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ABSTRACT

Automatic liver lesion segmentation is a challenging task
while having a significant impact on assisting medical profes-
sionals in the designing of effective treatment and planning
proper care. In this paper, we propose a cascaded system that
combines both 2D and 3D convolutional neural networks to
segment hepatic lesions effectively. Our 2D network operates
on a slice-by-slice basis in the axial orientation to segment
liver and large liver lesions; while we use a 3D network to
detect small lesions that are often missed in a 2D segmenta-
tion design. We employ this algorithm on the LiTS challenge
obtaining a Dice score per subject of 68.1%, which performs
the best among all non-pre-trained models and the second-
best among published methods. We also perform two-fold
cross-validation to reveal the over- and under-segmentation
issues in the annotations of the LiTS dataset.

Index Terms— Liver lesion segmentation, Hybrid neural
network, Small lesion segmentation.

1. INTRODUCTION

Liver lesions are groups of abnormal cells in the liver, and
some of them lead to cancer. Liver cancer is one of the leading
causes of cancer deaths worldwide, and more than 700,000
deaths are reported each year, according to the American Can-
cer Society. For the liver cancer screening, the Computer
Tomography (CT) is the most commonly used imaging tool,
and the technique of the automatic liver lesion segmentation
from a CT scan has great impacts on cancer diagnosis, surgery
planning, and treatment evaluations.

Due to the heterogeneous and diffusive appearance of
hepatic lesions, liver lesion segmentation is a challenging
task. Researchers have proposed many segmentation algo-
rithms based on the classical segmentation techniques, e.g.,
thresholding [1], region growing [2], active contour [3], and
ensemble [4]. Recently, deep neural networks have been
widely used in the liver lesion segmentation and have shown
improved performance in detecting and segmenting liver le-
sions. These algorithms either use 2D convolutional neural
networks [5, 6, 7], 3D networks [8], or a combination of
both [9, 10]. One of the issues that most existing methods
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are facing is the segmentation of the small lesions, which are
often missed in their final predictions.

In this paper, we introduce a hybrid cascaded segmenta-
tion network to segment the liver lesions, especially the small
ones. The network utilizes both 2D and 3D convolutional
networks to effectively find both large and small lesions in
the liver region. We use a 2D convolutional neural network
(CNN) to obtain the liver mask from the input CT volume of
the abdomen region, which locates the liver region for further
processing. Another 2D CNN is then employed to extract
large lesions from 2D slices, while a dedicated 3D CNN is
proposed to segment out small lesions from 3D volumes.

We evaluate our method on the Liver Tumor Segmenta-
tion (LiTS) dataset [11] and obtain a Dice score per subject of
68.1% without any pre-training or post-processing. This re-
sult ranks first among the currently published non-pre-trained
networks. Moreover, with the proposed special treatment of
the small lesion segmentation using a 3D CNN, we improve
the network performance of segmenting the large lesions only
by 7.1% in terms of the Dice score per subject. In addition,
using a two-fold cross-validation on the LiTS training set, we
observe that our network can segment unannotated regions
which share the similar intensity as that of the lesion region
annotated on the same slice in the LiTS dataset.

2. METHOD

2.1. Overview

In this section, we describe our hybrid cascaded network to
handle the liver lesion segmentation problem. We first seg-
ment the liver from the original CT scan slice-by-slice using
a 2D neural network. The generated liver mask allows us to
focus on the lesion segmentation located inside of the liver.
At the stage of lesion segmentation, we treat large and small
lesions separately with a 2D network to segment large lesions
and a 3D network to segment small lesions. This hybrid de-
sign was motivated by the goal of balancing computational
efficiency without sacrificing accuracy. Compared to the 3D
segmentation network, a 2D network is more efficient in terms
of both computation time and memory cost; however, on a 2D
slice, small lesions are likely to be confused with some nor-
mal tissues in the liver region. Therefore, we propose to use
an adaptive 3D network to handle the small lesion segmen-
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Fig. 1. Overview of our proposed hybrid cascaded network
for the liver lesion segmentation. We adopt 2D CompNets
(see Fig. 2 for the detailed network architecture) to segment
the liver region and large lesions and apply a 3D CompNet
(Fig. 4) to segment the small lesions. The red dashed lines
indicate the test phase of the liver lesion segmentation.
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Fig. 2. Network architecture of the 2D CompNet for the
liver/large lesion segmentation. This U-Net-like network has
the object segmentation (top left), its complementary seg-
mentation (bottom left), and the image reconstruction (right).
Each block has two convolutional layers with the numbers of
feature maps shown in the block box.

tation, which greatly reduces such false positives. Figure 1
depicts the overview of the proposed hybrid cascaded net-
work. Its backbone network is the CompNet [12], which was
demonstrated to be more robust in addressing the segmenta-
tion problem on pathological images than the U-Net [13].

