)

Check for
updates

A Direct High-Order Curvilinear
Triangular Mesh Generation Method
Using an Advancing Front Technique

Fariba Mohammadi'(®®) | Shusil Dangi?, Suzanne M. Shontz',
and Cristian A. Linte?

L The University of Kansas, Lawrence, KS 66045, USA
{faribam,shontz}@ku.edu
2 Rochester Institute of Technology, Rochester, NY 14623, USA
{sxd7257,calbme}@rit.edu

Abstract. In this paper, we propose a novel method of generating high-
order curvilinear triangular meshes using an advancing front approach.
Our method relies on a direct approach to generate meshes on geome-
tries with curved boundaries. Our advancing front method yields high-
quality triangular elements in each iteration which omits the need for
post-processing steps. We present several numerical examples of second-
order curvilinear triangular meshes of patient-specific anatomical mod-
els generated using our technique on boundary meshes obtained from
biomedical images.

Keywords: High-order mesh generation - Advancing front -
Curvilinear triangular mesh

1 Introduction

The use of high-order methods has attracted the interest of the scientific com-
puting community, thanks to their ability to deliver highly-accurate solutions
of partial differential equations (PDEs) at a low computational cost. However,
while working with curved boundaries, the mesh used with high-order PDE
solvers needs to be a high-order mesh that accurately captures the curvature
of the geometries [19,22]. A high-order mesh is composed of both straight-sided
and curved elements, depending on the curvature of the geometric domain. One
major challenge lies in generating high-order meshes that perfectly capture the
curved boundaries; thus, to date, there are not many methods that can generate
robust high-order meshes [22].

The work of the first author was funded by NSF OAC grant 1808553. The work of the
second and fourth authors was supported by NIH grant NIGMS R35GM128877 and
NSF grant OAC 1808530. The work of the third author was funded in part by NSF
grants OAC 1808553 and CCF 1717894.

© Springer Nature Switzerland AG 2020

V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12138, pp. 72-85, 2020.
https://doi.org/10.1007/978-3-030-50417-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50417-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-50417-5_6

A Direct High-Order Curvilinear Triangular Mesh Generation Method 73

There are two categories of methods for generating a high-order mesh. The
first category consists of direct methods, where a high-order mesh is generated
directly from the curved geometry. To the best of our knowledge, no direct
methods are currently available.

The second category includes a posteriori methods, which are the most com-
monly used approaches for generating high-order meshes. Here additional nodes
are first added to the low-order mesh, then the newly-added boundary nodes are
moved to conform to the curved boundary. Finally, the interior nodes are moved
to their new positions [10,19-21]. These methods deform the linear mesh either
using optimization [9,11,20,21] or based on the solution of PDEs [8,16,19,24],
e.g., a linear elasticity approach [24], a nonlinear elasticity approach [19], or other
strategies [8,16]. The main challenge associated with this approach is to obtain
a valid high-order mesh [22], since the boundary curving step can create tangled
elements in the mesh. In this approach, the geometry of the desired high-order
mesh is required to represent the curved boundary. This is often obtained from
computer-aided design (CAD) files, but in the case of patient-specific anatomical
models, such CAD files are not available.

Our proposed method uses a direct approach to generate high-order curvi-
linear triangular meshes. Our aim is to be able to generate meshes not only
from CAD files, but also from other types of boundary representations, such
as patient-specific 1D boundary meshes obtained from medical images. Several
algorithms for generating unstructured triangular meshes have been developed
over the years; among them, the Delaunay triangulation-based methods and the
advancing front-based methods are most popular [17]. Here we use an advancing
front approach [12-15] to generate high-order curvilinear triangular meshes.

The novelty of our work lies in our method’s ability to generate high-order
meshes directly from curved boundaries. This is the first direct approach for high-
order mesh generation. Our method does not require a post-processing step, such
as mesh untangling, as it generates each element as a valid, high-quality element.
Since our method uses a direct approach instead of an a posteriori approach,
it can generate high-quality meshes on patient-specific models obtained from
medical images where no CAD representation is available, serving as a basis
for generating meshes for more complex geometries. Hence, our patient-specific
meshes can accurately represent complex anatomies, and using these meshes,
one will be able to deliver highly-accurate solutions when solving PDEs.

In Sect.2, we describe our mesh generation method. Section3 shows the
numerical results of our method on several examples. Finally, in Sect.4, we
summarize our results and discuss limitations and future directions for this work.

