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Abstract

We consider a generalization of the third degree price dis-

crimination problem studied in [4](Bergemann et al., 2015),

where an intermediary between the buyer and the seller can

design market segments to maximize any linear combina-

tion of consumer surplus and seller revenue. Unlike in [4],

we assume that the intermediary only has partial informa-

tion about the buyer’s value. We consider three different

models of information, with increasing order of difficulty. In

the first model, we assume that the intermediary’s informa-

tion allows him to construct a probability distribution of

the buyer’s value. Next we consider the sample complex-

ity model, where we assume that the intermediary only sees

samples from this distribution. Finally, we consider a bandit

online learning model, where the intermediary can only ob-

serve past purchasing decisions of the buyer, rather than her

exact value. For each of these models, we present algorithms

to compute optimal or near optimal market segmentation.

1 Introduction

Third degree price discrimination occurs when a seller
uses auxiliary information about buyers to offer differ-
ent prices to different populations, e.g., student and se-
nior discounts for movie tickets. A modern version of
this arises in the context of online platforms that match
sellers and buyers. Here an intermediary observes in-
formation about buyers and may pass on some of this
information to the seller to help him price discriminate.
One natural example where price discrimination could
be (and often is) used in practice is an ad exchange,
which matches buyers and sellers of online ad impres-
sions. A buyer is an advertiser, and a seller is a pub-
lisher, and the impression is sold via an auction where
the seller sets a reserve price. The ad exchange com-
monly has additional data about the user viewing the
impression or about the buyers. It could share some of
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this data with the seller before he sets the reserve price.
The seminal work of [4] shows the following surpris-

ing result in such a setting. Usually, there is a trade-
off between social welfare which is the value generated
by the sale, and seller revenue. Seller revenue is maxi-
mized by setting an appropriate price. Social welfare is
maximized by selling the item to the buyer as long as
his value for the item is ≥ 0, but this generates 0 rev-
enue for the seller. Almost magically, [4] show that an
intermediary can segment the market such that it not
only maximizes social welfare, but also guarantees that
the seller revenue doesn’t change in the process. This
shows that price discrimination can be used to benefit
the customer, contrary to the belief that it exploits the
customer, thus making it palatable.

While this is a strong result, it requires that the
intermediary knows the buyer’s exact value, which is
a very strong assumption, and is often not satisfied in
practice. What is more reasonable is that the intermedi-
ary can estimate a personalized probability distribution
once the buyer is seen. For instance, if the intermediary
observes that the buyer is a student, it may estimate
a lower willingness-to-pay, but is unlikely to know the
buyer’s exact value. Realistically, the intermediary may
wish to use machine learning techniques to estimate the
personalized probability distribution for a new buyer
based upon their observed characteristics and past mar-
ket data. In this paper, we analyze the power of third
degree price discrimination in this setting where the in-
termediary has only a noisy signal of a buyer’s value.

1.1 Model and Results The seller sells a single
item, and there is a single buyer. We consider value
distributions with a finite support. We assume that
the intermediary observes finitely many types of buyers;
each type is associated with a different distribution over
the values. We denote the set of values by [V ] =
{1, 2, . . . , V }, the set of types by [T ] = {1, 2, . . . , T},
and the distribution over values given a type t by F(t).
We denote the distribution over types by T . Given this,
the mechanism proceeds as follows. This is illustrated
in Figure 1.

1. A segmentation is a pair of a segment set Σ, and
a segment map G : [T ] 7→ ∆(Σ), where ∆(·)
denotes the set of all probability distributions over
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a given domain. Once the intermediary decides on
a segmentation, it is revealed to the seller.

2. When a buyer arrives, her type t and value v are
drawn from the prior distribution. The intermedi-
ary observes only her type t but not the value v.

3. Intermediary draws a segment σ from the distribu-
tion G(t) and reveals it to the seller.

4. On observing a segment σ, the seller posts the
monopoly price p for the value distribution con-
ditioned on observing σ.

5. Buyer buys the item if and only if her value v ≥ p.

The model in [4] is the special case where the type
set is identical to the value set, and the distributions
F(t) are point masses.

A price is said to be a monopoly price if it maximizes
seller revenue for a given distribution, and this revenue
is called the monopoly revenue. We call the marginal
distribution over values [V ] as the prior distribution.
The seller is always guaranteed at least the monopoly
revenue for the prior distribution, since he can ignore
the segment information and set a monopoly price.

The intermediary’s objective is some given positive
linear combination of seller revenue and consumer sur-
plus. Consumer surplus is the expectation of the buyer’s
utility, which is v− p if the buyer with value v buys the
item at price p, and is 0 otherwise. Of particular inter-
est is the special case of maximizing consumer surplus
alone. We consider three informational models of in-
creasing difficulty for the intermediary, and show the
following results.

Bayesian: The intermediary and the seller know
the value-type distributions: F(t) for all t, and T . We
show that the optimal segmentation can be computed
using a linear program (LP). The range of achievable
values for consumer surplus and revenue depend on the
distribution, and one may not always be able to achieve
the full consumer surplus as in [4]. Some other nice
properties may not hold as well, see Appendix A for
examples.

Sample Complexity: The intermediary and the
seller observe a batch of signal-value pairs sampled from
the underlying distribution. We are interested in the
number of samples required to get an ε approximation.
We first cosntruct a distribution for which no bounded
function of ε is sufficient. The F(t)’s in this example
satisfy both boundedness and regularity, which are stan-
dard assumptions in the sample complexity of mecha-
nism design. This points to further limitations on what
such an intermediary can do: in case of noisy signals,
the distribution cannot be arbitrary. Motivated by this,

we identify a property about the distributions, which we
call MHR-like, and show (via an algorithmic construc-
tion) that a polynomial number of samples are sufficient.
This is the technically most challenging part of the pa-
per and most of the focus in the main body of the paper
is on this part.

Online Learning: The intermediary must learn
the segmentation online using only bandit feedback
from the buyer’s decision to purchase or not at the
seller’s chosen price. The last step of the timeline
depicted in Figure 1 is modified in this setting so that
the intermediary and seller only observe the buyer’s
purchase decision, not her value. Here we give no-
regret learning algorithms. Clearly, we need certain
assumptions on the seller’s behavior for any nontrivial
result; there is not much we can do if the seller picks
prices randomly all the time. Our assumptions can
accommodate natural no regret learning algorithms on
the seller side, including the Upper-Confidence-Bound
(UCB) algorithm and the Explore-then-Commit (ETC)
algorithm.

1.2 Contributions to the Sample Complexity of
Mechanism Design Pioneered by [1], [18], and [15],
and formalized by [12], the sample complexity of mech-
anism design, in particular, the revenue maximization
problem, has been a focal point in algorithmic game
theory in the last few years [33, 2, 14, 32, 24, 10, 20, 21,
26, 22].

This paper adds to the literature of sample com-
plexity of mechanism design in two-folds. The first one
is conceptual: we formulate the first sample complexity
problem from the viewpoint of an intermediary rather
than the seller, and for the task of designing informa-
tion dispersion rather than allocations and payments.
We show impossibility results for the general case and,
more importantly, identify sufficient conditions under
which we derive positive algorithmic results.

Conceptually new models often lead to new techni-
cal challenges. Our second contribution is an algorith-
mic ingredient that tackles such a new challenge. Let
us start with a thought experiment: consider a more
powerful intermediary who knows the true distributions;
the seller, however, still acts according to some beliefs
formed from the observed samples. Does the problem
become trivial? Can the intermediary simply run the
optimal segmentation w.r.t. the true distributions and
expect near optimal outcomes?

The answers turn out to be negative. Consider a
segment for which there are two prices p∗ and p, such
that p∗ is the monopoly price with a sale probability
close to 1, while p gets near optimal revenue with a sale
probability close to 0. If the intermediary includes this
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type-value

draws a 
segment

posts a 
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observes 
price

observes value and
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Figure 1: Time line of a single round.

segment, however, the seller’s beliefs may overestimate
the revenue of p and/or underestimate that of p∗ and,
thus, deduce that p is the monopoly price instead of p∗.
As a result, the resulting social welfare may be much
smaller than what the intermediary expects from the
true distributions.

This example shows that, unlike existing works on
the sample complexity of mechanism design, where the
difficulties arise purely from the learning perspective of
the problem, our problem presents an extra challenge
from the uncertainties in the seller’s behavior due to his
inaccurate beliefs.

Intuitively, the intermediary would like to convert
the optimal segmentation w.r.t. the true distributions
into a more robust version, such that for any approx-
imately accurate beliefs that the seller may have, the
resulting objective is always close to optimal. We will
refer to this procedure as robustification, and the result
as the robustified segmentation.

2 Bayesian Model

We start with an example through which we will illus-
trate the main ideas in this section.

Example. The example is parameterized by a noise
level, 1 − z ∈ [0, 1]. The value set [V ] = {1, 2, 3}
is identical to the type set [T ]. Each type t ∈ [T ]
corresponds to the distribution F(t):

Prv∼F(t)[v] =

{
z if v = t,
1−z

2 otherwise.

When z = 1/3, all F(t)’s equal the uniform prior, and
no non-trivial segmentation is possible. At the other
extreme, when z = 1 each F(t) is a pointmass at t,
which is the [4] model.

