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ABSTRACT KEYWORDS

In a population model in continuous space, individuals evolve Spatial population dynamics;
independently as branching random walks subject to immigration. ~ branching random walk;

If the underlying branching mechanism is subcritical, the model has immigration; correlation

functions; steady state;

a unique steady state for each value of the immigration intensity. Lyapunov stability

Convergence to the equilibrium is exponentially fast. The resulting
dynamics are Lyapunov stable in that their qualitative behavior
does not change under suitable perturbations of the main para-
meters of the model.

1. Introduction

One of the simplest model with a steady state, also known as space-time
equilibrium, is the contact model in R? (Kondratiev and Skorokhod, 2006;
Kondratiev et al., 2008). For this model, the corresponding point field has
multiplicity one, so that the population dynamics can be described as
a Markov process in the space of infinite but locally finite point configura-

tions in R? (Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008). In
contrast, the dynamics of lattice point fields of multiplicity one are not
Markovian, which complicates their analysis (Liggett, 1985).

The contact model is unstable with respect to small random perturbations,
notably local ones, of the rates of splitting and death. We introduce a related
model, where the steady state is stable in the strongest Lyapunov sense,
which means that the stochastic equilibrium survives under sufficiently
small (in L*°-norm) perturbations of the rates. In Section 1.1, we describe

the time evolution of a population in R subject to immigration, and whose
individuals evolve independently as branching random walks. We demon-
strate that the qualitative behavior of this model persists under perturbations,
possibly heterogeneous over space, of the key parameters.

We present the main results in Section 1.3 with emphasis on the stationary
case of rates constant in space and over time. In Section 2, we derive
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equations for the correlation functions. As in Kondratiev and Skorokhod
(2006) and Kondratiev et al. (2008), the space is continuous and the field of
particles has multiplicity one. In Section 3, the uniform estimates on the
correlation functions and the Carleman condition allow us to prove the
existence of a unique steady state. We show that the correlation functions
converge to their limiting values exponentially fast and therefore the initial
condition quickly loses influence on the current state.

Molchanov and Whitmeyer (2017) and Han et al. (2017) review several
classes of population models on discrete graphs, including lattices. Our
analysis applies to a large class of population models in R? in particular
isotropic models, which do not exist in the lattice setting.

1.1. Model

Populations in RY, d > 1, are realizations of a point field, where n(¢t,T)
denotes the total number of particles in a region I' € B(Rd) at time ¢t > 0.
B(R?) denotes the Borel sigma-field in RY. Initially, the configuration n(0, T)

is a realization of the Poisson point field in R? of constant intensity A>0,
that is,
ATH™
AIT)”

P(n(0,T) =m) = o

(1)

for integer m > 0, where |T'| is the Lebesgue measure of I'. Each of the n(¢,T)
individual particles in I' evolves independently as a branching random walk.
Particles can:

immigrate: given a constant y>0, particles independently appear in R4
according to a Poisson point field of intensity y, so that a particle appears
infinitesimally close to x during a time interval [t,t 4 dt) with probability
asymptotically equal to ydxdt.

move around: given a constant x>0 and a symmetric probability kernel

a(z), z € R, that is,
a(z) >0, a(z)=a(—=z), J a(z)dz =1, (2)
Rd

individual particles jump independently with generator

kLau(x) = KJRd (y(x+z) — y(x))a(z)dz. (3)

The probability that a particle at x jumps out of its location during the time
interval [t,t 4 dt) approximately equals xdt; the probability that the particle
lands infinitesimally close to x + z approximately equals a(z)dz. For simpli-
city, the Fourier transform a(k) of the kernel a(z) is assumed integrable:
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a(k) = J]Rd e*a(z) dz € L'(RY), (4)

so that the kernel a(z) is uniformly continuous.

split: the probability that a particle at x generates an offspring during the
time interval [¢, t + dt) approximately equals f3 dt, with fixed birth rate 5> 0.
The probability that offspring appears infinitesimally close to x + z is b(z) dz,
where b(z), z € RY, is a symmetric probability kernel with properties as in
Eq. (2) and (4), that is,

b(z) >0, b(z)=b(-z), JRd b(z)dz =1,

~ (5)
b(k)=| e*b(z)dz e L'(RY).
JR?
As in Eq. (3), we introduce the corresponding generator
BLiy(x) = B | , (vix+2) = () be) de. ©)

die: individual particles die independently at constant rate y >0, that is, the
probability that a given particle dies within the time interval [t, ¢+ dt) is
asymptotically equal to y dt. We assume that y>f3, so that the branching
mechanism is subcritical.

