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ABSTRACT KEYWORDS

In a lattice population model where individuals evolve as sub-  Branching random walk;
... . R . . correlation functions;
critical branching random walks subject to external immigra-

R R . immigration; Lyapunov
tion, the cumulants are estimated and the existence of the stabil?ty; spatia)ll ;fopulation

steady state is proved. The resulting dynamics are Lyapunov dynamics; steady state
stable in that their qualitative behavior does not change under

suitable perturbations of the main parameters of the model.

An explicit formula of the limit distribution is derived in the

solvable case of no birth. Monte Carlo simulation shows the

limit distribution in the solvable case.

1. Introduction

The Galton-Watson process is a simple branching process (Watson and
Galton, 1875), devoid of spatial dynamic. Models where particles can move
randomly are called branching random walks. Branching random walks can
be used, for example, in the modeling of viral epidemics (Ermakova et al.,
2019). To determine the regime, toward which an epidemic is tending, one
computes a limit distribution, which corresponds to a steady state, associated
with the model. The question, which we address here, of the existence of such
a limit distribution, is therefore fundamental.

Molchanov and Whitmeyer (2017) proved the existence of a steady state
for the critical branching process with binary splitting and transient under-
lying random walk on the lattice 7¢. Chernousova and Molchanov (2018)
extended Molchanov and Whitmeyer (2017) by considering an arbitrary total
number of offspring which spread randomly in space around the parental
particle. These authors proved the existence of a limit distribution of the
population under the following additional conditions: 1) the tail of the
distribution of the total number of offspring decreases at least
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geometrically; 2) the sum of the generator associated with migration of each
particle and the generator associated with the spreading of offspring is
a generator of a transient random walk. Critical branching processes are
unstable with respect to small perturbations of the birth and death rates. Han
et al. (2017b) and Han et al. (2017a) introduced immigration, which can
stabilize the population size when the birth rate is less than the mortality rate
(subcritical case). These authors proved the existence of limits for the first
two moments, but that does not prove the existence of a steady state. We
extend their analysis of a subcritical random walk with immigration in
proving the existence of a steady state and its stability in the Lyapunov
sense. Our proof is based on Molchanov and Whitmeyer (2017), who esti-
mated limits for all moments of the total population and used Carleman
conditions (Feller, 1971, Sect. VII.3) to establish a unique limit distribution.
For simplicity, we consider binary splitting as in Han et al. (2017b). Based on
Chernousova and Molchanov (2018), we prove a unique limit distribution in
the model of Han et al. (2017a) with arbitrary total number of offspring
under the additional condition that the tail of the distribution of the total
number of offspring decreases at least geometrically.

Instead of Z% Chernousova et al. (2019) explored the continuous-time
and continuous-space subcritical branching process subject to immigration

in R? and proved the existence of a steady state and its stability. The
methods used in the proof are different in a lattice model and in
a continuous-space model.

Yarovaya (2013) analyzed the limit behavior of all moments for the total
population in a branching random walk with a finite total number of
branching sources of different types. Khristolyubov and Yarovaya (2019)
did the same for supercritical branching random walks.

Individuals move on the lattice Z? as independent random walks (Han
et al., 2017b), subject to splitting or duplication at rate >0 and mortality at

rate 4> 0. The critical case corresponds to = y. The random walk X on Z*
is governed by the generator

Lof(x) =1 > (flx+2) —f(x))a(2),

zeZ4\{0}

a@>0, ¥ az=1, ¥ za@=0, U

zeZ\{0} zeZ\{0}

where a( - ) is a suitable zero-mean probability kernel. The population size at
site y € Z“ at time ¢ > 0 is N(t, ).

For f = u, if X is a transient Markov process, then, as t — oo, the particle
field N(t,y) converges in law to a limit field N*(y), which is a steady state
(Han et al., 2017b). If X is recurrent, no steady state exists and, as t — oo, the
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field N(t,y) clusterizes: as time goes on, particles form larger and larger
clusters farther and farther away from each other.

