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ABSTRACT KEYWORDS
For the critical branching random walk on the lattice Z¢, in the Branching random walk;
case of an arbitrary total number of produced offspring spread- critical case; steady state;

ing on the lattice from the parental particle, the existence of a Carleman conditions;
limit distribution (which corresponds to a steady state (or intermittency
statistical equilibrium)) of the population is proved. If the

second factorial moment of the total number of offspring is

much larger than the square of the first factorial moment, then

the limit particle field displays strong deviations from the

uniformity: this is intermittency.

1. Introduction

Watson and Galton (1875) expressed the probabilities of long-term survival
of family names. Branching processes are useful when each individual may
die or have offspring independently of other members. Sevast'yanov (1971)
presented branching processes.

Particles can move randomly. In this case, branching processes are also
called branching random walks or diffusion. The walks take place usually on

Z¢ or R?. The Kolmogorov-Petrovskii-Piskunov (1937) (KPP) model origi-
nated from the spread of a biological species with a dominant gene.

A key problem is the existence of a limit particle field (a steady state (also
called statistical equilibrium)). Dobrushin and Siegmund-Schultze (1982)
used the theory of Gibbs fields to study branching particles, homogeneous
in space. His program based on the forward integral equations for the
correlation functions was implemented in Liemant (1969) and Debes et al.
(1970), who proved the existence of a steady state in the three-dimensional
KPP model, where the initial particle field is Poissonian, the evolution
proceeds binary branching, and the dynamics are Brownian.

In the contact (or “forest”) model of Kondratiev et al. (2008), particles
in RY, d >3, are assimilated to “trees”. The initial field of “trees” is
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Poissonian and “trees” do not move. During the time interval (t,t+ dt),
the “tree” either dies or produces the “seed,” which spreads randomly
from the parental “tree”. Such a particle field is formalized by a Markov

process in the space of the locally finite configurations of points in RY. In
the critical case of equal death and birth rates, Kondratiev et al. (2008)
proved the ergodicity of this Markov process, that is, the convergence to
the steady state. The correlation function is no longer convenient for the

lattice models because each site x € Z¢ may contain many particles and
Kondratiev et al. (2008)’s method no longer applies.

Molchanov and Whitmeyer (2017) presented the total population of the
particles as the sum of independent subpopulations, generated by different
initial particles. For subpopulations, Kolmogorov backward equations apply.
The existence of the steady state now depends on the asymptotic moments of
the total population.

We assume that the particles walk randomly on 7% d > 1, with law a.
Particles produce an arbitrary total number of offspring, which spread
independently of the parental particle with law b and behave as independent
particles. The proof of the existence of a steady state extends Molchanov and
Whitmeyer (2017) to multiple branching.

The transition to an arbitrary total number of offspring leads to a
different structure of the limit population, where the limit field impor-
tantly deviates from uniformity. Zeldovich et al. (2014) describe the appli-
cations of the intermittency phenomenon in magnetic and temperature
fields of the turbulent flow, in chemical kinetics, and in biological models.
For example, the solar magnetic field has an intermittent structure because
more than 99% of the magnetic energy concentrates on less than 1% of the
surface area. Girtner and Molchanov (1990) and Molchanov (1994) devel-
oped the mathematical theory of intermittency with applications to
hydrodynamics.

In Section 2, we present the branching random process and the main
result, which is about the convergence to the steady state (Theorem 1).
The proof is in the Appendix. The random field contains a system of high
and well-separated peaks, which reflect the presence of intermittency
(Section 3).

2. Existence of a steady state

{N(t,y), y € Zd} designates a particle field of a population at time ¢ > 0,

starting with a single particle at each point y € Z% N(0,y) = 1, n(t,x,y) a
subpopulation at y € Z¢ at time t > 0, generated by a single particle at
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x€Z% at time t=0, hence n(0,x,y) =1 if and only if x=y. The
subpopulations are independent of one another and

N(t,y) = Z n(t, x,y). (1)
x€Z?

