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Abstract—Millimeter wave (mmWave) is a promising technol-
ogy in 5G communication due to its abundant bandwidth re-
source. However, its severe path attenuation and vulnerability to
line-of-sight (LOS) blockage result in much more unpredictable
outages than traditional technologies. This special propagation
property raises a significant challenge to the mobility manage-
ment in mmWave cellular networks. In particular, conventional
handover policies purely rely on the measurement of signal
strength. If being applied directly in mmWave cellular networks,
they would cause a large number of unnecessary handovers due
to the frequent short-term LOS blockage by obstacles, imposing
high signaling and energy overhead on the network. In this paper,
we propose a novel handover mechanism to reduce unnecessary
handovers in a mmWave cellular network by carefully deciding
the next base station (BS) a user should handover to, so that
the new user-BS connection after the handover can last as long
as possible. Clearly, making such an optimal decision requires
some knowledge on the users’ post-handover mobility trajectory
and LOS blockage, whose realization cannot be assumed at
the moment of handover. The proposed handover mechanism
addresses this challenge by exploiting the empirical distribution
of users’ post-handover trajectory and LOS blockage, learned
online through a multi-armed bandit framework, with the in-
tention to maximize the expectation of the user-BS connection
time after each handover. The results of numerical experiments
demonstrate that the proposed handover policy outperforms
existing counterparts on reducing handovers, especially in the
scenarios where users’ mobility follows regular patterns.

Index Terms—wireless communication, millimeter wave, han-
dover, online learning, multi-armed bandit

I. INTRODUCTION

Millimeter wave (mmWave) is one of the fundamental
technologies in the upcoming 5G cellular networks. Because
of its 10-to-100s GHz level frequency, mmWave can provide
abundant bandwidth for wireless service through the line-of-
sight (LOS) path. However, a big challenge for mmWave to be
utilized in practical cellular networks is that mmWave commu-
nication heavily relies on the LOS path, but this path could be
easily blocked by obstacles (e.g., tree-tops, pedestrians, and
buildings) with the movement of the user. Due to its short
wavelength, once the LOS is blocked, the mmWave signal
will not be able to penetrate through or circumvent around
the obstacle, leading to sudden significant drop of the received
signal (a.k.a. outage), which urges the user equipment (UE) to
handover to another base station (BS) in order to maintain the
connection. As such, it has been shown in the literature that
the handover frequency in mmWave cellular networks is much

higher than that in current 4G systems [1]. Therefore, efficient
mobility and handover management is an inherent challenge
that needs to be addressed in mmWave cellular networks.

The existing studies on mmWave handover management are
mainly focused on two directions: increasing handover success
rate and reducing unnecessary handovers. Multi-connectivity is
a solution to provide reliable service and reduce handovers [2].
In [3], [4], the authors proposed multi-connectivity protocols
and specified evaluation methods for handover in mmWave
cellular systems. In order to handle the unexpected LOS
link blockage, [5] introduced a caching scheme, which stores
extra incoming data frames when high-throughput links are
available, and uses the cached content to smooth the transition
when handover happens. In [6], [7], the authors modeled the
BS selection process as a Markov Decision Process (MDP)
by taking account of dynamic channel condition and user
mobility to improve the network capacity. Moreover, ma-
chine learning provides another promising tool to improve
handover decision [8]—-[10]. The authors in [8] introduced a
reinforcement-learning based handover policy to reduce the
number of handovers in HetNet. Furthermore, deep learning
was also successfully utilized to implement proactive handover
in mmWave band to reduce handover failure rate [9], [10].

Although handovers are frequent in mmWave systems, it
has been shown that about 61% handovers are unnecessary or
could have been avoided if the UE had made a better choice
regarding which BS it should handover to [11]. Reducing un-
necessary handovers not only avoids high signaling overhead
in the network but also makes an ongoing communication
connection smoother. Conventional handover mechanisms are
based on measurement of signal strength, and do not perform
well in mmWave networks since it may cause “short-sighted”
handover decision. For example, a BS with the highest signal
strength would be chosen by conventional solutions as the
handover target even if the LOS link associated with it will
be lost in the next second after the handover. Instead, if another
BS that has a lower signal strength but a longer unobstructed
time for its LOS path were selected, a redundant handover
could have been avoided. Therefore, an optimal handover pol-
icy should take into account not only the current instantaneous
state of the candidate BSs, but also the future change of state,
so as to reach a “far-sighted” handover decision.

