
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gmps20

Mathematical Population Studies
An International Journal of Mathematical Demography

ISSN: 0889-8480 (Print) 1547-724X (Online) Journal homepage: https://www.tandfonline.com/loi/gmps20

Steady state and intermittency in the critical
branching random walk with arbitrary total
number of offspring

Elena Chernousova & Stanislav Molchanov

To cite this article: Elena Chernousova & Stanislav Molchanov (2019) Steady state and
intermittency in the critical branching random walk with arbitrary total number of offspring,
Mathematical Population Studies, 26:1, 47-63, DOI: 10.1080/08898480.2018.1493868

To link to this article:  https://doi.org/10.1080/08898480.2018.1493868

Published online: 08 Oct 2018.

Submit your article to this journal 

Article views: 41

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gmps20
https://www.tandfonline.com/loi/gmps20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08898480.2018.1493868
https://doi.org/10.1080/08898480.2018.1493868
https://www.tandfonline.com/action/authorSubmission?journalCode=gmps20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gmps20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08898480.2018.1493868
https://www.tandfonline.com/doi/mlt/10.1080/08898480.2018.1493868
http://crossmark.crossref.org/dialog/?doi=10.1080/08898480.2018.1493868&domain=pdf&date_stamp=2018-10-08
http://crossmark.crossref.org/dialog/?doi=10.1080/08898480.2018.1493868&domain=pdf&date_stamp=2018-10-08


Steady state and intermittency in the critical branching
random walk with arbitrary total number of offspring
Elena Chernousovaa and Stanislav Molchanovb,c

aDepartment of Mathematical Basics of Control, Moscow Institute of Physics and Technology,
Dolgoprudny, Russia; bDepartment of Mathematics and Statistics, University of North Carolina at
Charlotte, Charlotte, NC, USA; cHigher School of Economics, National Research University, Moscow,
Russia

ABSTRACT
For the critical branching random walk on the lattice Z

d, in the
case of an arbitrary total number of produced offspring spread-
ing on the lattice from the parental particle, the existence of a
limit distribution (which corresponds to a steady state (or
statistical equilibrium)) of the population is proved. If the
second factorial moment of the total number of offspring is
much larger than the square of the first factorial moment, then
the limit particle field displays strong deviations from the
uniformity: this is intermittency.
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1. Introduction

Watson and Galton (1875) expressed the probabilities of long-term survival
of family names. Branching processes are useful when each individual may
die or have offspring independently of other members. Sevast’yanov (1971)
presented branching processes.

Particles can move randomly. In this case, branching processes are also
called branching random walks or diffusion. The walks take place usually on

Z
d or Rd. The Kolmogorov–Petrovskii–Piskunov (1937) (KPP) model origi-

nated from the spread of a biological species with a dominant gene.
A key problem is the existence of a limit particle field (a steady state (also

called statistical equilibrium)). Dobrushin and Siegmund-Schultze (1982)
used the theory of Gibbs fields to study branching particles, homogeneous
in space. His program based on the forward integral equations for the
correlation functions was implemented in Liemant (1969) and Debes et al.
(1970), who proved the existence of a steady state in the three-dimensional
KPP model, where the initial particle field is Poissonian, the evolution
proceeds binary branching, and the dynamics are Brownian.

In the contact (or “forest”) model of Kondratiev et al. (2008), particles
in R

d, d � 3, are assimilated to “trees”. The initial field of “trees” is
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Poissonian and “trees” do not move. During the time interval ðt; t þ dtÞ,
the “tree” either dies or produces the “seed,” which spreads randomly
from the parental “tree”. Such a particle field is formalized by a Markov

process in the space of the locally finite configurations of points in R
d. In

the critical case of equal death and birth rates, Kondratiev et al. (2008)
proved the ergodicity of this Markov process, that is, the convergence to
the steady state. The correlation function is no longer convenient for the

lattice models because each site x 2 Z
d may contain many particles and

Kondratiev et al. (2008)’s method no longer applies.
Molchanov and Whitmeyer (2017) presented the total population of the

particles as the sum of independent subpopulations, generated by different
initial particles. For subpopulations, Kolmogorov backward equations apply.
The existence of the steady state now depends on the asymptotic moments of
the total population.

We assume that the particles walk randomly on Z
d, d � 1, with law a.

Particles produce an arbitrary total number of offspring, which spread
independently of the parental particle with law b and behave as independent
particles. The proof of the existence of a steady state extends Molchanov and
Whitmeyer (2017) to multiple branching.

The transition to an arbitrary total number of offspring leads to a
different structure of the limit population, where the limit field impor-
tantly deviates from uniformity. Zeldovich et al. (2014) describe the appli-
cations of the intermittency phenomenon in magnetic and temperature
fields of the turbulent flow, in chemical kinetics, and in biological models.
For example, the solar magnetic field has an intermittent structure because
more than 99% of the magnetic energy concentrates on less than 1% of the
surface area. Gärtner and Molchanov (1990) and Molchanov (1994) devel-
oped the mathematical theory of intermittency with applications to
hydrodynamics.