Each subpopulation changes according to a random walk of each of its
particle. The random walk generator is

f(Lap)(x) =5 Y a(v)(y(x +v) = y(x)), 2)

veZ*\{0}
where a(v) is a coefficient such that

a(v) >0, a(v)=a(-v), veZ\{o},

> oalv)=1.

veZM\ {0}

(3)

Eq. (2) formalizes the fact that the particle spends an exponentially distrib-
uted random time, with parameter «, in each site x, then jumps from x to
x +v, v € Z%\{0}, with probability a(v). Annihilation or death occurs with
rate 4 and splitting into [ particles with rates 3, where [ > 2. At splitting, one
offspring (considered as the parental particle) remains at x and the other [ —
1 particles jump independently from x to x + v, with probability b(v), where

b(v) >0, b(v)=b(-v), veZ\{o},

> b(v)=1.

veZA\ {0}

(4)

Without loss of generality, we study the population at y = 0. The generating
function for an individual subpopulation

uy(t, x) = Bz"(t*0) (5)

satisfies the Kolmogorov backward equation:

% (t,x) = ®(Laug)(t, x) — ([/l + l_zzﬁl> u(t,x) + u+
o0 l fo (6)
u(t,x) l:z; By(u; x b)) (t,x)

with initial condition u,(0,x) = z if x =0 and u,(0,x) = 1 otherwise. The
star denotes the convolution of two functions:

(u, x b)(t,x) = Z u(t,x — v)b(v). (7)

veZ?
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In Eq. (6), a particle located at x contributes to u,(t + dt,x) during the
time interval (0, dt) in either:

(1) dying with probability udt;

(2) jumping with probability xa(v)dt from x to x + v, v € Z*\{0}. After
the jump, during the remaining time interval (dt, t + dt), the particle
changes independently of its location, as if it had its parental particle at
x + v. This case corresponds to the term xdt > a(v)u,(t,x + v);

veZ\{0

(3) splitting into [-particles (I > 2) with probability\ {/3}1 dt. The parental
particle located at the site x changes further during the remaining
time interval (dt,t + dt) independently of other particles. The other
(I—1) offspring jump independently of one another to the states
x + v, (i € Z\{0}) with corresponding probabilities b(vy), for all
k=2,...,1, then they behave as independent particles. This case
corresponds to the term

dtiﬁzuz(t, x) El: < Z b(vk)uz(t,x + Vk)) =
=2 k=2 \wez!\ {0}

N -1 (8)
dtl_z;ﬁluz(t,x)< S b(V)uz(t7x+V)> ;

veZ*\ {0}
4. or experiencing no event, with probability 1 — udt — xdt — dty ), B;.
The particle located at the site x changes further during (dt, t + dt) as if it
had a parent located at x. Then, its contribution is

(1 — pdt — xdt — dtiﬁ,) u,(t,x). 9)
1=2

From Eq. (7) and the assumption of symmetry for b (posited in Eq. (4)):

Soob(Wu(t,x+v) = >, b(—v)u(t,x+v) =
veZ™\ {0} veZ™\{0}

> b(v)ug(t,x —v) = (u, % b)(t,x).

veZ\{0}

(10)

Summing up and grouping:

u(t+ dt,x) — u,(t,x) = Kdt( > a(z)u(t,x+v) — uz(t,x)> -

veZ\{0}
dt (y + iﬁl) u,(t,x) + pdt + dtu,(t,x) iﬁl(uz * b)H.
=2 =2

(11)
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From Eq. (2) and the assumption of normalization for a (posited in Eq. (3)):

K( > a(z)uz(t,x—l-V)—uz(t,x)):

veZ\{0}

kYo a(z)(ut,x +v) —uy(t,x)) = k(Lau,)(t,x).

veZ"\{0}

(12)

Using Eq. (12), dividing all terms of Eq. (11) by dt, and taking the limit when
dt — 0 yields Eq. (6).
The factorial moments

k
mltx) = Bln(n = 1) (0~ K+ D) = 55| (12, (3)
where n =n(t,x,0), k=1,2,..., result from Eq. (6) after differentiation.

The first moment satisfies

om0 = (s 50 08 )m )0+

(14)
(S0 08w ) 1.2
m1(0,x) = &(x).
As for Eq. (2):
(Loy)(x) = D> b (y(x+v) — y(x)). (15)
veZd\{O}
To derive Eq. (14), we use:
uy(t,x)|,_, =1forall t >0,x € 74 (16)
(u, x b)(t, x)| Z b(v —lforalltZO,xEZd; (17)
veZd\{O}

& b)), = 3o Hm(er) = (09

as a consequence of Eq. (4):