Simplex View. As observed by [4], the key idea is
to identify segments with probability distributions over
[V ]. The only thing that matters given a segment σ

is the posterior distribution on [V ] conditioned on the
intermediary choosing σ. Since [V ] is finite, it is easier
to think of ∆([V ]) as the unit simplex in the appropriate
dimensions. Then, a segment σ is simply a point in this
simplex. Further, all that matters for a segmentation is
the distribution over σ’s as observed by the seller, i.e.,
it is sufficient to specify a distribution over the simplex
∆([V ]). The only constraint on this distribution is that
its expectation must equal the prior distribution over
values, which is another point on the simplex, denoted
by τ .

Going further, it is sufficient to only consider some
special points on the simplex. We denote these special
points by xS , for a subset S ⊆ [V ]: this is the equal
revenue distribution with support equal to the set S,
i.e., these are distributions supported on S such that
p · Pr[v ≥ p] is the same for all p ∈ S. These special
points partition the simplex into regions Xv for each
v ∈ [V ]: each distribution in Xv is such that v is a
monopoly price for it.

We now describe this through Example 1. Figure
2a shows the unit simplex, and the points xS for all
S ⊆ [V ]. The light gray region is X1, white is X2 and
dark gray is X3. The uniform distribution over [V ] is
represented by τ . An optimal segmentation with no
noise (when z = 1) corresponds to representing τ as
the following convex combination of the vertices of the
white polytope:

τ = 1
6x
{2} + 1

6x
{2,3} + 2

3x
[V ].

This corresponds to the following segmentation with
Σ = {σ1, σ2, σ3} corresponding to x{2}, x{2,3} and x[V ]

resp. and G(1) = (0, 0, 1); G(2) = (1/2, 1/6, 1/3); and
G(3) = (0, 1/3, 2/3).

[4] consider segmentations that only consist of ver-
tices of Xp∗ where p∗ is a monopoly price of the prior
distribution (which is the white region X2 in Figure 2a).
They assume that ties for monopoly price are broken in
favor of the lowest price, which is the lowest value in
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(a) Partition of the simplex into Xv’s and
τ = the uniform distribution over [V ].

(b) Convex hull of types for z < 1. Solid inner
triangle is for z = 0.49; dashed one is for z = 0.8.

Figure 2: Simplex view for Example 1

the support. This implies that the item is always sold
thus maximizing social welfare.

Generalization of the Simplex View. We ex-
tend this simplex view to our model. When the number
of types T is at most the number of values V , and the
type distributions are non-degenerate, we can continue
to consider the simplex on the set of values, as we have
done so far. This will be the case for Example 1. A
more general view is to consider the simplex on the set
of types. Most of the intuition extends to this view, al-
though geometrically the picture is somewhat different.
(This is the view we use in the proofs; the simplex on
values is used just for illustration.)

The case when z < 1 is depicted in Figure 2b.
The main difference from the previous picture is that
we are not allowed to choose any point on the simplex
for our segmentation. Instead, we are restricted to only
choose the points in the convex hull of the F(t)s, for
all t ∈ [T ]. We denote this convex hull by ∆([T ]),
by abuse of notation. For z = 0.49, the figure shows
that ∆([T ]) is contained entirely inside the white region.
Thus no matter what segmentation is used, the seller
always sets the monopoly price of 2; segmentation is
therefore useless. For z = 0.8, the figure shows that
segmentation is possible because ∆([T ]) intersects with
all three regions, X1, X2, X3.

We introduce some notation now. Given any seg-
mentation (Σ,G), this induces a distribution over seg-
ments, denoted S, and a posterior distribution on the
values [V ] for each segment σ ∈ Σ, which we abuse no-

tation and denote by F(σ). For any distribution F , let
Rev(F) denote its monopoly revenue. Let CS(F) denote
the consumer surplus when the seller sets the monopoly
price for distribution F . Our goal is to find a segmen-
tation to maximize a linear combination of revenue and
consumer surplus, i.e., for some parameter λ ∈ [0, 1],
maximize:

Eσ∼S

[
λ · Rev

(
F(σ)

)
+ (1− λ) · CS

(
F(σ)

)]
.

From now on, we let ∆([T ]) = {x ∈ RT+ : ‖x‖1 = 1}
denote probability distributions over the types. We
first formalize the claim that segmentation schemes
correspond to probability distributions over ∆([T ]) with
a given expectation. The proofs in the section are
deferred to Appendix B.

Lemma 2.1. Let τ denote the point in the simplex
∆([T ]) corresponding to the distribution T : τ =
(PrT [1],PrT [2], . . . ,PrT [T ]). There is a 1:1 correspon-
dence between segmentations (Σ,G) and probability dis-
tributions µ over ∆([T ]) such that the expectation is τ ,
i.e.,

(2.1)

∫
xdµ = τ .

Using this lemma, we switch our design space to prob-
ability distributions µ that satisfy (2.1). We use σ ∈ Σ
and x ∈ ∆([T ]) interchangably.
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We now partition the simplex ∆([T ]) into V areas,
X1, X2, . . . , XV , one for each value/price in [V ], such
that the price p is a monopoly price for any segment in
Xp. For any distribution F and any price p ∈ [V ], let
Rev(F , p) denote the revenue of price p on distribution
F , and CS(F , p) denote the consumer surplus. For any
p ∈ [V ], define:

Xp = {x : Rev(F(x), p) ≥ Rev(F(x), p′),∀p′ 6= p} .

Since the revenue function Rev(F(x), p) =
∑
t xt ·

Rev(F(t), p)) is linear in x, the set Xp is the intersection
of the simplex ∆([T ]) and a polytope defined by V − 1
linear constraints. Further, if we restrict our domain to
points x ∈ Xp, we have that these are linear functions
in x.

Rev(F(x)) = Rev(F(x), p) =
∑
t

xt·Rev(F(t), p) , and

CS(F(x)) = CS(F(x), p) =
∑
t

xt · CS(F(t), p) .

We next observe that this implies that it is sufficient to
choose at most one point from each Xp. The idea is that
we can replace the distribution conditioned on x ∈ Xp

by its expectation.

Lemma 2.2. There is an optimal segmentation such
that the distribution µ is supported on at most one
point from each Xp, i.e., a finite set of the form {xp ∈
Xp,∀ p ∈ [V ]}.

Using this lemma, we now show that the following
linear program (LP) captures the optimal segmentation.
The variables are zp = xp ·µ(xp). We denote by Zp the
region that is the convex hull of Xp and the origin. Rev
and CS extend naturally to Zps.

max
∑
p∈[V ]

λ · Rev
(
F(zp)

)
+ (1− λ) · CS

(
F(zp)

)(2.2)

s.t. ∀ p ∈ [V ], zp ∈ Zp and
∑
p∈[V ]

zp = τ .

Theorem 2.1. We can find an optimal segmentation
in polynomial time by solving LP (2.2).

3 Sample Complexity Model

We scale the values to be in (0, 1], i.e., [V ] ={
1
V ,

2
V , . . . , 1

}
. This treatment simplifies the notations

in the proofs, and separates the two roles of V : the
scale of the values (less interesting, always has the same
degree as ε), and the number of possible values. To
translate the bounds into the original scaling, replace ε

with ε
V everywhere. We further assume the type dis-

tribution to be uniform to simplify discussions. This is
w.l.o.g. up to duplication of types.

Following standard notations in algorithmic mech-
anism design, we refer to the sale probability of a price
as its quantile. We will consider the revenue curve in
the quantile space where the x and y coordinates are
the quantile of a price and its revenue, respectively.

3.1 Model and Results
Intermediary: The intermediary has access to

the value distributions of different types only in the
form of m i.i.d. samples per type. She chooses a
segmentation based on these samples, and then the
chosen segmentation is evaluated on a freshly drawn
type-value pair, i.e., the test sample. The expectation
of the objective is taken over the random realization
of the m samples per type as well as the test sample,
and potentially the randomness in the choice of the
segmentation.

Buyer: The buyer bids truthfully since the seller
effectively posts a take-it-or-leave-it price.

Seller: We need to further define how the seller
acts. Consider the following candidate models:

1. The seller knows the value distributions exactly.
Hence, given the segmentation and the realized
segment, which induces a mixture of the value
distributions of different types, the seller posts the
monopoly price of the mixture.

2. The seller can access the same set of m samples per
type, and believes that the value distributions are
the empirical distributions, i.e., the uniform distri-
butions over the corresponding samples. Hence, she
posts the monopoly price of the mixture of empiri-
cal distributions.

3. The seller further has access to other sources of
samples.

4. The seller further has access to other sources of
prior knowledge.

This is only a nonexclusive list of many potential
models that are equally well-motivated in our opinion,
depending on the actual applications. Is there a uni-
fying model that allows us to study all these settings in
one shot and get non-trivial positive results?

To this end, this paper considers the following
overarching model (the subscript S indicates that these
variables are associated with the seller):

For εS = O
(
m−1/2 log(mV )

)
, the seller forms

beliefs FS(t)’s, t ∈ [T ], such that for any type
t the Kolmogorov-Smirnov distance between
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FS(t) and F(t) is at most εS , i.e., for any
value v ∈ [V ], v’s quantiles w.r.t. F(t) and
FS(t) differ by at most εS . Then, she posts the
monopoly price of the mixture of the beliefs.

