FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

'.) Check for updates

SOFTWARE TOOL ARTICLE
Large-scale sequence comparisons with sourmash|[version 1;

peer review: 2 approved]

N. Tessa Pierce “'", Luiz Irber "', Taylor Reiter’, Phillip Brooks "', C. Titus Brown

Department of Population Health and Reproduction, University of California, Davis, Davis, California, 95616, USA

" Equal contributors

First published: 04 Jul 2019, 8:1006 (0pen Peer Review
https://doi.org/10.12688/f1000research.19675.1)

Latest published: 04 Jul 2019, 8:1006 (
https://doi.org/10.12688/f1000research.19675.1)

vi

Reviewer Status +" +"

Abstract Invited Reviewers
The sourmash software package uses MinHash-based sketching to create 1 2
“signatures”, compressed representations of DNA, RNA, and protein

sequences, that can bg stored, searched, explored,. and taxonomically version 1 o o
annotated. sourmash signatures can be used to estimate sequence published report report
similarity between very large data sets quickly and in low memory, and can 04 Jul 2019

be used to search large databases of genomes for matches to query
genomes and metagenomes. sourmash is implemented in C++, Rust, and
Python, and is freely available under the BSD license at

1 Brad Solomon, Johns Hopkins University,

http://github.com/dib-lab/sourmash. Baltimore, USA
Keywords 2 Rayan Chikhi , Institut Pasteur, Paris,
sequence analysis, MinHash, k-mer, sourmash, bioinformatics France

Any reports and responses or comments on the

@ python This article is included in the Python Collection article can be found at the end of the article.

collection.

Corresponding author: C. Titus Brown (ctbrown@ucdavis.edu)

Author roles: Pierce NT: Formal Analysis, Investigation, Software, Visualization, Writing — Original Draft Preparation, Writing — Review & Editing;
Irber L: Conceptualization, Formal Analysis, Methodology, Software, Validation, Writing — Review & Editing; Reiter T: Formal Analysis,
Investigation, Software, Validation, Visualization, Writing — Original Draft Preparation, Writing — Review & Editing; Brooks P: Formal Analysis,
Investigation, Methodology, Software, Validation, Writing — Review & Editing; Brown CT: Conceptualization, Formal Analysis, Funding Acquisition,
Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative [GBMF4551 to CTB].
NTP was supported by a National Science Foundation Postdoctoral Fellowship in Biology [1711984].
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Pierce NT et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Pierce NT, Irber L, Reiter T et al. Large-scale sequence comparisons with sourmash [version 1; peer review: 2
approved] F1000Research 2019, 8:1006 (https://doi.org/10.12688/f1000research.19675.1)

First published: 04 Jul 2019, 8:1006 (https://doi.org/10.12688/f1000research.19675.1)

Page 1 of 22

https://f1000research.com/articles/8-1006/v1
https://orcid.org/0000-0002-2942-5331
https://orcid.org/0000-0003-4371-9659
https://orcid.org/0000-0003-3987-244X
https://orcid.org/0000-0001-6001-2677
https://f1000research.com/collections/python
https://f1000research.com/collections/python
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.19675.1
https://doi.org/10.12688/f1000research.19675.1
https://f1000research.com/articles/8-1006/v1
https://orcid.org/0000-0003-1099-8735
https://doi.org/10.12688/f1000research.19675.1
https://doi.org/10.12688/f1000research.19675.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.19675.1&domain=pdf&date_stamp=2019-07-04

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Introduction

Bioinformatic analyses rely on sequence comparison for many applications, including variant analysis, taxo-
nomic classification and functional annotation. As the Sequence Read Archive now contains over 20 Petabases
of data', there is great need for methods to quickly and efficiently conduct similarity searches on a massive scale.
MinHash techniques’ utilize random sampling of k-mer content to generate small subsets known as “sketches”
such that Jaccard similarity (the intersection over the union) of two sequence data sets remains approximately
equal to their true Jaccard similarity>’. The many-fold size reductions gained via MinHash opens the door
to extremely large scale searches.

While the initial k-mer MinHash implementation focused on enabling Jaccard similarity comparisons’, it has
since been modified and extended to enable k-mer abundance comparisons’, decrease runtime and memory
requirements’, and work on streaming input data®. Furthermore, as Jaccard similarity is impacted by the relative
size of the sets being compared, containment searches™* have been developed to enable detection of a small set
within a larger set, such as a genome within a metagenome.

Here we present version 2.0 of sourmash’, a Python library for building and utilizing MinHash sketches of DNA,
RNA, and protein data. sourmash incorporates and extends standard MinHash techniques for sequencing data,
with a particular focus towards enabling efficient containment queries using large databases. This is accom-
plished with two modifications: (1) building sketches via a modulo approach’, and (2) implementing a modified
Sequence Bloom Tree'” to enable both similarity and containment searches. In most cases, these features enable
sourmash database comparisons in sub-linear time.