In Section 2, we present the branching random process and the main
result, which is about the convergence to the steady state (Theorem 1).
The proof is in the Appendix. The random field contains a system of high
and well-separated peaks, which reflect the presence of intermittency
(Section 3).

2. Existence of a steady state

Nðt; yÞ; y 2 Z
d

n o
designates a particle field of a population at time t � 0,

starting with a single particle at each point y 2 Z
d Nð0; yÞ ¼ 1, nðt; x; yÞ a

subpopulation at y 2 Z
d at time t � 0, generated by a single particle at

48 E. CHERNOUSOVA AND S. MOLCHANOV



x 2 Z
d at time t ¼ 0, hence nð0; x; yÞ ¼ 1 if and only if x ¼ y. The

subpopulations are independent of one another and

Nðt; yÞ ¼
X
x2Zd

nðt; x; yÞ: (1)

Each subpopulation changes according to a random walk of each of its
particle. The random walk generator is

κ Laψð ÞðxÞ ¼ κ
X

v2Zdn 0f g
aðvÞ ψðxþ vÞ � ψðxÞð Þ; (2)

where aðvÞ is a coefficient such that

aðvÞ � 0; aðvÞ ¼ að�vÞ; v 2 Z
dn 0f g;

P
v2Zdn 0f g

aðvÞ ¼ 1:
(3)

Eq. (2) formalizes the fact that the particle spends an exponentially distrib-
uted random time, with parameter κ, in each site x, then jumps from x to

xþ v, v 2 Z
dn 0f g, with probability aðvÞ. Annihilation or death occurs with

rate μ and splitting into l particles with rates βl, where l � 2. At splitting, one
offspring (considered as the parental particle) remains at x and the other l�
1 particles jump independently from x to xþ v, with probability bðvÞ, where

bðvÞ � 0; bðvÞ ¼ bð�vÞ; v 2 Z
dn 0f g;

P
v2Zdn 0f g

bðvÞ ¼ 1:
(4)

Without loss of generality, we study the population at y ¼ 0. The generating
function for an individual subpopulation

uzðt; xÞ ¼ Eznðt;x;0Þ (5)

satisfies the Kolmogorov backward equation:

@uz
@t ðt; xÞ ¼ κ Lauzð Þðt; xÞ � μþPl¼2

1
βl

� �
uzðt; xÞ þ μþ

uzðt; xÞ
P1
l¼2

βl uz � bð Þl�1ðt; xÞ
(6)

with initial condition uzð0; xÞ ¼ z if x ¼ 0 and uzð0; xÞ ¼ 1 otherwise. The
star denotes the convolution of two functions:

ðuz � bÞðt; xÞ ¼
X
v2Zd

uzðt; x� vÞbðvÞ: (7)
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In Eq. (6), a particle located at x contributes to uzðt þ dt; xÞ during the
time interval ð0; dtÞ in either:

(1) dying with probability μdt;
(2) jumping with probability κaðvÞdt from x to xþ v, v 2 Z

dn 0f g. After
the jump, during the remaining time interval ðdt; t þ dtÞ, the particle
changes independently of its location, as if it had its parental particle at
xþ v. This case corresponds to the term κdt

P
v2Zdnf0g

aðvÞuzðt; xþ vÞ;
(3) splitting into l-particles (l � 2) with probability βl dt. The parental

particle located at the site x changes further during the remaining
time interval ðdt; t þ dtÞ independently of other particles. The other
ðl� 1Þ offspring jump independently of one another to the states

xþ vk, (vk 2 Z
dn 0f g) with corresponding probabilities bðvkÞ, for all

k ¼ 2; . . . ; l, then they behave as independent particles. This case
corresponds to the term

dt
P1
l¼2

βluzðt; xÞ
Pl
k¼2

P
vk2Zdn 0f g

bðvkÞuzðt; xþ vkÞ
 !

¼

dt
P1
l¼2

βluzðt; xÞ
P

v2Zdn 0f g
bðvÞuzðt; xþ vÞ

 !l�1

;

(8)

4. or experiencing no event, with probability 1� μdt � κdt � dt
P1

l¼2 βl.
The particle located at the site x changes further during ðdt; t þ dtÞ as if it
had a parent located at x. Then, its contribution is

1� μdt � κdt � dt
X1
l¼2

βl

 !
uzðt; xÞ: (9)

From Eq. (7) and the assumption of symmetry for b (posited in Eq. (4)):P
v2Zdn 0f g

bðvÞuzðt; xþ vÞ ¼ P
v2Zdn 0f g

bð�vÞuzðt; xþ vÞ ¼P
v2Zdn 0f g

bðvÞuzðt; x� vÞ ¼ ðuz ? bÞðt; xÞ: (10)

Summing up and grouping:

uzðt þ dt; xÞ � uzðt; xÞ ¼ κdt
P

v2Zdnf0g
aðzÞuzðt; xþ vÞ � uzðt; xÞ

 !
�

dt μþP1
l¼2

βl

� �
uzðt; xÞ þ μdt þ dtuzðt; xÞ

P1
l¼2

βl uz ? bð Þl�1:

(11)
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From Eq. (2) and the assumption of normalization for a (posited in Eq. (3)):

κ
P

v2Zdn 0f g
aðzÞuzðt; xþ vÞ � uzðt; xÞ

 !
¼

κ
P

v2Zdn 0f g
aðzÞ uzðt; xþ vÞ � uzðt; xÞð Þ ¼ κ Lauzð Þðt; xÞ:

(12)

Using Eq. (12), dividing all terms of Eq. (11) by dt, and taking the limit when
dt ! 0 yields Eq. (6).