The choice of εS is based on a standard concen-
tration plus union bound combination on the empirical
distributions over the m samples that the intermediary
can access. In other words, we assume that the seller’s
beliefs are at least as good as what could have been
estimated using the intermediary’s samples. All afore-
mentioned candidate models are special cases of ours.

We start with an impossibility result for general
value distributions. See Section A for details.

Theorem 3.1. If the value distributions are allowed to
have multiple monopoly prices whose social welfare dif-
fer by at least Ω(1), e.g., the uniform distribution over
{ 1

2 , 1}, no algorithm can obtain any o(1)-approximation
using a bounded number of samples.

(Discrete) MHR-like Distributions. Given the
above impossibility result that relies on value distribu-
tions that have multiple monopoly prices whose respec-
tive values of social welfare are vastly different, we intu-
itively need the value distributions to be unimodal and
far from having a plateau. The family of continuous
monotone hazard rate (MHR) distributions, a standard
family of distributions in the literature, has all the nice
properties that we need, except that they are continu-
ous. They are unimodal since they have concave rev-
enue curves in the quantile space (folklore). In fact,
their revenue curves in the quantile space are strongly
concave near the monopoly price [26, Lemma 3.3]. They
also admit other useful properties: the optimal revenue
is at least a constant fraction of the social welfare [15,
Lemma 3.10]; and the monopoly price has a sale proba-
bility lower bounded by some constant [23, Lemma 4.1].

There is an existing notion of discrete MHR distri-
butions by [3] that mimics the functional form of the
continuous version. However, it loses some useful prop-
erties. In particular, it contains some distributions that
have two monopoly prices, e.g., the uniform distribu-
tion over { 1

2 , 1}, and as a result still suffers from the
impossibility result.

Instead, we define a family of (discrete) MHR-like
distributions directly from the aforementioned benign
properties of continuous MHR distributions. Hence, un-
like the existing notion of discrete MHR distributions,
our definition truly inherits the main features of contin-
uous MHR distributions. We remark that the constants
1
4 and 1

e in the following definition are merely copied
from the continuous counterparts; our results still hold
asymptotically if they are replaced by other constants.

Definition 3.1. (MHR-like Distributions) A dis-
crete distribution F is MHR-like if it satisfies:

1. (Concavity) Its revenue curve is concave in the
quantile space.

2. (Strong concavity near monopoly price) For its
monopoly price p∗ and any other price p′, suppose
their quantiles are q∗ and q′ respectively; then, we
have:

Rev
(
p′,F

)
≤
(
1− 1

4 (q∗ − q′)2
)
· Rev

(
p∗,F

)
.

3. (Large monopoly sale probability) Its monopoly
price’s sale probability is at least 1

e .

4. (Small revenue and welfare gap) Its monopoly rev-
enue is at least 1

eEv∼F [v].

The main difference of our MHR-like distribution
and the notion in [3] is property 2 in definition 3.1. An
MHR-like distribution can be made by discretizing an
continuous MHR distribution, meanwhile ensuring that
there is a gap between the optimal revenue and any
sub-optimal ones.

We show that polynomially many samples are suffi-
cient for learning an ε-optimal segmentation, with only
the mild assumption on seller’s behavior discussed ear-
lier in the section.

Theorem 3.2. With m = poly
(
ε−1, T, log V

)
i.i.d.

samples, we can learn a segmentation that is optimal
up to an ε additive factor in poly

(
ε−1, T, V

)
time.

3.2 Robustification: Motivation and Definition
Recall the thought experiment in Section 1. Consider
a more powerful intermediary who has exact knowledge
of the true distributions; the seller, however, still acts
according to her approximately accurate beliefs. Fur-
ther, recall the example where the problem remains
nontrivial even when the intermediary has more power;
we give more details below. Consider a segment for
which there are two prices p∗ and p, such that p∗ is
the monopoly price with a quantile close to 1, while p
gets close-to-optimal revenue with a quantile close to
0. Even though a single MHR-like distribution cannot
have such a plateau, a mixture of MHR-like distribu-
tions can.1 See Figure 3a for an illustrative example. If
the intermediary includes this segment, the seller’s belief
may overestimate the revenue of p and/or underestimate
that of p∗ and thus deduce that p is the monopoly price

1In fact, every distribution on [V ] is a mixture of MHR-like
distributions, because point masses are MHR-like.
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price !∗
price !

(a) True distribution

price !∗
price !

(b) Seller’s belief

Figure 3: Plateau Example. In a revenue curve in the quantile space, the x and y coordinates are the quantile
of a price and its revenue respectively. On the left, the solid curve is the revenue curve of a segment w.r.t. the
true distributions; the dotted curves are those of the type distributions mixed in the segment. On the right are
the counterparts w.r.t. the seller’s beliefs. Prices p∗ and p are monopoly prices of the segment w.r.t. the true
distributions and the seller’s beliefs respectively.

instead of p∗. See Figure 3b. The resulting social wel-
fare may be much smaller than what the intermediary
expects from the true distributions.

Intuitively, we would like to convert the optimal
segmentation w.r.t. the true distributions into a more
robust version, such that for any approximately accu-
rate beliefs that the seller may have, the resulting social
welfare and revenue are both close to optimal. As men-
tioned in Section 1, we will refer to this procedure as
robustification, and the result as the robustified segmen-
tation.

In the following definition, the subscripts of εS
and εI indicate they are the additive errors that the
seller and intermediary are aiming for, respectively.
Further, it states that the robustified segmentation
must keep all segments in the original version (Σr ⊇
Σ∗). We ignore insignificant segments due to technical
difficulties in achieving the stated properties for them,2

and that their roles in the revenue and social welfare
are negligible. For any significant segment, the first two
conditions state that its weight and mixture of types
are preserved approximately; the third condition gives
the desirable robustness against the uncertainties in the
seller’s behavior.

Definition 3.2. (Robustified Segmentation)
Suppose that (1) (Σ∗,G∗) is a segmentation, repre-
sented by x∗σ and weight w∗σ = µ(x∗σ), ∀ σ ∈ Σ∗; and
(2) p∗σ is an optimal price w.r.t. F(x∗σ), ∀ σ ∈ Σ∗.
For any εI ≥ εS > 0, (Σr,Gr) is an (εI , εS)-robustified
segmentation, represented by xrσ and weight wrσ with
Σr ⊇ Σ∗, if for any σ ∈ Σ∗, either σ is insignificant in
that Ev∼F(x∗σ)[v] < εI , or:

2If the expected value is tiny in the first place, all prices are
εS-optimal. Hence, we cannot achieve robustness.

1. (Weight preservation) wrσ ≥ (1− εI) · w∗σ;

2. (Mixture preservation) ‖x∗σ − xrσ‖1 ≤ εI ; and

3. (Robustness) no εS-optimal price w.r.t. F(xrσ) has
a quantile smaller than that of p∗σ by εI .

The next lemma shows that the technical conditions
in the definition of robustified segmentation indeed lead
to robust bounds in terms of both social welfare and
revenue and, by induction, their linear combinations.
The proof follows from straightforward calculations and
therefore is deferred to full version paper.

Lemma 3.1. For any prices prσ’s that are εS-optimal
w.r.t. segments σ ∈ Σr in the robustified segmentation,
we have the following in terms of social welfare and
revenue:∑

σ∈Σr w
r
σ · SW

(
prσ,F(xrσ)

)
≥∑

σ∈Σ∗

w∗σ · SW
(
p∗σ,F(x∗σ)

)
−O

(
εI
)
,

|
∑
σ∈Σr w

r
σ · Rev

(
prσ,F(xrσ)

)
−∑

σ∈Σ∗

w∗σ · Rev
(
p∗σ,F(x∗σ)

)
| ≤ O

(
εI
)
.

3.3 Robustification: Algorithm This subsection
introduces an algorithm that finds such an (εI , εS)-
robustified segmentation in polynomial time for any
sufficiently large εI , i.e.:

(3.3) εI ≥ ε
1
6

ST
2
3 log

1
6 V = Õ

(
m−

1
12T

2
3

)
,

Lemma 3.2. There is an algorithm that computes in
polynomial time an (εI , εS)-robustified segmentation, for
any εI and εS that satisfy Eqn. (3.3).
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(a) Robustify a significant segment
(b) Counterbalance to restore the
centroid

Figure 4: Robustification.

3.3.1 Proof Sketch of Lemma 3.2
Step 1: Robustify the significant segments one by

one, ignoring the centroid constraint. Any significant
segment σ is represented by a point xσ and weight
wσ = µ(xσ), whose intended price is p∗. In the simplex
view, we want to move slightly away from xσ such that
we end up far from all regions Xp where price p gives a
small consumer surplus. How do we find which direction
to move towards? (Since we are in high dimensions, we
cannot rely on geometric intuition.)

The choice of direction to move towards relies on
a structural result about the mixtures of MHR-like
distributions stated as Lemma 3.3. The lemma promises
that there exists a type t∗ such that for the distribution
F(t∗), for prices whose quantiles are less than that of p∗

by at least εI , there is a revenue gap of εST
εI

. Once we
prove existence, we can find such a type by enumerating
over all types and checking if the property holds.

