corresponding
to the constant rates ðβ; μ; γ�Þ, and the particle field n�ðt; ΓÞ corresponding to
the constant rates ðβ; μ; γ�Þ. Then

γ� � γx � γ� ; (25)

where (possibly random) γx can depend on x 2 R
d, implies the stochastic

order of Eq. (22). Furthermore, the stochastic order of Eq. (22) is true if the
birth and death rates satisfy Eq. (23) and the immigration rates satisfy
Eq. (25).

MATHEMATICAL POPULATION STUDIES 7



The Lyapunov stability of Theorem 3 can fail at criticality, where μ ¼ β
(Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008). Indeed, if the
random rates βx and μx in Eq. (21) satisfy the criticality assumption

Eβx;β ¼ μ;Eμx ; (26)

while the joint distribution of ðβx; μxÞ allows the existence of large enough
regions Γ where βx � μx > ε > 0 with positive probability, then the population
count nðt; ΓÞmay keep growing as t ! 1. Kondratiev et al. (2017) use spectral
analysis to derive this result for a general class of Schrödinger operators.

We now prove Theorem 1.

2. Time evolution of correlation functions

We derive parabolic equations for the family of the correlation functions

kðnÞt ðx1; . . . ; xnÞ, n � 1, defined in Section 1.2, with initial conditions

kðnÞ0 ðx1; . . . ; xnÞ ¼ λn. A key feature of the resulting system is that the equa-

tion for kðnÞt ðx1; . . . ; xnÞ includes correlation functions of lower orders.
To study the first correlation function kð1Þt ðx1Þ, consider the events

Að1Þ
t;tþdt ¼ fnðt þ dt; xþ dxÞ ¼ 1jnðt; xþ dxÞ ¼ 1g ;

Bð1Þ
t;tþdt ¼ fnðt þ dt; xþ dxÞ ¼ 1jnðt; xþ dxÞ ¼ 0g : (27)

Then, up to the errors of higher order,

kð1ÞtþdtðxÞdx ¼ Pðnðt þ dt; xþ dxÞ ¼ 1Þ
¼ PðAð1Þ

t;tþdtÞkð1Þt ðxÞ dxþ PðBð1Þ
t;tþdtÞð1� kð1Þt ðxÞ dxÞ: (28)

As the leading contribution to the event Að1Þ
t;tþdt comes from the trajectories in

which the state of the infinitesimal neighborhood of x does not change
during the time interval ½t; t þ dtÞ, at the first order:

PðAð1Þ
t;tþdtÞ ¼ 1� ðκþ μÞdt : (29)

The splitting move at x during the time interval ½t; t þ dtÞ is not excluded, as
the parental particle stays at its location. Likewise, the leading contribution to

the event Bð1Þ
t;tþdt comes from the arrival of a single particle in the infinitesimal

neighborhood of x (due to either immigration, migration, or a splitting event
at a different location). We thus get

PðBð1Þ
t;tþdtÞ ¼ ðγþ κ

ð
R

d
kð1Þt ðx� zÞaðzÞdz þ β

ð
R

d
kð1Þt ðx� zÞbðzÞdzÞdtdx

¼ ðγþ κLak
ð1Þ
t ðxÞ þ βLbk

ð1Þ
t ðxÞ þ ðκþ βÞkð1Þt ðxÞÞdtdx ;

(30)
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where the last equality follows by symmetry of the kernels að 	 Þ and bð 	 Þ,ð
R

d
kð1Þt ðx� zÞaðzÞ dz ¼

ð
R

d
kð1Þt ðx� zÞað�zÞ dz

¼
ð
R

d
kð1Þt ðxþ zÞaðzÞ dz : (31)

Putting all this together, we deduce

@kð1Þt

@t
ðxÞ ¼ ðκLa þ βLbÞkð1Þt ðxÞ þ ðβ� μÞkð1Þt ðxÞ þ γ (32)

with the initial condition kð1Þ0 ðxÞ;λ.
We derive higher-order correlation functions similarly. Write AðnÞ

t;tþdt for the
event that simple occupancy of infinitesimal neighborhoods of the locations in
the collection xn :¼ ðx1; . . . ; xnÞ does not change during the infinitesimal time
interval ½t; t þ dtÞ. Then, at the first order,