Although steady states may exist in the transient case, such critical pro-
cesses are unstable under arbitrarily small random perturbations affecting its
parameters. Namely, a statistical equilibrium disappears once the previously
constant  rates are replaced by f(x,w)=p,+ &(x,w) and
p(x, w) = yy + en(x, w), where B =y, €>0 is a small parameter, and the
random pairs ({(x,w),#(x,w)) are independent of one another for different

locations x and have a symmetric distribution (say, on [—1,1]*). This phe-
nomenon is related to individual localization theorems for random
Schrodinger operators (Molchanov, 1994; Molchanov and Whitmeyer, 2017).

We address a class of lattice population models with immigration, for
which the steady state exists and is stable in the Lyapunov sense, which
means for sufficiently small (in L,,-norm) perturbations affecting the para-
meters. Unlike the continuous-time continuous-space model in Chernousova
et al. (2019), here in the lattice case, several individuals can successively
occupy the same location, which leads to more complex combinations.

After presenting the model in section 2, we solve a case without splitting
mechanism ( = 0) in section 3. For the general case f > 0 in section 4, we
rely on the connection between moments and cumulants. Together with
Carleman type bounds, this connection provides the uniqueness of the
limit state. In section 5, we extend these results to space-dependent bounded
rates (x) and p(x) satisfying 0< A, < u(x) — B(x) < A, < oo for all x € Z4,
where A; and A, are constants. Thus the steady state is stable in the strongest
Lyapunov sense, which means that the stochastic equilibrium survives under
sufficiently small perturbations of the rates.

2. Model

We consider the population as a particle field (N(¢,y)) 10z~ Individual
particles independent of one another die at rate y or split into two at rate f3,
and, between these events, move around as random walks with generator £,
in Eq. (1) with a suitable kernel a( - ). The system is subcritical (¢ >f3) and is
subject to external immigration at rate y>0.

The random walk X describes independent movements of individual
particles between death and splitting events. Its generator is £, in Eq. (1),
where the kernel a( - ) is symmetric: a(z) = a(—z) for all z € Z*\{0}. X is
supported on the whole lattice, which is equivalent to positivity of the
transition probability:

p(t.x,y) = P(X(t) = y)>0, )
for all x, y € 7% and t > 0.
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In terms of Fourier expansion,

La(k) = () cos(kz)a(z) — 1), (3)

27’
where k € [—7, 7% =: T¢. The transition probability is the inverse Fourier
transform
1 (k) —ik(y—
Pty = o S0 4)

It satisfies

p(tvxvy) :p(tvyvx) :p(t,y—x,O) =p t,x—y,O),

W%ﬂSW%ﬂZW&mz@dMMWK (5)
> p(txy) = > p(ty,x) =1.
xeZ* xcZ4

The inequality p(t,x,y) < p(t,x,x) results from the fact that L,(k) in Eq. (3)
is real and |, (k)e %0 = £, (k).

In the time interval [t,t + dt), each particle can die independently of one
another with probability pdt or split into two particles with probability fdt at
the same site. The subcriticality assumption

A=u—p>0 (6)

means that the initial configuration vanishes at a random finite future time: for
each y € Z*, there is a finite random time 7, such that N(t,y) = 0 for t > 7,,.

Indeed, under Eq. (6) and a constant (not random) initial population,
say N(0,y)=1,

my(t,y) = E(N(t, 7)) (7)

solves the forward Kolmogorov equation

%:ﬁaml_Amla ml(oay)zla (8)
ot

so that
my(t,y) =e ™ — 0 as t — oo. 9)

Consider {#},, an increasing sequence tending to infinity fast enough such
that

Z e A< oo (10)

k=1
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and {Ax(I')},, the sequence of events A(I') = {me}xN(tk,y) > 1}. From
ye

Chebyshev-Markov inequality (Feller, 1968, chap. IX) for any ¢>0
and y € Z°,

P(N(t,y) > 1) <my(t,y). (11)
Eq. (9) and (11) lead to
P(Ax(I)) < |T|e 2", (12)
and, due to Eq. (10),
D P(Ak(I)) < oo (13)
k=1

Thus from the Borel-Cantelli lemma (Feller, 1968, chap. VIIIL.3), events Ay (I')
occur with probability one only in finite total number: there is a finite
random time 7r such that N(t,y) =0 for all y€I and > 1.
Equivalently, the particle field vanishes at a random finite future time.