Standard genomic MinHash techniques, first implemented in Ondov BD et al’, retain the minimum n k-mer
hashes as a representative subset. sourmash extends these methods by incorporating a user-defined “scaled”
factor to build sourmash sketches via a modulo approach, rather than the standard bottom-hash approach’.
Sketches built with this approach retain the same fraction, rather than number, of k-mer hashes, compressing both
large and small datasets at the same rate.

This enables comparisons between datasets of disparate sizes but can sacrifice some of the memory and stor-
age benefits of standard MinHash techniques, as the signature size scales with the number of unique k-mers rather
than remaining fixed®. In sourmash, use of the “scaled” factor enables user modification of the trade-off between
search precision and sketch size, with the caveat that searches and comparisons can only be conducted using
signatures generated with identical “scaled” values (downsampled at the same rate).

To enable large-scale database searches using these signatures, sourmash implements a modified Sequence Bloom
Tree (SBT), the SBT-MinHash (SBTMH), that allows both similarity (sourmash search) and containment (sour-
mash gather) searches for taxonomic exploration and classification. Notably, Jaccard similarity searches using this
modified SBT require storage of the cardinality of the smallest MinHash below each node in order to properly
bound similarity. sourmash also implements a second database format, “LCA”, for in-memory search when
sufficient RAM is available or database size is tractable. The LCA format can be leveraged to return additional
information, such as taxonomic lineage.

In addition to these modifications, sourmash implements k-mer abundance tracking® within signatures to allow
abundance comparisons across datasets and facilitate metagenome, metatranscriptome, and transcriptome
analyses, and is compatible with streaming approaches. The sourmash library is implemented in C++, Rust'!,
and Python, and can be accessed both via command line and Python API. The code is available under the BSD
license at http://github.com/dib-lab/sourmash.

Implementation

sourmash provides a user-friendly, extensible platform for MinHash signature generation and manipulation for
DNA, RNA, and protein data. Sourmash is designed to facilitate containment queries for taxonomic exploration
and identification while maintaining all functionality available via standard genomic MinHash techniques.

sourmash Signatures

sourmash modifies standard genomic MinHash techniques in two ways. First, sourmash scales the number
of retained hashes to better represent and compare datasets of varying size and complexity. Second, sourmash
optionally tracks the abundance of each retained hash, to better represent data of metagenomic and transcriptomic
origin and allow abundance comparisons.

Page 2 of 22

https://github.com/dib-lab/sourmash

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Scaling. sourmash implements a method inspired by modulo sketches’ to dynamically scale hash sub-
set retention size (7). When using scaled signatures, users provide a scaling factor (s) that divides the hash space
into s equal bands, retaining hashes within the minimum band as the sketch. These scaled signatures can be
converted to standard bottom-hash signatures, if the subset retention size n is equal to or smaller than the number
of hashes in the scaled signature. sourmash provides a signature utility, downsample, to convert sketches when
possible. Finally, to maintain compatibility with sketches generated by other programs such as Mash’, sourmash
generates standard bottom-hash MinHash sketches if users specify the hash subset size n rather than scaling factor.

Streaming compatibility. Scaled signature generation is streaming compatible and provides some advantages
over streaming calculation using standard MinHash. As data streams in, standard MinHash replaces hashes
based on the minimum hash value to maintain a fixed number of hashes in the signature. In contrast, no hash is
ever removed from a scaled signature as more data is received. As a result, for searches of a database using
streamed-in data, all prior matches remain valid (although their significance may change as more data is received).
This allows us to place algorithmic guarantees on containment searches using streaming data.

Abundance tracking. sourmash extends MinHash functionality by implementing abundance tracking of
k-mers. k-mer counts are incremented after hashing as each k-mer is added to the hash table. sourmash tracks
abundance for k-mers in the minimum band and stores this information in the signature. These values accom-
pany the hashes in downstream comparison processes, making signatures better representations of repetitive
sequences of metagenomic and transcriptomic origin.

Signatures. MinHash sketches associated with a single sequence file are stored together in a ‘“‘signature”
file, which forms the basis of all sourmash comparisons. Signatures may include sketches generated with
different & sizes or molecule type (nucleotide or protein) and are stored in JSON format to maintain human readability
and ensure proper interoperability.

Signatures can only be compared against signatures and databases made from the same parameters (k size(s),
scaled value, nucleotide or protein level). If signatures differ in their scaled value or size(n), the larger signa-
tures can be downsampled to become comparable with smaller signatures using the signature utilities, below.
sourmash also provides 6-frame nucleotide translation to generate protein signatures from nucleotide input if
desired.

Signature utilities. sourmash provides a number of utilities to facilitate set operations between signatures
(merge, intersect, extract, downsample, flatten, subtract, overlap), and handling (describe,
rename, import, export) of sourmash signatures. These can be accessed via the sourmash signature
subcommand.

SBT-MinHash

sourmash implements a modified Sequence Bloom Tree (SBT'!’), the SBT-MinHash (SBTMH), which can
efficiently capture large volumes of MinHashes (e.g., all microbes in GenBank) and support multiple search
regimes that improve on run time of linear searches.