P AðnÞ
t;tþdt

� �
¼ 1� nðκþ μÞdt : (33)

Denote byBðn;iÞ
t;tþdt the event that an initially unoccupied infinitesimal neighborhood

of the location xi receives a single particle during the time interval ½t; t þ dtÞ, while
infinitesimal neighborhoods of all other locations in xn;i :¼ fxjgj�i;j¼1;...;n remain

simply occupied during ½t; t þ dtÞ. The new particle at xi arrives either as an
offspring of a single parent from xn;i or from a location not in xn;i (due to either

migration or arrival of an offspring of a particle there). The former event Cðn;iÞ
t;tþdt

satisfies

P Cðn;iÞ
t;tþdt

� �
¼
X
j:j�i

βbðxi � xjÞdtdxi ; (34)

implying that

PðBðn;iÞ
t;tþdtÞ ¼ γþ κ

ð
R

d
kðnÞt ðx1; . . . ; xi�1; xi � z; xiþ1 . . . ; xnÞaðzÞ dz

�
þβ

ð
R

d
kðnÞt ðx1; . . . ; xi�1; xi � z; xiþ1 . . . ; xnÞbðzÞdz

�
dtdxi

þP
j:j�i

βbðxi � xjÞdtdxi :
(35)

Up to higher-order terms, kðnÞtþdtðxnÞdx1 . . . dxn equals the probability

Pðnðtþ dt; x1 þ dx1Þ ¼ 1; . . . ;nðt þ dt; xn þ dxnÞ ¼ 1Þ
¼ P ðAðnÞ

t;tþdtÞ kðnÞt ðxnÞ
Qn
j¼1

dxj þ
Pn
i¼1

PðBðn;iÞ
t;tþdtÞ kðn�1Þ

t ðxn;iÞ
Q
j:j�i

dxj :

(36)

The correlation function kðnÞt ðxnÞ solves the forward Kolmogorov equation

MATHEMATICAL POPULATION STUDIES 9



@kðnÞt
@t ðxnÞ ¼ nðβ� μÞ kðnÞt ðxnÞ þ

Pn
i¼1

ðκLi
a þ βLi

bÞ kðnÞt ðxnÞ

þPn
i¼1

β
P
j:j�i

bðxi � xjÞ þ γ

 !
kðn�1Þ
t ðxn;iÞ ;

(37)

where we use the restricted operators Li
a and Li

b:

Li
ak

ðnÞ
t ðx1; . . . ; xnÞ ¼

ð
R

d
ðkðnÞt ðx1; . . . ; xi�1; xi þ z; xiþ1 . . . ; xnÞ

�kðnÞt ðx1; . . . ; xnÞÞaðzÞdz
(38)

and

Li
bk

ðnÞ
t ðx1; . . . ; xnÞ ¼

ð
R

d
ðkðnÞt ðx1; . . . ; xi�1; xi þ z; xiþ1 . . . ; xnÞ

�kðnÞt ðx1; . . . ; xnÞÞbðzÞdz :
(39)

3. Proofs

We derive the a priori bounds for the correlation functions kðnÞt ðx1; . . . ; xnÞ
by analyzing Eq. (32) and (37). We fix

ν :¼ μ� β > 0 : (40)

The uniform bounds of Eq. (14) follow from Lemma 4:

Lemma 4. For an integer n � 1, define k kðnÞ k as in Eq. (14). Then

k kð1Þ k� λþ γ

ν
; (41)

and, for n> 1,

k kðnÞ k� λnþ k kðn�1Þ k γ

ν
þ βB

ν
ðn� 1Þ

� �
; (42)

where

B :¼ 1

ð2πÞd
ð
R

d
jb̂ðkÞjdk : (43)

