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ABSTRACT
In a lattice population model where individuals evolve as sub-
critical branching random walks subject to external immigra-
tion, the cumulants are estimated and the existence of the
steady state is proved. The resulting dynamics are Lyapunov
stable in that their qualitative behavior does not change under
suitable perturbations of the main parameters of the model.
An explicit formula of the limit distribution is derived in the
solvable case of no birth. Monte Carlo simulation shows the
limit distribution in the solvable case.
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1. Introduction

The Galton–Watson process is a simple branching process (Watson and
Galton, 1875), devoid of spatial dynamic. Models where particles can move
randomly are called branching random walks. Branching random walks can
be used, for example, in the modeling of viral epidemics (Ermakova et al.,
2019). To determine the regime, toward which an epidemic is tending, one
computes a limit distribution, which corresponds to a steady state, associated
with the model. The question, which we address here, of the existence of such
a limit distribution, is therefore fundamental.

Molchanov and Whitmeyer (2017) proved the existence of a steady state
for the critical branching process with binary splitting and transient under-
lying random walk on the lattice Z

d. Chernousova and Molchanov (2018)
extended Molchanov and Whitmeyer (2017) by considering an arbitrary total
number of offspring which spread randomly in space around the parental
particle. These authors proved the existence of a limit distribution of the
population under the following additional conditions: 1) the tail of the
distribution of the total number of offspring decreases at least
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geometrically; 2) the sum of the generator associated with migration of each
particle and the generator associated with the spreading of offspring is
a generator of a transient random walk. Critical branching processes are
unstable with respect to small perturbations of the birth and death rates. Han
et al. (2017b) and Han et al. (2017a) introduced immigration, which can
stabilize the population size when the birth rate is less than the mortality rate
(subcritical case). These authors proved the existence of limits for the first
two moments, but that does not prove the existence of a steady state. We
extend their analysis of a subcritical random walk with immigration in
proving the existence of a steady state and its stability in the Lyapunov
sense. Our proof is based on Molchanov and Whitmeyer (2017), who esti-
mated limits for all moments of the total population and used Carleman
conditions (Feller, 1971, Sect. VII.3) to establish a unique limit distribution.
For simplicity, we consider binary splitting as in Han et al. (2017b). Based on
Chernousova and Molchanov (2018), we prove a unique limit distribution in
the model of Han et al. (2017a) with arbitrary total number of offspring
under the additional condition that the tail of the distribution of the total
number of offspring decreases at least geometrically.

Instead of Zd, Chernousova et al. (2019) explored the continuous-time
and continuous-space subcritical branching process subject to immigration

in R
d and proved the existence of a steady state and its stability. The

methods used in the proof are different in a lattice model and in
a continuous-space model.

Yarovaya (2013) analyzed the limit behavior of all moments for the total
population in a branching random walk with a finite total number of
branching sources of different types. Khristolyubov and Yarovaya (2019)
did the same for supercritical branching random walks.

Individuals move on the lattice Z
d as independent random walks (Han

et al., 2017b), subject to splitting or duplication at rate β > 0 and mortality at

rate μ > 0: The critical case corresponds to β ¼ μ. The random walk X on Z
d

is governed by the generator

Laf ðxÞ ¼ κ
P

z2Zdnf0g
ðf ðxþ zÞ � f ðxÞÞaðzÞ ;

aðzÞ � 0 ;
P

z2Zdnf0g
aðzÞ ¼ 1 ;

P
z2Zdnf0g

zaðzÞ ¼ 0 ; (1)

where að � Þ is a suitable zero-mean probability kernel. The population size at

site y 2 Z
d at time t � 0 is Nðt; yÞ.

For β ¼ μ, if X is a transient Markov process, then, as t ! 1, the particle
field Nðt; yÞ converges in law to a limit field N�ðyÞ, which is a steady state
(Han et al., 2017b). If X is recurrent, no steady state exists and, as t ! 1, the
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field Nðt; yÞ clusterizes: as time goes on, particles form larger and larger
clusters farther and farther away from each other.

Although steady states may exist in the transient case, such critical pro-
cesses are unstable under arbitrarily small random perturbations affecting its
parameters. Namely, a statistical equilibrium disappears once the previously
constant rates are replaced by βðx;ωÞ ¼ β0 þ ε�ðx;ωÞ and
μðx;ωÞ ¼ μ0 þ εηðx;ωÞ, where β0 ¼ μ0, ε> 0 is a small parameter, and the
random pairs ð�ðx;ωÞ; ηðx;ωÞÞ are independent of one another for different

locations x and have a symmetric distribution (say, on ½�1; 1�2). This phe-
nomenon is related to individual localization theorems for random
Schrödinger operators (Molchanov, 1994; Molchanov and Whitmeyer, 2017).