Implementation. The SBTMH is a n-ary tree (binary by default), where leaf nodes are MinHash signatures
and internal nodes are Bloom Filters. Each Bloom Filter contains all the values from its children, so the root
node contains all the values from all signatures. SBTMH is designed to be extensible such that signatures can be
subsequently added without the need for full regeneration. Adding a new signature to SBTMH causes parent nodes
up to the root to be updated, but other nodes are not affected.

SBTMH trees can be combined if desired: In the simplest case, adding a new root and updating it with the
content of the previous roots is sufficient, and this preserves all node information without changes. As an
example, separate indices can be created for each RefSeq subdivision (bacteria, archaea, fungi, etc) and be
combined depending on the application (such as an analysis for bacteria + archaea, but not fungi). In practice, this
is most useful for updating the SBTMH, as both search and gather support search over multiple databases
without the need for rebuilding a single large database.

Searching SBTMH. Similarity searches start at the root of the SBTMH, and check for query elements present

in each internal node. If the similarity does not reach the threshold, the subtree under that node does not need to
be searched. If a leaf is reached, it is returned as a match to the query signature. In order to enable similarity (in

Page 3 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

addition to containment) searches using this modified SBTMH, nodes store the cardinality of the smallest sig-
nature below each node in order to properly bound similarity. The full SBTMH does not need to be imported to
RAM during searches, making this method best for rapid searching with minimal memory requirements. How-
ever, if sufficient RAM is available, searches of databases (or many signatures) may be completed in memory
via an alternate database format (discussed below).

SBTMH utilities. sourmash provides several utilities for construction, use, and handling of SBTMH
databases. These include sbt index to index a collection of signatures as an SBTMH for fast searching, sbt
append to add signatures, and sbt combine to join two SBTMH databases.

LCA database

sourmash implements an alternate database format, LCA, to support in-memory queries. This implementation
utilizes two named lists to store MinHashed databases: the first containing MinHashes, and the second
containing taxonomic information, with both lists named by sample name. This structure facilitates direct look-up
of MinHashes, and thus can be leveraged to return additional information, such as taxonomic lineage.
The LCA database structure can be prepared using the sourmash lca index command.

Assessing sequence similarity

Pairwise comparisons

For sequence comparison, sourmash compare reimplements Jaccard sequence similarity comparison to
enable comparison between scaled MinHashes. When abundance tracking of k-mers is enabled, compare
instead calculates the cosine similarity, although we recommend using more accurate approaches for detailed
comparisons’.

Database searches

In addition to conducting pairwise comparisons, two types of database searches are implemented: breadth-first sim-
ilarity searches (sourmash search) and best-first containment searches (sourmash gather), which support
different biological queries. These searches can be conducted using either database format.

Similarity queries. Breadth-first sourmash search can be used to obtain all MinHashes in the SBTMH that are
present in the query signature (above a specified threshold). This style of search is streaming-compatible, as the
query MinHash can be augmented as the search is occurring.

Containment queries Best-first sourmash gather implements a greedy algorithm where the SBTMH is
descended on a linear path through a set of internal nodes until the highest containment leaf is reached. The hashes
in this leaf are then subtracted from the query MinHash and the process is repeated until the threshold minimum
is reached. sourmash post-processes similarity statistics after the search such that it reports percent identity
and unique identity for each match.

Taxonomy-resolved searches sourmash can conduct taxonomy-resolved searches uses the “least com-
mon ancestor” approach (as in Kraken'”), to identify k-mers in a query. From this it can either find a consensus
taxonomy between all the k-mers (sourmash classify) or it can summarize the mixture of k-mers
present in one or more signatures (sourmash summarize).

Operation

sourmash is a tool for building and utilizing MinHash signatures of DNA, RNA, and protein sequences.
A straightforward workflow consists of generating a signature using sourmash compute, and compar-
ing it against other signatures or databases of signatures via sourmash compare, search, gather,
lca search, or lca gather. sourmash has no particular memory requirements, but does need to hold
the largest single sequence in memory while generating a signature. For example, computing a signature from
a 100Mb human microbiome sample requires 30MB of RAM, and searching it against a sourmash Genbank
signature database takes 1-6 minutes and requires 2-6 GB of RAM, depending on the search type. “LCA”
databases are smaller on disk but require more memory to be searched.

Below we provide several use cases to demonstrate the utility of sourmash for sequence comparisons, start-
ing with signature generation and proceeding into signature comparisons, tetranucleotide frequency cluster-
ing analysis, and taxonomic classification. We primarily demonstrate nucleotide-level applications in this paper;
protein-level analyses will be explored further in future work. Additional information and tutorials are available
at https://sourmash.readthedocs.io.

Page 4 of 22

https://sourmash.readthedocs.io

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Use cases

Installation

sourmash 1is available for both Linux and OSX, and runs under either Python 2.7.x or Python
3.5+. To install sourmash, we recommend using conda. For these examples, we used sourmash v.2.0.1,
installed with conda v 4.6.14.

conda install -c conda-forge \
—-c bioconda sourmash

Alternate installation instructions are available at sourmash.readthedocs.io.