Clearly, making such an optimal decision requires some
knowledge on the user’s post-handover mobility trajectory
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and LOS blockage, whose realization cannot be assumed at
the moment of handover. One straightforward way to address
this problem is to predict the user’s post-handover trajectory
based on his trajectory before the handover. However, this
solution requires exact location information of the user (i.e.,
geo-coordinates of user’s location), which is not always avail-
able/practical in reality.

In this paper, we propose a handover mechanism that ad-
dresses this challenge by exploiting the empirical distribution
of users’ post-handover trajectory and LOS blockage, learned
online through a multi-armed bandit (MAB) framework, with
the intention to maximize the expectation of the user-BS con-
nection time after each handover. In our mechanism, learning
happens in the hindsight: each UE will report its reward
(definition will be clear shortly) in connecting with a BS
in previous handover when it needs to handover again. The
accumulative rewards associated with a BS, collected from all
users that have connected with that BS when they handover
in the same area, serves as a comprehensive indicator of the
reward a future UE can expect to receive if it choose to
connect with that BS in a handover happening in that area.
The MAB construct ensures that the above learning process
will converge, and a user can maximize its expected reward by
selecting the right BS according to the proposed algorithm. In
contrast to the aforementioned trajectory prediction method, an
advantage of our mechanism is that it does not require users’
exact location information. Instead, user’s coarse-grained loca-
tion information, e.g., the area where the handover happens, is
used as index in our algorithm to collect rewards. In practice,
these coarse-grained information could be represented as the
vector of received signal strength (RSS) from surrounding BSs,
and hence is considered practical according to 3GPP [12].

In the literature, our work is most related to the SMART
scheme [8], which also uses a reinforcement learning frame-
work to guide BS selection in handover. The main difference
between our work and SMART is that our MAB learning
model considers the area where a handover happens to better
characterize the distribution for post-handover user’s trajectory
and LOS blockage, while SMART is completely independent
from user’s location. Our performance evaluation simulates
SMART as a counterpart scheme and shows that the proposed
mechanism outperforms SMART significantly.

The rest of this paper is organized as follows. In Section II,
we describe our system model. In Section III, we propose
the online learning handover policy in detail. In Section
IV, we present the MAB-based BS selection algorithm. In
Section V, we compare the performance of the online learning
handover policy with some existing handover policies. Finally,
we conclude the paper in Section VI.

II. SYSTEM MODEL

A. Network Scenario

Consider a cellular network N consisting of a set of
mmWave small cell base stations (SBSs), denoted as B. These
SBSs are randomly distributed in the network to provide high
throughput by LOS links to UEs in small cells. Actually,

SBSs and macro base stations (MBSs) always coexist to
provide reliable wireless service. Since MBS can provide
larger coverage and is flexible to obstacles because of the
conventional sub-6 GHz frequencies, it is used for transmission
of controlling signals and acts as a substitution whenever no
LOS link is available. A centralized controller (CC) takes
charge of handover in this network.

In order to investigate the characteristics of handover in
mmWave domain, we only focus on the interaction between
SBS and UE in this paper. The switch between SBS and MBS,
as well as the interaction between MBS and UE, are not within
the scope of our discussion.

B. Propagation Model

In this paper, we assume that the channel of mmWave
SBSs is described by 3GPP Standard probabilistic LOS model.
According to [8], [13], the statistic path loss model is

PL(d)[dB] = a + 108log,o(d) + £,& ~ N(0,0%), (1)

where d is the distance in meters, « and /3 are the least square
fits of floating intercept and slop over the measured distances,
and o2 is the lognormal shadowing variance. Since inter-user
interference can be ignored in mmWave band, we only model
the SNR of the signal received by the UE n from the SBS
k € B as [8]
Py x G x PL(d)~!
P, ’
where Py is the transmit power of SBS k, P, is the noise
power and G is the antenna gain. The antenna gain in mmWave
communication highly depends on the direction of beams
formed by transmitter and receiver. Since we assume that SBS
is equipped with directional antennas with a sectorized gain
pattern while UE is equipped with ominidirectional antennas,
the UE receives a signal with the channel gain G which is
the function of the angle 6 between the UE and the SBS.
According to [14], this channel gain is calculated as

maxs .f 9 § 95
G(6) = {G if |6)

Gumin, Otherwise,

where G4, is the main lobe gain, G,,;, is the side lobe
gain, and 6, is the main lobe width of the SBS. We assume
that perfect beam tracking technique can be used to maintain
mmWave link [8]. Therefore, the UE could always be in the
main lobe and have main lobe gain.