Unlike in the lattice case, the local limit theorem for densities does not
necessarily follow from the central limit theorem. Pestman et al. (2016)
give an example of a density with compact support (and thus satisfying the
central limit theorem) but with unbounded convolutions of all orders (and
thus not satisfying the local limit theorem). The technical condition of
multiplicity one in Kondratiev and Skorokhod (2006) and Kondratiev et al.
(2008), as the condition that a(k) and b(k) are integrable, exclude cases
where the local density of particles remains unbounded. Our densities a(z)
and b(z) are uniformly continuous, and hence bounded in R? implying
that neither migration nor dispersal can lead to local accumulations of
particles.

Sewastjanow (1974, 1971 Chap. X) studies diffusive branching random
processes in bounded domains. His analysis does not apply to jump processes
in the whole space.

1.2. Correlation functions

Correlation functions encode stochastic properties of population dynamics. For
integer n > 1 and a collection of distinct points {xi,...,x,} C R% the n-th

correlation function k" (x1,...,%,) is the density of the probability



4 (&) E. CHERNOUSOVA ET AL.

P(n(t,x; +dx;) =1,...,n(t,x, + dx,) = 1) (7)

that an infinitesimal neighborhood of each point x; , ..., x,, contains a single
particle. By the choice of the initial distribution, we have

Ky, ) = A", n> 1. (8)

In the setting of the contact model, Kondratiev and Skorokhod (2006) and
Kondratiev et al. (2008) define the correlation functions and construct the
corresponding dynamics.

The first correlation function kgl)(x) is the density of the particles at
location x at time t,

P(n(t, x + dx) = 1) = k' (x) dx. 9)
Therefore, the average total number of particles in I' € B(RY) at time ¢ is
m;(£,T) = En(t,T) = J kY (x) dx. (10)
r

Write (n), :=n(n—1)...(n—1+ 1) for the falling factorial of order [ > 1.
Then the I-th factorial moment of n = n(¢,T) is

my (t,T) = E (n(t,T)), = J

Jkﬁ’)(xl,...,xl)dxl...dx,. (11)
T T

For the initial configuration,

m;(0,T) = AL)D', 1>1, TeBRY. (12)

1.3. Results

We use the fact that the family of correlation functions kﬁ”) (X1 -y Xn),
n > 1, satisfies a system of parabolic equations with initial conditions

k(()n) (x1,...,%,) = A". We have posited the stability assumption p> f3.

Theorem 1. For each integer n > 1 and for all (x1,%a,...,x,) € (RY)" with

pairwise distinct x;, there exists kgg) (X1, ...,X,) such that, as t — oo,
K" K 13
p(xny e xn) = K (X)) (13)

Moreover, there exists a positive constant C = C(A, u, 3, y) such that
for each integer n > 1,

|k || == sup sup [k (x1,...,x,)| < nl C". (14)

120 X1,...,%,
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We compute the limiting correlation {kg’;) (x1,...,%,)} in a recursive way
using Eq. (72) and (73) below. The upper bound in Eq. (14) does not depend
on «, which is consistent with the heuristic argument that more intense
diffusion mixes the configuration faster and prevents the local density of
the field from growing too large.

An important corollary of Theorem 1 is that, for all ¥k > 0 and y > 0, the
model of a branching random walk with immigration, introduced in Section 1.1,
possesses a steady state:

Theorem 2. For all Borel T € B(Rd),
n(t,I') — n(oo,T) (15)

in law, as t — oc. The distribution of {n(oco,T) : T € B(RY)} is the unique
steady state for the population dynamics of Section 1.1.

While deriving an explicit description of the steady state from the limiting
correlation functions {k"(x,...,x,)} might not be immediate, we show
below that its first moment is constant in space and its second moment is
invariant by translation. The latter property also persists to higher moments.