In the simplex view, see Figure 4a. We want to
move xσ(black point) towards the vertex that corre-
sponds to type t∗(to the white point); we want to be at
(1− εI

T )xσ + εI
T xt∗ . To do this, decrease the probability

of mapping each type to σ by an 1− εI
T factor; then, in-

crease the probability of mapping t∗ to σ additively by
wσεI
T to restore the original weight. Clearly, this satisfies

the mixture preservation condition.
Let p be any price whose quantile is smaller than

that of p∗ by at least εI . The revenue gap between p
and p∗ for F(t∗) is εST

εI
, and we moved towards xt∗ by

εI
T , therefore the revenue gap between p and p∗ for the
mixture is at least εS . As a result, p cannot be an εS-
optimal price in the resulting segment. Thus, we have
the robustness condition.

Step 2: See Figure 4b. We will add a counterbal-
ancing segment(gray) to restore the centroid. After the
first step, the centroid may be shifted from its intended
location, i.e., the middle of the simplex, by up to εI

T .

Consider the line that crosses the intended centroid and
the shifted one. Add a counterbalancing segment at its
intersection with the boundary of the simplex on the
opposite side of shifted centroid, with an appropriate
weight that restores the centroid. The weight is only
O(εI) because the distance between the intended cen-
troid and the counterbalancing segment, in fact, any
point on the boundary of the simplex in general, is at
least Ω( 1

T ) by basic geometry.
Finally, the total weight may now exceed 1 by up to

O(εI). Normalize the weights of all segments to restore
a total weight of 1. It decreases the weights of the
segments by at most 1 − O(εI) and therefore satisfies
the weight preservation condition.

3.3.2 Structural Lemma and the Proof Sketch

Lemma 3.3. For any segment x ∈ ∆ that is significant
in the sense that Ev∼F(x)[v] ≥ εI , and its corresponding
monopoly price p∗, there is a type t∗ ∈ [T ] such that for
any price p whose quantile w.r.t. F(x) is smaller than
that of p∗ by εI , we have:

Rev
(
p,F(t∗)

)
< Rev

(
p∗,F(t∗)

)
− εST

εI
.

This is technically the most challenging part of the
proof. It is long and we show proof sketch here. For
formal proof please refer to the full version. By concav-
ity of the revenue curves of MHR-like distributions, it
suffices to consider the inequality when p is the smallest
price whose quantile w.r.t. F(x) is smaller than that of
p∗ by εI . Let this price be p̄.

Recall the plateau example in Figure 3. From the
picture, it is tempting to pick the type that corresponds
to the “right-most” dotted revenue curve, as it has the
desirable shape that the revenue rapidly decreases when
the price increases from p∗. There are several problems
with this approach. First, the concept of “right-most”
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revenue curve is underdefined. Is it the one with the
smallest monopoly price? Or the one with the largest
monopoly sale probability? Second, even if we find a
type whose revenue curve has the desirable shape, it
still may not prove Lemma 3.3. For example, it may
not have a large enough optimal revenue in the first
place and, thus, the RHS of the inequality in the lemma
is negative.

Instead, we will prove the lemma by contradiction.
Intuitively, the contradiction will be that there is a type
t such that the revenue curve of F(t) has a large plateau;
this is not possible for MHR-like distributions. The
assumption to the contrary guarantees that the revenue
of p∗ is not much above that of any price between p̄ and
p∗. The following additional conditions formalize the
‘large plateau’ notion:

1. Revenue between p̄ and p∗ is not much higher:
∀ p′ ∈ [p∗, p̄] ,

Rev
(
p′,F(t)

)
− Rev

(
p∗,F(t)

)
≤ Õ

(
εST

2

ε2I

)
.

2. The plateau is high, i.e., revenue of p∗ is large:
Rev

(
p∗,F(t)

)
≥ Ω

(
εI
T

)
.

3. The plateau is wide, i.e., the quantiles of p̄ and p∗

differ by at least Ω
( ε2I
T

)
.

The rest of the subsection assumes to the contrary
that the inequality in the lemma fails to hold for all
types. Then, we use a probabilistic argument to show
that there must be a type t such that the distribution
F(t) satisfies the conditions mentioned above, and argue
that these lead to a contradiction.

Probabilistic Argument. Consider sampling a
type t according to the mixture induced by the segment.
We show that under the assumption to the contrary,
the probability that condition 1 is violated is less than
O
(
εI
T

)
. Further, we prove that the revenue of p∗ w.r.t.

F(x), which is optimal for this distribution, is at least
an Ω

(
1
T

)
fraction of the social welfare w.r.t.F(x). Then

by the assumption that this segment is significant, this
is at least Ω

(
εI
T

)
. Then, by a Markov inequality type

argument, there is at least an Ω
(
εI
T

)
probability that

Condition 2 is satisfied. Putting together, there is a
positive chance that we sample a type t that satisfies
the first two conditions. Finally, we finish the argument
by showing that the first two conditions actually imply
the third one.

Contradiction. The proof is a case by case anal-
ysis, so we present the bottleneck case which forces
the choice we made in Eqn. (3.3). This is when the
monopoly price p(t) of type t is smaller than both p̄
and p∗. A complete proof that includes the other cases
are deferred to full version of the paper.

The concavity, and strong concavity near monopoly
price, of MHR-like distributions, along with the fact
that both p̄ and p∗ are larger than the monopoly price,
imply that the revenue gap is at least the revenue of p∗

times the square of the quantile gap between the prices.
Further by the second and third conditions above, of
having large revenue and large quantile gap, the revenue
gap between prices p̄ and p∗ is at least:

Ω

(
εI
T

)
· Ω
(
ε2I
T

)2

= Ω

(
ε5I
T 3

)
This is greater than εST

εI
by our choice of εI ≥

ε
1
6

ST
2
3 log

1
6 V in Eqn. (3.3).

3.4 Proof of Theorem 3.2: Project, Optimize,
and Robustify Finally, we show how to use the robus-
tification technique to design an algorithm, presented as
Algorithm 1, that learns a (robust) O(εI) segmentation
in the sample complexity model.

Algorithm. Similar to the existing works on the
sample complexity of mechanism design, the algo-
rithm starts by constructing the empirical distributions.
Then, we project them back to the space of MHR-like
distributions w.r.t. the Kolmogorov-Smirnov distance
dKS , i.e., the maximum difference in the quantile of
any value. The feasibility of this step comes from the
fact that the true distributions are MHR-like and satisfy
the inequality. We explain in Appendix C how to com-
pute in polynomial time approximate projections that
relax the RHS of the inequality by a constant factor;
other constants in our analysis need to be changed ac-
cordingly but the bounds stay the same asymptotically.
Further, we optimize the segmentation according to the
MHR-like empirical distributions. Finally, we robustify
the resulting segmentation using Lemma 3.2.

Analysis. Note that for any type t, the distances
between the true distribution F(t) and the seller’s be-
lief FS(t), between F(t) and the empirical distribution
E(t), and between E(t) and the MHR-like empirical dis-

tribution Ẽ(t) are bounded by εS . Hence, the distance
between the seller’s belief FS(t) and the MHR-like dis-

tribution Ẽ(t) is at most 3εS by the triangle inequality
and, thus, the same conclusion holds replacing types
with mixtures induced from the segments. Therefore,
for any segment in the segmentation chosen by the al-
gorithm, the seller’s monopoly price w.r.t. her beliefs is
a 6εS-optimal price w.r.t. the MHR-like empirical dis-
tributions. By Lemma 3.1, the performance of the al-
gorithm is an O(εI)-approximation comparing with the
optimal w.r.t. the MHR-like empirical distributions.

It remains to show that the optimal w.r.t. the MHR-
like empirical distributions is anO(εI)-approximation to
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Algorithm 1 Learn a (Robust) Segmentation from Samples

1. Construct empirical distributions E(t)’s, t ∈ [T ], from samples.

2. Find MHR-like empirical distributions Ẽ(t)’s, t ∈ [T ], such that the Kolmogorov-Smirnov distances between

them and the corresponding empirical distributions are small: dKS
(
Ẽ(t), E(t)

)
≤ εS .

3. Find optimal segmentation (Σ∗,G∗) w.r.t. MHR-like empirical distributions Ẽ.

4. Construct the robustified segmentation (Σr,Gr) and return it.

Algorithm 2 Robustify a segmentation

Input: MHR-like distributions F(t), t ∈ [T ];
segmentation (Σ∗,G∗), represented by point-weight pairs (x∗σ, w

∗
σ), σ ∈ Σ∗;

prices p∗σ, σ ∈ Σ∗, which are optimal w.r.t. the corresponding F(x∗σ)’s.

Output: Robustified segmentation (Σr,Gr), represented by xrσ’s and weights wrσ’s.

1. For every segment σ ∈ Σ∗:

(a) If segment σ is insignificant, i.e., Ev∼F(x∗σ)[v] < εI , let xrσ = x∗σ.

(b) Otherwise, construct xrσ using Algorithm 3;

(c) Decrease the weight by a 1− εI multiplicative factor, i.e., wrσ = (1− εI)w∗σ in both cases.