We address a class of lattice population models with immigration, for
which the steady state exists and is stable in the Lyapunov sense, which
means for sufficiently small (in L1-norm) perturbations affecting the para-
meters. Unlike the continuous-time continuous-space model in Chernousova
et al. (2019), here in the lattice case, several individuals can successively
occupy the same location, which leads to more complex combinations.

After presenting the model in section 2, we solve a case without splitting
mechanism (β ¼ 0) in section 3. For the general case β � 0 in section 4, we
rely on the connection between moments and cumulants. Together with
Carleman type bounds, this connection provides the uniqueness of the
limit state. In section 5, we extend these results to space-dependent bounded

rates βðxÞ and μðxÞ satisfying 0<Δ1 � μðxÞ � βðxÞ � Δ2 <1 for all x 2 Z
d,

where Δ1 and Δ2 are constants. Thus the steady state is stable in the strongest
Lyapunov sense, which means that the stochastic equilibrium survives under
sufficiently small perturbations of the rates.

2. Model

We consider the population as a particle field ðNðt; yÞÞt�0;y2Zd . Individual
particles independent of one another die at rate μ or split into two at rate β,
and, between these events, move around as random walks with generator La

in Eq. (1) with a suitable kernel að � Þ. The system is subcritical (μ> β) and is
subject to external immigration at rate γ> 0.

The random walk X describes independent movements of individual
particles between death and splitting events. Its generator is La in Eq. (1),

where the kernel að � Þ is symmetric: aðzÞ ¼ að�zÞ for all z 2 Z
dnf0g. X is

supported on the whole lattice, which is equivalent to positivity of the
transition probability:

pðt; x; yÞ ¼ Px XðtÞ ¼ yð Þ> 0 ; (2)

for all x, y 2 Z
d and t � 0.

MATHEMATICAL POPULATION STUDIES 3



In terms of Fourier expansion,

bLaðkÞ ¼ κð
X
z2Zd

cosðkzÞaðzÞ � 1Þ ; (3)

where k 2 ½�π; π�d ¼: Td. The transition probability is the inverse Fourier
transform

pðt; x; yÞ ¼ 1

2πð Þd
s
Tde

tbLaðkÞe�ikðy�xÞdk: (4)

It satisfies

pðt; x; yÞ ¼ pðt; y; xÞ ¼ pðt; y� x; 0Þ ¼ pðt; x� y; 0Þ;
pðt; x; yÞ � pðt; x; xÞ ¼ pðt; 0; 0Þ ¼ 1

2πð ÞdsTde
tbLaðkÞdk ;P

x2Zd

pðt; x; yÞ ¼ P
x2Zd

pðt; y; xÞ ¼ 1 :
(5)

The inequality pðt; x; yÞ � pðt; x; xÞ results from the fact that bLaðkÞ in Eq. (3)

is real and j bLaðkÞe�ikðy�xÞj ¼ bLaðkÞ.
In the time interval ½t; t þ dtÞ, each particle can die independently of one

another with probability μdt or split into two particles with probability βdt at
the same site. The subcriticality assumption

Δ ¼ μ� β> 0 (6)

means that the initial configuration vanishes at a random finite future time: for
each y 2 Z

d, there is a finite random time τy such that Nðt; yÞ ¼ 0 for t � τy.
Indeed, under Eq. (6) and a constant (not random) initial population,

say Nð0; yÞ;1,

m1ðt; yÞ ¼ EðNðt; yÞÞ (7)

solves the forward Kolmogorov equation

@m1

@t
¼ Lam1 � Δm1 ; m1ð0; yÞ ¼ 1 ; (8)

so that

m1ðt; yÞ ¼ e�Δtk ! 0 as t ! 1: (9)

Consider ftkg1k¼1 an increasing sequence tending to infinity fast enough such
that X1

k¼1

e�Δtk <1 (10)
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and AkðΓÞf g1k¼1 the sequence of events AkðΓÞ ¼ max
y2Γ

Nðtk; yÞ � 1

� �
. From

Chebyshev–Markov inequality (Feller, 1968, chap. IX) for any t > 0

and y 2 Z
d,

P Nðt; yÞ � 1ð Þ � m1ðt; yÞ: (11)

Eq. (9) and (11) lead to

P AkðΓÞð Þ � jΓje�Δtk ; (12)

and, due to Eq. (10), X1
k¼1

P AkðΓÞð Þ<1: (13)

Thus from the Borel-Cantelli lemma (Feller, 1968, chap. VIII.3), events AkðΓÞ
occur with probability one only in finite total number: there is a finite
random time τΓ such that Nðt; yÞ ¼ 0 for all y 2 Γ and t � τΓ .
Equivalently, the particle field vanishes at a random finite future time.