The factorial moments

mkðt; xÞ ¼ E nðn� 1Þ � � � ðn� kþ 1Þð Þ ¼ @kuz
@zk

����
z¼1

ðt; xÞ; (13)

where n ¼ nðt; x; 0Þ, k ¼ 1; 2; . . . , result from Eq. (6) after differentiation.
The first moment satisfies

@m1
@t ðt; xÞ ¼ κLa þ

P1
l¼2

ðl� 1ÞβlLb

� �
m1

� �
ðt; xÞþ

P1
l¼2

ðl� 1Þβl � μ

� �
m1ðt; xÞ;

m1ð0; xÞ ¼ δðxÞ:

8>>>><
>>>>:

(14)

As for Eq. (2):

Lbψð ÞðxÞ ¼
X

v2Zdn 0f g
bðvÞ ψðxþ vÞ � ψðxÞð Þ: (15)

To derive Eq. (14), we use:

uzðt; xÞjz¼1 ¼ 1 for all t � 0; x 2 Z
d; (16)

ðuz ? bÞðt; xÞjz¼1 ¼
X

v2Zdn 0f g
bðvÞ ¼ 1 for all t � 0; x 2 Z

d; (17)

@

@z
ðuz ? bÞðt; xÞjz¼1 ¼

X
v2Zdn 0f g

bðvÞm1ðt; x� vÞ ¼ ðm1 ? bÞðt; xÞ; (18)

as a consequence of Eq. (4):
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P1
l¼2

ðl� 1Þβl m1 ? bð Þðt; xÞ �m1ðt; xÞð Þ ¼
P1
l¼2

ðl� 1Þβl
P

v2Zdnf0g
bðvÞ m1ðt; x� vÞ �m1ðt; xÞð Þ ¼

P1
l¼2

ðl� 1Þβl
P

v2Zdnf0g
bð�vÞ m1ðt; x� vÞ �m1ðt; xÞð Þ ¼

P1
l¼2

ðl� 1Þβl
P

v2Zdnf0g
bðvÞ m1ðt; xþ vÞ �m1ðt; xÞð Þ ¼

P1
l¼2

ðl� 1Þβl
� �

Lbm1ð Þðt; xÞ:

(19)

If μ ¼P1
l¼2

ðl� 1Þβl, Eq. (14) becomes:

@m1
@t ðt; xÞ ¼ κLa þ

P1
l¼2

ðl� 1

� �
βlLbÞm1

� �
ðt; xÞ

m1ð0; xÞ ¼ δðxÞ;

8<
: (20)

whose solution is m1ðt; xÞ ¼ pðt; x; 0Þ, where pðt; x; yÞ is the conditional

probability of the event that a particle starting at x 2 Z
d arrives at y 2 Z

d

at time t > 0, when the random walk is defined by the symmetric isotropic
generator κLa þ

P1
l¼2ðl� 1ÞβlLb. That is whyP

y2Zd

pðt; x; 0Þ ¼ 1;

pðt; x; 0Þ ¼ �pðt; x� yÞ; where �pðt; zÞ ¼ �pðt;�zÞ for all z 2 Z
d:

8<
:

(21)

For each x 2 Z
d, νxðtÞ ¼

P
y2Zd nðt; x; yÞ is a Galton–Watson process and if

μ ¼P1
l¼2

ðl� 1Þβl, from Eq. (21):

EνxðtÞ ¼
X
y2Zd

Enðt; x; yÞ ¼
X
y2Zd

pðt; x; yÞ ¼ 1; (22)

which is the critical case (EνxðtÞ ¼ 1 for all t � 0) in Sevast’yanov (1971)’s
classification of Galton–Watson processes. Sevast’yanov (1951) proved that ifP1

l¼2 l
3βl is finite then:

(1) νxðtÞ degenerates almost surely with rate 1� 2
t
P1

l¼2
lðl�1Þβl

;
(2) for all z > 0
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lim
t!1P

2νxðtÞ
t
P1

l¼2
lðl�1Þβl

> z νxðtÞj > 0

� �
¼ e�z;

lim
t!1E νxðtÞ νxðtÞj > 0ð Þ ¼

P1
l¼2

lðl�1Þβl
2 t;

(23)

which expresses the fact that if the population does not vanish, νxðtÞ> 0, then
the total number of particles is large, of order t.