Creating a signature
All sourmash comparisons work on signatures, compressed representations of biological sequencing
data. To create a signature from sequences with abundance tracking:

download the genome
curl -L https://osf.io/bjh2y/download \
-o GCF _000005845.2 ASM584v2 genomic.fna.gz

calculate the signature
sourmash compute -k 21,31,51 \
—-—-scaled 2000 \
—-—-track—-abundance \
-0 GCF_000005845.2 ASM584v2 genomic.sig \
GCF _000005845.2 AsSM584v2 genomic.fna.gz

Because a signature can contain multiple MinHashes, multiple k-sizes can be specified per a sequence.
Only one scaled size can be used.

By default, the name of the file becomes the name of the signature. To name the signature from the first line
of the sequencing file, use ——name-from-first. Although the —-track-abundance flag is optional,
since downstream comparison methods contain the flag —--ignore-abundance to ignore them, we
recommend calculating all signatures with abundance tracking.

To create a signature from protein sequences:

download amino acid sequences
curl -L https://osf.io/y9kra/download \
-0 GCF_000146045.2 R64 protein.faa.gz

calculate the signature
sourmash compute -k 11,21,31 \
--scaled 2000 \
-—track-abundance \
-0 GCF_000146045.2 R64 protein.sig \
GCF 000146045.2 R64 protein.faa.gz

Signatures can also be made directly from reads. Depending on the downstream use cases, we recommend
different preparation methods. When the user aims to compare the signature to other signatures, we recommend
k-mer trimming the reads before computing the signature. Because compare does an all-by-all comparison of
signatures, errors in the reads will falsely deflate the similarity metric. We recommend trimming RNA-seq or
metagenome reads with trim—low-abund.py in the khmer package', a dependency of sourmash.

download the reads
curl -L -o ERR458584.fqg.gz \
https://osf.io/pfxth/download

trim the reads
trim-low-abund.py ERR458584.fqg.gz \

Page 5 of 22

https://docs.conda.io/projects/conda/en/latest/
http://sourmash.readthedocs.io
https://pypi.org/project/khmer/

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

-V -Z 10 -C 3 —-—gzip -M 3e9 \
-0 ERR458584.khmer.fqg.gz

calculate the signature from trimmed reads
sourmash compute -k 21,31,51 \

—-—scaled 2000 \

-—track-abundance \

-0 ERR458584.khmer.sig \

ERR458584 .khmer.fg.gz

When using methods that compare a signature against a database such as gather or search, k-mer
trimming need not be used. These methods use exact matching of hashes in the signature to those in the data-
bases. k-mer trimming could increase false negatives, but results on k-mer trimmed data will more accurately
represent the proportions of content in the data.

calculate the signature from raw reads
sourmash compute -k 21,31,51 \

——scaled 2000 \

—-—track—-abundance \

-0 ERR458584.sig \

ERR458584.fqg.gz

Comparing many signatures

Signatures calculated with abundance tracking enable rapid comparison of sequences where k-mer frequency
is variable, and can be leveraged for quality control and summarization methods. For example, principle
component analysis (PCA) and multidimensional scaling (MDS) are standard quality control and summarization
methods for count data generated during RNA-seq analysis'’. sourmash can be used to build this MDS
plot in a reference-free (or assembly-free) manner, using k-mer abundances of the input reads. We also
find this useful for comparing other types of RNA sequencing samples (mRNA, ribo-depleted, 3’ tag-seq,
metatranscriptomes, and transcriptomes).

MDS

Here, we use a set of four Saccharomyces cerevisiae RNA-seq samples: replicate wild-type samples and
replicate mutant (SNF2) samples””. To use sourmash to build an MDS plot, we first trim the data to remove
low abundance k-mers via khmer'. We demonstrate the streaming capability of sourmash by downloading,
k-mer trimming, and calculating a signature with one command. This allows the user to generate signatures
without needing to store large files locally.

curl -L https://osf.io/pfxth/download \
| trim-low-abund.py -V -Z 10 \
-C 3 -M 3e9 -o - -\
| sourmash compute -k 31 \
——-scaled 2000 —--track-abundance \
-0 ERR458584.khmer.sig -

The signature will be named from the input filename, in this case —. We can change the name to reflect its
contents using the signature rename function.

sourmash signature rename \
-k 31 —-o ERR458584.khmer-named.sig \

ERR458584.khmer.sig \
ERR458584 . khmer

We can also check that the name has been changed.

sourmash signature describe \
ERR458584 . khmer-named.sig

Page 6 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Using signatures from four samples, we can compare the files with the compare function. Here we
download signatures calculated and renamed using the above commands. We output the comparison matrix as
a csv for downstream use in other platforms.

download signatures
curl -L -o yeast-sigs.tar.gz \
https://osf.io/pk2w5/download

uncompress the signatures
tar xvf yeast-sigs.tar.gz

compare the signatures

sourmash compare -k 31 \
-—csv yeast-comp.csv \
*named.sig

We then import the compare similarity matrix into R (v3.4.1) to produce an MDS plot with wild-type
samples (ERR459011, ERR459102) in yellow and mutant samples (ERR458584, ERR458829) in blue.