2. For every type t ∈ [T ]:

(a) Add a new segment σ(t) /∈ Σ∗ to Σr such that xrσ(t) is the vertex of simplex ∆ that corresponds to type
t.

(b) Let its weight be wrσ(t) = 1
T −

∑
σ∈Σ∗ w

r
σ · xrσ,t.

the optimal w.r.t. the true distributions. To do that, it
suffices to find a good enough segmentation achieving
this approximation. For this we once again resort to
Lemma 3.2, in particular, the existence of an (εI , εS)-
robustified segmentation (Σr,Gr) for the optimal seg-
mentation w.r.t. the true distributions F(t)’s. Note

that the MHR-like empirical distributions Ẽ(t)’s are at
most O(εS) away from the corresponding true distribu-
tions F(t)’s, by triangle inequality. Therefore, running
(Σr,Gr) on the MHR-like distributions, with a seller
who posts the monopoly price w.r.t. the MHR-like dis-
tributions, gives an O(εI)-approximation by Lemma 3.1.

4 Bandit Model

In the bandit model, the intermediary interacts with
the seller and the buyer repeatedly for m rounds for
some positive integer m, with the buyer’s type-value
pair freshly sampled in each round. The goal is to
maximize the cumulative objective during all m rounds.
There are a large variations of models depending on the

modeling assumptions. Next, we explain our choice.
Intermediary’s Information: The intermediary

does not know the value distributions at the beginning
and, therefore, must learn such information through the
interactions in order to find a good enough segmenta-
tion. Further, the intermediary observes in each round
only the purchase decision of the buyer, but not her
value. This is similar to the bandit feedback in on-
line learning and hence the name of our model. We
remark that the alternative model where the interme-
diary can observe the values, which corresponds to full-
information feedback in online learning, easily reduces
to the sample complexity model as the intermediary
may simply run the algorithm in the sample complexity
model using the bids in previous rounds as the samples.

Since the intermediary can observe the buyer’s type
in each round, she can easily learn the type distribution
through repeated interactions. To simplify the discus-
sions, we will omit this less interesting aspect of the
problem and will assume that the type distribution is
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Algorithm 3 Robustify a (significant) segment

Input: MHR-like distributions F(t), t ∈ [T ];
segment σ, represented by x∗σ, such that Ev∼F(x∗σ)[v] ≥ εI ;
price p∗, which is optimal w.r.t. F(x∗σ).

Output: Robustified version of σ, represented by xrσ.

1. Find type tσ such that for any price p whose quantile w.r.t. F(x∗σ) is at most that of p∗ less εI , we have
Rev

(
p,F(tσ)

)
< Rev

(
p∗,F(tσ)

)
− εST

εI
.

2. Construct the robustified version as xrσ =
(
1 − εI

T

)
· x∗σ + εI

T · xtσ , where xtσ ∈ ∆ has its tσ-th entry being
one and all others being zeros.

publicly known. Following the treatment in previous
models, we further assume that it is a uniform distribu-
tion.

Buyer’s Behavior: We assume the buyer is my-
opic and, therefore, buys the item in each round if and
only if the price posted is at most her value. In other
words, the buyer does not take into account that her be-
havior in the current round may influence how the inter-
mediary and the seller acts in the future. This challenge
of non-myopic buyers was partly addressed in the online
auction problem by [25]. Their techniques, however, do
not directly apply to our problem.

Seller’s Information: We assume that, like the
intermediary, the seller does not have any information
about the value distributions of the buyer at the begin-
ning, and must learn such information through bandit
feedback. With this assumption, we will investigate how
to encourage the seller to explore on the intermediary’s
behalf. What makes it challenging is that the seller’s ob-
jective (revenue) and the intermediary’s objective (e.g.,
social welfare) may not be aligned.

Seller’s Behavior: Any algorithm by the interme-
diary must rely on some assumptions on the seller’s be-
havior to get a non-trivial performance guarantee. In-
formally, we need the seller to pick an (approximately)
optimal price in terms of revenue when there is enough
information for finding one; there is not much we can
do if the seller simply ignores any information and picks
prices randomly. On the other hand, we also need the
seller to explore at a reasonable rate in order to learn
the value distributions. If the seller could have other
sources of information which allow him to estimate the
distribution accurately, he may severely limit his ex-
ploration on prices whose confidence intervals suggest
high-potential (and high uncertainty). Our assumption
must disallow such strategies and ensure that the seller
learns the distributions only via observing the buyer’s
actions. What are the mildest behavioral assumptions

(on the seller) that allow the intermediary to have a
non-trivial guarantee in bandit model?

Note that the seller herself faces an online learning
problem with bandit feedback. Our model is driven by
the exploration-exploitation dilemma in her viewpoint.
First, we introduce the upper confidence bound (UCB)
and the lower confidence bound (LCB) of the quantile
of any value v and any type t given past observations in
the form of (type, price, purchase decision)-tuples.

1. For any value v ∈ [V ] and any type t ∈ [T ], suppose
there are m(v, t) past observations with type t and
price v, among which the buyer purchases the item
in m+(v, t) observations. Then, for some constant
C > 0 that depends on the desired confidence level,
let:

Ũ(v, t) = m+(v,t)
m(v,t) +

√
C

m(v,t)

L̃(v, t) = m+(v,t)
m(v,t) −

√
C

m(v,t)

2. Noting that quantiles are monotone, we define the
UCB and LCB as follows:

U(v, t) = min
v′≤v

Ũ(v′, t) L(v, t) = max
v′≥v

L̃(v′, t)

3. This further induces the UCB and LCB of the
quantile of value v w.r.t. each segment x ∈ ∆:

U(v,x) =
∑
t∈[T ]

xt · U(v, t)

L(v,x) =
∑
t∈[T ]

xt · L(v, t)

For some target average regret 0 < εS < 1 of the
seller, we say that she exploits in a round if the segment
x and her price p satisfy that:

U(p,x) ≥ max
p′∈[V ]

U(p′,x)− εS .
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Otherwise, we say that she explores. We assume that
the seller is an εS-canonical learner in the sense that she
exploits in all but at most an εS fraction of the rounds.

Among others, we give two example algorithms that
satisfy this definition. First, the Upper-Confidence-
Bound (UCB) algorithm satisfies this with εS = 0.
Further, consider the following simple Explore-then-
Commit (ETC) algorithm, with εS = Õ

(
m−

1
3TV

)
. The

seller explores in the first εSm = Ω̃
(
TV ε−2

S

)
rounds by

posting random prices. Since a price-type pair shows
up with probability 1

TV in each of these rounds, she
learns the quantile of every price p ∈ [V ] w.r.t. the value
distribution F(t) of every t ∈ [T ] up to an additive error
of εS . Then, in the remaining rounds, she can pick any
price that is not obviously suboptimal in the sense that
its UCB is smaller than the LCB of some other price.

4.1 Algorithm In each round, the algorithm seeks to
place the intermediary in a win-win situation by main-
taining a set of optimistic hypothetical value distribu-
tions for the types, together with a robustified version of
the optimal segmentation w.r.t. the hypothetical distri-
butions. If the seller indeed posts a price that is consis-
tent with our optimistic hypothesis, we use the analysis
from the previous section (Thm. 3.2) to show that the
objective in this round is close to optimal. Otherwise,
if the seller posts a price that is inconsistent with our
optimistic hypothesis, we argue that there must be a
sufficiently large gap between its UCB and LCB and,
thus, the intermediary gets some useful new informa-
tion.

There is a caveat, however, when the algorithm
constructs the robustified segmentation: it needs to
replace εS with some slightly larger parameter εM . In
particular, let εM be such that if we define εI using
Eqn. (3.3), replacing εS with εM , we have: εIm =

TV ε−3
M . Solving it gives that εM = Θ

(
m−

6
19 poly(T, V )

)
and εI = Θ

(
m−

1
19 poly(T, V )

)
.

We show that for εS-canonical learners with a suf-
ficiently small εS , which is satisfied by both aforemen-
tioned examples, we can get sublinear regret.

Theorem 4.1. Algorithm 4 gets at least Opt −
O
(
m−

1
19 · poly(V, T )

)
per round on average, provided

that the seller is an εS-canonical learner with εS ≤
O(εM ) = O

(
m−

6
19 · poly(V, T )

)
.

If the seller explores in a round such that the
corresponding UCB and LCB differs by not only εS but
by at least εM , we call it a major exploration. We first
upper bound the number of rounds that involve such
major explorations in the following lemma.

Lemma 4.1. The expected number of rounds that are
major explorations is at most Õ(TV ε−3

M ).

Proof. Every time that the seller makes a major explo-
ration on some price p in a round, say, in response to
a segment represented by a point x ∈ ∆, the gap be-
tween the UCB and the LCB is at least εM . Then,
the expected gap between Ũ(p, t) and L̃(p, t) is also at
least εM when type t is sampled according to x. This
implies that, with probability at least εM

2 , the realized

type t actually has a gap of at least εM
2 between Ũ(p, t)

and L̃(p, t). Note that for any type t, and any price p,
this cannot happen by more than O

(
ε−2
M

)
times by the

definitions of Ũ(p, t) and L̃(p, t). Hence, the expected
number of times that the seller explores cannot exceed
O
(
TV ε−3

M

)
times.