Using the bounds in Eq. (41) and (42), we deduce that, for all n � 1,

k kðnÞ k� n!ðλþ ðγþ βBÞ=νÞn ; (44)

which is the bound in Eq. (14). It is thus sufficient to verify Lemma 4.
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3.1. First correlation function

We proceed by induction in n and start by considering the case n ¼ 1. The

first correlation function kð1Þt ðxÞ satisfies Eq. (32),
@kð1Þt

@t
ðxÞ ¼ L kð1Þt ðxÞ � ν kð1Þt ðxÞ þ γ ; kð1Þ0 ðxÞ ¼ λ ; (45)

where

L :¼ κLa þ βLb (46)

and ν is as in Eq. (40). For ν�0, the solution of Eq. (45) is

kð1Þt ðxÞ ¼ γ

ν
þ λ� γ

ν

� �
e�νt;

γ

μ� β
þ λ� γ

μ� β

� �
e�ðμ�βÞt ; (47)

which, for ν ¼ μ� β > 0, implies Eq. (41). By the maximum principle for

parabolic equations (Vasy, 2015), kð1Þt ðxÞ given by Eq. (47) is the only
solution to Eq. (45). Due to the spatial homogeneity of Eq. (45), this solution
does not depend on the spatial variable x.

The asymptotics of the solution kð1Þt ðxÞ of Eq. (45) is such that:

(1) if β > μ, then kð1Þt ðxÞ ! 1 exponentially as t ! 1;
(2) if β ¼ μ, then kð1Þt ðxÞ ! 1 linearly as t ! 1;
(3) if β< μ, then kð1Þt ðxÞ ! γ=ðμ� βÞ exponentially as t ! 1.

The limit behavior of the solution does not depend on the initial condition

kð1Þ0 ðxÞ. When it is convenient, we assume that kð1Þ0 ðxÞ vanishes identically.
The assumption μ> β characterizes the region of non-explosive behavior of

the first correlation function kð1Þt .

3.2. Induction step

For n> 1, denote the single coordinate analogs of the operator in Eq. (46) by

Li :¼ κLi
a þ βLi

b ; i ¼ 1; . . . ; n ; (48)

where Li
a and Li

b are defined as in Eq. (38). Consider the particular
case n ¼ 2.

3.2.1. Second correlation function
The second correlation function kð2Þt satisfies the case n ¼ 2 of Eq. (37):

@kð2Þt
@t ðx1; x2Þ ¼ �2νkð2Þt ðx1; x2ÞþðL1 þ L2Þkð2Þt ðx1; x2Þ

þ2ðβbðx1 � x2Þ þ γÞkð1Þt ;
(49)
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where we used the fact that bð 	 Þ is symmetric and that, by Eq. (47),

kð1Þt ðxÞ;kð1Þt does not depend on the spatial variable. As the last term in
Eq. (49) depends only on x1 � x2, we deduce that

kð2Þt ðx1; x2Þ ¼ ftðx1 � x2Þ;ftðx2 � x1Þ ; (50)

with a symmetric function ftð 	 Þ solving the forward Kolmogorov equation

@ft
@t

ðzÞ ¼ �2ν ftðzÞ þ 2L ftðzÞ þ 2ðβbðzÞ þ γÞkð1Þt ; f0ðzÞ ¼ λ2 : (51)

By Duhamel’s principle (Vasy, 2015), the solution to Eq. (51) is

ftðzÞ ¼ λ2e�2νt þ 2

ðt
0
e�2νðt�sÞe2ðt�sÞLðβbðzÞ þ γÞkð1Þs ds : (52)

Our analysis of ftðzÞ is based on Lemma 5. With the generator L defined
in Eq. (46),

Lemma 5. The family feuL : u � 0g constitutes a positive semigroup of

bounded linear operators. Moreover, if bL is the Fourier transform of L, then
for each real u � 0,

0 � ceuL ¼ eu
bL � 1 : (53)