2 High-Order Curvilinear Triangular Mesh Generation

In this section, we describe a high-order curvilinear triangular mesh generation
algorithm using an advancing front approach. Our method is currently designed
to yield second-order curvilinear triangular meshes. In contrast to the traditional
high-order mesh generation methods, where post-processing is often a required

74 F. Mohammadi et al.

step, our direct high-order mesh generation method aims to generate high-quality
elements in each iteration, so that post-processing is not required.

In the proposed algorithm, we start with a high-order 1D boundary mesh and
use it to generate a curvilinear high-order triangular mesh. First, we assign the
initial boundary mesh as the initial active front. As the method progresses and
new elements are generated, we update the active front by deleting the edges that
are already used to generate the triangles and adding the new edges that are cre-
ated after generating the triangles. Next, we calculate the lengths of the bound-
ary mesh edges. Since the edges of the boundary mesh are curved, we numerically
approximate the lengths of the curved edges by dividing them into smaller sec-
tions. Then we use shape functions for a one-dimensional second-order Lagrange
element to calculate the length of each section. Since the edges to be approx-
imated are quite short, dividing them into smaller sections essentially yields
linear segments, therefore rendering this approximation method more accurate
and more efficient than calculating the edge’s arc length.

To ensure better quality elements from the start, our goal is to generate
triangles as close to equilateral triangles as possible. To this end, we first average
the lengths of all the curved boundary edges and denote this average length by
Lgvg. We set an upper bound L,,q; on the average length and calculate the
upper bound as Lyae = b Lgyg, where b is a constant. After calculating L,aq,
we use that as the side of an ideal equilateral triangle and calculate the height h
of that triangle. This height can be changed by varying the b value in L,,4,. The
higher this value, the longer the height of the triangle will be. For our meshes,
we use b values ranging from 0.78-0.8.

Once we have calculated h, we start generating the triangular elements from
the boundary edges. To this end, we select the first edge from the active front
and insert a vertex a at a distance h from the midpoint of the selected edge.
To ensure that the vertex is inserted on the correct side of the boundary, we
calculate direction normals for the edges and insert the vertex in the direction
of the inward normal vector of the boundary mesh. Next, we search for other
suitable candidate vertices within a specific radius, r = ah, of a. Here, « is a
constant that can be varied according to the size of the geometry and mesh. Since
a fixed h is used to generate all triangular elements, element size uniformity is
ensured.

Figure 1(a) shows the vertex a, height h, and search radius r. The area
shown by the gray circle represents the search area for more candidate vertices.
Figure 1(b) shows the first curvilinear triangular element generated in the mesh.
Figure 1(c) shows a candidate triangle that intersects with an existing triangu-
lar element. Note that only the low-order vertices can serve as candidates for
the third vertex of the triangle. For each candidate triangle, we perform several
validity checks and calculations to ensure we generate the best possible triangle
from the candidate vertices available. Moreover, we also perform an intersection
test to ensure that we do not have triangular elements that intersect with an
existing edge or triangle. We then calculate the scaled Jacobian and equiangu-
lar skewness to measure distortion of the curved and straight-sided triangular

A Direct High-Order Curvilinear Triangular Mesh Generation Method 75

‘e» b
(a)

(b) | ©

Fig. 1. Boundary mesh of a circle: (a) vertex a is inserted at a distance h, and a search
for more candidate vertices is conducted within radius r; (b) first triangular element
bac, and (c) an intersecting candidate triangle shown in orange. (Color figure online)

elements. Considering the boundary edge as the base of our triangular element,
we measure the lengths of the two sides of the triangle to make sure one side of
the selected triangle is not very long compared to the other side. These tests are
described in Sect. 2.1 in detail.

If a candidate triangle passes the validity and quality checks, that vertex is
inserted (as a new vertex) or selected (as a pre-existing vertex) as the third vertex
of the triangle. For every triangle generated, if it has an equiangular skewness
value greater than a specific value 3, we then perform an edge swap on that
triangle to ensure that there are no skinny triangles. Once the low-order vertex
is finalized, we generate the high-order vertices for the newly-created triangle
edges. For a second-order mesh, the high-order vertices will be the midpoints
of each edge. Next, we update the active front by deleting the initially selected
edge and adding the newly-created triangle edges. We repeat these steps until
our active front is empty. Algorithm 1 gives the pseudocode of our second-order
curvilinear triangular mesh generation method.