52 e E. CHERNOUSOVA AND S. MOLCHANOV

o0

(1= DB ((m ) (1.3) — m(t.)) =
SU-1B X b)(m(t,x—v) — my(t,x)) =

lO:oz veZM\ {0}

SU-1DB ¥ b(-)mtx—v)-mEx) = (9
IO:CZ veZ\{0}

SU-1B X b)(m(tx+v) — m(t,x)) =

=2 veZ\{0}

(Z%(’ - 1>ﬁ,) (Cym) (1),

If u= i(l — 1)B;, Eq. (14) becomes:

=2

{ o (t,x) = ((xﬁa - i(l - 1)/31/3;,)%) (t,%) (20)

my(0,x) = 8(x), -

whose solution is m;(t,x) = p(t,x,0), where p(t,x,y) is the conditional
probability of the event that a particle starting at x € Z¢ arrives at y € 7¢
at time ¢>0, when the random walk is defined by the symmetric isotropic
generator kL, + Y =, (I — 1)B,Ls. That is why

> p(t,x,0) =1,
yeZd
p(t,x,0) = p(t,x —y), where p(t,z) = p(t,—z) forall z € Z%,

(21)
For each x € Z%, v(t) = Zyezd n(t,x,y) is a Galton-Watson process and if
=7y (I—1)B, from Eq. (21):
=2

Ev,(t) = ZEn(t, X, y) = Zp(t,x,y) =1, (22)

yeZ? yez!

which is the critical case (Ev,(¢f) =1 for all ¢ > 0) in Sevast’yanov (1971)’s
classification of Galton-Watson processes. Sevast’'yanov (1951) proved that if
>0, PP, is finite then:

(1) v,(t) degenerates almost surely with rate 1 — ~—<2——;
(2) forall z > 0 £ II-1)B,
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3 2v(t) — oz
}LTCP(tZTOZZ(z—Uﬁ,>Z|v"(t)>o> © (23)

lim E(v,()|ve(t) > 0) = 2l

which expresses the fact that if the population does not vanish, v,(t) >0, then
the total number of particles is large, of order ¢.

Theorem 1 For a random field N(t,y), y € Z*, as described in Eq. (1), (5),
and (6), with additional conditions:

(1) p=23250-1)B;
(2) the random walk on 7% with generator kL, + > 2,1 —1)B,Ly is
transient;

(3) for all 1> 2, B; < B&' for some >0, & € (0,1).

Then, for all y € 7°

law

N(t,y) — N(c0, ). (24)

The transience of the random walk with generator xC, + > .=, (I — 1)B,Ls
implies that

Go(0,0) = j:op<s, 0,0)ds< o, (25)

where p(t,x,y) is the conditional probability corresponding to this
random walk (that is, the probability that a particle starting at x € Z*
arrives at yEZd at time t>0) (Eq. (21)). The Laplace transform of

o0

p(t,x,y) Gi(x) = J e Mp(s,x,y)ds is the Green function (Spitzer, 1976).
0

The condition that f3; decreases geometrically implies that the generating
function of the sequence > 7%, B2’ is analytic on the disk |z|< ¢ for some
suitable €>0.

Because the particle field N(t,y), y € Z¢, is homogeneous in space, it is
sufficient to prove Theorem 1 for y = 0. We first estimate all factorial moments
my(t,x), k> 1, of the subpopulation in Eq. (13). We then estimate the
moments for the total population N(t,0) uniformly in ¢ (the bounds do not
depend on t). Because these moments my(N(t,0)) are monotonic in ¢ and
bounded, their limits at t — oo exist. Then, we will use the Carleman condi-
tions (Carleman, 1926; Shobat, 1943) to establish a unique limit distribution.

Proof of Theorem 1. If y = >",°,(I — 1)B,, then the differential Eq. (6) for
the generating function becomes:
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M () = k(L) () + 50— Dfy (i zﬁ,) st )+
N =2 =2 (26)
u(t, x) ; B (uz % b) (8, x).

Differentiating Eq. (26) k times, k > 2, for the k-th factorial moment, leads to:
8"” (t,x) = ((Kﬁu +> (- 1)[3,&,) mk> (t, %)+
=2
m,,(t,x) Lt P tx
zmz )yl