We now prove Theorem 4.1.
Case 1: Seller picks an undesirable price.

Suppose the seller fails to pick a price that is at least
14εM -optimal w.r.t. the optimistically chosen distribu-
tions F∗. Instead, she chooses a price p. Then, either
she is not exploiting in the sense of the definition in Sec-
tion 4, which cannot happen in more than an εS fraction
of the rounds, or the UCB of p is at least the maximum
UCB among all prices less εS . This is larger than the
expected revenue induced from the optimistically cho-
sen distribution F∗ by at least 14εM − εS > εM , by the
assumption that p is not 14εM -optimal. Note that the
latter is weakly larger than the LCB. Hence, we con-
clude that the UCB and LCB differs by at least εM ,
which means that this is a major exploration that can-
not happen in more than an m−1 · O

(
TV ε−3

M

)
= O(εI)

fraction of the rounds (Lemma 4.1).
Case 2: Sale probability is lower than ex-

pected. Next, consider the case when the seller picks a
price that is indeed 14εM -optimal w.r.t. the optimisti-
cally chosen distributions F∗, but the sale probability
of the price given by the true distributions is smaller
than by F∗ by more than εI . In this case, note that
both sale probabilities are bounded between the UCB
and LCB; we again conclude that there is a gap of at
least εI > εM between them. Hence, this is a major
exploration which cannot happen in more than O(εI)
fraction of the rounds.

Case 3: Everything goes as expected. Finally,
consider the good case, when the seller indeed picks a
price that is at least 14εM -optimal least 4 w.r.t. the
optimistically chosen distributions F∗, and that the sale
probability of the price given by the true distributions
is at least that by F∗ less εI . Then, by Lemma 3.1, we
get that the expected objective in this round is at least
Opt−O(εI).
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Algorithm 4 Segmentation algorithm in the bandit model (in each round)

1. Let M(t) be the set of MHR-like distributions with support [V ] such that the quantile of each value v ∈ [V ]
is between the corresponding UCB and LCB.

2. Let F∗(t) ∈M(t), t ∈ [T ], be such that Opt(F∗) is maximized.

3. Find (Σ∗,G∗), the optimal segmentation w.r.t. F∗, via the algorithm in Section 2.

4. Construct (Gr,Σr), a robustified version of (Σ∗,G∗), via Algorithm 2, using εM in place of εS .

Since the first two cases cannot happen in more than
an O(εI) fraction of the rounds, the bound stated in
Theorem 4.1 follows.

5 Further Related Work

The problem of price discrimination is highly related
to screening in games of asymmetric information, pio-
neered by [37, 13], where the less informed player moves
first in hopes of combating adverse selection. In our
setting, the seller wishes to screen buyers by charging
different prices depending on the buyer’s value. The
intermediary’s segmentation allows the seller to screen
more effectively. The intermediary themselves face a
signaling problem, as their choice of segmentation is ef-
fectively a signaling scheme to the seller.

As such, our work is related to the broad literature
on signaling and information design, where a media-
tor designs the information structures available to the
players in a game [5]. A special case of this is known as
Bayesian persuasion [28, 17]: an informed sender (here
the intermediary) sends a signal about the state of the
world to a receiver (here the seller), who must take an
action that determines the payoff of both parties. The
goals of the sender and receiver may not be aligned, so
the sender must choose a signaling scheme such that
the receiver’s best response still yields high payoff for
the sender. See [16, 6] for surveys on these topics.

Our results for online learning are also related to
work on iteratively learning prices [8, 31, 11, 34, 9, 25].
Both lines of work consider the seller’s problem of incen-
tive design or learning, but do not have an intermediary
or market segmentation component. Our model is also
somewhat related to the literature on dynamic mecha-
nism design, which considers the incentive guarantees
of multi-round auctions where the same bidders may
participate in multiple rounds. [7, 27, 35] gave truthful
dynamic mechanisms for maximizing social welfare and
revenue.

Our results are related to recent work on incentiviz-
ing exploration in a bandit model [19, 29, 30]. These
papers typically model a myopic decision-maker in each

round, and an informed non-myopic principle who can
influence the decision-maker to explore rather than ex-
ploit. In our setting, the seller is myopic decision-maker
who sets prices, and the intermediary can influence that
decision by changing the segmentation. The previous
results do not directly apply to our setting, as an ac-
tion corresponds to setting a price in the observed seg-
ment. Hence there are exponentially many actions, so
one should not hope for polynomial run time or good re-
gret guarantees by directly applying those results. Ad-
ditionally, the intermediary chooses the segmentation
but the observed segment is chosen randomly, so the in-
termediary cannot force the seller to play any particular
action.

6 Future Work

We view our results as initiating a new line of work on
algorithmic price discrimination under partial informa-
tion. We believe there are many promising open prob-
lems left to be explored in this direction, and hope this
paper inspires future work under other informational
models and market environments. We now present some
of the most interesting directions for future work.

Competitive Markets. This paper and [4] con-
sider a monopolist seller, which is a good fit for some-
thing like an ad exchange. In many online marketplaces
the sellers are in a competitive rather than a monopolis-
tic setting. The products are differentiated so sellers can
exert some pricing power, which still incurs deadweight
loss. It would be very interesting to extend this theory
of price discrimination to such competitive markets.

Strategic Buyers. When a seller uses past buyer
behavior in the form of auction bids or purchase deci-
sions to decide future prices, and a buyer has repeated
interactions with such a seller, the buyer may be incen-
tivized to strategize. Even if each interaction in isola-
tion is strategyproof, the buyer may forgo winning an
earlier auction in order to get a lower price in the future.
When each buyer represents an insignificant fraction of
the entire market, techniques from differential privacy
can address this issue [25]. In this paper we ignore this
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strategic aspect and assume that buyers are myopic. It
would be very interesting to get results analogous to
[25], since their techniques do not readily extend to our
model.

Worst Case Model. In online learning, even for
arbitrary sequence of inputs, we can often get a regret
guarantee matching that for an i.i.d. input sequence. In
particular this is true for a monopolistic seller learning
an optimal price or an optimal auction [9, 8]. It
is tempting to conjecture that the same holds for
our setting as well, but we run into difficulties even
modeling the problem. How does the seller behave
in such a scenario? In this paper, we modeled the
seller behavior based on the underlying distribution.
Defining a seller behavior model in the absence of
such a distribution that is both reasonably broad and
allows regret guarantees in the worst case setting is an
interesting challenge.
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A Further Examples

A.1 Benefit of Segmentation We now reproduce
an example from [4] that shows how a segmentation can
eliminate deadweight loss.

Example. The value set [V ] = {1, 2, 3} is identical to the
type set [T ], and each distribution F(t) is a pointmass at
t. The prior distribution over values/types is uniform.
The monopoly reserve of the uniform prior distribution
is 2. When the seller does not segment the market
and posts the monopoly reserve price, revenue is 4/3,
consumer surplus is 1/3, and the deadweight loss is 1/3.

Consider instead the following segmentation with
Σ = {σ1, σ2, σ3} where G(1) = (1, 0, 0); G(2) =
(1/3, 1/6, 1/2); and G(3) = (2/3, 1/3, 0). Recall that
G(t) is the distribution of signals sent by the intermedi-
ary upon observing type t. This signaling scheme gener-
ates three market segments, one corresponding to each
of σ1, σ2, σ3. The seller can compute the conditional dis-
tribution of values within each segment, and will post
the monopoly price for that distribution. Within seg-
ment σ1, the distribution of values is: x1 with probabil-
ity 1/2, x2 with probability 1/6, and x3 with probability
1/3. This happens to be the equal revenue distribution
on values {1, 2, 3}. Within segment σ2, only buyers of
types 2 or 3 will be present, since a buyer of type 1
will never be mapped into this segment. The condi-
tional distribution of values in this segment is: x2 with
probability 1/3 and x3 with probability 2/3, which also
happens to be the equal revenue distribution on values
{2, 3}. Type 2 is the only type with positive probability
of being mapped to segment σ3, so the value distribu-
tion in segment σ3 is a point mass on value 2.

Since each market segment has an equal revenue
distribution of values, the seller can maximize his profit
by posting any price in the support of that distribution.
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For the sake of this example, we will assume the seller
breaks ties by posting the lowest optimal price.3 In
market segment σ1, the seller will post price p = 1,
which will generate revenue of 1 and consumer surplus
of (1/6) × 1 + (1/3) × 2 = 5/6. In σ2, the seller will
post price p = 2, which will generate revenue of 2 and
consumer surplus of (2/3)× 1 = 2/3. Finally, in market
segment σ3, the seller will post price p = 2, which will
generate revenue of 2 and consumer surplus of 0.

Given the prior distribution of values, one can also
compute the probability of the intermediary generat-
ing each market segment. In this case, segment σ1 is
drawn with probability 2/3, segment σ2 is drawn with
probability 1/6, and segment σ3 is drawn with proba-
bility 1/6. Combining these, we see that the expected
revenue of this segmentation is (2/3) × 1 + (1/6) ×
2 + (1/6) × 2 = 4/3, and the consumer surplus is
(2/3)×(5/6)+(1/6)×(2/3)+(1/6)×0 = 2/3. This seg-
mentation has zero deadweight loss, which means that
full economic efficiency is achieved.