2.1 Triangle Validity and Quality Checks

Our method searches for suitable candidate vertices and uses several validity and
quality checks to select the vertex that will generate the best quality triangle. We
conduct the checks in the specified order, so that we can remove the unsuitable
candidates one-by-one and preserve the best possible candidates. The unsuit-
able candidates are those which would generate triangles that intersect with an
existing edge or triangle, or have a negative scaled Jacobian. Once we delete all
the invalid candidate vertices, we use our triangle selection algorithm described
in Algorithm 2 to select the best quality triangle from the remaining candidates.
In this section, we summarize these checks.

Intersection Check: Once we identify the candidate vertices from our search,
we conduct an intersection check on each triangle generated with those vertices.
Our aim is to make sure we do not have candidate triangles that intersect with
an existing edge or triangle. We use the polyshape overlap function of Matlab
R2018a to perform this check. If we find a candidate vertex that, if selected as the

76 F. Mohammadi et al.

Algorithm 1: High-order curvilinear triangular mesh generation

Input: Boundary edges as active front

Output: Second-order curvilinear triangular mesh
Calculate L, Lavg, Lmaz, and h

if active front is not empty then

for each edge do

if the edge exists in the active front then
1. Calculate the direction normals

. Insert a point a at distance h inside the geometry (Fig. 1)

. Search for more candidate vertices within radius r of a (Fig. 1)
. Run intersection test

. Calculate scaled Jacobian

. Calculate equiangular skewness

. Considering the selected edge as the base of the triangle,
calculate the two side lengths of each candidate triangle

if triangle selection criteria are met as shown in Algorithm 2 then
8. Generate triangle

if triangle skewness > (# and edge swap keeps adjacent triangle

skewness < 0.85, then
| 9. Perform edge swap

end

10. Insert high-order vertices
11. Update active front

end

N O U W N

end
end
end

third vertex of the triangle, would generate a triangular element that intersects
with an existing edge or triangle in the mesh, we discard that candidate.
Scaled Jacobian Calculation: High-order meshes consist of both straight-sided
and curved elements depending on the geometry. To measure the distortion or
quality of our curvilinear triangular elements, we use the scaled Jacobian quality
metric [19]. The scaled Jacobian is defined as:

min J(§)
max J (&)’)

where J(&) = det(0x/0€). This is the Jacobian of the mapping from the refer-
ence coordinate & to the physical coordinate x. Figure2 shows a second-order
triangular element in both physical coordinates and reference coordinates. Scaled
Jacobian values can range from —oo to 1. For a straight-sided element, the scaled
Jacobian value is 1. A scaled Jacobian value of 1 does not necessarily indicate
a good quality element, since a skinny, straight-sided triangle can also have a
scaled Jacobian of 1. A negative scaled Jacobian indicates an inverted element.
While the scaled Jacobian is constant for straight-sided elements, for curved
high-order elements, a positive near-zero scaled Jacobian value would indicate

A Direct High-Order Curvilinear Triangular Mesh Generation Method 7

Algorithm 2: Selection of the best triangular element

Input: Candidates that pass validity checks
Output: The most suitable candidate vertex
if scaled Jacobian € (0,1) then
1. Select the candidate that generates the shortest triangle side length
if selected candidate’s skewness > 3 then
2. Select the candidate that generates the triangle with highest scaled

Jacobian
end

else
if scaled Jacobian = 1 then
1. Select the candidate that generates the shortest triangle side length
if selected candidate’s skewness > 3 then
2. Select the candidate that generates the triangle with lowest
skewness
end

end

end
3. A candidate vertex is selected
if there is another suitable candidate vertex within a distance, [, of the

selected vertex then
4. Check Delaunay empty circumcircle property
if the selected vertex is inside the circumcircle of the triangle made with
the newly found vertex then
| 5. Discard the selected vertex and select the other candidate
end

end

Fig. 2. Second-order triangular element: (a) in physical coordinates; (b) in reference
coordinates.

significant distortion. We calculate the scaled Jacobian using the shape functions
for a second-order Lagrange triangle and the high-degree Gaussian quadrature
rules developed by Dunavant [6] for triangles. We use a polynomial of degree 8
with 16 Gaussian points and weights. We perform the scaled Jacobian calcula-
tion on the updated candidates that we obtain after performing the intersection
check. If we obtain a candidate with a negative scaled Jacobian, that candidate
is no longer considered.