A SBS may serve multiple UEs simultaneously. We assume

the served UEs equally share the bandwidth provided by the
SBS. The transmission rate for a UE n who is served by the
SBS k is calculated as follows:
Bﬂ)
Uy
where B, is the bandwidth provided, and Uj is the total
number of UEs currently served by the SBS k. Additionally,
since the number of beams formed by SBS is limited, we
assume U, as the maximum number of UEs that can be
supported by SBS simultaneously.

SNRF = (2)

3)

hE = log, (1 + SNRF), 4)
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C. Blockage Model

Since mmWave signal is highly vulnerable to obstacles, we
assume that the transmission rate of LOS link will drop to
zero immediately when the link is blocked. In this paper, an
obstacle is modeled as a circle with a fixed center and a certain
radius. Given a LOS link and a set of obstacles, the link is
blocked whenever there is an obstacle to which the distance
from the link is less than its radius.

III. ONLINE LEARNING HANDOVER POLICY

Within the six handover events defined by 3GPP standard,
we focus on the BS selection for Event A2, which is com-
mon but challenging in mmWave band. Note that this online
learning handover policy is also suitable for Event Al. At a
high level, the framework of the proposed MAB-based online
learning handover mechanism is illustrated in Fig. 1, and
elaborated in the following.

UE RssS Centralized Controller
Gridding
Gridding Information
Channel Scheme
Condition MAB- based
Expected BS Selection
Handover Empirical Reward
. Control Knowledge
Environment

Fig. 1. Framework of online learning handover policy

A. Gridding Scheme

During a handover, instead of picking the BS that has the
highest instantaneous received signal strength (RSS), we prefer
a BS that has the longest connection time of its LOS path
subject to a minimum RSS requirement. The unobstructed time
of LOS path is determined by users’ post-handover trajectory
and the distribution of obstacles around that trajectory. These
two key factors are closely related to the area where the
handover event occurs. In this section, we introduce a gridding
scheme, which partitions the network into a set of grids, each
covering a small area of the network. This setting allows
handovers to be differentiated by the areas where they happen.

Specifically, in an ultra-densified 5G network, it is common
that multiple mmWave small cells overlap. Therefore, a UE at
any location is likely to receive from multiple nearby mmWave
SBSs, with different RSSs. The id of these SBSs, along with
the RSSs from these SBSs, constitute a vector that can be used
to identify the instantaneous location of the UE. In contrast to
those localization algorithms, our goal here is not to calculate
the location of the UE, but to use the above signal-space
vector as an index to label the small geographic area (i.e.,
the grid) that the UE resides in. In particular, two UEs m and
n are considered to be in the same grid if they can receive
from the same subset of SBSs and the proximity of their RSS
vectors ||v,, — v,|| < &, where || - || denotes the Euclidean
distance, and § is a system parameter that controls the size of
the grid. In this way, the region of the entire network /V can be
partitioned into a group of M grids and each grid, denoted by
gi, satisfies Uf\ilgi = N and ﬂf\il g; = 0. For each grid,

we choose a representative RSS vector as the indicator of
this grid. This vector could be measured manually through a
site survey, or be calculated automatically according to some
clustering algorithm based on UEs’ RSS report (the log file
at SBSs contains such information). We assume that CC has
full knowledge on the above grid information. Whenever a
handover event occurs, CC collects the UE’s instantaneous
RSS vector, based on which it can tell which grid this handover
resides in. Note that in the proposed scheme UE’s exact
location information is not required. Instead, it uses UE’s RSS
vector as an index to label the coarse-grained area (i.e., the
grid) of the UE, and hence is practical according to 3GPP [12].

B. BS Selection based on Empirical Distribution of Post-
handover Trajectory

CC maintains M independent MAB processes, one for each
grid. The MAB process for grid g; is responsible for deciding
the optimal SBS a UE should switch to when it has to handover
in that grid. In particular, suppose a UE in grid g; is able to
receive from n; SBSs, denoted by set B;. Then the MAB
process for grid g; has n; arms, each representing a distinct
SBS in B;. The MAB process maintains an accumulated
reward for each arm. As will be clear shortly, for arm &, where
1 < k < n;, this accumulated reward is calculated by taking
into account the rewards received by all historical UEs who
switched to SBS k£ in past handovers that happened in grid
gi, so it reflects the mean reward a future UE is expected to
receive if it switches to SBS k after a handover in grid g;.