Read data into R
comp mat <- read.csv("yeast-comp.csv")

Set row labels
rownames (comp mat) <- colnames (comp mat)

Transform for plotting
comp mat <- as.matrix(comp mat)

Make an MDS plot
fit <- dist(comp mat)
fit <- cmdscale(fit)

plot(fit[, 2] ~ f£it[, 11,
xlab = "Dim 1",
ylab = "Dim 2",
xlim= c(-.6, .9),
main = "sourmash Compare MDS")

add labels to the plot
text (fit[, 2]~ fit[, 11,
labels = row.names (fit),
pos = 4, font =1,
data = fit,
col = c("blue", "blue",
"orange", "orange"))

For comparison, we also produced an MDS plot using a more traditional approach, utilizing Salmon
(v0.11.3)'° to quantify abundance relative to an S. cerevisiae reference, and edgeR (v3.22.5)" to build an
MBDS plot (Figure 1; code available online at https://ost.io/97rt4/).

Tetranucleotide Frequency Clustering

We can also use sourmash with abundance tracking for tetranucleotide frequency clustering. Tetranucleotide
usage is species-specific, with strongest conservation in DNA coding regions'®. This is often used in metagenom-
ics as one method to “bin” assembled contiguous sequences together that are from the same species'’. Recently,
tetranucleotide frequency clustering using sourmash was used to detect microbial contamination in the
domesticated olive genome”. Here we reimplement this approach using 100 of the 11,038 scaffolds in the
draft genome. We calculate the signature using a k-mer size of 4, use all 4-mers, and track abundance. Then
we use sourmash compare to calculate the similarity between each scaffold. (The --singleton flag
calculates a signature for each sequence in the fasta file.)

Page 7 of 22

https://github.com/COMBINE-lab/salmon
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://osf.io/97rt4/

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Sourmash Compare MDS

C\! i o
i o
S A
N o
E o
£
g - ERR458584
N
9
- ERR458829
T T T
-0.5 0.0 0.5
Dim 1
Salmon & edgeR MDS
(S

0.5

-0.5

ERR458584

Leading logFC dim 2
0.0
1

ERR458829
T T

-15 -1.0 -0.5 0.0 0.5 1.0
Leading logFC dim 1

Figure 1.The MDS plots produced from the reference-free sourmash compare similarity matrix and the transcript
quantification analysis (salmon and edgeR) are similar. Wild-type S. cerevisiae samples (ERR459011, ERR459102)
are in yellow and mutant samples (ERR458584, ERR458829) in blue.

download the subsampled genome
curl -L https://osf.io/xusfa/download \
-0 Oe6.scaffolds.sub.fa.gz

calculate a signature for each scaffold
sourmash compute -k 4 \
--scaled 1 \
-—track-abundance \
-—singleton \
-0 Oe6.scaffolds.sub.sig \
Oeb.scaffolds.sub.fa.gz

pairwise compare all scaffolds
sourmash compare -k 4 \
-0 Oe6.scaffolds.sub.comp \
Oeb.scaffolds.sub.sig

Although sourmash compare supports export to a csv file, sourmash also has a built in visualization
function, plot. We will use this to visualize scaffold similarity.

sourmash plot —--labels \
——vmin .4 \
Oe6.scaffolds.sub.comp

In Figure 2, we see that there is high similarity between 98 of the scaffolds, but that Oe6_s01156 and
Oe6_s01003 are outliers with tetranucleotide frequency similarity around 40% to olive scaffolds. These two
scaffolds are contaminants™.

Page 8 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

—- 0.4

Figure 2. Heatmap and dendrogram generated using sourmash signatures built from scaffolds in the domesticated
olive genome. Two scaffolds are outliers when using tetranucleotide frequency to calculate similarity (highlighted in
green on the dendrogram).

Comparisons to detect outliers

MinHash comparisons are useful for outlier detection. Below we compare 50 genomes that contain the
word “Escherichia coli” We have pre-calculated the signatures for each of these genomes. We then use
the plot function to visualize our comparison.

download the signatures into a folder
mkdir escherichia-sigs
cd escherichia-sigs

curl -L https://osf.io/pc76j/download \
-0 escherichia-sigs.tar.gz

decompress the signatures
tar xzf escherichia-sigs.tar.gz
rm escherichia-sigs.tar.gz

cd

pairwise compare the signatures
sourmash compare -k 31 \
-0 ecoli.comp \
escherichia-sigs/*sig

plot the comparison
sourmash plot —--labels \
ecoli.comp

We see that the minimum similarity in the matrix is 0%. If all 50 signatures were from the same species, we
would expect to observe higher minimum similarity at a k-mer size of 31. When we look closely, we see
one signature has 0% similarity with all other signatures because it is a phage (Figure 3).