For each x € Z‘, we represent external immigration as a Poissonian
point field {7;(x)},., on {x} x [0, 00) with parameter y. Given x € 74, immi-
grant particles arrive at times {7;(x) },. ;, where 0 = 7o(x) < 71 (x) < 12 (x) < ...
and the differences 7,4 (x) — 7;(x) are independent random variables following
an Exp(y) distribution. We write é~Exp(y) if P(§>a) = e " for alla > 0. For
different x € Z° the corresponding Poissonian point fields are assumed inde-
pendent of one another.

Individual sub-populations, each one being generated by an individual
existing at time ¢t = 0, decay exponentially as t — co. We thus assume that

N(0,y)=0 for all y € Z%. In the model with immigration, the first moment
m (t,y) = E(N(t,y)) solves the forward Kolmogorov equation

0
%zﬁaml—Aml—{—y, m(0,y) =0, (14)
and thus satisfies
t
ml(t,y)Eyj; e Mds — % ast — 00. (15)

For fixed x € Z% and 7,(x)<t, n(t—1,(x),x,y) is the total number of

individuals at y € Z? at time ¢ descending from the common ancestor who
immigrated to x at time 7;(x). Then, with N,(t, y) denoting the total number
of individuals at y at time f, whose ancestors immigrated to x at s € [0, ¢):

Ne(t,y)i= > n(t —7i(x),x,y). (16)

7i(x)<t
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The solution N(t,y) is the independent sum
N(ty) = 22 Nult,y)

x€Z?

By = (€ €9 x ),

xeZ! 5§X)+.“+£I<(X>§t

(17)

where §i(x)~EXp(y) are independent of one another for i>0 and x € Z°.

For each x € Z the sub-population size vy(t) = Zyezd n(t,x,y) at time
t > 0 is a Galton-Watson process (Sevast’yanov, 1971). Its generating func-
tion v, (t) := Ez"(") satisfies

0
M- Brayte= - DBy -0, w0 =z (9

with @ = /pu< 1. Separation of variables gives

V/z(t>_1 _ z—1 —At
ay,(t)—1 az—1 . (19)
so that
~ (a— e Mz — (1 —e )
y=t) = a(l —e2)z — (1 —ae )’ (20

which is the generating function of a generalized geometric distribution.
Hence

Ev(t) = %1//2(t)|z_1 =e 0 as t — 00. (21)

¢, such that ¢_(t,x,y) := Ez"**7) is the generating function of the sub-
population n(t, x, y). It satisfies the backward Kolmogorov equation

aaqs; = Lo§, + P> — (B+u)d, + u, ¢,(0,x,y) = { i Ji;;/’

(22)
which is the lattice analogue of the classical Fischer-Kolmodorov-
Petrovskii-Piskunov equation (Fisher, 1937; Kolmogorov et al., 1937). We
solve Eq. (22) in the particular case y>pf = 0.

3. A solvable case: u>f3=0

First consider the special case f = 0, 4>0, and y>0 (no birth).

Without random movements, for each fixed point y € 7, the process N (t,y)
behaves as a queueing system with an infinite number of servers, whose
incoming calls arrive according to a Poisson process with parameter y. Each
call is served independently of others during exponentially distributed times of
mean p~'. This queueing system is ergodic and the Poisson process of
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parameter !% is at its steady state (Feller, 1968; Karlin and Taylor, 1975). Lemma

1 states that this steady state survives under any symmetric random walk.

Lemma 1. If =0, as t — oo, N(t,y) converges in distribution to that of
N(o0,y), which is a Poisson random variable with parameter y/u. The limit
random variables (N(oo,y))yezd are independent of one another.

Proof. Fix x, y € Z% and 0 < s< t. The random variable n(f —s,x,y) at y €

7 and at time ¢ has the same distribution as the total number of offspring
whose ancestor immigrated to x at time s< t. As there are no births (8 = 0),
the variable n(t — s, x, y) is Bernoulli distributed with

P(n(t —s,x,y) = 1) = e *p(t —s,x,y), (23)

because the event is possible only if the ancestor particle survives during the
time interval [s, t] and is located at y at time ¢. The generating function is

¢.(t —s,x,y) =B =14 (2= 1)e " p(t—s,xy).  (24)

The total number of ancestors who immigrated to x at ¢ is Poisson distrib-
uted with parameter yt. If their total number is fixed, then the descendants
are independent of one another and distributed uniformly over [0, ¢)
(Kingman and Charles, 1993):