A.2 Noisy Types Now consider the above example
with noise. This example has been briefly discussed in
Section 2. This subsection includes more details.

Example. Given a noise level of 1− z, each type t ∈ [T ]
corresponds to the distribution F(t) given by

Prv∼F(t)[v] =

{
z if v = t,
1−z

2 otherwise.

Note that when z = 1/3, all F(t) equal the
uniform prior, and no further (non-trivial) segmentation
is possible. At the other extreme, when z = 1 each F(t)
is a pointmass at t, which corresponds to Example 1.
For z = 0.49, it turns out that market segmentation
cannot help at all. Any segmentation will result in the
seller always setting the monopoly reserve price of 2,
and the result is the same as no segmentation! As
in Example 1, revenue from no segmentation is 4/3,
consumer surplus is 1/3, and the deadweight loss is 1/3.

On the other hand, when z = 0.8 segmentation is
possible, but it is no longer possible to achieve full eco-
nomic surplus due to the noisy types. If the interme-
diary implemented the same segment map as in Exam-
ple 1, the resulting conditional value distributions in
each segment would no longer be equal revenue distri-
butions because types are no longer perfectly correlated
with values. If the intermediary perfectly segments the
market by types using the deterministic segment map

3This can be strictly enforced using arbitrarily small pertur-
bations.

G(t) = σt, this will result in revenue 2− 4(1−z)
3 = 1.7333,

consumer surplus 2(1−z)
3 = 0.1333, and deadweight loss

2(1−z)
3 = 0.1333. Note that under the noiseless setting

of Example 1, this segmentation would have allowed
the seller to perfectly price discriminate, resulting in
revenue 2, consumer surplus 0, and deadweight loss 0.
These changes in economic outcome are a direct result of
the fact that types are only a noisy signal of the buyer’s
value. For example in market segment σ3, the seller will
still set monopoly price p = 3, but only a (1−z)-fraction
of the segment will have value 3 and purchase the item.

A.3 Impossibility of [4] Style Characterization
Recall the simplex view and Figure 2. In the setting
of [4], the segmentation only consists of points in Xp∗

where p∗ is the monopoly price of the prior distribution
(which is the white region X2 in Figure 2a). As
mentioned earlier, [4] assume that ties for monopoly
price are broken in favor of the lowest price. This implies
that even though the market is now segmented, the
price in each segment is at most p∗. In other words,
segmentation can only lower prices!

One could hope for a similar characterization even
in the noisy signal case: after all we can still write τ
as a convex combination of points in the intersection
of Xp∗ (the white region) and ∆([T ]) (the convex hull
of the type distributions, depicted as the triangles in
the interior of the simplex in Figure 2a), as can be seen
in Figure 2b. Unfortunately we show that this is not
without loss of generality in the following example. In
particular, the example shows that restricting to such
segments may lead to a strictly smaller social welfare
than otherwise.

Example. In this example, there are two types, corre-
sponding to the points x{1,2} and x{3}, i.e., type 1 is
the uniform (equal revenue) distribution over {1, 2}, and
type 2 is the point mass on 3. The distribution over
types is still uniform, which once again gives the same
prior distribution τ as before.

The difference now is that we can only pick points
from the line joining these two points, as depicted in
Figure 5a. Figure 5b shows the social welfare obtained
as we move along this line. The point mass on the
left corresponds to x{1,2}, for which we assume that the
seller picks a price of 1. The left segment corresponds
to the white region X2, and the right to the dark gray
region X3. Using only the white region means using
either the point mass on the left or the left segment.
The dotted line in Figure 5b shows the social welfare
obtained from taking a convex combination of the end
points. This corresponds to the segmentation where the
intermediary simply reveals the type that he observes.
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(a) The two types correspond to the points x{1,2}

and x{3}. The line joining them is the convex hull
∆([T ]) from which we can pick our segments.

(b) The solid line represents the social welfare as you
move along the line from x{1,2} to x{3}. The dotted
line corresponds to the social welfare of the corresponding
convex combination of the two end points

Figure 5: Example in Appendix A.3

As can be seen from the figure, this is strictly better
than restricting to points in X2.

Nonetheless, we can add this as an additional
constraint if so desired (at some loss in the objective).
Our algorithm extends to handle this easily: just skip
iterating over Xp for prices p > p∗.

A.4 Unbounded Sample Complexity in the
General Case So far we have assumed that the prior
distribution is given to us as input and is common
knowledge to all players. How does this happen? What
if you only have samples from the distribution? How
many samples do you need in order to get within an
ε of the optimum? These questions have been studied
under ‘sample complexity of auction design’ quite inten-
sively in the last few years. (See Section 5 for details
on this line of work.) Only recently, the optimal sam-
ple complexity of single item auctions has been resolved
[22]. In this paper, we consider the sample complexity
of market segmentation.

Unlike auction design, here the seller sets the price
to maximize revenue but the intermediary’s objective
may be something different, such as consumer surplus.
For an equal revenue distribution, statistically the sam-
ples will indicate that the high price is revenue-optimal
with a significant probability. This is still true even for
distributions that are “close to” equal revenue where
the low price is strictly revenue-optimal. Higher prices
correspond to lower social welfare, since the buyer is
less likely to purchase the good; thus the segmentation

based on the samples could have a much smaller con-
sumer surplus compared to the optimal segmentation
for the distribution. This is particularly problematic
because as saw earlier, the optimal segmentation only
picks segments with equal revenue distributions. (Re-
call that the vertices of the colored regions correspond
to equal revenue distributions.) We demonstrate this
via the following example.

Example. Consider the distribution on V = {1, 2}
where the probability of seeing 1 is 0.5 + δ, for some
very small δ > 0. We will make the segmentation prob-
lem trivial: there is only one type, i.e., the intermediary
observes no signal. The monopoly price is 1, and con-
sumer surplus is therefore 0.5 − δ; this is trivially the
optimal consumer surplus we can obtain via segmenta-
tion.

When drawing multiple samples from this distribu-
tion, there is a constant probability of seeing see more 2s
than 1s. In this case, the seller sets a monopoly price of
2, leading to a consumer surplus of 0. For any bounded
function f of ε, we can set δ small enough such that with
f(ε) samples, this happens with probability > ε; we can-
not therefore hope to get to within ε of the optimum.
This example shows that we need a stronger assumption
on the input distributions, as compared to those for sin-
gle item auctions. The standard assumptions there are
regularity and boundedness, both of which are satisfied
by the distribution in the example above.

In the above example, we assumed that the seller
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sets the monopoly price on the empirical distribution on
the samples. This is not necessarily an accurate assump-
tion. If the seller follows the literature on the sample
complexity of single item auctions, he should consider a
robust or a regularized version of the empirical distribu-
tion. The seller might also have some additional sources
of information that allow him get an even more accu-
rate estimate. We make a mild assumption on the seller
behavior: that his beliefs are at least as accurate as the
intermediary’s estimate from the samples. For a formal
definition and more detailed discussion, see Section 3.

Given the discussion so far, it may be tempting
to assume that the type distributions are far from the
boundaries of Xvs. This is too strong when you consider
larger value ranges: two prices, say p and p+1, may have
almost identical quantiles and, thus, revenues (which
means the distribution close to the boundary between
Xp and Xp+1), but this is not a problem if they both
give similar consumer surpluses. We make a milder
assumption, which is a discrete version of the monotone
hazard rate (MHR) assumption.4 Here, the naive way
to generalize MHR to discrete distributions is to use the
functional form. This doesn’t seem to work; we instead
require the distribution to have some of the properties
that continuous MHR distributions are known to satisfy.
Once again, a detailed discussion on this with formal
statements are in Section 3.

B Missing Proofs in Section 2

Proof of Lemma 2.1 From Segmentations to Distri-
butions. Given any segmentation (Σ,G), consider the
set X that is the union of the following points. For any
segment σ ∈ Σ, let there be a point x(σ) ∈ ∆([T ]) such
that:

xt(σ) =
PrT [t] ·Pr[G(t) = σ]

PrS [σ]
.

The probability distribution over X is defined as
µ(x(σ)) := PrS [σ]. It is easy to verify that this is in-
deed a probability distribution and that it satisfies the
expectation constraint (2.1).

From Distributions to Segmentations. Given any
(X,µ) that satisfies (2.1), consider the following seg-
mentation (Σ,G). Let Σ be such that there is some
bijection between Σ and X, where σ ∈ Σ is uniquely
mapped to x(σ) ∈ X. For any type t, let G(t) follow a
distribution given by

Pr[G(t) = σ] =
xt(σ)µ(x)

PrT [t]
.

4MHR distributions have non-decreasing hazard rate
f(x)

1−F (x)
,

where f and F are the pdf and the cdf of the distribution
respectively.

The pair (X,µ) satisfies (2.1) implies that G(t) are valid
probability distributions:

∀ t ∈ [T ],
∑
σ∈Σ

Pr[G(t) = σ] =
∑
σ∈Σ

xt(σ)µ(x)

PrT [t]
= 1 .