Under the key assumption y>pf, by Eq. (11), the factorial moments

m,(t,T) also converge: for each T € B(RY),
m,(t,T) — m,(co,T) as t— oo. (16)

Moreover, the uniform estimate of Eq. (14) implies the bound on the
factorial moments:

lm,(t,T)| < n! (C[T])", 0<t<oo, (17)
which, by Carleman’s condition (Feller, 1971, section VIL.3):
D (Mo (£,T)) > = o0, (18)
n>1

implies the existence of a unique distribution {n(t,T) : T € B(RY)} for each
t € [0, 0o]. Alternatively, a slightly weaker condition (Feller, 1971, section XV 4,
Eq. (4.15)),

1 1
lim sup— (m,(t, F))i< 00, (19)
n—oo n
is also applicable here.
Each individual alive at t = 0 as well as each immigrant arriving at t>0
generates a subpopulation, which evolves according to the rules of Section 1.1
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with y = 0 (no immigration). Therefore each of the n(¢,T) individuals in T at
time t>0 can be tracked back to its earliest ancestor, either present at t = 0
or arrived as an immigrant. Then n(¢,T) is the sum of subpopulation sizes,
where each subpopulation evolves as a (subcritical) branching random walk
with migration governed by Eq. (3), with birth governed by Eq. (6) and
mortality at fixed rate y>0:

n(t,T) =Y n(t—t,y,T), (20)

i

where the sum runs over all individual ancestors, with (y;,#) € R? x [0, 1]
denoting the location and the time of their individual arrivals, and where
n(t — t;, y;,T) is the corresponding total number of descendants in the Borel
set I' at time ¢ > 0. The choice of the initial population and the immigration
process guarantee that the total number of possible ancestors arriving during
the time interval [0, ] is countable.

When combined with stochastic monotonicity of the solution n(¢,T),
Theorems 1 and 2 imply stability of the evolution with respect to small
perturbations of the rates (a random variable X is stochastically smaller
than a random variable Y (denoted X<Y) if P(X > z) < P(Y > z) for all
z € R). Indeed, if B, and u, satisfy

B, =B+ &, U, =p+en,, where sup(|&)|nl) <1, (1)

xeR?

with possibly random (&, 7,), ge, for the particle field n(¢,T) corresponding
to birth and death rates (B,, 1, ) s> the particle field n*(¢,T') corresponding to
the constant rates (8 + ¢, 4 — ¢€), and the particle field n.(¢,T') corresponding
to the constant rates ( — ¢, 4 + €), we have:

Theorem 3. If u — $>2e>0 and the rates (&, 1,) pe are given by Eq. (21),
then, for all t > 0 and T € B(R?), the stochastic order

n,(t,I)<n(¢,T)<n"(¢,T) (22)
holds.

We verify the stochastic order of Eq. (22) by constructing the three
processes n,, n, and n* on a common probability space; this procedure is
known as coupling (Lindvall, 1992). Thanks to the decomposition in Eq. (20)
into the sum of the subpopulations, it is sufficient to verify the stochastic
comparison of Eq. (22) for individual subpopulations with common ancestor.
Because
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B—e<pB, <B+e and ut+e>p, >u—e, (23)

this comparison is achieved as described in Lindvall (1992). This implies the
Lyapunov stability of Theorem 3.

We present the construction on the example of n, and n* for a single
subpopulation starting from x € R? at time t = 0. Then n,(0,T)<n*(0,T)
and we show that the point field for the process n, is a subset of the point
field for the process n* for all t > 0. Because, until extinction, the total

number of particles n*(¢,R?) in a single subpopulation forms a linear con-
tinuous-time birth-and-death process, at every time t > 0 its size is almost
surely finite, which implies that the processes n, and n* are well defined.

Assume that, for fixed t > 0, the configuration n, is contained in that of n*
and that the next jump occurs at time s> ¢. If this jump occurs at a location
belonging to n* only, it follows the rules of Section 1.1 with y = 0. Otherwise,
it originates at a location y common to both processes, and is determined by
the smallest of the five independent exponential variables

§~Exp(u—e), &~Exp(B—e), &~Exp(x), (24)
§a~Exp(2e),  &~Exp(2e).

If & is the smallest, the particle at y dies in both processes n, and n*. If it is
&, an offspring is created in both processes at location y + z, where z is
generated by the kernel b( - ). If it is &3, the particle moves in both processes
from y to y + z, where z is generated by the kernel a( - ). If it is &, the
particle dies in n, (but not in n*). If it is &5, an offspring is created in n* at
location y + z, where z is generated by the kernel b( - ). Then the changes in
n, have rates (f — €, u + ¢€) while the changes in n* have rates (8 + ¢, — ¢€);
after the jump, all particles are almost surely in distinct locations, and the
configuration of n, is still a subset of n*. This construction goes further by
induction until the subpopulation dies out in both processes. Because indi-
vidual subpopulations evolve independently of one another, the full config-
uration of n, is a subset of the full configuration of n*, and therefore
n,(t,T)<n*(¢,T) for all ¢+ > 0. The argument for Eq. (22) is analogous.