Theorem 1 For a random field Nðt; yÞ, y 2 Z
d, as described in Eq. (1), (5),

and (6), with additional conditions:

(1) μ ¼P1
l¼2ðl � 1Þβl;

(2) the random walk on Z
d with generator κLa þ

P1
l¼2ðl� 1ÞβlLb is

transient;
(3) for all l � 2, βl � βδl for some β > 0, δ 2 ð0; 1Þ.

Then, for all y 2 Z
d

Nðt; yÞ!lawNð1; yÞ: (24)

The transience of the random walk with generator κLa þ
P1

l¼2ðl� 1ÞβlLb

implies that

G0ð0; 0Þ ¼
ð1
0
pðs; 0; 0Þds<1; (25)

where pðt; x; yÞ is the conditional probability corresponding to this

random walk (that is, the probability that a particle starting at x 2 Z
d

arrives at y 2 Z
d at time t > 0) (Eq. (21)). The Laplace transform of

pðt; x; yÞ GλðxÞ ¼
ð1
0
e�λspðs; x; yÞds is the Green function (Spitzer, 1976).

The condition that βl decreases geometrically implies that the generating
function of the sequence

P1
l¼2 βlz

l is analytic on the disk zj j< � for some
suitable �> 0.

Because the particle field Nðt; yÞ, y 2 Z
d, is homogeneous in space, it is

sufficient to prove Theorem 1 for y ¼ 0. We first estimate all factorial moments
mkðt; xÞ, k � 1, of the subpopulation in Eq. (13). We then estimate the
moments for the total population Nðt; 0Þ uniformly in t (the bounds do not
depend on t). Because these moments mkðNðt; 0ÞÞ are monotonic in t and
bounded, their limits at t ! 1 exist. Then, we will use the Carleman condi-
tions (Carleman, 1926; Shobat, 1943) to establish a unique limit distribution.

Proof of Theorem 1. If μ ¼P1
l¼2ðl� 1Þβl, then the differential Eq. (6) for

the generating function becomes:
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@uz
@t ðt; xÞ ¼ κ Lauzð Þðt; xÞ þP1

l¼2
ðl� 1Þβl �

P1
l¼2

lβl

� �
uzðt; xÞþ

uzðt; xÞ
P1
l¼2

βl uz � bð Þl�1ðt; xÞ:
(26)

Differentiating Eq. (26) k times, k � 2, for the k-th factorial moment, leads to:

@mk
@t ðt; xÞ ¼ κLa þ

P1
l¼2

ðl� 1ÞβlLb

� �
mk

� �
ðt; xÞþ

P1
l¼2

βl
Pk�1

n¼1

mnðt;xÞ
n!

PPl�1

i¼1ji�0
ji¼k�n;

k!
Ql�1

i¼1

mji�bð Þðt;xÞ
ji!

þ

P1
l¼2

βl
PPl�1

i¼1
0�ji�k�1

ji¼k;

k!
Ql�1

i¼1

mji�bð Þðt;xÞ
ji!

;

(27)

where we assume m0ðt; xÞ ¼ uzðt; xÞjz¼1 ¼ 1 for all t � 0, x 2 Z
d, and the

initial condition mkð0; xÞ ¼ 0 for all x 2 Z
d, k � 2.

Lemma 1. Under the conditions of Theorem 1, for all k � 1,

mkðt; x; 0Þ � k!Bk�1Dkpðt; x; 0Þ; (28)

where
B ¼ max 1; β �

1

0
pðs; 0; 0Þds

� �
<1: (29)

The sequence Dk is defined recursively as: D1 ¼ 1 and, for k � 2,

Dk ¼
P1
l¼2

δl
Pk�1

n¼1
Dn
Pl�1

r¼1

l� 1
r

� � P
Pr
i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djrþ

P1
l¼2

δl
Pl�1

r¼2

l� 1
r

� � PPr

i¼1
ji�1

ji¼k;

Dj1 � . . . � Djr :

(30)

Lemma 2. The sequence Dk determined by D1 ¼ 1 and Eq. (30) does not
increase faster than geometrically.

Corollary 1. There exists c> 0 such that, for all k � 1,

mkðt; xÞ � ckk!pðt; x; 0Þ; (31)X
x2Zd

mkðt; xÞ � ckk!: (32)

The k-th factorial moment for the total population size mk Nðt; 0Þð Þ is not
equal to

P
x2Zd mkðt; xÞ because factorial moments are not additive.
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However, for independent random variables, cumulants have the property of
additivity.

We recall the definition of the cumulants of a discrete random variable X. If,
for all k, the factorial moments mkðXÞ ¼ EXðX � 1Þ � . . . � ðX � kþ 1Þ<1
exist, then the Taylor expansion

ΦXðzÞ ¼ EzX ¼
X1
k¼0

mkðXÞ
k!

ðz � 1Þk (33)

for the generating function is valid, and the derivatives mkðXÞ ¼ dkΦXðzÞ
dzk

��
z¼1

exist and are continuous. ΦXð1Þ ¼ 1 and ΦX is a continuous function in a
neighborhood of the point z ¼ 1, which means that, in the neighborhood of

z ¼ 1, the continuous derivatives χkðXÞ ¼ dk lnΦXðzÞ
dzk

��
z¼1 exist and the log-

generating function has the Taylor expansion

lnΦXðzÞ ¼
X1
k¼0

kðXÞ
k!

