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Research on quantitative and covariational reasoning has emerged as a critical area of study in 
recent decades. We extend this body of research by introducing the construct of an abstracted 
quantitative structure. In addition to introducing the construct, we illustrate it by presenting 
empirical examples of student actions. We close with implications for research and teaching. 
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Steffe and Thompson enacted and sustained research programs that have characterized 
students’ (and teachers’) mathematical development in terms of their conceiving and reasoning 
about measurable or countable attributes (see Steffe & Olive, 2010; Thompson & Carlson, 2017). 
Thompson (1990, 2011) formalized such reasoning about measurable attributes into a system of 
mental actions and operations he termed quantitative reasoning. In this paper, we extend this 
work by introducing the construct abstracted quantitative structure: a system of quantitative 
relationships a person has interiorized to the extent they can operate as if it is independent of 
specific figurative material (i.e., representation free).  

Background 
Thompson (2011) defined quantitative reasoning as the mental operations involved in 

conceiving a situation in terms of measurable attributes, called quantities, and relationships 
between those attributes, called quantitative relationships. One form of quantitative reasoning 
involves constructing relationships between two quantities that vary in tandem, or covariational 
reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998; Thompson 
& Carlson, 2017). Carlson et al. (2002), Confrey and Smith (1995), Ellis (2011), Johnson 
(2015a, 2015b), and Thompson and Carlson (2017) are a few researchers who have detailed 
frameworks and particular mental actions associated with students’ covariational reasoning. We 
narrow our focus to that of Carlson et al. (2002), who identified five mental actions associated 
with covariational reasoning. A critical mental action of their framework, especially for 
differentiating between various function classes, is to compare amounts of change to draw 
inferences about quantities’ covariation (Figure 1).   

Piagetian notions of figurative and operative thought (Piaget, 2001; Steffe, 1991; Thompson, 
1985) differentiate between thought based in and constrained to figurative material (e.g., 
perceptual objects and sensorimotor actions)—termed figurative thought—and thought in which 
figurative material is subordinate to logico-mathematical operations and possibly their 
transformations—termed operative thought. Quantitative and covariational reasoning are 
examples of operative thought due to their basis in logico-mathematical operations (Steffe & 
Olive, 2010). Moore, Stevens, Paoletti, Hobson, and Liang (online) illustrated figurative 
graphing meanings in which prospective secondary teachers were constrained to constructing 
graphs with particular perceptual features (e.g., drawing a graph solely left-to-right) even when 



they acknowledged those features did not enable them to viably represent a conceived 
relationship. In contrast, Moore et al. (online) described that a prospective secondary teacher’s 
graphing meaning is operative when perceptual and sensorimotor features of their graphing 
actions are persistently dominated by the mental operations associated with quantitative and 
covariational reasoning. 

 
Figure 1. For equal increases in arc length (counterclockwise direction from the 3 o’clock 

position), height increases by decreasing amounts. 

Abstracted Quantitative Structure 
We define an abstracted quantitative structure as a system of quantitative relationships a 

person has interiorized to the extent he or she can operate as if it is independent of specific 
figurative material. An abstracted quantitative structure can also be re-presented to accommodate 
novel contexts or situations permitting the associated quantitative operations. Our notion of an 
abstracted quantitative structure is an extension of von Glasersfeld’s (1982) definition of concept 
to the context of quantitative and covariational reasoning. von Glaserfeld defined a concept as, 
“any structure that has been abstracted from the process of experiential construction as 
recurrently usable…must be stable enough to be re-presented in the absence of perceptual 
‘input’” (p. 194). An abstracted quantitative structure entails both of these features; an abstracted 
quantitative structure is recurrently usable beyond the initial experiential construction and it can 
be re-presented in the absence of available perceptual (or figurative) material.  

An abstracted quantitative structure can accommodate novel situations through another 
process of experiential construction within the context of figurative material not previously 
experienced in the context of using that structure. This action is a hallmark of operative thought 
due to the action entailing an individual using the operations of their quantitative structure to 
accommodate novel quantities and associated figurative material. It is in this way that the 
quantitative structure of an abstracted quantitative structure is abstract; mathematical properties 
are understood as not tied to any particular two quantities and associated figurative material.  
Indications and Contraindications 

The way we have defined abstracted quantitative structure presents an inherent problem in 
characterizing a student as having abstracted a quantitative structure: it is impossible to 
investigate a student’s reasoning in every situation in which an abstracted quantitative structure 
could be relevant. For this reason, we find it necessary to discuss a student’s actions in terms of 
indications and contraindications of her or him having constructed an abstracted quantitative 
structure. What follows are examples that we use to illustrate contraindications or indications of 
students having constructed abstracted quantitative structures. 