The stochastic order in Eq. (22) also results from varying the immigration
rate. Indeed, consider the particle field n(t,T) corresponding to birth, death
and immigration rates (B, 4, y,) . g¢> the particle field n*(¢,T) corresponding
to the constant rates (3, 4, y"), and the particle field n.(t,T) corresponding to
the constant rates (f3, 4,7, ). Then

Y, <y, <y, (25)

where (possibly random) y, can depend on x € R? implies the stochastic
order of Eq. (22). Furthermore, the stochastic order of Eq. (22) is true if the
birth and death rates satisfy Eq. (23) and the immigration rates satisfy
Eq. (25).
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The Lyapunov stability of Theorem 3 can fail at criticality, where y = f3
(Kondratiev and Skorokhod, 2006; Kondratiev et al., 2008). Indeed, if the
random rates 3, and y, in Eq. (21) satisfy the criticality assumption

BB =p = u=Bu,, (26)

while the joint distribution of (B,,u,) allows the existence of large enough
regions I' where 3, — p,>&e>0 with positive probability, then the population
count n(t,T') may keep growing as t — oo. Kondratiev et al. (2017) use spectral
analysis to derive this result for a general class of Schrodinger operators.

We now prove Theorem 1.

2. Time evolution of correlation functions

We derive parabolic equations for the family of the correlation functions
kg") (x1,...,%,), n>1, defined in Section 1.2, with initial conditions
k(()”) (x1,...,%,) = A". A key feature of the resulting system is that the equa-

tion for kg") (x1,...,%,) includes correlation functions of lower orders.

To study the first correlation function kgl)(xl), consider the events

AL,y = {n(t +dt,x + dx) = 1n(t,x + dx) = 1}, -
By, g = {n(t +dt,x + dx) = 1n(t, x + dx) = 0}
Then, up to the errors of higher order,
KUy (x)dx = B(n(t +dt,x+ dx) = 1)
_ paW (1) P (1) (28)
- (At7t+dt) ky 7 (x) dx + (Bt,prdt)(l —k; ' (x) dx).
As the leading contribution to the event AE}t)Jr 4 comes from the trajectories in

which the state of the infinitesimal neighborhood of x does not change
during the time interval [¢,t + dt), at the first order:

P(AL), ;) =1~ (k+p)dt. (29)

The splitting move at x during the time interval [¢, t + dt) is not excluded, as
the parental particle stays at its location. Likewise, the leading contribution to

(1
the event Bt,t+dt

neighborhood of x (due to either immigration, migration, or a splitting event
at a different location). We thus get

comes from the arrival of a single particle in the infinitesimal

PB4 =+ KJdei”(x —2)a(z)dz + ﬁJdeﬁ”(x — 2)b(2) dz) dt dx

= (y+ kLK (x) + LM (%) + (1 + Bk (x)) dr dx,
(30)
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where the last equality follows by symmetry of the kernels a( - ) and b( - ),

J , kfl)(x —2z)a(z) dz = J | kgl)(x —z)a(—z) dz
R R

:J dkgl)(x—l—z)a(z) dz. (31)
R
Putting all this together, we deduce

81((1)

o (0= (Lo + BLOK" () + Bk +y (2

with the initial condition k(l)( )=A.

We derive higher-order correlation functions similarly. Write AE r1q¢ for the
event that simple occupancy of infinitesimal neighborhoods of the locations in
the collection x,, := (x1,...,x,) does not change during the infinitesimal time

interval [t,t + dt). Then, at the first order,

P(Aﬁfgdt) = 1— n(x+u)dt. (33)

Denote by BE ; Jr) 4 the event that an initially unoccupied infinitesimal neighborhood

of the location x; receives a single particle during the time interval [t, t + df), while
infinitesimal neighborhoods of all other locations in x,,; := {x;};»;;_; _, remain

simply occupied during [t,t 4 dt). The new particle at x; arrives elther as an

offspring of a single parent from x,,; or from a location not in x, ; (due to either
(n,0)

migration or arrival of an offspring of a particle there). The former event Ct Frdt

satisfies

( tt+dt> Z Bb(xi — Xj )dtdx;, (34)

JijFi

implying that
P(Bgi)dt) = ()’ + KJRd k@ (X150 oy Xim1, Xi = 2, Xig1 -, Xn) 4(2) dz

—l—ﬁj (xl, ey Xi 19X — 2, Xj4 1 - - . ,Xn) b(Z) dZ) dtdx,‘ (35)
+ > Bb(x; — x;) dtdx;.