78 F. Mohammadi et al.

Equiangular Skewness Calculation: To detect skinny triangles and to mea-
sure the distortion of straight-sided elements, we use equiangular skewness. This
angular measure of element quality assesses how close a triangular element is to
an equilateral triangle [2]. Since we have curvilinear triangles, we first measure
the angles between the tangent lines of the curves using an analysis similar to
that described in [22], then use those angles to measure the equiangular skew-
ness, which is given by:

emax - 0@ oe - omzn

180 — 6. ’ 0 ’ @

max

where

Omin = smallest angle of the element,
Omaz = largest angle of the element, and

0. = angle for equiangular element, i.e., 60° for equilateral triangles.

For triangular elements, the equiangular skewness should not exceed 0.85.
Triangle Side Length Calculation: We consider the boundary edge selected
from the active front as the base of the triangular element and measure the two
side lengths of the candidate triangles. To ensure that the triangular elements
maintain a uniform size throughout the mesh, we use the relationship {; < v,
where [; and [are the lengths of the two non-base sides of the triangle, and ~ is
a constant. The value of v can be changed according to the geometry and mesh
element size. If one side of a candidate triangle is longer than - times the other
side, that triangle is no longer considered.

2.2 Triangle Selection

Once we complete the validity and quality checks, we use the results to select
the best triangular element based on the scaled Jacobian, skewness, and triangle
side lengths. Since we have both straight-sided and curved elements, we cannot
use only the scaled Jacobian to measure the quality of the elements. To avoid
skinny triangles, we consider candidate triangles that have a skewness value less
than (. The value of 8 can be changed according to the geometry. If performing
an edge swap makes the skewness value of an adjacent triangle greater than 0.85,
then we do not perform one. Our method selects the best quality triangle based
on the following two cases.

Curvilinear Triangles: First, we select the triangle with the shortest side length
that meets the skewness requirement. If that triangle does not meet the require-
ment, we select the triangle with the maximum scaled Jacobian. If there is
another candidate vertex very close to the selected triangle that meets the skew-
ness requirement and also has a scaled Jacobian higher than the previously
selected one, we select this other candidate. To find such vertices, we search

A Direct High-Order Curvilinear Triangular Mesh Generation Method 79

within a distance, [, of the currently selected vertex. This search distance can
be varied according to the size and shape of the elements. We do this to avoid
creating skinny triangles in the future.

Straight-sided Triangles: Here, we also first select the triangle that has the
shortest side length, provided it meets the skewness requirement. If that triangle
does not meet the requirement, we select the triangle with minimum skewness.
Here, we cannot rely only on the scaled Jacobian, as for all straight-sided ele-
ments the scaled Jacobian will be 1. Again, if there is another candidate vertex
very close to the selected triangle that meets the skewness requirement, we select
this other candidate vertex instead.

For both cases, we check the edge lengths of the two non-base sides of the
triangles to make sure one is not too long or short compared to the other side.
We prioritize selecting vertices that already exist in the mesh over inserting new
vertices if multiple vertices pass the validity and quality checks and if the vertices
are very close to each other. If our selected vertex is a new vertex, then we search
within a distance [of that vertex to determine whether there is another suitable
candidate vertex that already exists in the mesh. If yes, then we construct the
circumcircle of the triangle made with the pre-existing vertex and check to see
if the Delaunay circumcircle for that triangle is empty. If the new vertex lies
inside the circumcircle, we select the triangle made with the pre-existing vertex.
Algorithm 2 gives the pseudocode for the triangle selection process.

3 Numerical Results

In this section, we demonstrate the results from applying our mesh generation
algorithm to generate several second-order curvilinear triangular meshes on vari-
ous patient-specific models. We show how the initial front advances to create the
final mesh, as well as how performing edge swaps avoid the generation of skinny
triangles in the mesh. We also report the wall-clock time required to generate
the meshes. The method was run using Matlab R2018a, and the execution times
were measured on a machine with 16 GB of RAM and an Intel(R) Core(TM)
i7-6700HQ CPU. All mesh visualizations were conducted using Gmsh [10].