EZNx(ta)’) Z e yt < f ¢) — S5, X y >

(25)
= exp (y(z— 1)‘/; e H=S)p(t — 5, x,y) ds) :

Consequently, the generating function of N(t,y) = > _;a Ni(t, ) satisfies

Ni(t
EZN(Y Ezzx: i’ = exp y(z—lfe‘”SZp —s,x,y)ds |. (26)

xeZ?
By the last property in Eq. (5),

EANE) = exp ()’(Z _ 1)‘/0 o H(=s) ds) = exp ()’(Z —1) (1 . e_”t)>, (27)

¢

and, as t — o0, the generating function of N(¢, y) converges to exp (% (z— 1)) ,
which is a Poisson distribution with parameter y/u. Namely,

k
Y
P(N(co,y) = k) = %e% forall k =0,1,2,. ... (28)
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We show now that for distinct y € Z¢ the limit random variables N(oo, y)
are independent of one another. For notation simplicity, we consider only the

case of two variables; the general case is similar.
Fix y1#y,. As in Eq. (24),

E(Z T 20y 1 (2 — 1) e M) p(t — s, x, 1)

29
+(z — l)e_”(t_s)p(t — 5%, ¥2), (29)

so that, as in Eq. (25),

E(Zl (ty1) t)/z Z e —yt ()" ( fE n(t— sxy1 (t sxyz))d

= exp (yfo e (21— Dpls,x. ) + (22 - 1>p<s,x,yz>>ds>.

(30)

As descendants are independent of one another,

E(Zl N(ty1) (ty2) ) = H E(zl m (7}’2))

x€Z?

(yz [ e = vptesm + <z2—1>p<s,x,y2>>ds>
xeZ*
(L -1+ (@ -1 -ew)

— Ezi\](t"yl) Ezg(t’h)

= exp

)

(31)
which, when t — oo, gives
E(Zl (U’l) zZ N(t 7)’2)) N Ezi\](oov)’l) EZQI(OO»VZ) . (32)

It is straightforward to extend to any finite collection {y1,ys,..., ¥k}

4. The general case u>£>0
4.1. Growth of moments

The factorial moments of n(t,x, y)

mi(t,x,y) = E(n(t,x,y) (n(t,x,y) —1)...(n(t,x,y) =1+ 1))
=F _"txp)! (33)

(n(t7x7y) _l)!

are obtained by successively differentiating in Eq. (22) and using the fact that
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6l¢z(t7 x7y)
my(t,x,y) = ol . (34)
For the first moment, as A = y — >0,
T Lami— i, m(0,x,y) = 8.0), (5)
where 8,(y) = 8(y — x) is the Dirac delta function in 0:
1 ifz=0,
8(z) = {0, otherwise. (36)

The solution to Eq. (35) then is

ml(t’xvy) = eiAtp<t7 X,y), (37)

where p(t,x,y) is defined in Eq. (2) and is the solution of the homogeneous
equation

P
a—ft’ — Lop, p(0,%,y) = 6.(y). (38)

It follows from Eq. (5) that m,(t,x,y) < m(t,x,x) for all y € Z*.
Likewise, the [-th factorial moment with [ > 2 satisfies

om 1
8—t‘l = Lam; — Amy +/5;< ; ) mimy_;, my(0,x,y) = 0. (39)
We first introduce Duhamel’s principle (Vasy, 2015):

Lemma 2. If f(t,x), t > 0, x € Z%, is the fundamental solution of the homo-
geneous equation:

of

ot (t’ x) = /Jf(t,x), f(O,x) = S(X), (40)

then the solution to the nonhomogeneous equation

Tt = () +gl60), FO,9) =0, )

F(t,x)zfo Zf(t—s,x—v)g(s,v)ds. (42)

vez?

As in Molchanov and Whitmeyer (2017), we have:
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Theorem 3. There exists a finite positive constant ¢ such that

my(t,x,y) < e p(t, x,y) (43)

for all real t > 0, integer | > 1, and x, y € Z°.

By the spatial homogeneity of the dynamic and the first line in Eq. (5), the
distribution of n(t, x, y) coincides with that of either n(t,0,y — x), n(t,0,x — y),
n(t,y —x,0), or n(t,x — y,0), which are the same by the first property in Eq.
(5). It is thus sufficient to study the behavior of n(t, x, 0), that is, when y = 0.