For each x 2 Z
d, we represent external immigration as a Poissonian

point field fτiðxÞgi> 0 on fxg � ½0;1Þ with parameter γ. Given x 2 Z
d, immi-

grant particles arrive at times fτiðxÞgi> 0, where 0 ¼ τ0ðxÞ< τ1ðxÞ< τ2ðxÞ< . . .

and the differences τiþ1ðxÞ � τiðxÞ are independent random variables following
an ExpðγÞ distribution. We write �,ExpðγÞ if Pð� > aÞ ¼ e�γa for all a � 0. For

different x 2 Z
d, the corresponding Poissonian point fields are assumed inde-

pendent of one another.
Individual sub-populations, each one being generated by an individual

existing at time t ¼ 0, decay exponentially as t ! 1. We thus assume that

Nð0; yÞ;0 for all y 2 Z
d. In the model with immigration, the first moment

m1ðt; yÞ ¼ EðNðt; yÞÞ solves the forward Kolmogorov equation

@m1

@t
¼ Lam1 � Δm1 þ γ ; m1ð0; yÞ ¼ 0 ; (14)

and thus satisfies

m1ðt; yÞ;γs t

0
e�Δs ds ! γ

Δ
ast ! 1 : (15)

For fixed x 2 Z
d and τiðxÞ< t, nðt � τiðxÞ; x; yÞ is the total number of

individuals at y 2 Z
d at time t descending from the common ancestor who

immigrated to x at time τiðxÞ. Then, with Nxðt; yÞ denoting the total number
of individuals at y at time t, whose ancestors immigrated to x at s 2 ½0; tÞ:

Nxðt; yÞ :¼
X

τiðxÞ�t

nðt � τiðxÞ; x; yÞ : (16)

MATHEMATICAL POPULATION STUDIES 5



The solution Nðt; yÞ is the independent sum

Nðt; yÞ ¼ P
x2Zd

Nxðt; yÞ

¼law P
x2Zd

P
�
ðxÞ
1 þ���þ�

ðxÞ
k �t

nðt � ð�ðxÞ1 þ � � � þ �
ðxÞ
k Þ; x; yÞ ; (17)

where �
ðxÞ
i ,ExpðγÞ are independent of one another for i> 0 and x 2 Z

d.
For each x 2 Z

d, the sub-population size νxðtÞ ¼
P

y2Zd nðt; x; yÞ at time
t � 0 is a Galton–Watson process (Sevast’yanov, 1971). Its generating func-
tion ψzðtÞ :¼ EzνxðtÞ satisfies

@ψz

@t
¼ βψ2

z � ðβþ μÞψz þ μ ¼ ðψz � 1Þðβψz � μÞ ; ψzð0Þ ¼ z; (18)

with α ¼ β=μ< 1. Separation of variables gives

ψzðtÞ � 1
αψzðtÞ � 1

¼ z � 1
αz � 1

e�Δt ; (19)

so that

ψzðtÞ ¼
ðα� e�ΔtÞz � ð1� e�ΔtÞ

αð1� e�ΔtÞz � ð1� αe�ΔtÞ ; (20)

which is the generating function of a generalized geometric distribution.
Hence

EνxðtÞ ¼ d
dz

ψzðtÞjz¼1 ¼ e�Δt ! 0 as t ! 1 : (21)

ϕz such that ϕzðt; x; yÞ :¼ Eznðt;x;yÞ is the generating function of the sub-
population nðt; x; yÞ. It satisfies the backward Kolmogorov equation

@ϕz
@t ¼ Laϕz þ βϕ2z � ðβþ μÞϕz þ μ ; ϕzð0; x; yÞ ¼

z x ¼ y ;
1 x�y ;

�
(22)

which is the lattice analogue of the classical Fischer–Kolmodorov–
Petrovskii–Piskunov equation (Fisher, 1937; Kolmogorov et al., 1937). We
solve Eq. (22) in the particular case μ > β ¼ 0.