For our examples, we use two different types of patient-specific geometries
obtained from medical images. Our first set of examples consists of patient-
specific cardiac geometries made available through several medical image seg-
mentation challenges - the Left Ventricle Segmentation Challenge (LVSC) [7,23]
available through the Statistical Atlases and Computational Modeling of the
Heart and the Automatic Cardiac Diagnostic Challenge (ACDC) [3]. The car-
diac image dataset consisted of a stack of 2D image slices and their associated
endocardial and epicardial contours at two cardiac phases - diastole and sys-
tole - extracted using the distance map regularized convolutional neural net-
work formulation by Dangi et al. in [5]. We use 1D surface meshes of the patient
myocardium obtained from magnetic resonance imaging (MRI). We show meshes

80 F. Mohammadi et al.

of the myocardium both at the maximum contraction phase (systole) and max-
imum expansion phase (diastole) of the heart. Also, for both cases, we show
results for a few different MRI slices.

For our second set of examples, we use boundary meshes of the brain ven-
tricles of a patient with hydrocephalus [18] obtained from computed tomogra-
phy (CT) scan images. The final meshes show one pre-treatment and two post-
treatment brain ventricles for a hydrocephalus patient who was treated by shunt
insertion.

Finally, we use our method to generate triangular meshes of a pair of normal
human lungs. The 1D boundary mesh for the lungs are generated from a chest
CT scan image [1] using Seg3D [4].

Since our method takes a high-order curved surface mesh as input and the
initial patient heart and brain meshes were straight-sided, low-order meshes, we
use Gmsh [10] to generate the second-order 1D meshes from the low-order 1D
meshes and to refine the meshes if necessary. Next, we use cubic spline interpola-
tion to obtain a curved boundary mesh. We then determine the new positions of
the high-order vertices on the curved boundary. For a second-order mesh, these
are the midpoints of the newly-curved edges. We use this updated high-order
curvilinear boundary mesh as the input for our method. Figure3(a) shows a
straight-sided, low-order mesh; Fig. 3(b) shows a second-order curvilinear coarse
boundary mesh, and Fig.3(c) shows a second-order curvilinear fine boundary
mesh of the myocardium.

(a) (b) (c)

Fig. 3. 1D boundary mesh of patient myocardium: (a) low-order straight-sided coarse
mesh; (b) second-order curvilinear coarse mesh; (c) second-order curvilinear fine mesh.

Figure 4 shows an example of how the active front is advancing in a counter-
clockwise (CCW) direction to generate the triangular elements. The high-order
1D boundary mesh is used as the active front. As a new triangular element is
generated, the active front advances, and this continues until all the vertices are
connected in the mesh and the active front is empty. The red arrow in Fig. 4(a)
represents the CCW direction in which the initial front is advancing. Figure 4(b)
shows the first ring of triangular elements generated in the mesh. Figure4(c)
shows the two opposing directions of the fronts before they are merging.

A Direct High-Order Curvilinear Triangular Mesh Generation Method 81

a

=
EE
BE
B
BE
EE
=
5

A&

Fig. 4. Advancing front high-order mesh generation: (a) the active front is advancing
in a CCW direction to create elements; (b) first ring of triangular elements; (c) the
red arrows represent the directions of the two merging fronts, and the method ensures
that the merging fronts do not cause element intersections. (Color figure online)

Depending on the geometry of the input mesh, the active fronts can progress
from different directions. When the fronts start to merge, the different-sized
edges on the various fronts make it challenging to maintain good quality ele-
ments. This can create skinny triangles, like needles and caps. We use edge
swaps to avoid creating such elements in our mesh, the success of which is illus-
trated in Fig. 5. Figure5(a, c) show two regions of the mesh before edge swap-
ping is performed. The potential skinny triangles can be observed. Figure 5(b, d)
show the same regions after edge swapping is performed to avoid skinny triangle
generation.

Fig. 5. Edge swapping to avoid skinny triangles: (a) before edge swap; (b) after edge
swap; (c) before edge swap; (d) after edge swap.

Figure 6 shows the results of our mesh generation algorithm for various
myocardia, at expansion (diastole) and contraction (systole) of the heart from
four different MRI images. For diastole, we use a search radius of 1.5k, v = 1.5,
and B = 0.5. For systole, we use a search radius of 1.4h, v = 1.2, and § = 0.5.
Edge swapping is performed if a triangular element has a skewness greater than
0.5. Figure 6(a, b) show the meshes at diastole, and Fig. 6(c,d) show the meshes
at systole. The meshes represent the patient-specific geometries accurately, and
there are no inverted elements or skinny triangles in the meshes. The runtimes
and element quality information are shown in Fig.6(e).