2.2. Liver Segmentation

A liver CT scan typically has hundreds of slices, and each
slice has an image resolution of 512 x 512 pixels. Directly
working on such 3D images would cause time and memory
issues using a segmentation neural network under an encoder-
and-decoder design. Fortunately, the segmentation of the liver
region inside the abdominal cavity is relatively easier than
the segmentation of its lesions. As demonstrated by recent
works [5, 6, 14, 15] and our experiments, liver segmentation
relied only on 2D slices can achieve more than 95% overall
dice accuracy. Therefore, we use a 2D network to segment
out the liver from a 3D CT scan.

We follow the design of the basic CompNet proposed
in [12] and adapt it to our liver segmentation task, resulting
in the 2D network architecture shown in Fig. 2. This net-

Fig. 3. False positives of small liver lesions on a 2D slice.

work takes 2D slices as input and outputs 2D liver masks that
are stacked into a 3D mask. The encoder branches of the
liver segmentation, its complementary segmentation, and the
reconstruction sections consist of multiple blocks of two con-
volutional layers followed by the batch normalization layers.
All convolutional layers use a filter size of 3 x 3 and the filter
numbers in the blocks are as follows 32, 32, 64, 128, 256, and
the transition block of 512. Following each block, we have
a pooling layer. The decoder branches of the network mirror
the encoder ones with the pooling layers being replaced by
2D transposed convolutional layers. We multiply the input
3D scan with the obtained liver mask to retain only the liver
region for the following lesion segmentation.

2.3. Two-Step Lesion Segmentation

After having the liver segmented, we might directly apply a
3D segmentation network to extract the liver lesions. How-
ever, a 3D Network operating only in the liver region is still
computationally expensive and may suffer from a lack of 3D
training scans. To mitigate these issues, we propose a hybrid
strategy to handle the segmentation of large and small lesions
separately. In particular, we use a 2D network to scan slice-
by-slice and predict large lesions if present. However, this
method is not sufficient for predicting small lesions, as the
false positive examples shown in Fig. 3. This happens due
to the appearance of the small lesions matching that of other
tissues or vessels on 2D liver slices. A 3D network learn-
ing from cropped volumes with small lesions can reduce such
false positives because it leverages the observation that the lo-
cation of the tissue or vessel appears to travel considerably in-
between slices, whereas the liver lesion appears to be roughly
stationary across slices. Regarding the size threshold used to
separate the large and small lesions, it may vary for different
applications and datasets. Here, we set the threshold as a pixel
dimension of 32 x 32 x 32 by experimentally testing on the
LiTS dataset, which balances the prediction accuracy and the
computation time.

Large Lesion Segmentation. We use another 2D CompNet
like the one used for the liver segmentation (Fig. 2) to ex-
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Fig. 4. Network architecture of the 3D CompNet used for the
small lesion segmentation. This U-Net-like network has the
small lesion segmentation (top left), its complementary seg-
mentation (bottom left), and the image reconstruction (right).
Each block has two convolutional layers with the numbers of
feature maps shown in the block box.

tract lesions larger than 32 x 32 pixels from the input slices
with the liver only. Since this network takes care of the pre-
diction of large lesions, we clean the training masks by re-
moving all small lesion masks, which is implemented using
the connected component labeling algorithm provided by the
OpenCV library [16]. The horizontal and vertical dimensions
of the removed small lesions are both less than or equal to
32 on a 2D slice in the axial orientation. In the test phase,
we also remove the detected lesions less than 32 x 32 using
component labeling.

Small Lesion Segmentation. We use a 3D CompNet, as
shown in Fig. 4, to segment the small lesions. This 3D net-
work takes a volume of 32 x 32 x 32 as input. The encoder
branches of the lesion segmentation, its complementary seg-
mentation, and the reconstruction consist of three 3D convo-
lutional blocks. Each block is composed of two 64, 128, and
256 feature maps, respectively, each followed by a 3D pool-
ing layer with a pool size (2,2,2). The transition block has
512 feature maps. The decoder branches mirror the encoder
branches with the pooling layers replaced by the 3D trans-
posed convolutional layers.

To generate the training samples for this 3D network, we
use the component labeling to locate the center of a lesion and
estimate its dimensions on a 2D slice. We sample a 3D vol-
ume for a lesion whose horizontal and vertical dimensions on
the 2D slice are smaller than or equal to 32. Since the small
lesions often occupy a few slices, we choose a cube with a size
of 32x 32 x 32 to cover the lesion. In particular, around the le-
sion center on a slice, we select 15 slices above and 16 slices
below to create a 3D volume for training. During the test-
ing phase, we use a 3D sliding cube over the liver volume to
predict the small lesions using the above trained 3D network.
To choose an appropriate stride size for the sliding cube, we
test on 32, 16, 8, and 4 voxels, respectively. It turns out that
the stride 32 and 16 are too large to capture tiny lesions. The

Fig. 5. An example of a liver CT scan before (left) and after
(right) preprocessing.

stride 8 is an appropriate one since a further reduction of the
stride size does not reveal any new changes but increasing the
prediction time. To fuse the overlap predictions at the same
voxel, we take their average and set the value greater than 0.5
to 1 as the final prediction.