JiFi
Up to higher-order terms, kt i dt( n)dx; ... dx, equals the probability
P(n(t+ dt,x; +dx;) =1,...,n(t + dt X +dx,) =1)

=P (4 )k (Xn> H dx;+ZP< () 1 ) T .
JiFi

(36)

The correlation function kﬁ’” (xn) solves the forward Kolmogorov equation
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ok . 1) & i iy
o1 (Xu) =n(B—u)k (xq) + ;(Kﬁa + /3/:&;) i (Xn)

f: </3 > b(xi = x) + )’) " (x0),

i=1 JijFi

where we use the restricted operators £/ and Lj:

E;kgn)(xh tee 7'x71) = JRd(kEn)(xla ceey X1, X + Z,Xig1 - - - 7xn)
k" (x4, ..., x0)) a(2) dz

and

szgn)(xh e Xp) = JRd(kﬁ")(xl, e X1y Xi 2 Xi ] ey X))
k" (e, x)) b(2) dz.

3. Proofs
(n)

We derive the a priori bounds for the correlation functions k; /' (x1, . ..

by analyzing Eq. (32) and (37). We fix
vi=u—f3>0.

The uniform bounds of Eq. (14) follow from Lemma 4:

Lemma 4. For an integer n > 1, define | k" || as in Eq. (14). Then

| <2+t

and, for n>1,
B
1K w0 (2B ),

where

Bi— (zi)dJRdH;(k)Mk.

(37)

(38)

(39)

(41)

(42)

(43)

Using the bounds in Eq. (41) and (42), we deduce that, for all n > 1,

K" < nlQ+ (v + BB)/v)",

(44)

which is the bound in Eq. (14). It is thus sufficient to verify Lemma 4.
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3.1. First correlation function

We proceed by induction in # and start by considering the case n = 1. The

first correlation function kgl)(x) satisfies Eq. (32),

S =Lk vk @y K@=1 @)

where
L:=x«xL,+ BLy (46)
and v is as in Eq. (40). For v#0, the solution of Eq. (45) is

W =fe ey (g @

which, for v =y — >0, implies Eq. (41). By the maximum principle for

parabolic equations (Vasy, 2015), kgl)(x) given by Eq. (47) is the only
solution to Eq. (45). Due to the spatial homogeneity of Eq. (45), this solution
does not depend on the spatial Varlable X.

The asymptotics of the solution k( (x) of Eq. (45) is such that:

(1) if >y, then k ( ) — oo exponentially as t — oo;
(2) if B =y, then k (x) — oo linearly as t — oc;
(3) if <y, then k! (x) — y/(p — PB) exponentially as t — oc.

The limit behavior of the solution does not depend on the initial condition

kél)(x). When it is convenient, we assume that k(()l)(x) vanishes identically.

The assumption p>f characterizes the region of non-explosive behavior of

the first correlation function kgl).

3.2. Induction step
For n> 1, denote the single coordinate analogs of the operator in Eq. (46) by
Ei::K£;+ﬁ£Z, i=1,...,n, (48)

where L) and L] are defined as in Eq. (38). Consider the particular
case n = 2.

3.2.1. Second correlation function
The second correlation function k52> satisfies the case n = 2 of Eq. (37):

. (2)
i (n,) = =20k (1, 30)+H(L + £2) K7 (31, x2)

F2(Bb(x1 — x:) + y)k,

(49)
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where we used the fact that b( - ) is symmetric and that, by Eq. (47),

kﬁl)(x)skﬁ” does not depend on the spatial variable. As the last term in
Eq. (49) depends only on x; — x;, we deduce that

K (x1,3) = filxi — x2)=fi(x — x1), (50)
with a symmetric function f;( - ) solving the forward Kolmogorov equation
M, _ (1) 2
o &) = —20fil2) + 2Lfi(2) +2(Bb(2) + )k, folz) =47 (51)
By Duhamel’s principle (Vasy, 2015), the solution to Eq. (51) is

t

fi(z) = A2e 2 42 J e 279 2L (Bh(2) + )k ds. (52)