An incoming UE that handovers in the grid will switch to
the particular SBS whose representing arm presents the highest
accumulated reward among all arms. Our MAB construct
ensures that when the algorithm converges, the regret between
the SBS selected by the algorithm and the SBS selected op-
timally in the hindsight will be minimized. The actual reward
received by this UE, which reflects the actual unobstructed
LOS connection time between the previous handover and the
next handover, will be computed and reported to the MAB
process at CC to update the accumulated reward of the relevant
arm when the next handover is due. Clearly, the computation
of the accumulated reward for each arm in grid g; is based
on all historical realizations of UEs’ post-handover trajectories
for handovers in g;, and hence it is an expectation over the
empirical distribution of UE’s post-handover trajectory.

C. Handover Trigger Condition

To guarantee the quality of service, the handover trigger
condition for a UE n associated with SBS k is described as
hﬁ < hmzn - HyS, (5)
where h,,;, 18 the minimum transmission rate required for a
certain service level, and Hys is a hysteresis parameter for
avoiding frequent handover. Although how to select a proper
value for Hys is an interesting issue, it is not the key point
of this paper. For simplicity, we set Hys to be zero. Note that
specific value of Hys does not influence the proposed policy.
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IV. MAB-BASED ALGORITHM FOR BS SELECTION

Since our goal is to find the SBS which can bring the longest
unobstructed time of LOS path for each handover without prior
knowledge, we model the SBS selection in each grid as a MAB
problem, which is to identify which arm to pull in order to
get maximum reward after a given set of trials [15].

A. Stateless Multi-armed Bandit Model

The representing RSS vector of grid g; indicates the candi-
date SBS set B; for the UEs who reside in the grid. Let h¥
be the transmission rate received by a UE from SBS k in grid
gi, then B; is specified as

B; = {k | h¥ > hpin, k € B}. (6)

After CC chooses a SBS k € B; in a handover which happens
in grid g; at time 7, the UE will be served by SBS £ until
it needs another handover, suppose at time 77. Then the UE
receives an instantaneous reward associated with SBS k£ in
grid g;, denoted as rf_ = 7F — 7. Since 7 is an unknown
random variable which is determined by the realization of
user’s post-handover trajectory, the reward rﬁT is also an i.i.d.
random variable. As there are no explicit states of SBS as prior
knowledge during handover, the SBS selection in grid g; is
formulated by a stateless MAB model [15] M; = {B;, it , 1},
where k£ € B;, and uf’t is the expected reward of SBS k in
grid g; at round ¢ (means the ¢-th playing of the model).
Denote a; ¢ to be the SBS actually selected by CC following
a certain policy, in grid g; at round ¢. The regret of this policy
up to round 7', which is defined as the accumulated difference
between the reward obtained following this policy and the
optimal reward could be obtained with full knowledge, is

T T
R, 7= E Ll _E Git | 7
TR [Z] Z] ™

t=1 t=1

Based on the model M;, the handover decision problem in
grid g; with the aim to choose the SBS which brings the
longest unobstructed LOS connection time, is equivalent to
find the optimal policy for the corresponding stateless MAB
problem that minimizes the regret.

B. Estimation of Expected Reward

If full knowledge about the distribution of each SBS’s
reward is known, the optimal policy is to choose the optimal
SBS k* = arg maxiep, uf’t for handover in grid g; all the
time. Unfortunately, this assumption does not hold. Therefore,
the expected reward of SBS can only be estimated based on
historical observations [8]. Denote TF and 7#(TF), as the
number of times that SBS k is chosen and the sample mean
of reward of SBS £ in grid g;, respectively. These two metrics
are updated by an observation of reward rﬁT as follows:

Tik X ff(Tzk) + Tf’,r
TF+1 ’

FHTF +1) = (8)

TF :=TF + 1. )

Initially, we set 7 = 0 and 7¥(0) = 0. We use this sample
mean value 7 (T}F) as the estimation of the expected reward
of SBS £ in grid g;. Each instantaneous reward obtained by
any UE is used to update the corresponding mean reward of
its serving SBS.