D S = (27)
io: ﬁl Z k! H (m]t*.h) (t,x)
1=2 -1 . —
Z i=1 ji=k,
0<j;<k-1

where we assume mo(t,x) = u,(t,x)|,_, = 1 for all £ >0, x € Z, and the
initial condition #2(0,x) = 0 for all x € Z%, k > 2.
Lemma 1. Under the conditions of Theorem 1, for all k > 1,

my(t,x;0) < k!B 'Dyp(t, x,0), (28)
where -
B= max{1,/3 [ p(s,0, O)ds} < 00. (29)
0
The sequence Dy is defined recursively as: Dy = 1 and, for k > 2,
o0 lk 1 — 1
D, = Z(SZD E( ) Z Dj1'~~"Djy+
" Z],fk n,
Jz>1 (30)
00 ll—l l -1
>8> . > Dj-...-Dj.
== Z:‘:lj’:k’

Jjiz1

Lemma 2. The sequence Dy determined by D; =1 and Eq. (30) does not
increase faster than geometrically.
Corollary 1. There exists ¢>0 such that, for all k > 1,

m(t, x) < *klp(t, x,0), (31)
Z my(t,x) < KKl (32)
x€Z?

The k-th factorial moment for the total population size mi(N(¢,0)) is not
equal to > _,4mi(t,x) because factorial moments are not additive.
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However, for independent random variables, cumulants have the property of

additivity.

We recall the definition of the cumulants of a discrete random variable X. If,
for all k, the factorial moments m(X) =EX(X—1)-...- (X —k+1)<o0
exist, then the Taylor expansion

o
X
Dx(z) = BX = mi(X) (z—1)* (33)
k!
k=0
for the generating function is valid, and the derivatives my(X) = dk(?;‘k(z) ’z:l

exist and are continuous. ®x(1) = 1 and @y is a continuous function in a

neighborhood of the point z = 1, which means that, in the neighborhood of
_ d'lndx(2) ‘
T deF z=1

z =1, the continuous derivatives y,(X) exist and the log-

generating function has the Taylor expansion
k(X
In @y (z) = ZM (z— 1)k, (34)

where the coefficients x,(X) are called “cumulants” or “semi-invariants”
(Leonov and Shiryaev, 1959). Cumulants are additive: for independent ran-
dom variables X and Y, #x(X + Y) = »(X) + #(Y).

From Eq. (33) and (34), cumulants and factorial moments are connected

through each other:
ijk_l n .
R (G 1) iy
%y (X) = n! , =1 ( > ) (35)
Z gl gul e\ K

n

Z kjk:nﬂ

k=1j>0

From Eq. (35) and Corollary 1,
xk(n(t,x,0)) = O(my(t,x)). (36)

Using the additivity property, the cumulants of the random process N(¢,0)
result from summing up the cumulants associated with the independent
subpopulations:

e(N(£,0)) = > i(n(t,x,0)) = O(c*k!). (37)
x€Z
Lemma 3. There exist C; >0 and C,>0 such that, for all k > 1, % (N(t,y)) <
Ck! and mi(N(t,y)) < C5k! uniformly in t.
The monotonicity in t of the moments of the total population size
my(N(t,0)) is proved in Lemma 2.4 of Molchanov and Whitmeyer (2017).
Using this and Lemma 3, lim;_.., mx(N(t,0)) exists and is bounded:
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lim mi(N(t,0)) < Chkl. (38)

The limit behavior of the moments of the total population size in Eq. (38)
determines the limit distribution of N(oco,0) uniquely. Indeed, the upper
boundary in Eq. (38) implies that the generating function for the sequence

tlim mi(N(t,0)), k>1 (39)

in Eq. (33) is analytical in a neighborhood of z = 1. This is why the sequence
in Eq. (39) uniquely determines the probability distribution of N(oo,0)
(Feller, 1971: Chapter VII, § 6) and

my(N(00,0)) = tlinolo m(N(t,0)), k> 1. (40)

These conditions called “Carleman conditions” dealing with the sequence of
moments prove the existence of a uniquely determined distribution law.
N(o0, -) is the steady state of the population dynamics.

3. Intermittency

We definite intermittency: consider the random homogeneous-in-space (say, Z)
random field N(oco, y), which here is the steady state of the population. Assume
that all statistical moments are defined and finite: 4, = EN(-), u, = EN?*(-). The

) L
“intermittent” field if y; < ‘u;j:l for all j > 1. One such inequality, say p, > 3,

implies all others because of Lyapunov’s inequality: y; < //l;/ 2 < yé/ > < ....For
2/3

example, y, < y§/3 and p, > p? imply 1 < Z—% < ”;—z,then % > lory, < ‘u;ﬁ.