Page 9 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

1.0

0.8

0.6

0.4

- 0.2

| il

0.0

Figure 3. Heatmap and dendrogram generated using sourmash signatures built from 50 genomes that contained
the word “Escherichia coli”. One signature is an outlier (highlighted in blue on the dendrogram).

Classifying signatures
The search and gather functions allow the user to classify the contents of a signature by comparing it
to a database of signatures. Prepared databases for microbial genomes in RefSeq and GenBank are available
at https://sourmash.readthedocs.io/en/latest/databases.html. However, it is also simple to create a custom
database with signatures.

Below we make a database that contains 50 Escherichia coli genomes.

mkdir escherichia-sigs
cd escherichia-sigs

curl -L https://osf.io/pc767/download \
-0 escherichia-sigs.tar.gz

tar xzf escherichia-sigs.tar.gz
rm escherichia-sigs.tar.gz

cd

sourmash index -k 31 ecolidb \
escherichia-sigs/*.sig

This database can be queried with search and gather using any signature calculated with a k-size of 31.

For example, below we download a small set of k-mer trimmed Escherichia coli reads and generate a signature
with k=31.

curl -L -o ecoli-reads.khmer.fqg.gz \
https://osf.io/26xm9/download \

sourmash compute -k 31
-—-scaled 2000 \
ecoli-reads.khmer.fqg.gz \
-0 ecoli-reads.sig

Page 10 of 22

https://sourmash.readthedocs.io/en/latest/databases.html

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Then, we search the 50-genome database created above.

sourmash search -k 31 \
ecoli-reads.sig ecolidb \

——containment
49 matches; showing first 3:
similarity match
65.4% NZ JMGW01000001.1 Escherichia coli 1-176-05 S4 C2 e117605
64.9% NZ GG774190.1 Escherichia coli MS 196-1 Scf1d2538, whole
63.7% NZ JMGU01000001.1 Escherichia coli 2-011-08 S3 C2 201108

Breadth-first sourmash search finds all matches in the SBTMH that are present in the query signature
(above a specified threshold).

Now try the same search using sourmash gather

sourmash gather -k 31 \
ecoli-reads.sig ecolidb

loaded query: ecoli ref -5m.khmer.fqg.gz ... (k=31, DNA)
loaded 1 databases.

overlap p_query p match

4.1 Mbp 65.4% 83.5%

NZ JMGW01000001.1 Escherichia coli 1-...
2.4 Mbp 2.7% 3.3%

NZ GG749254.1 Escherichia coli FVEC14...
3.4 Mbp 1.4% 1.7%

NZ MOGK01000001.1 Escherichia coli st...
3.1 Mbp 0.6% 0.7%

NZ LVOV01000001.1 Escherichia coli st...
3.1 Mbp 0.3% 0.4%

NZ MIWP01000001.1 Escherichia coli st...
3.0 Mbp 0.3% 0.4%

NZ APWY01000001.1 Escherichia coli 17...
3.5 Mbp 0.2% 0.2%

NZ JNLZ01000001.1 Escherichia coli 3-...
4.0 Mbp 0.2% 0.2%

NZ GG774190.1 Escherichia coli MS 196...
2.3 Mbp 0.1% 0.2%

NZ KB732756 .1 Escherichia coli KTE66...
2.0 Mbp 0.1% 0.1%

NZ BBUW01000001.1 Escherichia coli Ol1...
2.3 Mbp 0.1% 0.1%

NZ MOZX01000101.1 Escherichia coli st...
2.3 Mbp 0.1% 0.1%

NZ JsMw01000001.1 Escherichia coli st...
4.0 Mbp 0.1% 0.1%

NZ JMGU01000001.1 Escherichia coli 2-...
2.0 Mbp 0.0% 0.0%

NZ MOzC01000010.1 Escherichia coli st...
2.1 Mbp 0.0% 0.0%

NZ MKJG01000001.1 Escherichia coli st...
1.8 Mbp 0.0% 0.0%

NZ AEKA01000453.1 Escherichia sp. TWI...
2.6 Mbp 0.0% 0.0%

Page 11 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

NZ LEAD01000071.1 Escherichia coli st...
3.5 Mbp 0.0% 0.0%
NZ MIWF01000001.1 Escherichia coli st...

found 18 matches total;
the recovered matches hit 71.5% of the query

Best-first sourmash gather finds the best match first, e.g. here the first E. coli genome has an 83% match
to 65.4% of our query signature. The hashes that matched (65.4% of the query) are then subtracted, and
the database is queried with the remaining hashes (34.6% of original query). This process is repeated until
the threshold is reached. sourmash post-processes similarity statistics after the search such that it reports
percent identity and unique identity for each match.

sourmash gather is also useful for rapid metagenome decomposition. Below we calculate a signature of a
metagenome using raw reads, and then use gather to perform a best-first search against all microbial genomes
in Genbank. This approach was recently used to classify unknown genomes in a “mock” metagenome’'. The mock
community was made to contain 64 genomes, but additional genomic material was inadvertently added prior
to sequencing. Below we will use gather to investigate the content in the mock metagenome that did not map
to the 64 reference genomes. For details on how this signature was created, please see Awad er al.”>. Note that
the GenBank database is approximately 7.8 Gb compressed, and 50 Gb decompressed. Searches of the current
Gen-Bank database run fastest if allowed to use 11 Gb of RAM.