Proof of Lemma 2.2 Consider any optimal segmen-
tation with an arbitrary, or even unbounded number
of segments. We show how to transform it into a seg-
mentation with the same objective and yet having at
most one segment within each region Xp, replacing the
distribution conditioned on x ∈ Xp by its expectation.

Consider a specific area Xp. Let µp = Prµ
[
x ∈ Xp

]
be the probability of realizing a segment in Xp. Let
xp = Eµ

[
x |x ∈ Xp

]
. By the convexity of Xp, xp is

also in Xp.
Further, recall that when we restrict our domain to

points x ∈ Xp, we have that the revenue and consumer
surplus are both linear function because the seller
chooses a fix price p within Xp. Therefore, removing
all segments in Xp and adding a new segment at xp
with probability mass µx do not change the objective.
Repeating this process for all areas proves the lemma.
Proof of Theorem 2.1 Consider the following more
direct mathematical program that uses xp’s and µ(xp)’s
as the variables:

max
∑
p∈[V ]

µ(xp)

(
λRev

(
F(xp)

)
+ (1− λ)CS

(
F(xp)

))(B.1)

s.t. ∀ p ∈ [V ],xp ∈ Xp and
∑
p∈[V ]

µ(xp)xp = τ .

We need to show that (i) there is a one-to-one
mapping between the variable space of program (B.1)
and that of LP (2.2), and (ii) under this mapping, the
above program becomes LP (2.2).

The mapping from xp and µ(xp) to zp is already
given, i.e., zp = µ(xp)xp. The other direction goes
as follows. Given any zp, let µ(xp) = ‖zp‖1 and
xp = zp/‖zp‖1. Here, we use the fact that xp lies on
the probability simplex.

Under this mapping, the objective of (B.1) becomes
that of LP (2.2) due to linearity of Rev

(
F(·)

)
and

CS
(
F(·)

)
for any fixed p. Finally, the equivalence of

the constraints follow by the definition of the mapping.

C Poly-time Approximate Projection to
MHR-like Distributions

This subsection explains how we can find an MHR-like
distribution that is 6εS-close to the true distribution in
polynomial time, given an empirical distribution that is
εS-close. Our algorithm will guess which price is the
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Algorithm 5 Find a Nearby MHR-like Distribution

Input: A distribution E that is εS-close to some MHR-like distribution F in terms of dq;
the optimal price p∗ of the underlying MHR-like value distribution.

Output: An MHR-like distribution Ẽ that is 6εS-close to F in terms of norm dq.

1. Construct a sequence of distributions as follows:

(a) E1: Subtract εS from the quantile of every value; round it to 0 if it becomes negative.

(b) E2: Increase the quantile of p∗ to that in E plus εS .

(c) E3: Increase the quantile of each value until it meets the convex hull of the revenue curve.

2. Return Ẽ = E3.

(a) E (empirical) (b) E1 (dominated) (c) E2 (strengthening p∗) (d) Ẽ = E3 (ironing)

Figure 6: Illustrative figures (in terms of the revenue curves in the quantile space) of how Algorithm 5 finds a
nearby MHR-like distribution. The dashed curve is the revenue curve of the true distribution. The dotted curves
are those obtain by subtracting/adding O(εS) to the quantiles of every value (rounded to 0 or 1 if necessary).
The bold black curve corresponds to the distributions maintained by the algorithm.

optimal one w.r.t. the true distribution by brute-force.
Given each guess p∗, we try to find a nearby MHR-
like distribution conditioned on p∗ being optimal using
Algorithm 5. It constructs a sequence of distributions
with the last one being the desired output, provided
that the guess of p∗ is correct.

The first distribution E1 is obtained by subtracting
εS from the quantiles of all values, rounding up to 0
if necessary. The quantile of each value v w.r.t. the
empirical distribution E is within a [−εS , εS ] window
near that w.r.t. the true distribution; in contrast,
the quantile w.r.t. E1 is within a [−2εS , 0] window.
Distribution E1 is dominated by the true distribution
in the sense of first-order stochastic dominance and,
hence, is called the dominated empirical distribution
(e.g., [22, 36]).

Then, we construct the second distribution E2 by
increasing the quantile of the conjectured monopoly
price p∗ to ensure that it is at least as large as in the
true distribution. The purpose of this step is to ensure
the strong concavity property near the monopoly price.

Finally, we run an ironing step to restore concavity.

The result, i.e., E3, is the final output. See Figure 6 for
an illustrative picture of relations between the revenue
curves of the sequence of distributions constructed by
the algorithm.

Lemma C.1. Given any distribution E that is εS-close
to an MHR-like distribution F , and the monopoly price
p∗ of F , Algorithm 5 computes in polynomial time an
MHR-like distribution Ẽ that is 6εS-close to F in terms
of norm dq(·, ·).

Proof. The running time is trivial, noting that convex
hulls can be computed in polynomial time. It remains
to show that the output is an MHR-like distribution,
and is 6εS-close to E .

MHR-like – concavity: This part follows by the
definition of the algorithm 5 (step 1c).

MHR-like – strong concavity near monopoly
price: We will show that (1) p∗ is the monopoly price

of the final distribution Ẽ , and that (2) for any price p

whose quantile w.r.t. Ẽ is q, we have:(
1− 1

4 (q∗ − q)2
)
· Rev

(
p∗, Ẽ

)
− Rev

(
p, Ẽ
)
≥ 0 ,
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Figure 7: Illustrative pictures for the proof of Lemma C.1

(
1− 1

4 (q∗ − q)2
)
· p∗q∗ − pq ≥ 0 .

We first prove them for distribution E2. Note that
the quantiles of all values other than p∗ are at most their
counterparts in the true distribution F (step 1a), while
the quantile of p∗ is at least that in F (step 1b). Hence,
p∗ is also the monopoly price for E2. Further, the LHS
of the above inequality is increasing in q∗ (fixing any p,
p∗, and q), and decreasing in q (fixing any p, p∗, and q∗).
Since that the inequality holds for the true distribution,
and that q∗ weakly increases and q weakly decreases
compared to the true distribution, it also holds for E2.
Finally, we argue that, moving from E2 to Ẽ = E3, i.e.,
the ironing step, will not make p∗ suboptimal, as the
highest point of the revenue curve will not be ironed.
The inequality will also continue to hold, because the
first term is a concave function of q that stays the same
while the second term becomes the convex hull of the
counter part in F2. If a concave function dominates
another one, it dominates its convex hull as well.

MHR-like – large monopoly sale probability:
It follows from the fact that the quantile, i.e., the sale
probability, of p∗ weakly increases by our construction.

MHR-like – small revenue and welfare gap:
First, imagine that the quantile of p∗ is only increase
to that in the true distribution F , while the quantiles
of other values weakly decrease by our construction.
Then, the optimal revenue stays the same and the social
welfare weakly decreases and therefore the small gap
property continues to hold. Then, we further increase
the quantile of p∗ to that in our final output distribution
Ẽ . As a result, the social welfare as well as the optimal
revenue increase by the same amount. This will not
change the fact that their gap is small.

6εS-close: This is true by definition up to distribu-
tion E2. It remains to show that the ironing step will not
make the quantile of some value v exceeds its quantile

w.r.t. the true distribution F by more than 2εS . For any
ironing that does not involved p∗, this is trivial: since
both endpoints of the ironed interval are below the rev-
enue curve of the true distribution, which is concave,
the entire ironed interval is below that as well.

Next, consider an ironed interval with p∗ being one
of the endpoints. Suppose p∗ is the right end point,
i.e., there is another price p′ > p∗. See Figure 7a for an
illustrative picture of the argument below. The quantile
of p′ w.r.t. Ẽ is upper bounded by that w.r.t. the true
distribution F , which we denote as q′; The quantile
of p∗, on the other hand, is upper bounded by that
w.r.t. the true distribution, denoted as q∗, plus 2εS by
our construction. Then, consider any price p between
p∗ and p′. We can lower bound the quantile of p as
a function of p′, p∗, q′, and q∗, by the concavity of
the revenue curve of F . We denote this quantile by
q: Q′ = (q′, p′q′), Q = (q, pq), and Q∗ = (q∗, p∗q∗)
lie on the same line. Finally, p’s quantile in the final
distribution, by definition, is determined by the ironing
step. We denote this quantile by q + δq: Q

′ = (q′, p′q′),
Q+ = (q+δq, p(q+δq)), andQ∗+ = (q∗+2εS , p

∗(q∗+2εS))
lie on the same line. It suffices to bound δq. To do so,
further let O = (0, 0) be the origin. We have:

(C.2)
δq
q

=
area(Q′Q+Q

∗)

area(OQ′Q∗)
≤

area(Q′Q∗+Q
∗)

area(OQ′Q∗)
=

2εS
q∗

.

The other case, when p∗ is the left endpoint is
almost verbatim up to the point of Eqn. (C.2). See
Figure 7b for an illustrative picture. The only catch is
that we now have q′ ≥ q∗. Fortunately, q′, which is at
most 1, cannot much bigger since q∗ ≥ 1

e (Condition 3
of Definition 3.1). As a result, we get a weaker bound
that δq ≤ e · 2εS ≤ 6εS .
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