0
Our analysis of f;(z) is based on Lemma 5. With the generator £ defined
in Eq. (46),
Lemma 5. The family {e“*:u >0} constitutes a positive semigroup of

bounded linear operators. Moreover, if L is the Fourier transform of L, then
for each real u > 0,

0< el —el <1, (53)

Proof. With Z denoting the identity operator, denote

(L + (k4 BT)y(x) = JRdl//(x 4 2)(ka(2) + Bb(2)) dz.  (54)

The assumptions in Eq. (2) and (5) imply that the right-hand side of Eq. (54) is
a bounded positive operator. This property is inherited by the semigroup

L — g ulHp) J(LA(RABT) (55)

Because the assumptions of Eq. (2) imply |a(k)| <1 for all k € RY the
Fourier transform of the generator £, in Eq. (3) satisfies
Lo=a—1¢€ [—2,0]. Likewise, £, = b—1¢ [—2,0]. By symmetry of a( - )
and b( - ), the right-hand side of Eq. (54) is a convolution. For each func-
tion y : R — R,

Ly = (kLo + BLo)Y = (k(a — 1) + B(b — 1)) §=LY, (56)

where ¥ is the Fourier transform of y. By induction, £" = L" for every
integer n > 0, and therefore, for every u > 0,

-~ -~

eﬁ\v, _ Z%Z\n@ — L — HRa)BO-1) g (57)

n>0

from which we deduce Eq. (53). O
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By Eq. (5), the Fourier transform E(k) is integrable. Therefore, for every
z€R%and u >0,

1
(2m)*

e"“b(z) = J deuAﬁE(k)e*“ka) dk (58)
R

is well defined. Eq. (58) and (53) imply the uniform bound

b < — | Je e ak <

1 ~
J |b(k)|dk =: B. (59)
(2m)" ) Jre
To study the large-time behavior of the function f;(z) in Eq. (52), we use the
fact that, as t — oo,

t t
J 672v(t75) ds = J e 2V dy — % (1 _ 672vt) N % ,
£° 0 ¢ (60)
J 672\1(1‘75) e ds = eth efv(tfs) ds = O(efvt) 0.
0 0
Eq. (53) and (59) imply that the absolute value of the integral in Eq. (52) is

bounded by

t
[ @120 ) 1 s < B4 3) ) [ e
0

(61)

As the first term on the right-hand side of Eq. (52) decays exponentially, Eq. (60)
and (61) imply the case n = 2 of the induction estimate in Eq. (42).
To derive the limit of f;( - ) as t — oo, we use the fact that Eq. (60) implies

t
J e 9 29L(Bb(z) + ) (kY — y/v)ds

0

t (62)
< (BB+y)|A — y/v|J e e ds = 0 (e — 0.
0
Therefore, the large-time behavior of the integral in Eq. (52) comes from the

constant term y/ VEk(OL) in Eq. (47).
For a function y : R? — R with integrable Fourier transform y, denote

Y
(2m)? Jrt v — L(k)
which is well defined as — £(k) > 0 for all k € R?. Using the relation

(Ey)(2) := dk, (63)

t t N
J o 2v(t=s) eZ(t—s)Lb(z) ds — 1 dJ b(k) e—z‘(hz)J e 2v=L)u g, ke (64)
0 (2m)" Jr? 0

and the inequality
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t
3 1
J 672(1/7[:)11 du —

— | < 1 eV (65)
0 2(v — L(k)

-2

following from the first property in Eq. (60), we obtain the bound

t
H e 2920 Y(2) ds — (Eb)(2) | < % e (66)
0
and deduce that, as t — oo,
2
K (x1, 5,) — % _ ﬁ—vy (Eb)(x1 — x2)| = O (™), (67)

uniformly in z € RY. Theorem 1 with # = 2 follows.

3.2.2. Higher-order correlation functions
We solve the Kolmogorov Eq. (37) similarly. Denoting

L= L= (kL) +pL}) (68)
i=1 i=1
and applying Duhamel’s principle (Vasy, 2015), we represent its solution as
kgn) (x,) =A"e ™
t n
] e S8 5 by =) ) K ) .