Proof. Because the case [ =1 results from Eq. (37), we start with [ = 2.
Differentiating Eq. (22) yields

% = Lomy — Amy + 2pm? my(0,x,y) =0, (44)

whose solution we obtain using Duhamel’s principle recalled in Lemma 2.
We get

my(t, x,0) 2/3f S op(t—s,x—v,0)e 2 m(s,v,0)ds
VEZ (45)

—Zﬁf ST op(t—s,x—,0)e 205 e 2852 (s 0) ds.

veZ?

From p(s,v,0) < p(s,0,0), Eq. (5), and the Chapman-Kolmogorov relation

ZP(f—S,x— p(s,v,0) Zp —5,%,v)p(s,v,0)

veZ? veZ!
we get
t
my(t,x,0) < 2Bp(t,x,0) e*AtL/; e %p(s,0,0)ds. (47)

Denoting Ga(x,y) := j; e p(s, x,y)ds the Green function corresponding
to the operator £,, we deduce that

m;(t,x,0) < 2BGa(0,0)e * p(t, x,0). (48)

From now on, we proceed by induction and show that, for all [ > 1,
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my(t,x,0) < B7'Dye *p(t, x,0), (49)

where B = max{1, GA(0,0)} is a finite constant, and the sequence Dy is
recurrently defined from

-1
D=1, D,:Z(i)DiDl_i, Vi>2. (50)

i=1
Assume that Eq. (49) holds for all I'<I. Then, from Eq. (50), we get

I-1 l

-1
> Z mi(s,v,0)m_i(s,v,0) < B2 2p2(s,v,0) Y D;Dy_;
i=1\ ! i=1 (51)
_ Bl 2D1€ 2As ( )
and thus, as for Eq. (46),

-1
> p(t—s,x—v,0) f )mi(s, v, 0)m;_;(s,v,0)
vez? 1
B72D1e ™ 3 p(t —s,x — v,0)p*(s, v,0) (52)
veZ?

< B2Dje *p(s,0,0)p(t, x,0).

IN

Therefore, applying Duhamel’s principle to Eq. (39), we deduce

i(t,x,0) <p f AZIB2 Dre 2 p(s,0,0) p(t,x,0)ds  (53)
< e ™ B2 Dip(t, x,0) Ga(0,0),

so that Eq. (49) holds for all / > 1, by induction.

We finally estimate the sequence (D;).,. Because, in terms of d; := D;/I!,
the sum in Eq. (50) is a convolution, the generating function D(z) :=
S, diz satisfies the quadratic equation

D(z) = z + D*(z), (54)

which is similar to the generating function for Catalan numbers (Flajolet and
Sedgewick, 2009). Only the solution of Eq. (54):

D(z) = 1-vi—-4z "21_4Z (55)

satisfies the condition D(0) = 0. The growth of a coefficient is defined by the
radius of convergence which is equal to the distance from origin to the
closest singularity (Flajolet and Sedgewick, 2009): here R =1. Then d; <

(% + e)l = (44 ¢) for all €>0 and thus D; < 5'1l. This, together with
Eq. (49), implies Theorem 3 for ¢ = 5B. O
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4.2. Existence of a steady state

We extend the convergence property of Lemma 1 to the general subcritical
case y>f3 > 0. Our main result is:

Theorem 4. There exists a unique particle field (N(cc,y)) ;s such that, as
t — oo, the distribution of N(t,y) converges in distribution to that of N(co, y)
for all y € 7,

We prove the convergence of the moments in terms of cumulants and
then use a priori bounds introduced in Theorem 3 to establish the unique-
ness of the limit distribution.

Y is an integer-valued random variable of generating function ¢, such that
¢y (z) = Ez". The I-th factorial moment of Y is defined as the I-th derivative of
¢y(z) at z=1; the I-th cumulant y,(Y) is defined as the I-th derivative of
In ¢, (z). There is a one-to-one correspondence between moments and cumu-
lants. Cumulants possess the additivity property: if Y; and Y, are independent
random variables, then y,(Y, + V) = X[(Yl) + x,(Y3) forall I > 1.