3. EXPERIMENTS

Dataset and Preprocessing. To test our proposed network,
we use the public Liver Tumor Segmentation (LiTS) [11]
dataset, which consists of 130 abdomen CT scans for training
and 70 for testing. To train the 2D liver segmentation net-
work, we fully use all training scans with a total of 58,638
2D slices. In the network training of the large liver lesion
segmentation, we focus on the slices with the liver present, re-
sulting in 19,163 2D slices in total. The 3D network is trained
on 11,503 3D small lesion samples with size of 32 x 32 x 32.
We preprocess the liver CT scans using a histogram-based
thresholding method. We select the rightmost peak of the in-
tensity histogram distribution of a CT scan for normalization
and use the histogram equalization algorithm to generate the
enhanced images, as shown in Fig. 5. The implementation of
the preprocessing and the liver lesion segmentation network
is available online .

Experimental Settings. We use Keras with the TensorFlow
backend to implement our proposed network. The 2D Comp-
Net for the liver segmentation is trained for 40 epochs using
the Adam optimizer with a learning rate of 5e-5. Next, we
train the 2D and 3D CompNets for the large and small lesion
segmentation in the same manner, i.e., we first train the net-
works using the Adam optimizer with a learning rate of Se-5,
the same as that used in [5], and having an early stopping
scheme with the tolerance being set to 5. We then train the
networks with a learning rate of le-6 using an early stopping
with a tolerance of 10 trials. Both steps have 150 maximum
number of epochs for training. Also, we use an L2 regulariza-
tion with a parameter of 2e-4 and a dropout with a rate of 0.3
after all pooling and upsampling layers to mitigate overfitting.

mttps://github.com/raunl/LITS_Hybrid_Comp_Net
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Method Dice Per Subject | Dice Overall | W/o Pre-training | W/o Post-processing
H-Dense U-Net [14] 0.722 0.824 v

Multiple U-Nets [5] 0.680 0.796 v

2.5 D U-Net [6] 0.670 — v

CDNN [15] 0.657 0.820 v v
FED-Net [17] 0.650 0.766 v

AH-Net [10] 0.634 0.834 v v

RA U-Net [18] 0.595 0.795 v v
BS-U-Net [7] 0.552 0.729 v v

Ours (w/o small lesions) 0.681 (0.610) 0.813 (0.776) v v

Table 1. Comparison among published approaches and ours on the LiTS challenge.

Fig. 6. Comparison between our predictions (green) and the
LiTS annotations (blue) using the two-fold cross-validation
on the LiTS training set. The red arrows indicate the artifacts
that share similar intensity distribution to lesions annotated on
the same slice but are missing in the annotations while being
predicted by our method.

Experimental Results. Since the LiTS dataset does not in-
clude the segmentation ground truth for the test set, we first
perform the two-fold cross-validation on the training set to
quantitatively and qualitatively evaluate the performance of
our proposed method. We obtain 67.3% Dice per subject and
some visual samples are presented in Fig. 6. By evaluating
the test set of the LiTS challenge, we list in Table 1 our re-
sult, which is generated by our model submitted to the chal-
lenge, with comparison to those of the currently published ap-
proaches. According to the Dice score per subject, the most
important metric for measuring an algorithm’s performance
on the LiTS challenge, our approach is at the second rank,
following after the H-Dense U-Net [14], which however uses
pre-training. In addition, our small lesion segmentation could
be an add-on component to their method for further improve-
ment in segmenting small lesions. Our experiment shows
that the dice per subject can be improved from 0.61 to 0.681
with the consideration of the small lesion segmentation. In
particular, among the methods without pre-training and post-
processing, our method has the best performance in terms of
the dice-per-subject score. Figure 7 reports some visual re-
sults of our predictions on the LiTS test set.

Observations on LiTS Annotations. As shown in Fig. 6, the
LiTS annotations have both over-segmentation and under-
segmentation issues. For the large lesions in both cases

Fig. 7. Examples of our predictions (indicated by the green
lines) on the LiTS test set.

shown in Fig. 6, our predictions better fit lesions compared
to the ground truth, while for the small lesions, our predic-
tions locate more lesions potentially missing in the ground
truth. Similar observations have been reported in [5]. Due to
the imperfect ground truth provided by the LiTS challenge,
we argue that the metrics computed against the ground truth
probably could not be the only way to compare the segmen-
tation results. Visual results could be considered as well, and
ours visually present reasonable liver lesion segmentation
predicted by our method.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a hybrid 2D and 3D neural network
for segmenting the liver lesions. Especially, we designed a
dedicated 3D segmentation network for the small lesions in
the liver. This 3D segmentation network could be an add on to
a network that suffers from segmenting small objects. More-
over, we observed the imperfect annotations provided by the
LiTS data set, which hinders the further improvement of a
network’s learning performance and makes the evaluation re-
sults questionable for comparison. How to handle and fully
leverage such imperfect labels will be our future work. We
also plan to extend our framework to other medical applica-
tions with the lesion/tumor or small object segmentation.
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