download the signature
curl -L -o unmapped-gc-to-ref.fqg.sig \
https://osf.io//download \

download the gather k 31 Genbank database

curl -L -o genbank-d2-k31.tar.gz \
https:// s3-us-west-2.amazonaws.com/
sourmash-databases/2018-03-29/
genbank-d2-k31.tar.gz

run gather

sourmash gather -k 31 \
-0 unmapped-gc-to-ref.csv \
unmapped-gc-to-ref.fg.sig \
genbank-d2-k31

The output to the terminal begins:

loaded query: unmapped-gc-to-ref.fqg... (k=31, DNA)
downsampling query from scaled=10000 to 10000
loaded 1 databases.

overlap p_query p match

1.6 Mbp 1.1% 19.9%

BA000019.2 Nostoc sp. PCC 7120 DNA, c...
1.2 Mbp 0.8% 50.8%

LN831027.1 Fusobacterium nucleatum su...
1.2 Mbp 0.8% 31.0%

CP001957.1 Haloferax volcanii DS2 pla...
1.1 Mbp 0.8% 16.7%

BX119912.1 Rhodopirellula baltica SH

1.0 Mbp 0.7% 29.0%

CH959311.1 Sulfitobacter sp. EE-36 sc

0.8 Mbp 0.6% 37.3%

AP008226.1 Thermus thermophilus HB8 g...
0.8 Mbp 0.6% 56.7%

Page 12 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

CP001941.1 Aciduliprofundum boonei T4...

0.8 Mbp 0.5% 23.3%
FOVK01000036.1 Proteiniclasticum rumi...
0.7 Mbp 0.5% 15.0%

CP000031.2 Ruegeria pomeroyi DSS-3, c...
0.7 Mbp 0.5% 11.3%

CP000875.1 Herpetosiphon aurantiacus

0.6 Mbp 0.4% 22.9%

BA000023.2 Sulfolobus tokodaiistr. 7...
0.6 Mbp 0.4% 13.6%

AP009153.1 Gemmatimonas aurantiaca T-...

We see that 20.1% of k-mers match 82 genomes in GenBank. The majority of matches are to genomes present in
the mock community. However, some species like Proteiniclasticum ruminis were not members of the mock com-
munity. These results also highlight how sourmash gather behaves with inexact matches such as strain vari-
ants. For example, we see two matches between P. ruminis strains among all matches. This likely indicates
that a P. ruminis strain that has not been sequenced before is in our sample, and that it shares more k-mers
of size 31 in common with one strain than the other. (See Brown CT et al.* for further analysis of this strain.)

sourmash gather and search also support custom databases. Using a custom database with
sourmash gather, we can identify the dominant contamination in the domesticated olive genome®.
Below, we will use a database containing all fungal genomes in NCBI. We will then use the streaming
compatibility of sourmash to download and calculate the signature. Lastly, we will search the olive genome
against the fungal genomes using gather.

download the fungal database
curl -L -o fungi-genomic.tar.gz \
https://osf.io/7yzc4d/download

decompress the database
tar xf fungi-genomic.tar.gz

download the olive genome
calculate the signature
curl -L https://osf.io/k9358/download \
| zcat \
| sourmash compute -k 31 \
--scaled 2000 --track-abundance \
-0 Oe6.scaffolds.sig —

perform gather

sourmash gather -k 31 \
—-—scaled 2000 \
-0 Oeb.scaffolds.csv \
Oe6.scaffolds.sig \
fungi-k31

Using gather, we see two matches both within the genus Aureobasidium. This is the dominant contaminant
within the genome™.

loaded query: Oe6.scaffolds.fa... (k=31, DNA)
loaded 1 databases.

overlap p_query p match avg abund
140.0 kbp 0.0% 1.0% 1.2
LVWM01000001.1 Aureobasidium pullulan...
68.0 kbp 0.0% 0.1% 1.0

Page 13 of 22

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

MSDY01000045.1 Aureobasidium sp. FSWF...
found less than 30.0 kbp in common. => exiting

found 2 matches total;
the recovered matches hit 0.0% of the query

Conclusions

The sourmash package provides a collection of tools to conduct sequence comparisons and taxonomic classifica-
tion, and makes comparison against large-scale databases such as GenBank and SRA tractable on laptops. sourmash
signatures are small and irreversible, which means they can be used to facilitate pre-publication data sharing that may
help improve classification databases and facilitate comparisons among similar datasets.