Proof. With I denoting the identity operator, denote

ðL þ ðκþ βÞIÞψðxÞ :¼
ð
R

d
ψðxþ zÞðκaðzÞ þ βbðzÞÞ dz : (54)

The assumptions in Eq. (2) and (5) imply that the right-hand side of Eq. (54) is
a bounded positive operator. This property is inherited by the semigroup

euL ¼ e�uðκþβÞ euðLþðκþβÞIÞ : (55)

Because the assumptions of Eq. (2) imply jâðkÞj � 1 for all k 2 R
d, the

Fourier transform of the generator La in Eq. (3) satisfiescLa ¼ â� 1 2 ½�2; 0�. Likewise, bLb ¼ bb� 1 2 ½�2; 0�. By symmetry of að 	 Þ
and bð 	 Þ, the right-hand side of Eq. (54) is a convolution. For each func-

tion ψ : Rd ! R ,cLψ ¼ ðκcLa þ βcLbÞbψ ¼ ðκðâ� 1Þ þ βðb̂� 1ÞÞbψ; bLbψ ; (56)

where bψ is the Fourier transform of ψ. By induction, cLn ¼ cLn for every
integer n � 0, and therefore, for every u � 0,

deuLψ ¼
X
n�0

un

n!
cLn bψ ¼ eu

bL bψ ¼ euðκðâ�1Þþβðbb�1ÞÞ bψ ; (57)

from which we deduce Eq. (53). □
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By Eq. (5), the Fourier transform bbðkÞ is integrable. Therefore, for every

z 2 R
d and u � 0,

euLbðzÞ ¼ 1

ð2πÞd
ð
R

d

ceuLbbðkÞe�iðk;zÞdk (58)

is well defined. Eq. (58) and (53) imply the uniform bound

jeuLbðzÞj � 1

ð2πÞd
ð
R

d
jceuLbbðkÞjdk � 1

ð2πÞd
ð
R

d
jbbðkÞjdk ¼: B : (59)

To study the large-time behavior of the function ftðzÞ in Eq. (52), we use the
fact that, as t ! 1,ðt

0
e�2νðt�sÞds ¼

ðt
0
e�2νu du ¼ 1

2ν ð1� e�2νtÞ ! 1
2ν ;ðt

0
e�2νðt�sÞ e�νs ds ¼ e�νt

ðt
0
e�νðt�sÞds ¼ Oðe�νtÞ ! 0 :

(60)

Eq. (53) and (59) imply that the absolute value of the integral in Eq. (52) is
bounded byðt

0
e�2νðt�sÞðβ je2ðt�sÞLbðzÞj þ γÞ k kð1Þs k ds � ðβBþ γÞ k kð1Þ k

ðt
0
e�2νðt�sÞds :

(61)

As the first term on the right-hand side of Eq. (52) decays exponentially, Eq. (60)
and (61) imply the case n ¼ 2 of the induction estimate in Eq. (42).

To derive the limit of ftð 	 Þ as t ! 1, we use the fact that Eq. (60) impliesðt
0
e�2νðt�sÞe2ðt�sÞLðβbðzÞ þ γÞðkð1Þs � γ=νÞds

���� ����
� ðβBþ γÞ λ� γ=νj j

ðt
0
e�2νðt�sÞe�νs ds ¼ O ðe�νtÞ ! 0 :

(62)

Therefore, the large-time behavior of the integral in Eq. (52) comes from the
constant term γ=ν;kð1Þ1 in Eq. (47).

For a function ψ : Rd ! R with integrable Fourier transform bψ, denote
ðEψÞðzÞ :¼ 1

ð2πÞd
ð
R

d

bψðkÞe�iðk;zÞ

ν� bLðkÞ dk ; (63)

which is well defined as � bLðkÞ � 0 for all k 2 R
d. Using the relationðt

0
e�2νðt�sÞe2ðt�sÞLbðzÞ ds ¼ 1

ð2πÞd
ð
R

d

bbðkÞe�iðk;zÞ
ðt
0
e�2ðν�L̂Þu dudk (64)

and the inequality
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ðt
0
e�2ðν�L̂Þu du� 1