82 F. Mohammadi et al.

Scaled Jacobian| Skewness
Example # elements|Runtime(s)| Min Max | Min | Max
Patient 1 at diastole (slice 16) 320 303 0.416 | 1.000 |0.000{0.705
Patient 2 at diastole (slice 5) 486 383 0.392 | 1.000 [0.000(0.623
Patient 1 at systole (slice 16) 542 478 0.424 | 1.000]0.000{0.688
Patient 3 at systole (slice 3) 504 422 0.696 | 1.000 [0.000(0.662

(e)

Fig. 6. Second-order triangular meshes of three patients’ myocardia at various times
in the heartbeat cycle: (a) patient 1 at diastole; (b) patient 2 at diastole; (c) patient
1 at systole; (d) patient 3 at systole; (e) mesh quality metrics and algorithm runtime
statistics.

Figure 7 shows our triangular meshes for the brain ventricles of a hydro-
cephalus patient before and after the shunt insertion treatment. Before the treat-
ment was performed, the enlarged brain ventricles due to the build-up of cere-
brospinal fluid (CSF) inside the ventricles (i.e., the white area) can be observed
in Fig. 7(a). Post treatment, the condition of the ventricles was observed at two
different time points: six months and one year post treatment. It is observed in
Fig. 7(b,c) that the ventricle sizes are gradually reducing post treatment. For
these examples, we use a search radius of 1.5h, v = 1.5, and 8 = 0.5 to generate
the meshes. There are no inverted elements in these meshes. For the two post-
treatment meshes, there are a total of four triangular elements that are close
to being skinny triangles, but none have a skewness value greater than 0.85.
The runtimes and element quality information are shown in Fig. 7(d). Compar-
ing our pre-treatment mesh with the mesh generated in [18], we observe that
the low-order mesh had 8166 elements, whereas our high-order mesh has 1194
elements. This indicates that solving PDEs will require less computational time
when employing our meshes. However, since each of our meshes has a differ-
ent number of elements and different vertex connectivity, solving a PDE for the
dynamic problem would require re-interpolation of the solution to go from one
mesh to another. Hence, while our meshes will reduce the computational cost
and deliver accurate results while solving PDEs on static meshes, their use is
not designed for dynamic problems.

Figure 8 shows the triangular meshes of the right and left lungs. For these
meshes, we use a search radius of 1.5k, v = 1.2, and § = 0.5. The lung meshes

A Direct High-Order Curvilinear Triangular Mesh Generation Method 83

SO TAVAVAVAV po

TS SR 7
XNERERACS A RSSO RN
LR 4 A A A
SRR 4 0 5 AN PSRRI
o PRAX RN ARG LONALIIEN
PRI <IN A R SRS IS RS
D AR AR SO,
4 K AAYAYLy,
AARRPATRE AT, AODASRERS RO
BRSO OO ORI VIREEREEOOOEN
50 ARG SRR R R ERRR000A00
X0 OISR RSO TR SRR
v A A e e IR NSRRI, SORIGNNEAR AR
O RS DEREEDE e PAve S NAwavaNv U0y Vv AT Y By vV RN)
R R o] SEVERAAERRR (RO TR
R RERDOOETAPR ENEERKIRY ERRREEA000A SRR ASS R
AR PREOAAOOANISAYS IECENEERERN ROKEREAN G TSR
SRR Yol ROSOORKIEREE SRR D00 N ST ER
ENSSERRY ARSI AVAvavey VAo NS R v v et PRENRROEEK]
o CRASEK] WCRIRED COCNASLY VOO KLRRRLTRARS
S50 viavavsly I8 K PR I AR SRR O
A Y RS DO VYAV VAY A TATAATAa v e VAV S A vaTAVATAYS
SRR 5 NaAvuy e \SSANPCERDY R R AR K
PAvAYATTAYs N rATAYS Vv S| P RO ARSI A
QAR PNAY, TGRS AZRPGA RS RS SOOI
& Q) NSERI PROOKIKT AR NSRRI AL RIS
SRR RS AR RO SS
A e e AN RN PR OSROO DL
RIS RN A s
ORTSISE
KT ORI AROORSIRES TS FAvAS AN oA
S SR SRR

Scaled Jacobian|Skewness

elements|Runtime(s)| Min | Max | Min | Max
1194 1002 0.544 | 1.000 |0.000(0.684
1695 1632 0.097 | 1.000 |0.000(0.842
1703 1623 0.266 | 1.000 |0.000(0.738

(d)

Example

Pre-treatment
Post-treatment (period 1)
Post-treatment (period 2)

Fig. 7. Second-order triangular mesh of the brain ventricles of a hydrocephalus patient:
(a) pre-treatment; (b) post-treatment period 1; (c) post-treatment period 2; (d) mesh
quality metrics and algorithm runtime statistics.