For an appropriate choice of the parameters [it and [31,11 > 2, the ratio t:_%

can be arbitrary large, hence Z—% >1lorp < ‘ué/ 2
1

1

For example, for N(y), y € Z¢, independent identically distributed random
values and P{N(y) = A} = 4,P{N(y) =0} =1 —4,A > 1,wehavey, =1,
U, = A, y, = A%, thatis g, > p?. This random field displays separated peaks of
high magnitude. This characterizes an intermittency phenomenon.

The Fourier representation of the factorial moments of the subpopula-
tion n(t,x,0):

(e k) = " my(t, x), (41)
xeZ?
where k € T4 = [—7, 7)". Hence
i (t,k) = p(t,k, 0) = ) (42)

is the solution of the Fourier representation of Eq. (20), which becomes:
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P (1,5,0) = £0p(t k,0) )

with initial condition p(0, k,0) = 1. Here

L(k) = x(a(k) - )+l;(l— 1By (b(k) = 1),
a(k) = 3 e*9a(z) = 3 cos(k,z)al(z), (44)
R zeZ? zeZ?
b(k) = Y e®9b(z) = 3" cos(k,2)b(2),
z€Z? 2e7¢
where @, b, and £ are symmetric functions in T¢ = [, ﬂ)d, Lis nonpositive
function in T¢, a(0) = b(0) = 1, £(0) = 0, and
0) =Y m(t,x) = in(t,0) = L. (45)

x€Z?
The Fourier analog of Eq. (27) for the second factorial moment is:

O,

-5 (HK)

with

80 =22 (k- 0,.0)b(6)p(0,6.0) do+

EU——W bk = 0)p(t, k — 6,0)b(0)p(t, 0, 0)db.

(27)

(47)

The solution of Eq. (46) is s (t, k) :J 5, k,0)8(s, k) ds. Hence

% maltx) = ma(t,0) = [ 505,0)ds =

>0 l)ﬁlj (Jt 2L(6 ds> b(0) dO+ (48)
S -1 - )ﬂ,JTd (J;e%ﬁ(@)ds) b’(6) db.

The asymptotic behavior of the sum of the second factorial moments is

(27)

>, (=1)(-2)B, B0 40
27m)4

> my(t,x) — 2 (ldl)ﬁj d9—|—
t—o0 Td l:
(49)

( 4 —2L(6)

From Eq. (33), (34), and (35),
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LIN(0) = 3 x(n(tx,0) = 32 myt,x) = 35 mi(t,x) =

xeR? x€Z? xeZ?
Z m2(t7x) - Z pz(tv X, 0) = (50)
xeZ? xeZ¢
Z mz(t,x) - Z p(taoax)p(tax7 0) = Z mZ(t7x> _p(t’O’O)
x€Z? x€Z? x€Z®

where, from Eq. (25), the last term p(¢,0,0) tends to zero when t — oo.
We use the connection between the moments and the cumulants, given in
Eq. (50), and the asymptotic behavior given in Eq. (49):

EN(t,y) = EN(t,y)(Ngt,y) — 1) +EN(t,y) =
X (N(t,y)) + (EN(t,y))” + EN(t,y) =

LN +2 — 2+ LS 0-0p| Haer
=2

(
Lo 1V b0
2ﬂ)d ;(l 1)(l z)ﬁlJTd —2£(6) do

The first term on the right-hand side of Eq. (51) is the constant 2, the second
is proportional to the average total number »_,°,(I — 1), (the first moment)
of new particles per time unit, and the third is proportional to the second
factorial moment of the total number »,°,(I — 1)(I — 2)B,; of new particles
per time unit. By assumption of critical states, the first moment of new
particles per time unit coincides with the intensity of mortality:
> o,(I—=1)B, = p, and the second term on the right-hand side of Eq. (51)
is constant, too. Hence, the intermittency phenomenon takes place if

o0

f:Z—l )(I—2)B,> <Z(1—1)/31) = ul. (52)
=2

=2

Conclusion

In the particle field defined on the lattice Z%, d > 1, a single particle starts
from each point. Every particle is endowed with a homogeneous random
migration process with zero drift. It produces an arbitrary total number of
offspring, which spread symmetrically away from the parental particle and
behave as independent particles. In this frame, we have proved the exis-
tence of a limit (stationary) distribution of the population under the
conditions:

(a) the sum of the generator for the migration process of each particle and
the generator for the spreading of offspring is a generator of a transient
random walk;
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(b) the tail of the distribution of the total number of offspring decreases at
least geometrically;

(c) the mortality rate coincides with the average total number of new
particles per time unit (this is a critical case of branching processes).