3. A solvable case: μ> β ¼ 0

First consider the special case β ¼ 0, μ > 0, and γ> 0 (no birth).
Without randommovements, for each fixed point y 2 Z

d, the processNðt; yÞ
behaves as a queueing system with an infinite number of servers, whose
incoming calls arrive according to a Poisson process with parameter γ. Each
call is served independently of others during exponentially distributed times of
mean μ�1. This queueing system is ergodic and the Poisson process of

6 E. CHERNOUSOVA ET AL.



parameter γ
μ is at its steady state (Feller, 1968; Karlin and Taylor, 1975). Lemma

1 states that this steady state survives under any symmetric random walk.

Lemma 1. If β ¼ 0, as t ! 1, Nðt; yÞ converges in distribution to that of
Nð1; yÞ, which is a Poisson random variable with parameter γ=μ. The limit
random variables ðNð1; yÞÞy2Zd are independent of one another.

Proof. Fix x, y 2 Z
d and 0 � s< t. The random variable nðt � s; x; yÞ at y 2

Z
d and at time t has the same distribution as the total number of offspring

whose ancestor immigrated to x at time s< t. As there are no births (β ¼ 0),
the variable nðt � s; x; yÞ is Bernoulli distributed with

Pðnðt � s; x; yÞ ¼ 1Þ ¼ e�μðt�sÞpðt � s; x; yÞ ; (23)

because the event is possible only if the ancestor particle survives during the
time interval ½s; t� and is located at y at time t. The generating function is

ϕzðt � s; x; yÞ ¼ Eznðt�s;x;yÞ ¼ 1þ ðz � 1Þe�μðt�sÞpðt � s; x; yÞ : (24)

The total number of ancestors who immigrated to x at t is Poisson distrib-
uted with parameter γt. If their total number is fixed, then the descendants
are independent of one another and distributed uniformly over ½0; tÞ
(Kingman and Charles, 1993):

EzNxðt;yÞ ¼ P1
m¼0

e�γt ðγtÞm
m!

1
ts t

0
ϕzðt � s; x; yÞds

 !m

¼ exp γðz � 1Þs t

0
e�μðt�sÞpðt � s; x; yÞds

 !
:

(25)

Consequently, the generating function of Nðt; yÞ ¼Px2Zd Nxðt; yÞ satisfies

EzNðt;yÞ;Ez

P
x

Nxðt;yÞ ¼ exp γðz � 1Þs t

0
e�μðt�sÞX

x2Zd

pðt � s; x; yÞds
0@ 1A: (26)

By the last property in Eq. (5),

EzNðt;yÞ; exp γðz � 1Þs t

0
e�μðt�sÞds

 !
¼ exp

γðz � 1Þ
μ

ð1� e�μtÞ
� �

; (27)

and, as t ! 1, the generating function of Nðt; yÞ converges to exp γ
μ ðz � 1Þ
� �

,
which is a Poisson distribution with parameter γ=μ. Namely,

PðNð1; yÞ ¼ kÞ ¼
γ
μ

� �k
k!

e�
γ
μ for all k ¼ 0; 1; 2; . . . : (28)

MATHEMATICAL POPULATION STUDIES 7



We show now that for distinct y 2 Z
d, the limit random variables Nð1; yÞ

are independent of one another. For notation simplicity, we consider only the

case of two variables; the general case is similar. □

Fix y1�y2. As in Eq. (24),

Eðznðt�s;x;y1Þ
1 znðt�s;x;y2Þ

2 Þ ¼ 1 þðz1 � 1Þe�μðt�sÞpðt � s; x; y1Þ
þðz2 � 1Þe�μðt�sÞpðt � s; x; y2Þ ;

(29)

so that, as in Eq. (25),

EðzNxðt;y1Þ
1 zNxðt;y2Þ

2 Þ ¼ P1
m¼0

e�γt ðγtÞm
m!

1
ts t

0
Exðznðt�s;x;y1Þ

1 znðt�s;x;y2Þ
2 Þds

 !m

¼ exp γs t

0
e�μsððz1 � 1Þpðs; x; y1Þ þ ðz2 � 1Þpðs; x; y2ÞÞds

 !
:

(30)

As descendants are independent of one another,

EðzNðt;y1Þ
1 zNðt;y2Þ

2 Þ ¼ Q
x2Zd

EðzNxðt;y1Þ
1 zNxðt;y2Þ

2 Þ

¼ exp γ
P
x2Zd

s t

0
e�μsððz1 � 1Þpðs; x; y1Þ þ ðz2 � 1Þpðs; x; y2ÞÞds

 !
¼ exp γ

μ ððz1 � 1Þ þ ðz2 � 1ÞÞð1� e�μtÞ
� �

¼ EzNðt;y1Þ
1 EzNðt;y2Þ

2 ;