SRR
SRR A,
ARSI e
AR A
SR OO S
P eres s
SRR PR
aVAVAVAVS Ty 00 =5 [
AT KRR
BRI R Ry Py
SO XORSERRRSREN ARRERERE
KERNPRASERSRRAY CERPPOOC
KIS PRI
SRR SROARESER COAANKKITER
RSN RS ORI
R RO R SRR SRR
ARPOAAORISSPR AR b
S RELERES
VRPIPAREEARRAs, Gl i
et e A
K AN OAR OO Ry = S g
AAPOOOATL A O RO EL Sy
450 PRI A
R s R
SRR R0 WS P
CRERo puissitcsss
RO BEORSP

Scaled Jacobian|Skewness

Example |# elements|Runtime(s)| Min | Max | Min | Max
Right lung 1271 1212 0.353 | 1.000 |0.000(0.750
Left lung 1450 1427 0.291 | 1.000 {0.000{0.667

(c)

Fig. 8. Second-order triangular mesh of right and left lungs: (a) right lung; (b) left
lung; (c¢) mesh quality metrics and algorithm runtime statistics.

shown in Fig.8(a,b) have no inverted elements or skinny triangles, and they
accurately capture the patient-specific geometry of the lungs.

The quality of our meshes can be controlled by changing the search radius
r, skewness threshold (, and the - value, which controls the lengths of the

84 F. Mohammadi et al.

triangle sides. This versatility is an important feature, since for patient-specific
geometries obtained from medical images, the boundary mesh can have different-
sized elements. We have observed that for finer meshes, a smaller search radius
and a smaller v value produce good results, whereas for coarser meshes, we need
to search within a larger radius to obtain reasonable candidate vertices (and
accordingly triangles). There is also the option of changing the height of the
triangles by altering the L,,., value, if necessary.

4 Concluding Remarks

In this paper, we present a new method of generating high-order curvilinear
triangular meshes directly from curved geometries. Our method does not require
a post-processing step, such as mesh untangling, since we generate each element
as a high-quality valid element. Our proposed method can be used to generate
curvilinear triangular meshes from patient-specific epicardial and endocardial
contours, brain ventricular contours, and lung contours, among others, extracted
via segmentation from medical images, such as MRI or CT images. Our mesh
generation method can be used as a basis to generate more complex meshes on
challenging geometries. To this end, we plan to extend this method to 3D to
solve more real-world problems.

We note that, since we implemented our method in Matlab, our implemen-
tation has a larger than necessary runtime. Our future work will focus on imple-
menting the method in C++4 to reduce the runtime and to be able to work with
larger meshes. Also, we only used edge swapping to remove possible skinny tri-
angles from the mesh; an edge collapse operation can also be included to further
avoid such triangles.

References

1. Radiologic Images of the Lungs, The Internet Pathology Laboratory for Medical
Education. http://ar.utmb.edu/webpath/radiol/pulmrad/pulm004.htm. Accessed
14 Apr 2020

2. Skewness Calculation for 2D Elements. https://www.engmorph.com/skewness-
finite-elemnt. Accessed 14 Apr 2020

3. Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic
MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
IEEE Trans. Med. Imaging 37(11), 25142525 (2018)

4. CIBC: Seg3D: Volumetric Image Segmentation and Visualization. Scientific Com-
puting and Imaging Institute (SCI) (2016). http://www.seg3d.org

5. Dangi, S., Yaniv, Z., Linte, C.: A distance map regularized CNN for cardiac cine
MR image segmentation. Med. Phys. 46(12), 5637-5651 (2019)

6. Dunavant, D.: High degree efficient symmetrical Gaussian quadrature rules for the
triangle. Int. J. Numer. Methods Eng. 21(6), 1129-1148 (1985)