By Eq. (17), for all t > 0 and x, y € Z% this additive property yields

XN () =D Nelt,9)) = Y xi(Nelt, 7)) (56)

xeZ? xeZ?

Lemma 5. For all t > 0 and x, y € 7,

t
yfo my(s,x,y)ds. (57)
Consequently, x,(N(t,y)) = > .cze X,(Nx(t,y)) increases with t.

Proof. As in Eq. (25), we have

EZNX(t’y) — —)/f ( fEZ (t—sx,) ds)
0

t
= exp (ij) (Ez"s*7) — l)ds) (58)

so that

t I pt
In EzM(t) = y/; (Ez"%) — 1)ds = Z (z i Y yj; my(s,x,y)ds. (59)

>1
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By definition of cumulants,

(z—1)
In B2 =3~ T X(Ne(t:7)), (60)
>1
from which the first claim of Lemma 5 follows. O

By its definition, (s, x,y) > 0 for all s > 0 and x, y € Z*, the integral in
Eq. (57) implies that both the individual cumulants y,(N(t,y)) and their sum
X;(N(t,y)) are increasing functions of time. O

Combining Lemma 5 with Theorem 3, we obtain

Corollary 6. For all integer | > 1, real t > 0, and y € Z°,

t
! —As Y
x(N(t,y) < cl!y/; e E p(s,x,y)ds < CZ!Z . (61)

x€Z?

It follows from Lemma 5 and Corollary 6 that, for each y € 7% the limit of
x,(N(t,y)) exists and satisfies

1(N(00,)) = lim x,(N(t,)) < 'l %, (62)
so that the function
z—1 l
In EZNC) ;= Z( I ) Xi(N(00,y)) (63)

I>1

is analytic in a complex neighborhood of z = 1. By Feller (1971, Sect. VIL3),
it corresponds to a unique probability distribution and thus identifies the
limit random variable N(oco, y).

This completes the proof of Theorem 4.

A similar argument holds for all joint moments and cumulants. Indeed, fix
t > 0 and lattice nodes x, y1, y,, and consider the joint generating function

Bup s (15,301, 32) 1= B ) (64)
and the single sub-population joint moment of orders /; >0 and , > 0. Based
on Eq. (33) and (34),

n(tx,y)! n(tx,y)!

my (8%, y1,)2) = E((n(t,x,yl)fll)l (n(t,x,yz)flz)!>

—_ o ok
= ) e P (B %091 92)

(65)

z21=2=1



14 (&) E CHERNOUSOVA ET AL.

Then for the corresponding cumulant

oh ot Nlty)_Nelt2)
X1, (Nx(t 1), Nx(t, 32)) == @z—l)ll@lnE(zl 25°7) zl—zz—l’ (66)
the analogue of Lemma 5 holds:
t
Y ) Nt) = [ missonomds. (@)

Because  my, 1, (s,X,91,y2) > 0, the cumulant y; ; (N(t, 1), Nx(t, 2))
increases with t and, as t — oo, it converges to a finite limit.

Extending this argument to all joint moments and cumulants, we deduce
the convergence of all finite-dimensional distributions of the particle field
N(t, - ) to that of N(oco, - ) as t — oco. As in Chernousova et al. (2019), it
follows that the distribution of N(oco, - ) is the unique steady state of the
model.

5. Nonhomogeneous dynamics

We extend the argument of section 4 to the case where the space is not
homogeneous. The birth rate S(x) and the mortality rate y(x) are bounded

functions of x € Z% so that the difference A(x) := u(x) — B(x) satisfies
0<A; <A(x) <A< oo, ‘v’xEZd, (68)

for suitable constants A; and A,. Eq. (35) becomes

o, ] ] ]

N (t,x) = Laf,(t,x) — Ax)f,(t, x), £(0,x) = 8(y — x). (69)
Following Chernousova et al. (2019), we construct the random processes N;
and N, on the same probability space as the random process N, where the
dynamic of N; corresponds to A;, i = 1,2, such that the particle field N, is
a subset of the particle field N and the particle field N is a subset of the
particle field N;. Using the coupling argument or the monotonicity proper-
ties of the solution to the parabolic equation, for each x, we have that

my (t, x, y)=f,(t,x) is smaller than the solution to Eq. (35) with A = A;:

my(t,x,y) = f,(t,x) < e M'p(t,x, ). (70)

The distribution of N(t,y) is no longer shift-invariant and the factorial
moments of the sub-populations n(t,x,y) now depend on the pair (x,y),
not just on the difference y — x.