(31)

which, when t ! 1, gives

EðzNðt;y1Þ
1 zNðt;y2Þ

2 Þ ! EzNð1;y1Þ
1 EzNð1;y2Þ

2 : (32)

It is straightforward to extend to any finite collection fy1; y2; . . . ; ykg. □

4. The general case μ > β � 0

4.1. Growth of moments

The factorial moments of nðt; x; yÞ
mlðt; x; yÞ :¼ Eðnðt; x; yÞðnðt; x; yÞ � 1Þ . . . ðnðt; x; yÞ � lþ 1ÞÞ

;E nðt;x;yÞ!
ðnðt;x;yÞ�lÞ!

(33)

are obtained by successively differentiating in Eq. (22) and using the fact that
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mlðt; x; yÞ ¼ @lϕzðt; x; yÞ
@zl

����
z¼1

: (34)

For the first moment, as Δ ¼ μ� β> 0;

@m1

@t
¼ Lam1 � Δm1 ; m1ð0; x; yÞ ¼ δxðyÞ ; (35)

where δxðyÞ ¼ δðy� xÞ is the Dirac delta function in 0:

δðzÞ ¼ 1 if z ¼ 0 ;
0 ; otherwise :

�
(36)

The solution to Eq. (35) then is

m1ðt; x; yÞ ¼ e�Δtpðt; x; yÞ ; (37)

where pðt; x; yÞ is defined in Eq. (2) and is the solution of the homogeneous
equation

@p
@t

¼ Lap ; pð0; x; yÞ ¼ δxðyÞ : (38)

It follows from Eq. (5) that m1ðt; x; yÞ � m1ðt; x; xÞ for all y 2 Z
d.

Likewise, the l-th factorial moment with l � 2 satisfies

@ml

@t
¼ Laml � Δml þ β

Xl�1

i¼1

l
i

� �
miml�i ; mlð0; x; yÞ ¼ 0 : (39)

We first introduce Duhamel’s principle (Vasy, 2015):

Lemma 2. If f ðt; xÞ, t � 0, x 2 Z
d, is the fundamental solution of the homo-

geneous equation:

@f
@t

ðt; xÞ ¼ Lf ðt; xÞ; f ð0; xÞ ¼ δðxÞ; (40)

then the solution to the nonhomogeneous equation

@F
@t

ðt; xÞ ¼ Lf ðt; xÞ þ gðt; xÞ; Fð0; xÞ ¼ 0; (41)

is

Fðt; xÞ ¼ s t

0

X
v2Zd

f ðt � s; x� vÞgðs; vÞ ds: (42)

As in Molchanov and Whitmeyer (2017), we have:

MATHEMATICAL POPULATION STUDIES 9



Theorem 3. There exists a finite positive constant c such that

mlðt; x; yÞ � cl l!e�Δt pðt; x; yÞ (43)

for all real t � 0, integer l � 1, and x, y 2 Z
d.

By the spatial homogeneity of the dynamic and the first line in Eq. (5), the
distribution of nðt; x; yÞ coincides with that of either nðt; 0; y� xÞ, nðt; 0; x� yÞ,
nðt; y� x; 0Þ, or nðt; x� y; 0Þ, which are the same by the first property in Eq.
(5). It is thus sufficient to study the behavior of nðt; x; 0Þ, that is, when y ¼ 0.

Proof. Because the case l ¼ 1 results from Eq. (37), we start with l ¼ 2.
Differentiating Eq. (22) yields

@m2

@t
¼ Lam2 � Δm2 þ 2βm2

1 ; m2ð0; x; yÞ ¼ 0; (44)

□

whose solution we obtain using Duhamel’s principle recalled in Lemma 2.
We get

m2ðt; x; 0Þ ¼ 2βs t

0

P
v2Zd

pðt � s; x� v; 0Þe�Δðt�sÞm2
1ðs; v; 0Þds

¼ 2βs t

0

P
v2Zd

pðt � s; x� v; 0Þe�Δðt�sÞ e�2Δs p2ðs; v; 0Þds :
(45)

From pðs; v; 0Þ � pðs; 0; 0Þ, Eq. (5), and the Chapman-Kolmogorov relation

X
v2Zd

pðt � s; x� v; 0Þpðs; v; 0Þ ¼
X
v2Zd

pðt � s; x; vÞpðs; v; 0Þ

¼ pðt; x; 0Þ ; (46)

we get

m2ðt; x; 0Þ � 2βpðt; x; 0Þe�Δts t

0
e�Δspðs; 0; 0Þds : (47)