ðz � 1Þk; (34)

where the coefficients χkðXÞ are called “cumulants” or “semi-invariants”
(Leonov and Shiryaev, 1959). Cumulants are additive: for independent ran-
dom variables X and Y , KkðX þ YÞ ¼ KkðXÞ þ KkðYÞ.

From Eq. (33) and (34), cumulants and factorial moments are connected
through each other:

KnðXÞ ¼ n!
X

Pn
k¼1 jk�0

kjk¼n;

ð�1Þ
Pn
k¼1

jk�1 Pn
k¼1

jk � 1

� �
!

j1! � � � jn!
Yn
k¼1

mkðxÞ
k!

� �jk

: (35)

From Eq. (35) and Corollary 1,

Kk nðt; x; 0Þð Þ ¼ O mkðt; xÞð Þ: (36)

Using the additivity property, the cumulants of the random process Nðt; 0Þ
result from summing up the cumulants associated with the independent
subpopulations:

Kk Nðt; 0Þð Þ ¼
X
x2Z

Kk nðt; x; 0Þð Þ ¼ O ckk!
� �

: (37)

Lemma 3. There exist C1 > 0 and C2 > 0 such that, for all k � 1, Kk Nðt; yÞð Þ �
Ck
1k! and mk Nðt; yÞð Þ � Ck

2k! uniformly in t.
The monotonicity in t of the moments of the total population size

mk Nðt; 0Þð Þ is proved in Lemma 2.4 of Molchanov and Whitmeyer (2017).
Using this and Lemma 3, limt!1mk Nðt; 0Þð Þ exists and is bounded:
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lim
t!1mk Nðt; 0Þð Þ � Ck

2k!: (38)

The limit behavior of the moments of the total population size in Eq. (38)
determines the limit distribution of Nð1; 0Þ uniquely. Indeed, the upper
boundary in Eq. (38) implies that the generating function for the sequence

lim
t!1 mk Nðt; 0Þð Þ; k � 1 (39)

in Eq. (33) is analytical in a neighborhood of z ¼ 1. This is why the sequence
in Eq. (39) uniquely determines the probability distribution of Nð1; 0Þ
(Feller, 1971: Chapter VII, x 6) and

mk Nð1; 0Þð Þ ¼ lim
t!1 mk Nðt; 0Þð Þ; k � 1: (40)

These conditions called “Carleman conditions” dealing with the sequence of
moments prove the existence of a uniquely determined distribution law.
Nð1; �Þ is the steady state of the population dynamics.

3. Intermittency

We definite intermittency: consider the random homogeneous-in-space (say, Zd)
random field Nð1; yÞ, which here is the steady state of the population. Assume
that all statistical moments are defined and finite: μ1 ¼ ENð�Þ, μ2 ¼ EN2ð�Þ. The
“intermittent” field if μ

1
j

j � μ
1

jþ1

jþ1 for all j � 1. One such inequality, say μ2 � μ21,

implies all others because of Lyapunov’s inequality: μ1 � μ1=22 � μ1=33 � . . . . For

example, μ2 � μ2=33 and μ2 � μ21 imply 1 � μ2
μ21
� μ2=33

μ21
, then μ3

μ31
� 1 or μ1 � μ1=33 .

For an appropriate choice of the parameters μ and βl, l � 2, the ratio μ2
μ21

can be arbitrary large, hence μ2
μ21
� 1 or μ1 � μ1=22 .

For example, for NðyÞ, y 2 Z
d, independent identically distributed random

values and P NðyÞ ¼ Af g ¼ 1
A , P NðyÞ ¼ 0f g ¼ 1� 1

A , A � 1, we have μ1 ¼ 1,
μ2 ¼ A, μ3 ¼ A2, that is μ2 � μ21. This random field displays separated peaks of
high magnitude. This characterizes an intermittency phenomenon.

The Fourier representation of the factorial moments of the subpopula-
tion nðt; x; 0Þ:

m̂jðt; kÞ ¼
X
x2Zd

eiðk;xÞmjðt; xÞ; (41)

where k 2 Td ¼ ½�π; πÞd. Hence

m̂1ðt; kÞ ¼ p̂ðt; k; 0Þ ¼ etL̂ðkÞ (42)

is the solution of the Fourier representation of Eq. (20), which becomes:
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@p̂
@t