When the second factorial moment of the total number of offspring is much
larger than the square of the first factorial moment, the limit particle field
deviates importantly from uniformity: the field then displays intermittency.
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A. Appendix

Proof of Lemma 1: Denote m(t,x) = mk,(dt’x). Then, Eq. (27) becomes

210 = (st + S0 D ) ) (1.0 +

00 k—1 -1
DB > ma(tx) ) [T (% b) (£, %)+
o S ieken (53)
-1
;ﬁz > [Il(ﬁ% +b) (t,x)
o<k’

Recall that Duhamel’s principle (Friedman, 1964) states that if f(t,x), t > 0, x € 74, is the
fundamental solution of the operator £, that is, f is the solution of the homogeneous equation:

D (t,%) = f(t,%) (54)
ot
with initial condition f(0,x) = 8(x), then the equation

OF

E(E x) = ['F(t>x) +g(ta X) (55)

with initial condition F(0,x) = 0 has the solution
t
F(t,x) = | ds Zf(tfgxfz)g(&z). (56)
0 2€Z?

“Fundamental” means that the solution of the nonhomogeneous Eq. (55) is the convolution
of the fundamental solution and the nonhomogeneous term g.
Using Duhamel’s formula, the solution of Eq. (53) is:
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Excluding (it * b)(s,z) = 1 for all s > 0 and z € Z*, the inner sum of the first term in Eq.
(57) becomes:

(58)

The inner sum of the second term in Eq. (57) becomes:

-1 -1
Z (ﬁaji*b)(s,z)—Z(l;1> Z i+ b)(s,z).  (59)
Zl::ll Ji=k, = = =1 >1

We verify the lemma using the induction principle.
my (t,x) = p(t,x,0) (p is the fundamental solution of Eq. (20)) and Eq. (28) holds true for
k = 1. If Eq. (28) holds for k — 1, then the right-hand side of Eq. (58) does not exceed
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where we use the fact that:
s,z —v,0) < p(s,0,0) for all z, v € Z3,s > 0. (61)
p p

Indeed, from Eq. (42) and (44) and the symmetry of L, the inverse Fourier transform for all
xcZ% ¢ > 0 gives:

p(t,x,0) = j e N p(t,k,0)dk = J cos(k, x)p(t, k,0)dk <
[-n ”)d [*ﬂﬂ)d (62)
e,k 0)dk = p(t,0,0)

[~7,7)°
From Eq. (61) and the definition of B in Eq. (29), for all r > 1,

b(v)p(s,z —v,0)\
G SN )

B B = B (63)

Likewise, the right-hand side of Eq. (59) does not exceed
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Substituting this term into Eq. (57):
t
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The lemma results from the recursive definition of the sequence Dy in Eq. (30) and from the
facts that:

Zp(t —s5,x—2z,0)p(s,2,0) = Zp(t —s,%,2)p(s,2,0) = p(t,x,0) (66)

zeZ? P
(this is the Chapman-Kolmogorov equation);

B < B8 (assumption of thelemma); (67)

Bl p(s,0,0)ds
OT <1 (from Eq.(29)). (68)

Proof of Lemma 2: The generating function for the sequence {Di}pc; is
D(w) = Y3, Dxwk. We denote
[W"F(w) = Fy, (69)
the extraction of the coefficient of w* in the formal power series F(w) = > ;° | Fxwk. Then

> Dy-...-D=[WTD(w) (70)
Z]l:,:ZII ji=k—n,
and the inner sum of the first term in Eq. (30) becomes
-1 l_ 1 e -1 l_ 1 .
2\, X Dj -...-D;, =[w"] > D'(w) =
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(14 Dw) ™ 1)
where k —n > 1.

For all k > 2, the sum in the middle of the first term in Eq. (30) becomes the convolution
of two generating functions:
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Likewise for Eq. (71):
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Using Eq. (72) and (73), Eq. (30) becomes:
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For the generating function D(w), Eq. (30) is then equivalent to:
2 2 2(n 2
D) —w— SUHDO) _ 2C-8) 8 o)

—8(1+Dw)) (1-9) W -1=%

Both sides of Eq. (75) have monomials not smaller than of second order.
The solution is a rational generating function. The growth coefficient is defined by the
finite radius of convergence R, which is also the distance from the origin to the closest

singularity (Flajolet and Sedgewick, 2009). Hence Dy < (i)k. m
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