Denoting GΔðx; yÞ :¼ s 1

0
e�Δspðs; x; yÞds the Green function corresponding

to the operator La, we deduce that

m2ðt; x; 0Þ � 2βGΔð0; 0Þe�Δt pðt; x; 0Þ : (48)

From now on, we proceed by induction and show that, for all l � 1,
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mlðt; x; 0Þ � Bl�1Dl e
�Δtpðt; x; 0Þ ; (49)

where B ¼ maxf1; βGΔð0; 0Þg is a finite constant, and the sequence Dl is
recurrently defined from

D1 ¼ 1 ; Dl ¼
Xl�1

i¼1

l
i

� �
DiDl�i ; " l � 2 : (50)

Assume that Eq. (49) holds for all l0 < l. Then, from Eq. (50), we get

Pl�1

i¼1

l
i

� �
miðs; v; 0Þml�iðs; v; 0Þ � Bl�2 e�2Δs p2ðs; v; 0ÞPl�1

i¼1

l
i

� �
DiDl�i

¼ Bl�2Dl e�2Δs p2ðs; v; 0Þ
(51)

and thus, as for Eq. (46),

P
v2Zd

pðt � s; x� v; 0Þ Pl�1

i¼1

l
i

� �
miðs; v; 0Þml�iðs; v; 0Þ

� Bl�2Dl e�2Δs P
v2Zd

pðt � s; x� v; 0Þp2ðs; v; 0Þ

� Bl�2Dl e�2Δs pðs; 0; 0Þpðt; x; 0Þ :

(52)

Therefore, applying Duhamel’s principle to Eq. (39), we deduce

mlðt; x; 0Þ � βs t

0
e�Δðt�sÞBl�2Dl e�2Δs pðs; 0; 0Þpðt; x; 0Þds

� βe�Δt Bl�2Dl pðt; x; 0ÞGΔð0; 0Þ ;
(53)

so that Eq. (49) holds for all l � 1, by induction.
We finally estimate the sequence ðDlÞl�1. Because, in terms of dl :¼ Dl=l!,

the sum in Eq. (50) is a convolution, the generating function DðzÞ :¼P1
l¼1 dlz

l satisfies the quadratic equation

DðzÞ ¼ z þ D2ðzÞ; (54)

which is similar to the generating function for Catalan numbers (Flajolet and
Sedgewick, 2009). Only the solution of Eq. (54):

DðzÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

2
(55)

satisfies the condition Dð0Þ ¼ 0. The growth of a coefficient is defined by the
radius of convergence which is equal to the distance from origin to the

closest singularity (Flajolet and Sedgewick, 2009): here R ¼ 1
4 : Then dl �

1
R þ �

 �l ¼ ð4þ �Þl for all �> 0 and thus Dl � 5l l!. This, together with
Eq. (49), implies Theorem 3 for c ¼ 5B. □
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4.2. Existence of a steady state

We extend the convergence property of Lemma 1 to the general subcritical
case μ > β � 0. Our main result is:

Theorem 4. There exists a unique particle field ðNð1; yÞÞy2Zd such that, as
t ! 1, the distribution of Nðt; yÞ converges in distribution to that of Nð1; yÞ
for all y 2 Z

d.

We prove the convergence of the moments in terms of cumulants and
then use a priori bounds introduced in Theorem 3 to establish the unique-
ness of the limit distribution.

Y is an integer-valued random variable of generating function ϕY such that
ϕYðzÞ ¼ EzY . The l-th factorial moment of Y is defined as the l-th derivative of
ϕYðzÞ at z ¼ 1; the l-th cumulant χlðYÞ is defined as the l-th derivative of
lnϕYðzÞ. There is a one-to-one correspondence between moments and cumu-
lants. Cumulants possess the additivity property: if Y1 and Y2 are independent
random variables, then χlðY1 þ Y2Þ ¼ χlðY1Þ þ χlðY2Þ for all l � 1.

By Eq. (17), for all t � 0 and x, y 2 Z
d, this additive property yields

χlðNðt; yÞÞ ¼ χlð
X
x2Zd

Nxðt; yÞÞ ¼
X
x2Zd

χlðNxðt; yÞÞ: (56)

Lemma 5. For all t � 0 and x, y 2 Z
d,

χlðNxðt; yÞÞ ¼ γs t

0
mlðs; x; yÞds : (57)

Consequently, χlðNðt; yÞÞ ¼Px2Zd χlðNxðt; yÞÞ increases with t.