2ðν� bLðkÞ
�����

����� � 1
2ν

e�2νt ; (65)

following from the first property in Eq. (60), we obtain the bound

2

ðt
0
e�2νðt�sÞe2ðt�sÞLbðzÞ ds� ðEbÞðzÞ

���� ���� � B
ν
e�2νt (66)

and deduce that, as t ! 1,

kð2Þt ðx1; x2Þ � γ2

ν2
� βγ

ν
ðEbÞðx1 � x2Þ

���� ���� ¼ O ðe�νtÞ ; (67)

uniformly in z 2 R
d. Theorem 1 with n ¼ 2 follows.

3.2.2. Higher-order correlation functions
We solve the Kolmogorov Eq. (37) similarly. Denoting

Ln :¼
Xn
i¼1

Li;
Xn
i¼1

ðκLi
a þ βLi

bÞ (68)

and applying Duhamel’s principle (Vasy, 2015), we represent its solution as

kðnÞt ðxnÞ ¼ λn e�nνt

þ
ðt
0
e�ðnν�LnÞðt�sÞ Pn

i¼1
ðβP

j:j�i
bðxi � xjÞ þ γÞ kðn�1Þ

s ðxn;iÞ ds : (69)

As in the case n ¼ 2, we upper bound the absolute value of the last inte-
gral by

k kðn�1Þ k
ðt
0
e�nνðt�sÞðnγ þβ

P
i�j:i;j¼1;...;n

jeðt�sÞLnbðxi � xjÞjÞds

�k kðn�1Þ k ðγν þ βB
ν ðn� 1ÞÞ ;

(70)

where the estimate in Eq. (59) is used for each pair ði; jÞ with i�j,
i; j ¼ 1; . . . ; n. Together with the bound λn on the “initial condition” term
in Duhamel’s representation of Eq. (69), we deduce Eq. (42).

3.3. Convergence of the correlation functions

We extend the argument of the previous section to estimate the speed of
convergence of the correlation functions. For every integer n � 1 and the
non-positive operator Ln from Eq. (68), consider the resolvent

Rν
n;RnðνÞ :¼ ðn ν� LnÞ�1 ; (71)

where, as in Eq. (40), ν ¼ μ� β > 0. We recursively define
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kð1Þ1 ðx1Þ :¼ γ

ν
; x1 2 R

d ; (72)

and, using xn and xn;i defined in Section 2,

kðnÞ1 ðxnÞ :¼ Rν
n

Xn
i¼1

β
X
j:j�i

bðxi � xjÞ þ γ

 !
kðn�1Þ
1 ðxn;iÞ

 !
: (73)

In terms of differences

~k
ðnÞ
s ðxnÞ :¼ kðnÞs ðxnÞ � kðnÞ1 ðxnÞ ; (74)

we have:

Proposition 6. There exists a positive sequence ðCnÞn�1 such that, for all t � 0,

sup
xn2ðRdÞn

j~kðnÞt ðxnÞj � Cn k kðnÞ k e�νt : (75)

This implies that, as t ! 1, the correlation functions kðnÞt ð 	 Þ converge

exponentially to their limits kðnÞ1 ð 	 Þ introduced in Eq. (73). In particular, the

family fkðnÞ1 ð 	 Þgn�1 satisfies the Carleman condition in Eq. (18) and thus
corresponds to a unique steady state for the model of section 1.1.

Proof. Using Duhamel’s formula in Eq. (69) and the decomposition of Eq.
(74), we use mathematical induction to prove inequality (75). The argument
defines the sequence ðCnÞn�1 recursively.

For n ¼ 1, the claim is true with C1 ¼ 1. To verify the induction step, we
consider the contribution of immigration and birth in Eq. (69) separately.