ðt; k; 0Þ ¼ L̂ðkÞp̂ðt; k; 0Þ (43)

with initial condition p̂ð0; k; 0Þ ¼ 1. Here

L̂ðkÞ ¼ κðâðkÞ � 1Þ þP1
l¼2

ðl � 1Þβlðb̂ðkÞ � 1Þ;
âðkÞ ¼ P

z2Zd

eiðk;zÞaðzÞ ¼ P
z2Zd

cosðk; zÞaðzÞ;

b̂ðkÞ ¼ P
z2Zd

eiðk;zÞbðzÞ ¼ P
z2Zd

cosðk; zÞbðzÞ;
(44)

where â, b̂, and L̂ are symmetric functions in Td ¼ ½�π; πÞd, L̂ is nonpositive

function in Td, âð0Þ ¼ b̂ð0Þ ¼ 1, L̂ð0Þ ¼ 0, and

ENðt; 0Þ ¼
X
x2Zd

m1ðt; xÞ ¼ m̂1ðt; 0Þ ¼ 1: (45)

The Fourier analog of Eq. (27) for the second factorial moment is:

@m̂2

@t
ðt; kÞ ¼ L̂ðkÞm̂2ðt; kÞ þ ĝðt; kÞ (46)

with

ĝðt; kÞ ¼ 2
P1

l¼2
ðl�1Þβl

ð2πÞd

ð
Td
p̂ðt; k� θ; 0Þb̂ðθÞp̂ðt; θ; 0ÞdθþP1

l¼2
ðl�1Þðl�2Þβl
ð2πÞd

ð
Td
b̂ðk� θÞp̂ðt; k� θ; 0Þb̂ðθÞp̂ðt; θ; 0Þdθ:

(47)

The solution of Eq. (46) is m̂2ðt; kÞ ¼
ðt
0
p̂ðt � s; k; 0Þĝðs; kÞds. Hence

P
x2Zd

m2ðt; xÞ ¼ m̂2ðt; 0Þ ¼
ðt
0
ĝðs; 0Þds ¼

2
ð2πÞd

P1
l¼2

ðl� 1Þβl
ð
Td

ðt
0
e2sL̂ðθÞds

� �
b̂ðθÞdθþ

1
ð2πÞd

P1
l¼2

ðl� 1Þðl� 2Þβl
ð
Td

ðt
0
e2sL̂ðθÞds

� �
b̂
2ðθÞdθ:

(48)

The asymptotic behavior of the sum of the second factorial moments is

P
x2Zd

m2ðt; xÞ �!
t!1

P1
l¼2

ðl�1Þβl
ð2πÞd

ð
Td

b̂ðθÞ
�L̂ðθÞ dθþP1

l¼2
ðl�1Þðl�2Þβl
ð2πÞd

ð
Td

b̂
2ðθÞ

�2L̂ðθÞ dθ:
(49)

From Eq. (33), (34), and (35),
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χ2 Nðt; 0Þð Þ ¼ P
x2Rd

χ2 nðt; x; 0Þð Þ ¼ P
x2Zd

m2ðt; xÞ �
P
x2Zd

m2
1ðt; xÞ ¼P

x2Zd

m2ðt; xÞ �
P
x2Zd

p2ðt; x; 0Þ ¼P
x2Zd

m2ðt; xÞ �
P
x2Zd

pðt; 0; xÞpðt; x; 0Þ ¼ P
x2Zd

m2ðt; xÞ � pðt; 0; 0Þ
(50)

where, from Eq. (25), the last term pðt; 0; 0Þ tends to zero when t ! 1.
We use the connection between the moments and the cumulants, given in

Eq. (50), and the asymptotic behavior given in Eq. (49):

EN2ðt; yÞ ¼ ENðt; yÞ Nðt; yÞ � 1ð Þ þ ENðt; yÞ ¼
χ2 Nðt; yÞð Þ þ ENðt; yÞð Þ2 þ ENðt; yÞ ¼
χ2 Nðt; yÞð Þ þ 2 �!

t!1 2þ 1
ð2πÞd

P1
l¼2

ðl� 1Þβl
ð
Td

b̂ðθÞ
�L̂ðθÞ dθþ

1
ð2πÞd

P1
l¼2

ðl� 1Þðl� 2Þβl
ð
Td

b̂
2ðθÞ

�2L̂ðθÞ dθ:

(51)

The first term on the right-hand side of Eq. (51) is the constant 2, the second
is proportional to the average total number

P1
l¼2ðl� 1Þβl (the first moment)

of new particles per time unit, and the third is proportional to the second
factorial moment of the total number

P1
l¼2ðl� 1Þðl� 2Þβl of new particles

per time unit. By assumption of critical states, the first moment of new
particles per time unit coincides with the intensity of mortality:P1

l¼2ðl� 1Þβl ¼ μ, and the second term on the right-hand side of Eq. (51)
is constant, too. Hence, the intermittency phenomenon takes place if

X1
l¼2

ðl� 1Þðl� 2Þβl �
X1
l¼2

ðl� 1Þβl
 !2

¼ μ2: (52)

Conclusion

In the particle field defined on the lattice Z
d, d � 1, a single particle starts

from each point. Every particle is endowed with a homogeneous random
migration process with zero drift. It produces an arbitrary total number of
offspring, which spread symmetrically away from the parental particle and
behave as independent particles. In this frame, we have proved the exis-
tence of a limit (stationary) distribution of the population under the
conditions:

(a) the sum of the generator for the migration process of each particle and
the generator for the spreading of offspring is a generator of a transient
random walk;
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(b) the tail of the distribution of the total number of offspring decreases at
least geometrically;

(c) the mortality rate coincides with the average total number of new
particles per time unit (this is a critical case of branching processes).