Lydia and re-presenting. Lydia was a prospective secondary teacher in a teaching 
experiment focused on trigonometric relationships and re-presentation (Liang & Moore, 2018). 
Lydia initially engaged in a task in which she constructed incremental changes compatible with 
those presented in Figure 1 (left). We took her actions to indicate her reasoning quantitatively 



and presented her the Which One? task. The task (Figure 2, left) presented Lydia with numerous 
red segments that varied in tandem as the user varied a horizontal (blue) segment, which 
represented the rider’s arc length traveled along the circle. We designed only one red segment to 
covary with the blue segment in a way compatible with the vertical height and arc length of the 
rider. Lydia’s task was to choose which, if any, of the red segments represented that relationship. 
Lydia chose the correct red segment by re-orienting it vertically and checking whether the 
heights matched pointwise within the displayed circle (Figure 2, middle). We then asked her if 
the chosen segment and blue segment entailed the same covariational relationship constructed in 
her previous activity involving the Ferris wheel (see Figure 1, left) (from Liang & Moore, 2018): 

Lydia: Not really…Um, I don’t know. [laughs] Because that was just like something that I 
had seen for the first time, so I don’t know if that will like show in every other 
case…Well, for a theory to hold true, it like – it needs to be true in other occasions, um, 
unless defined to one occasion.  

TR: So is what we’re looking at right now different than what we were looking at with the 
Ferris wheel?  

Lydia: No. It’s – No…Because I saw what I saw, and I saw that difference in the Ferris 
wheel, but I don’t see it here, and so –  

TR: And by you “don’t see it here,” you mean you don’t see it in that red segment?  
Lydia: Yes.  

 
Figure 2. (left) Which One?, (middle) Lydia checking segment pointwise, and (right) Lydia 

attempting to re-present a quantitative structure.  

Lydia’s actions are a contraindication of her having constructed an abstracted quantitative 
structure during her previous activity. Specifically, she could not re-present the activity she 
engaged in with respect to the Ferris wheel situation (Figure 1, left) when provided with what 
was to her novel figurative material in the Which One? task. As a further contraindication of her 
having constructed an abstracted quantitative structure, it was only after much subsequent 
teacher-researcher guiding and their introducing perceptual material using their pens (Figure 2, 
right) that she was able to conceive the red and blue segments’ covariation as compatible with 
the relationship she had constructed in the Ferris wheel situation. 

Noli and the inverse sine relationship. We draw on a prospective teacher’s response to the 
graphs in Figure 3 (left and middle). We presented a graph consistent with Figure 3 (left) to Noli, 
a prospective teacher, as hypothetical student work and asked whether the graph represents the 
inverse sine (or arcsine) function. Noli identified that Figure 3 (left) can be thought of as 
representing the inverse sine function by considering the vertical axis the input of the function 
(see Figure 3, right). In response, we presented Figure 3 (middle) and explained that a 
hypothetical student claimed Figure 3 (middle) represents the inverse sine function rather than 
Figure 3 (left). Noli claimed that both graphs could represent the inverse sine function 
(completed work in Figure 3, right): 



 

  
Figure 3. Graphs of (left) x = sin-1(y), (middle) y = sin-1(x), and (right) Noli’s work. 

Noli: [Noli has identified that Figure 3, left and middle, represent x = sin-1(y) and y = sin-

1(x), respectively] They’re both representing the same thing just considering their outputs 
and inputs differently [referring to axes]…So it’s like here [referring to Figure 3, middle, 
y > 0], with equal changes of angle measures [denoting equal changes along the vertical 
axis] my vertical distance is increasing at a decreasing rate [tracing graph]…here 
[referring to Figure 3, left, x > 0] it’s doing the exact same thing. With equal changes of 
angle measures [denoting equal changes along the horizontal axis] my vertical distance is 
increasing at a decreasing rate [tracing graph]…this one looks like it’s concave up 
[referring to Figure 3, middle from 0 < x < 1] and this one concave down [referring to 
Figure 3, left from 0 < x < π/2], it’s still showing the same thing. 

We interpret Noli’s actions as indicating her having constructed an abstracted quantitative 
structure that she associates with the “inverse sine function…sine function.” Noli understood 
each graph as representing equivalent covariational properties despite their differences in shape; 
she understood that both “concave up” and “concave down” graphs represent one quantity 
increasing by decreasing amounts for equal successive variations in the other quantity. 
Furthermore, she flexibly moved between re-presentations of this covariational relationship, 
adjusting for the alternative coordinate orientations, which is a contraindication of her reasoning 
being dominated by figurative aspects of thought.  

Implications 
The construct of an abstracted quantitative structure provides a specified criterion for claims 

about students’ and teachers’ quantitative and covariational reasoning. In our previous work 
(e.g., Moore, 2014), we made claims about a student constructing a particular function or 
relationship based on her or his activity in one, or at most two, contexts. If we frame the 
construction of a function or relationship in terms of an abstracted quantitative structure, then our 
evidence within those previous studies is insufficient to make such claims. Making such claims 
requires studying a student’s actions in a variety of contexts in which her or his actions can 
provide indications or contraindications of such a structure. Likewise, and transitioning our focus 
to teaching, it is speculative at best to claim one has taught a function or relationship concept if 
one has not explored their students’ reasoning in more than one context and relationship. 
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