In the nonhomogeneous case, the second factorial moment m;(¢,x, y)
satisties the analogue of Eq. (44):
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0

% = Lomy — A(x)my + 2pm? my(0,x,y) =0, (71)
so that, thanks to the nonhomogeneous version of Duhamel’s principle
recalled in Lemma 2, Eq. (45) becomes

m2(t7x’y> :Zﬁ/; Z.fv(t_svx)m%(s7vvy)d5

vez!

t
<ot [ T plt—sxvetplsvds ()

vez?
t

< 2e ip(txy) [ e S5 ps.v,v)ds
< 28Ga, (0,0)e " p(t,x,).

We extend Theorem 3 with the estimate
my(t,x,y) < cll!e*Altp(t, x,9), (73)

and deduce the analogue of Theorem 4 for the nonhomogeneous case.

6. Monte Carlo simulation

We present a Monte Carlo simulation. We consider a branching random
walk on Z'. This simple setting is done to focus on the limit distribution. We
set the birth rate to f =0, the death rate to g = 0.2, and the external
immigration rate to y = 0.5. For the random walk, x =1, a(1) =a(-1) =
0.5, and for z € Z'\{—1,1}, a(z) = 0. At initial time ¢ = 0, there is a single
population located at the origin x = 0. We simulate our model in Z! based
on Eq. (17) and (18) and repeat the simulations 10,000 times so as to obtain
an approximation of the population at t — oo.

Figure 1 shows the limit distribution of the population at x = 0 after large
time t (7 is > 1000). The left panel in Figure 1 shows the histogram of the
population size at location x = 0; the right panel in Figure 1 allows compar-
ing the fitted with the theoretical distributions. As indicated in Lemma 1, the
limit distribution is a Poisson distribution with parameter £, which is 2.5 in
our setting. The simulation is consistent with the result of Eq. (28) in the
solvable case y>f8 = 0. Figures 2 and 3 show the limit distributions at x = 4
and x = —5. There is no noteworthy difference between Figures 2 and 3,
because the limit distribution depends only on the ratio of the immigration
rate y to the death rate y, and does not depend on the location of the
population x in the case y>f = 0.
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Frequency Probability
2500 0.3
g Fitted (blue asterisk
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| 02 *
1500 B Theoretical (red circle)
0.15
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1000
0.1
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500 0.05
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0 i = T— 0 b ® 2 2
0 5 10 15 20 0 5 1
Total number of individuals Total number of individuals

Figure 1. =0, y = 0.2, y = 0.5, k = 1. The left panel is the histogram for N(co, 0); the right
panel shows that the distribution fitted for the histogram is close to the theoretical distribution
for N(c0, 0).

Frequency Probability
2500 0.3
] & Fitted (blue asterisk
2000 | i 0.25 / ( )
@
02 °
1500 m \ Theoretical (red circle)
0.15
®
1000
0.1
®
500 0.05
®
0 — 0 ‘e o .
0 5 10 15 20 0 5 1
Total number of individuals Total number of individuals

Figure 2. =0, y = 0.2, y = 0.5, k = 1. The left panel is the histogram for N(co, 4); the right
panel shows that the distribution fitted for the histogram is close to the theoretical distribution
for N(c0, 4).

7. Conclusion

We have introduced immigration into a population model in 74, d > 1,
where individuals evolve independently as branching random walks with
simple binary splitting. In the stability region where the mortality rate u is
higher than the birth splitting rate f3, for large time, the distribution of the
population converges to a steady state (also called stochastic equilibrium).
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Frequency Probability
2500 0.3

® Fitted (blue asterisk
2000 | 4 Gl / ( )

= 0.2 ° \
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1000
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Figure 3. 8 =0, u = 0.2, y = 0.5, k = 1. The left panel is the histogram for N(co, —5); the right
panel shows that the distribution fitted for the histogram is close to the theoretical distribution
for N(co, —5).

In the solvable case y>p = 0, we have identified the limit distribution as
an independent Poisson point field on 7° (Eq. (28) and (32)).
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