C. Exploration and Exploitation

How to trade off exploration and exploitation is a key part
of trial design in MAB problem. On one hand, we should not
stick on the SBS with high sample mean since the algorithm
may be trapped in a local optimum; on the other hand,
continuously trying different SBSs is also not a good idea
since it impacts the efficiency of the algorithm. In this paper,
we utilize the widely-used UCB policy proposed by [16] to
handle this trade-off, since it can achieve logarithmic regret
with low computation complexity [8].

According to UCB, we set the index of SBS £ in grid g;
as TH(TF) + 0, /25,
of handovers happer{ed in the grid. The first item acts as the
exploitation part, while the second item takes charge of the
exploration part with exploration rate §. For an Event A2
occurring in grid g;, CC selects the SBS £* satisfying

where F; denotes the total number

(10)

K2

k* = arg max <7“f(Tf) +0 TF ) :

D. Acceleration Technique

Generally, when an Event A2 occurs on a LOS connection
which was built in grid g; to serve UE n by SBS £, a
reward ¥ is obtained and only 7¥ will be updated (time-
and round- related subscripts are omitted). However, since the
UE’s trajectory (in terms of the sequence of grids it passes)
is known by using gridding scheme, we are able to update
some other SBSs’ rewards on this trajectory simultaneously, by
using the so-called virtual update. Specifically, in the previous
handover, when CC switched the UE n to the SBS k in grid
g;, CC was also aware of the set of SBSs which were not
selected, denoted as BF = B;\{k}, and pretended to build a
virtual LOS link between the UE n and each k' € BF. During
the UE’s post-handover movement, in addition to checking the
handover trigger condition for the true LOS link, CC keeps
checking that of each virtual LOS link. If the virtual LOS path
between the UE n and the SBS &’ was blocked, the observed
reward rf/ is calculated and used to update the sample mean
ff/, although the corresponding handover event did not truly
occur. By this virtual update, any trajectory of UE can be
used to update multiple sample means and the efficiency of
the algorithm can be improved significantly.

The MAB-based BS selection algorithm with acceleration
can be summarized in Algorithm 1.

V. NUMERICAL EXPERIMENTS

In this section, we compare the performance of two versions
of proposed online learning handover policy, without and with
acceleration (denoted as MAB and MAB_acc, respectively),
with those of two existing handover policies, called RFH

Authorized licensed use limited to: Auburn University. Downloaded on September 20,2020 at 18:16:54 UTC from IEEE Xplore. Restrictions apply.



and SMART [8], in variant scenarios. In RFH, the BS which
provides the maximum transmission rate is chosen as the han-
dover result, and SMART proposes a reinforcement-learning
based BS selection algorithm to make handover decisions.

A. Experiment Settings

We consider a cellular network N which is built in a
100(m) x 100(m) square region and consists of 100 SBSs using
mmWave band. The transmit power of SBS is set to be 30
dBm, and the noise power is -77 dBm. Similar to [13], we
set the parameters o and S in (1) as 61.4 and 2, respectively.
The channel gain G4, of main lobe is 18 dB as in [14]. The
bandwidth of SBS is set as 500 MHz. We assume that 20 iden-
tical obstacles with radius of 1(m) are randomly distributed
in the network. According to the gridding scheme and for
illustration purpose, the whole network area is partitioned into
20 x 20 = 400 identical grids and each grid is a 5(m)x5(m)
square area. The signal strengths received at the geometrical
center of each grid are calculated and used as the representative
RSS vector. The number of UEs entering into the network per
time slot has a Poisson distribution with parameter A. For a
new coming UE, its initial position is uniformly distributed at
the boarder of the network and its moving orientation is also
uniformly distributed. The UE’s moving velocity is supposed
to be 1(m/s). Any UE’s experience is used to update the
accumulated reward of SBS until it moves out of the network
region. Furthermore, the exploration rate 6 is set to be 1.