7. Fonseca, C.G., Backhaus, M., Bluemke, D.A., et al.: The cardiac atlas project-an
imaging database for computational modeling and statistical atlases of the heart.
Bioinformatics 27(16), 2288-2295 (2011)

http://ar.utmb.edu/webpath/radiol/pulmrad/pulm004.htm
https://www.engmorph.com/skewness-finite-elemnt
https://www.engmorph.com/skewness-finite-elemnt
http://www.seg3d.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A Direct High-Order Curvilinear Triangular Mesh Generation Method 85

Fortunato, M., Persson, P.O.: High-order unstructured curved mesh generation
using the Winslow equations. J. Comput. Phys. 307, 1-14 (2016)

Gargallo-Peird, A., Roca, X., Peraire, J., Sarrate, J.: Optimization of a regularized
distortion measure to generate curved high-order unstructured tetrahedral meshes.
Int. J. Numer. Methods Eng. 103(5), 342-363 (2015)

Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with
built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11),
1309-1331 (2009)

Karman, S.L., Erwin, J.T., Glasby, R.S., Stefanski, D.: High-order mesh curving
using WCN mesh optimization. In: Proceedings of the 46th ATAA Fluid Dynamics
Conference, p. 3178 (2016)

Lo, S.H.: Volume discretization into tetrahedra-ii. 3D triangulation by advancing
front approach. Comput. Struct. 39(5), 501-511 (1991)

Léhner, R., Parikh, P.: Generation of three-dimensional unstructured grids by the
advancing-front method. Int. J. Numer. Methods Fluids 8(10), 1135-1149 (1988)
Mavriplis, D.J.: An advancing front Delaunay triangulation algorithm designed for
robustness. J. Computat. Phys. 117(1), 90-101 (1995)

Merriam, M.: An efficient advancing front algorithm for Delaunay triangulation.
In: Proceedings of the 29th Aerospace Sciences Meeting, p. 792 (1991)

Moxey, D., Ekelschot, D., Keskin, U., Sherwin, S.J., Peiré, J.: High-order curvi-
linear meshing using a thermo-elastic analogy. Comput.-Aided Des. 72, 130-139
(2016)

Owen, S.J.: A survey of unstructured mesh generation technology. In: Proceedings
of the 7th International Meshing Roundtable, pp. 239-267 (1998)

Park, J., Shontz, S.M., Drapaca, C.S.: A combined level set/mesh warping algo-
rithm for tracking brain and cerebrospinal fluid evolution in hydrocephalic patients.
In: Image-Based Geometric Modeling and Mesh Generation, pp. 107-141. Springer
(2013). https://doi.org/10.1007/978-94-007-4255-0_7

Persson, P.O., Peraire, J.: Curved mesh generation and mesh refinement using
Lagrangian solid mechanics. In: Proceedings of the 47th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, p. 949
(2009)

Roca, X., Gargallo-Peir6, A., Sarrate, J.: Defining quality measures for high-order
planar triangles and curved mesh generation. In: Proceedings of the 20th Inter-
national Meshing Roundtable, pp. 365-383. Springer (2011). https://doi.org/10.
1007/978-3-642-24734-7_20

Ruiz-Gironés, E., Sarrate, J., Roca, X.: Generation of curved high-order meshes
with optimal quality and geometric accuracy. In: Proceedings of the 25th Interna-
tional Meshing Roundtable, Procedia Engineering, vol. 163, pp. 315-327 (2016)
Stees, M., Dotzel, M., Shontz, S.M.: Untangling high-order meshes based on signed
angles. In: Proceedings of the 28th International Meshing Roundtable, pp. 267-282.
Zenodo (2020)

Suinesiaputra, A., Cowan, B.R., Al-Agamy, A.O., et al.: A collaborative resource to
build consensus for automated left ventricular segmentation of cardiac MR images.
Med. Image Anal. 18(1), 50-62 (2014)

Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order
curved meshes for 3D finite element analysis. Comput. Mech. 51(3), 361-374 (2013)

https://doi.org/10.1007/978-94-007-4255-0_7
https://doi.org/10.1007/978-3-642-24734-7_20
https://doi.org/10.1007/978-3-642-24734-7_20

	A Direct High-Order Curvilinear Triangular Mesh Generation Method Using an Advancing Front Technique
	1 Introduction
	2 High-Order Curvilinear Triangular Mesh Generation
	2.1 Triangle Validity and Quality Checks
	2.2 Triangle Selection

	3 Numerical Results
	4 Concluding Remarks
	References