Proof. As in Eq. (25), we have

EzNxðt;yÞ ¼
X1
m¼0

e�γt ðγtÞm
m!

1
t
s t

0
Eznðt�s;x;yÞds

 !m

¼ exp γs t

0
ðEznðs;x;yÞ � 1Þds

 !
(58)

so that

ln EzNxðt;yÞ ¼ γs t

0
ðEznðs;x;yÞ � 1Þds ¼

X
l�1

ðz � 1Þl
l!

γs t

0
mlðs; x; yÞds : (59)

12 E. CHERNOUSOVA ET AL.



By definition of cumulants,

ln EzNxðt;yÞ ¼
X
l�1

ðz � 1Þl
l!

χlðNxðt; yÞÞ ; (60)

from which the first claim of Lemma 5 follows. □

By its definition, mlðs; x; yÞ � 0 for all s � 0 and x, y 2 Z
d, the integral in

Eq. (57) implies that both the individual cumulants χlðNxðt; yÞÞ and their sum
χlðNðt; yÞÞ are increasing functions of time. □

Combining Lemma 5 with Theorem 3, we obtain

Corollary 6. For all integer l � 1, real t � 0, and y 2 Z
d,

χlðNðt; yÞÞ � cll!γs t

0
e�Δs

X
x2Zd

pðs; x; yÞds � cll!
γ

Δ
: (61)

It follows from Lemma 5 and Corollary 6 that, for each y 2 Z
d, the limit of

χlðNðt; yÞÞ exists and satisfies

χlðNð1; yÞÞ :¼ lim
t!1 χlðNðt; yÞÞ � cll!

γ

Δ
; (62)

so that the function

ln EzNð1;yÞ : ¼
X
l�1

ðz � 1Þl
l!

χlðNð1; yÞÞ (63)

is analytic in a complex neighborhood of z ¼ 1. By Feller (1971, Sect. VII.3),
it corresponds to a unique probability distribution and thus identifies the
limit random variable Nð1; yÞ.

This completes the proof of Theorem 4.

A similar argument holds for all joint moments and cumulants. Indeed, fix
t � 0 and lattice nodes x, y1, y2, and consider the joint generating function

ϕz1;z2ðt; x; y1; y2Þ :¼ Eðznðt;x;y1Þ1 znðt;x;y2Þ2 Þ (64)

and the single sub-population joint moment of orders l1 > 0 and l2 > 0. Based
on Eq. (33) and (34),

ml1;l2ðt; x; y1; y2Þ :¼ E nðt;x;y1Þ!
ðnðt;x;y1Þ�l1Þ!

nðt;x;y2Þ!
ðnðt;x;y2Þ�l2Þ!

� �
; @ l1

ð@z1Þl1
@l2

ð@z2Þl2 ϕz1;z2ðt; x; y1; y2Þ
���
z1¼z2¼1

:
(65)
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Then for the corresponding cumulant

χl1;l2ðNxðt; y1Þ;Nxðt; y2ÞÞ :¼ @ l1

ð@z1Þl1
@ l2

ð@z2Þl2
ln EðzNxðt;y1Þ

1 zNxðt;y2Þ
2 Þ

�����
z1¼z2¼1

; (66)

the analogue of Lemma 5 holds:

χl1;l2ðNxðt; y1Þ;Nxðt; y2ÞÞ ¼ γs t

0
ml1;l2ðs; x; y1; y2Þds : (67)

Because ml1;l2ðs; x; y1; y2Þ � 0, the cumulant χl1;l2ðNxðt; y1Þ;Nxðt; y2ÞÞ
increases with t and, as t ! 1, it converges to a finite limit.

Extending this argument to all joint moments and cumulants, we deduce
the convergence of all finite-dimensional distributions of the particle field
Nðt; � Þ to that of Nð1; � Þ as t ! 1. As in Chernousova et al. (2019), it
follows that the distribution of Nð1; � Þ is the unique steady state of the
model.