B. Number of SBSs

In this experiment, we compare the performances of these
handover polices with variant numbers of SBSs. We choose

Algorithm 1: MAB-based BS Selection Algorithm

Input: Cellular network N with gridding, consisting of
mmWave small cells (system parameters, a set of
SBSs, a set of UEs, a set of obstacles)
Output: SBS selection result £*
Initialization: For all g; € N and k € B;, Tf 0,
7F(0) + 0, F; + 0;
while Event A2 handover trigger condition is met for a
UE n do
Get the current time slot 7 and identify the grid g;
where the UE n currently resides;
Load the serving SBS k, the grid g; where and the
time 79 when the current connection was built;

Calculate the reward Tﬁm =7 — 19 for the SBS k;

) T e (1) ok,
T’f(Tik + 1) — WU;
Tf < Tf + 13

Fi < F;+ 1,

Update 7' (T¥ +1), T¥ and F;, for k' € BY;

2InFy .,
Tk >
J

k* = arg maxep, f;‘?(T]k) +6

Switch the UE n to the SBS £*;

end

five numbers: 60, 80, 100, 120 and 140, and run 20000
iterations for each instance. The arrival rate of UE is set
to be 1. The results are shown in Fig. 2. It could be found
that, although SMART outperforms RFH, the proposed online
learning handover policy performs better than both of them, no
matter on the number of handovers or average lasting time of
connection. Compared with RFH, the online learning handover
policy can improve the number of handovers and the average
lasting time of connection by 8% — 11% and 9% — 13%,
respectively. Due to acceleration, the online learning handover
policy with virtual update performs the best over all polices.
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Fig. 2. Comparison of performances with different numbers of SBSs

C. UE’s Arrival Rate

In this experiment, we compare the performances of these
handover polices with different arrival rates of UE. The arrival
rate of UE reflects the crowdedness of the network. In order to
simulate different practical scenarios with different degrees of
crowdedness, we choose five values for \: 1, 2, 3, 4 and 5, and
run 20000 iterations for each instance. The number of SBSs is
fixed to be 100. The results are displayed in Fig. 3. As shown,
with all the chosen values of A, the proposed online learning
handover policy always brings the fewest number of handovers
and the longest average lasting time of connection. Moreover,
with the growth of arrival rate, the online learning handover
policy’s advantage over the other two policies, saying RFH
and SMART, becomes more remarkable. This means that the
online learning handover policy is more prominent even in
crowded situation.
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Fig. 3. Comparison of performances with different arrival rates

D. Regulation of UE’s Movement

In the above experiments, the UE’s initial position and
orientation are totally random without any constraint. How-
ever, in many real-world scenario, specially in urban area,
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the UE’s movement is highly restricted. Specifically, since
the UE can only move along with the existing sidewalks,
the UE’s position is actually limited within the area of the
sidewalk but not the whole network, and the UE’s orientation
is directed by the direction of sidewalk. In this experiment,
we add four sidewalks into the cellular network in order
to make our simulation closer to reality, as the areas with
shadow shown in Fig. 4. New UE is generated at a border

Fig. 4. Scenario with sidewalks

of a sidewalk and moves to the opposite boarder. Besides,
we introduce a specific parameter v € [0, 1] to describe the
homogeneity of the UEs’ movements within the sidewalks. In
particular, if v = 0 or 1, all UEs in the same sidewalk move
with the same orientation; if v = 0.5, half of the UEs move
oppositely. The number of SBSs and the arrival rate of UE
are set to be 100 and 1, respectively. The other parameters
keep the same with the above experiments. We set different
values to v and run 20000 iterations for each instance. The
results are shown in Fig. 5. It could be found that, RFH
performs the worst and its performance almost does not change
with the growth of v. SMART is better than RFH, and its
performance slightly fluctuates with different values of ~. The
online learning handover policy still performs the best and its
advantage over the former two polices is more significant than
those in the scenarios with randomly moving UE which are
shown in the above two experiments, although its performance
decreases a little when ~y approaches to 0.5. This means that,
the online learning handover policy is more suitable for the
scenario where UE has regular movement.
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Fig. 5. Comparison of performances on different orientations of UE

VI. CONCLUSIONS

In order to reduce unnecessary handovers in ultra-dense
mmWave cellular network, we propose that the empirical
knowledge extracted from historical handovers is of benefit for
wisely choosing the optimal BS as handover decision, which
can bring long user-BS connection time after handover. A
novel handover mechanism which exploits the empirical distri-
bution of UEs’ post-handover trajectory and LOS blockage to

guide future handover without any exact location information
of UE is presented. In particular, we design a gridding scheme
to utilize the RSS information as an index to retrieve the
accumulated rewards of candidate BSs. These accumulated
rewards are treated as empirical knowledge which is learned
online through a multi-armed bandit framework. An effective
BS selection algorithm with acceleration technique is also
proposed. The results of numerical experiments show that the
proposed online learning handover policy outperforms existing
counterparts in variant real-world scenarios significantly.
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