0 =1 jj#i

(69)

As in the case n = 2, we upper bound the absolute value of the last inte-
gral by

t
IKD | [ ey 4 S (e )

i#jij=1,...n (70)
< IR GBn=1),
where the estimate in Eq. (59) is used for each pair (i,j) with i#j,

i,j=1,...,n. Together with the bound A" on the “initial condition” term
in Duhamel’s representation of Eq. (69), we deduce Eq. (42).

3.3. Convergence of the correlation functions

We extend the argument of the previous section to estimate the speed of
convergence of the correlation functions. For every integer n > 1 and the
non-positive operator £, from Eq. (68), consider the resolvent

RI=R,(v) = (nv— En)fl, (71)

n

where, as in Eq. (40), v =y — $>0. We recursively define
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KO(x,) = % . x eRY (72)

and, using x, and x,; defined in Section 2,

k" (x,) = (Z (ﬁ D b(xi—x) + y) k(" 1>(xn7i)> . (73)

i=1 i

In terms of differences

K" (x) o= k) (x,) — K (x,), (74)
we have:

Proposition 6. There exists a positive sequence (C,),~., such that, for all t > 0,

~(n) n _
sup [k, (xn)] < Cy || K™ || 7. (75)
x,€(R)"

This implies that, as t — oo, the correlation functions kE") (- ) converge
exponentially to their limits k") ( - ) introduced in Eq. (73). In particular, the
family {kg’?( - )},>; satisfies the Carleman condition in Eq. (18) and thus
corresponds to a unique steady state for the model of section 1.1.

Proof. Using Duhamel’s formula in Eq. (69) and the decomposition of Eq.
(74), we use mathematical induction to prove inequality (75). The argument
defines the sequence (C,),~, recursively.

For n = 1, the claim is true with C; = 1. To verify the induction step, we
consider the contribution of immigration and birth in Eq. (69) separately.

Because each £ := L' + (x + )T is a non-negative integral operator (as is

£,, = L, + n(k+ B)I), the difference

Jte me L)) SO (g, ) s — (Z (xn,i))

0 =1 ) (76)
_ L e B S ) dy
is upper bounded in absolute value by
Jooe n(utx+B)v pvL, Z K (x,)] < nJOOe—n(u—O—K-&-ﬁ)vevZ; KD || dy
t i=1 t
:anoe_ e’Cr || K"V || du (77)

—n || k(n—l) H J e~ dy :% || k(n—l) || et
t

By the induction hypothesis,
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! n ~(n-1)
Je nv="Ln) Z g (Xn,i> ds

0 i=1

t
< nCy_ e n(v+rtp)(t=s) eﬁ,,(t—s) k(”‘*l) eV ds
< 1J0 [ I o8

t
Gt [ K || et

< Pl || K | 7 < Kot K | e,

IN

Together with the bound of Eq. (77), this yields

0 i=1 (79)

<KD | (2G4 e ) e < 2(2G, 4+ 1) [| KO e

t n n
‘YJ e—(nv—ﬁn)(t—s) Z kgn_l)(xn,i) ds — )/RZ |:Z k\,()g_l)(xn7i):| ‘
i=1

Likewise, with >, ;:=3",> .., denoting the sum over all configurations

where the particle at x; is born by the particle at x;,

(nmv—L,) (t—s) b kn I)ands
[ e

j—i

t
<nn= )G [ 0] KV [ emiesas €0
nCn 1

o K" e,

where || b ||:= sup, |b(x)| is a finite constant, and

J —(nmv—L,) tszb _x] (an)s
j—i
~R! (Z b(x; — x»k&;”(xn,i)) | (81)

=i

2(n—1)

< Fo | K e,

implying that

‘ﬁj (mv—"L,) (t—s) Eb( _x]) (n U(X,,J)dS

0 j—i

—BR, (z b(xi — x;)k{” 1><xn,i>> ‘

Jt

<BCo+2) b K"V e (82)

Finally, inequality (75) follows with C, = Z(C";VIH) (y+BIb]n.c
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The relation of Eq. (73) allows a description of the limiting correlation

functions {kg’;) (X1,.++,%u)},>, in terms of the family of all directed graphs on
the vertices x1, . . . , x,,, where the directed edges indicate parental relations. Such

graphs are known in combinatorics as directed forests.

4. Conclusion

The population dynamics introduced in Section 1.1 is Lyapunov stable in that
its qualitative behavior is unchanged under suitable perturbations of the main
parameters of the model. For each value of the immigration rate, the finite-time
distribution of the model converges exponentially to a unique steady state. The
density of this steady state increases with the immigration rate.
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