When the second factorial moment of the total number of offspring is much
larger than the square of the first factorial moment, the limit particle field
deviates importantly from uniformity: the field then displays intermittency.
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A. Appendix

Proof of Lemma 1: Denote ~mkðt; xÞ ¼ mkðt;xÞ
k! . Then, Eq. (27) becomes

@ ~mk
@t ðt; xÞ ¼ κLa þ

P1
l¼2

ðl� 1ÞβlLb

� �
~mk

� �
ðt; xÞþ

P1
l¼2

βl
Pk�1

n¼1
~mnðt; xÞ

PPl�1

i¼1ji�0
ji¼k�n;

Ql�1

i¼1
~mji � b
� �ðt; xÞþ

P1
l¼2

βl
PPl�1

i¼1
0�ji�k�1

ji¼k;

Ql�1

i¼1
~mji � b
� �ðt; xÞ:

(53)

Recall that Duhamel’s principle (Friedman, 1964) states that if f ðt; xÞ, t � 0, x 2 Z
d, is the

fundamental solution of the operator L, that is, f is the solution of the homogeneous equation:

@f
@t

ðt; xÞ ¼ Lf ðt; xÞ (54)

with initial condition f ð0; xÞ ¼ δðxÞ, then the equation

@F
@t

ðt; xÞ ¼ LFðt; xÞ þ gðt; xÞ (55)

with initial condition Fð0; xÞ ¼ 0 has the solution

Fðt; xÞ ¼ �
t

0
ds
X
z2Zd

f ðt � s; x� zÞgðs; zÞ: (56)

“Fundamental” means that the solution of the nonhomogeneous Eq. (55) is the convolution
of the fundamental solution and the nonhomogeneous term g.

Using Duhamel’s formula, the solution of Eq. (53) is:

~mkðt; xÞ ¼ðt
0
ds
P
z2Zd

pðt � s; x� z; 0ÞP1
l¼2

βl
Pk�1

n¼1
~mnðs; zÞ

PPl�1

i¼1ji�0
ji¼k�n;

Ql�1

i¼1
~mji � b
� �ðs; zÞþ

ðt
0
ds
P
z2Zd

pðt � s; x� z; 0ÞP1
l¼2

βl
PPl�1

i¼1
0�ji�k�1

ji¼k;

Ql�1

i¼1
~mji � b
� �ðs; zÞ:

(57)
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Excluding ~m0 � bð Þðs; zÞ ¼ 1 for all s � 0 and z 2 Z
d, the inner sum of the first term in Eq.

(57) becomes:

Pk�1

n¼1
~mnðs; zÞ

PPl�1

i¼1ji�0
ji¼k�n;

Ql�1

i¼1
~mji � b
� �ðs; zÞ ¼

Pk�1

n¼1
~mnðs; zÞ

Pl�1

r¼1

l� 1
r

� � PPr

i¼1ji�1
ji¼k�n;

Qr
i¼1

~mji � b
� �ðs; zÞ: (58)

The inner sum of the second term in Eq. (57) becomes:

X
Pl�1

i¼1
0�ji�k�1

ji¼k;

Yl�1

i¼1

~mji � b
� �ðs; zÞ ¼Xl�1

r¼2

l � 1
r

� � X
Pr

i¼1ji�1
ji¼k;

Yr
i¼1

~mji � b
� �ðs; zÞ: (59)

We verify the lemma using the induction principle.
~m1ðt; xÞ ¼ pðt; x; 0Þ (p is the fundamental solution of Eq. (20)) and Eq. (28) holds true for

k ¼ 1. If Eq. (28) holds for k� 1, then the right-hand side of Eq. (58) does not exceed

Bk�1pðs; z; 0ÞPk�1

n¼1
Dn
Pl�1

r¼1

l� 1
r

� �
ðp�bÞðs;zÞ

B

	 
r P
Pr

i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djr �

Bk�1pðs; z; 0Þ pðs;0;0ÞB

Pk�1

n¼1
Dn
Pl�1

r¼1

l� 1
r

� � P
Pr

i¼1
ji¼k�n;

ji � 1

Dj1 � . . . � Djr ;

(60)

where we use the fact that:

pðs; z � v; 0Þ � pðs; 0; 0Þ for all z; v 2 Z
d; s � 0: (61)

Indeed, from Eq. (42) and (44) and the symmetry of L̂, the inverse Fourier transform for all

x 2 Z
d, t � 0 gives:

pðt; x; 0Þ ¼
ð
½�π;πÞd

e�iðk;xÞp̂ðt; k; 0Þdk ¼
ð
½�π;πÞd

cosðk; xÞp̂ðt; k; 0Þdk �ð
½�π;πÞd

p̂ðt; k; 0Þdk ¼ pðt; 0; 0Þ
(62)