Because each eLi :¼ Li þ ðκþ βÞI is a non-negative integral operator (as iseLn :¼ Ln þ nðκþ βÞI ), the differenceðt
0
e�ðnu�LnÞðt�sÞPn

i¼1
kðn�1Þ
1 ðxn;iÞds�Rν

n

Pn
i¼1

kðn�1Þ
1 ðxn;iÞ

� �
¼
ð1
t
e�ðnu�LnÞv Pn

i¼1
kðn�1Þ
1 ðxn;iÞdv

(76)

is upper bounded in absolute value byð1
t
e�nðuþκþβÞv eveLn

Pn
i¼1

jkðn�1Þ
1 ðxn;iÞj � n

ð1
t
e�nðuþκþβÞv eveLn k kðn�1Þ k dv

¼ n

ð1
t
e�nuv evLn k kðn�1Þ k du

¼ n k kðn�1Þ k
ð1
t
e�nuv dv ¼ 1

u k kðn�1Þ k e�nut :

(77)

By the induction hypothesis,
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ðt
0
e�ðnν�LnÞðt�sÞPn

i¼1

~k
ðn�1Þ
s ðxn;iÞ ds

���� ����
� nCn�1

ðt
0
e�nðνþκþβÞðt�sÞ eeLnðt�sÞ k kðn�1Þ k e�νs ds

� nCn�1 k kðn�1Þ k
ðt
0
e�nνðt�sÞ�νs ds

� nCn�1
ðn�1Þν k kðn�1Þ k e�νt � 2Cn�1

ν k kðn�1Þ k e�νt :

(78)

Together with the bound of Eq. (77), this yields

γ

ðt
0
e�ðnν�LnÞðt�sÞ Pn

i¼1
kðn�1Þ
s ðxn;iÞ ds� γRν

n

Pn
i¼1

kðn�1Þ
1 ðxn;iÞ

� ����� ����
� γ

ν k kðn�1Þ k ð2Cn�1 þ e�ðn�1ÞνtÞ e�νt � γ
ν ð2Cn�1 þ 1Þ k kðn�1Þ k e�νt :

(79)

Likewise, with
P

j!i :¼
P

i

P
j:j�i denoting the sum over all configurations

where the particle at xi is born by the particle at xj,ðt
0
e�ðnν�LnÞðt�sÞX

j!i

bðxi � xjÞekðn�1Þ
s ðxn;iÞds

�����
�����

� nðn� 1ÞCn�1 k b k k kðn�1Þ k
ðt
0
e�nνðt�sÞ�νsds

� nCn�1

ν
k b k k kðn�1Þ k e�νt;

(80)

where k b k:¼ supx jbðxÞj is a finite constant, andðt
0
e�ðnν�LnÞðt�sÞX

j!i

bðxi � xjÞ
����� kðn�1Þ

1 ðxn;iÞds

�Rν
n

X
j!i

bðxi � xjÞkðn�1Þ
1 ðxn;iÞ

 !�����
� 2 n� 1ð Þ

v
k b k k kðn�1Þ k e�nνt;

(81)

implying that

β

ðt
0
e�ðnν�LnÞðt�sÞ P

j!i
bðxi � xjÞ

����� kðn�1Þ
s ðxn;iÞds

�βRν
n

P
j!i

bðxi � xjÞkðn�1Þ
1 ðxn;iÞ

 !�����
� βn

ν ðCn�1 þ 2Þ k b k k kðn�1Þ k e�νt : ð82Þ
Finally, inequality (75) follows with Cn ¼ 2ðCn�1þ1Þ

ν ðγþ β k b k nÞ . □
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The relation of Eq. (73) allows a description of the limiting correlation
functions fkðnÞ1 ðx1; . . . ; xnÞgn�1 in terms of the family of all directed graphs on
the vertices x1; . . . ; xn, where the directed edges indicate parental relations. Such
graphs are known in combinatorics as directed forests.

4. Conclusion

The population dynamics introduced in Section 1.1 is Lyapunov stable in that
its qualitative behavior is unchanged under suitable perturbations of the main
parameters of the model. For each value of the immigration rate, the finite-time
distribution of the model converges exponentially to a unique steady state. The
density of this steady state increases with the immigration rate.
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