5. Nonhomogeneous dynamics

We extend the argument of section 4 to the case where the space is not
homogeneous. The birth rate βðxÞ and the mortality rate μðxÞ are bounded

functions of x 2 Z
d, so that the difference ΔðxÞ :¼ μðxÞ � βðxÞ satisfies

0<Δ1 � ΔðxÞ � Δ2 <1 ; "x 2 Z
d ; ð68Þ

for suitable constants Δ1 and Δ2. Eq. (35) becomes

@�f y
@t

ðt; xÞ ¼ La
�fyðt; xÞ � ΔðxÞ�fyðt; xÞ ; �fyð0; xÞ ¼ δðy� xÞ : (69)

Following Chernousova et al. (2019), we construct the random processes N1

and N2 on the same probability space as the random process N, where the
dynamic of Ni corresponds to Δi, i ¼ 1; 2, such that the particle field N2 is
a subset of the particle field N and the particle field N is a subset of the
particle field N1. Using the coupling argument or the monotonicity proper-
ties of the solution to the parabolic equation, for each x, we have that
m1ðt; x; yÞ;�fyðt; xÞ is smaller than the solution to Eq. (35) with Δ ¼ Δ1:

m1ðt; x; yÞ ; �fyðt; xÞ � e�Δ1tpðt; x; yÞ: (70)

The distribution of Nðt; yÞ is no longer shift-invariant and the factorial
moments of the sub-populations nðt; x; yÞ now depend on the pair ðx; yÞ,
not just on the difference y� x.

In the nonhomogeneous case, the second factorial moment m2ðt; x; yÞ
satisfies the analogue of Eq. (44):
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@m2

@t
¼ Lam2 � ΔðxÞm2 þ 2βm2

1 ; m2ð0; x; yÞ ¼ 0 ; (71)

so that, thanks to the nonhomogeneous version of Duhamel’s principle
recalled in Lemma 2, Eq. (45) becomes

m2ðt; x; yÞ ¼ 2βs t

0

P
v2Zd

�f vðt � s; xÞm2
1ðs; v; yÞds

� 2βe�Δ1ts t

0

P
v2Zd

pðt � s; x; vÞe�Δ1s p2ðs; v; yÞds

� 2βe�Δ1t pðt; x; yÞs t

0
e�Δ1s pðs; v; vÞds

� 2βGΔ1ð0; 0Þe�Δ1t pðt; x; yÞ :

(72)

We extend Theorem 3 with the estimate

mlðt; x; yÞ � cl l!e�Δ1t pðt; x; yÞ ; (73)

and deduce the analogue of Theorem 4 for the nonhomogeneous case.

6. Monte Carlo simulation

We present a Monte Carlo simulation. We consider a branching random
walk on Z

1. This simple setting is done to focus on the limit distribution. We
set the birth rate to β ¼ 0, the death rate to μ ¼ 0:2, and the external
immigration rate to γ ¼ 0:5. For the random walk, κ ¼ 1; að1Þ ¼ að�1Þ ¼
0:5; and for z 2 Z

1nf�1; 1g, aðzÞ ¼ 0: At initial time t ¼ 0, there is a single
population located at the origin x ¼ 0. We simulate our model in Z1 based
on Eq. (17) and (18) and repeat the simulations 10,000 times so as to obtain
an approximation of the population at t ! 1:

Figure 1 shows the limit distribution of the population at x ¼ 0 after large
time t ( t

dt is � 1000). The left panel in Figure 1 shows the histogram of the
population size at location x ¼ 0; the right panel in Figure 1 allows compar-
ing the fitted with the theoretical distributions. As indicated in Lemma 1, the
limit distribution is a Poisson distribution with parameter g

m , which is 2.5 in
our setting. The simulation is consistent with the result of Eq. (28) in the
solvable case μ > β ¼ 0. Figures 2 and 3 show the limit distributions at x ¼ 4
and x ¼ �5. There is no noteworthy difference between Figures 2 and 3,
because the limit distribution depends only on the ratio of the immigration
rate γ to the death rate μ, and does not depend on the location of the
population x in the case μ > β ¼ 0.
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7. Conclusion

We have introduced immigration into a population model in Z
d, d � 1,

where individuals evolve independently as branching random walks with
simple binary splitting. In the stability region where the mortality rate μ is
higher than the birth splitting rate β, for large time, the distribution of the
population converges to a steady state (also called stochastic equilibrium).

Figure 1. β ¼ 0, μ ¼ 0:2, γ ¼ 0:5, κ ¼ 1. The left panel is the histogram for Nð1; 0Þ; the right
panel shows that the distribution fitted for the histogram is close to the theoretical distribution
for Nð1; 0Þ.

Figure 2. β ¼ 0, μ ¼ 0:2, γ ¼ 0:5, κ ¼ 1. The left panel is the histogram for Nð1; 4Þ; the right
panel shows that the distribution fitted for the histogram is close to the theoretical distribution
for Nð1; 4Þ.
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In the solvable case μ > β ¼ 0, we have identified the limit distribution as

an independent Poisson point field on Z
d (Eq. (28) and (32)).
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