From Eq. (61) and the definition of B in Eq. (29), for all r � 1,

ðp � bÞðs; zÞ
B

� �r

¼

P
v2Zd

bðvÞpðs; z � v; 0Þ

B

0
B@

1
CA

r

� pðs; 0; 0Þ
B

: (63)

Likewise, the right-hand side of Eq. (59) does not exceed
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Bk�1pðs; z; 0ÞPl�1

r¼2
l � 1

r
p�b
B

	 
r�1 PPr

i ¼ 1
ji � 1

ji¼k;

Dj1 � . . . � Djr �

Bk�1pðs; z; 0Þ pðs;0;0ÞB

Pl�1

r¼2

l� 1
r

� � PPr

i ¼ 1
ji � 1

ji¼k;

Dj1 � . . . � Djr :

(64)

Substituting this term into Eq. (57):

~mkðt; x; 0Þ � Bk�1

ðt
0
ds pðs;0;0ÞB

P
z2Zd

pðt � s; x� z; 0Þpðs; z; 0Þ�
P1
l¼2

βlð
Pk�1

n¼1
Dn
Pl�1

r¼1

l � 1
r

� � PPr
i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djrþ

Pl�1

r¼2

l� 1
r

� � PPr
i¼1
ji�1

ji¼k;

Dj1 � . . . � DjrÞ:

(65)

The lemma results from the recursive definition of the sequence Dk in Eq. (30) and from the
facts that: X

z2Zd

pðt � s; x� z; 0Þpðs; z; 0Þ ¼
X
z2Zd

pðt � s; x; zÞpðs; z; 0Þ ¼ pðt; x; 0Þ (66)

(this is the Chapman–Kolmogorov equation);

βl � βδl ðassumption of thelemmaÞ; (67)

β �
t

0
pðs; 0; 0Þds

B
� 1 ðfrom Eq:ð29ÞÞ: (68)

Proof of Lemma 2: The generating function for the sequence Dkf g1k¼1 is
DðwÞ ¼P1

k¼1 Dkwk. We denote

½wk	FðwÞ ¼ Fk; (69)

the extraction of the coefficient of wk in the formal power series FðwÞ ¼P1
k¼1 Fkw

k. ThenX
Pr

i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djr ¼ ½wk�n	DrðwÞ (70)

and the inner sum of the first term in Eq. (30) becomes

Pl�1

r¼1

l� 1
r

� � PPr

i ¼ 1
ji � 1

ji¼k�n;

Dj1 � . . . � Djr ¼ ½wk�n	Pl�1

r¼1

l� 1
r

� �
DrðwÞ ¼

½wk�n	 1þ DðwÞð Þl�1 � 1
	 
 (71)

where k� n � 1.
For all k � 2, the sum in the middle of the first term in Eq. (30) becomes the convolution

of two generating functions:
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Pk�1

n¼1
Dn
Pl�1

r¼1

l� 1
r

� � PPr
i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djr ¼

Pk�1

n¼1
½wn	DðwÞ½wk�n	 1þ DðwÞð Þl�1 � 1

	 

¼

½wk	DðwÞ 1þ DðwÞð Þl�1 � 1
	 


:

(72)

Likewise for Eq. (71):

Xl�1

r¼2

l� 1
r

� � X
Pr

i¼1
ji�1

ji¼k;

Dj1 � . . . � Djr ¼ ½wk	 1þ DðwÞð Þl�1 � ðl� 1ÞDðwÞ � 1
	 


: (73)

Using Eq. (72) and (73), Eq. (30) becomes:

P1
l¼2

δl
Pk�1

n¼1
Dn
Pl�1

r¼1

l� 1
r

� � PPr
i¼1
ji�1

ji¼k�n;

Dj1 � . . . � Djrþ

P1
l¼2

δl
Pl�1

r¼2

l� 1
r

� � PPr
i¼1
ji�1

ji¼k;

Dj1 � . . . � Djr ¼

½wk	P1
l¼2

δl DðwÞ 1þ DðwÞð Þl�1 � 1
	 


þ 1þ DðwÞð Þl�1 � ðl� 1ÞDðwÞ � 1
	 


¼

½wk	 P1
l¼2

δl 1þ DðwÞð Þl � DðwÞP1
l¼2

lδl �P1
l¼2

δl
� �

¼

½wk	 δ2ð1þDðwÞÞ2
1�δð1þDðwÞÞ � δ2ð2�δÞ

ð1�δÞ2 DðwÞ � δ2

1�δ

	 

:

(74)

For the generating function DðwÞ, Eq. (30) is then equivalent to:

DðwÞ � w ¼ δ2ð1þ DðwÞÞ2
1� δð1þ DðwÞÞ �

δ2ð2� δÞ
ð1� δÞ2 DðwÞ � δ2

1� δ
: (75)

Both sides of Eq. (75) have monomials not smaller than of second order.
The solution is a rational generating function. The growth coefficient is defined by the

finite radius of convergence R, which is also the distance from the origin to the closest

singularity (Flajolet and Sedgewick, 2009). Hence Dk < 1
R

� �k
. □
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