Data availability
Underlying data
Open Science Framework: sourmash-use-cases. https://doi.org/10.17605/OSE.IO/KESH2

This project contains the following underlying data:
* data-files
— ecoli-reads.khmer.fq.gz (Small set of k-mer trimmed Escherichia coli reads)
— ERR458584.1q.gz (Saccharomyces cerevisiae SRA Record ERR458584 SNF2 mutant,)
— Oe6.scaffolds.fa.gz (domesticated olive (Olea europaea) genome™)

— Oe6.scaffolds.sub.fa.gz (Subsampled set of scaffolds from the domesticated olive (Olea europaea)
genome™)

— yeast_ktrimmed.tar (kmer-trimmed Saccharomyces cerevisiae reads'”)
¢ index-files
— escherichia-sigs.tar.gz (Sourmash signatures of 50 randomly selected Escherichia coli genomes)
— fungi-genomic.tar.gz (Sourmash signature database of all fungal genomes in NCBI as of 12/2018)
 signature-files
— GCF_000005845.2_ASM584v2_genomic.fna.gz (Escherichia coli genome str. K-12 substr. MG1655)
— GCF_000146045.2_R64_genomic.fna.gz (Saccharomyces cerevisiae S288C genome)

— GCF_000146045.2_R64_protein.faa.gz (Saccharomyces cerevisiae S288C protein sequence)

Extended data
Open Science Framework: sourmash-use-cases. https://doi.org/10.17605/OSF.IO/KESH2

This project contains the following extended data:

e yeast-mds.txt (Code to generate MDS plots via Salmon and edgeR)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver
(CCO 1.0 Public domain dedication).

Software availability
Source code available from: https://github.com/ dib-lab/sourmash/

Archived source code at time of publication: http://doi.org/10.5281/zenodo.3240653

Licence: 3-Clause BSD License

Page 14 of 22

https://dx.doi.org/10.17605/OSF.IO/KESH2
https://dx.doi.org/10.17605/OSF.IO/KESH2
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/ dib-lab/sourmash/
http://dx.doi.org/10.5281/zenodo.3240653
https://opensource.org/licenses/BSD-3-Clause

F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Grant information

This work is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative
[GBMF4551 to CTB]. NTP was supported by a National Science Foundation Postdoctoral Fellowship in Biology
[1711984].

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

References

Sequence read archive overview. 2018.
Reference Source

reservations]. F1000Res. 2015; 4: 900.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Broder AZ: On the r blance and inment of doct its. 14. Conesa A, Madrigal P, Tarazona S, et al.: A survey of best
In Compression and complexity of sequences 1997. proceedings. practices for RNA-seq data analysis. Genome Biol. 2016; 17(1): 13.
|IEEE. 1997; 21-29. PubMed Abstract | Publisher Full Text | Free Full Text
Reference Source 15. Schurch NJ, Schofield P, Gierlinski M, et al.: How many biological
3. Ondov BD, Treangen TJ, Melsted P, et al.: Mash: fast genome and replicates are needed in an RNA-seq experiment and which
metagenome distance estimation using MinHash. Genome Biol. differential expression tool should you use? RNA. 2016; 22(6):
2016; 17(1): 132. 839-51.
PubMed Abstract | Publisher Full Text | Free Full Text PubMed Abstract | Publisher Full Text | Free Full Text
4. Bovee R, Greenfield N: Finch: a tool adding dynamic abundance 16. Patro R, Duggal G, Love MI, et al.: Salmon provides fast and bias-
filtering to genomic minhashing. 2018; 3(22): 505. aware quantification of transcript expression. Nat Methods. 2017;
Publisher Full Text 14(4): 417-419.
5. Zhao XF: BinDash, software for fast genome distance estimation PubMed Abstract | Publisher Full Text | Free Full Text
on a typical personal laptop. Bioinformatics. 2019; 35(4): 671-673. 17. Robinson MD, McCarthy DJ, Smyth GK: edger: a bioconductor
PubMed Abstract | Publisher Full Text package for differential expression analysis of digital gene
6. Rowe WP, Carrieri AP, Alcon-Giner C, et al.: Streaming histogram :X[:)I’GSZI;IL(’:I ta'tB'gm{)‘:."T]anci‘ ?I01] 0;t26é1) : 1::3 gﬁjr“o't
sketching for rapid microbiome analytics. Microbiome. 2019; 7(1): 40. ubiie stract | Publisher Full Text | Free Full Tex
PubMed Abstract | Publisher Full Text | Free Full Text 18. Pride DT, Meinersmann RJ, Wassenaar TM, et al.: Evolutionary
7. Koslicki D, Zabeti H: Improving minhash via the containment index |rr1p||cat|ons of microbial genome tetranucleotide frequency
. . . . biases. Genome Res. 2003; 13(2): 145-158.
with applications to metagenomic analysis. App/ Math Comput. PubMed Abstract | Publisher Full Text | F Full Text
2019: 354: 206-215. ubMe stract | Publisher Full Text | Free Full Tex
Publisher Full Text 19. Albertsen M, Hugenholtz P, Skarshewski A, et al.: Genome
) e . sequences of rare, uncultured bacteria obtained by differential
?
8. g:;’:::::esnc;l‘ﬁ::ts in my sequencing run? 2017. coverage binning of multiple metagenomes. Nat Biotechnol. 2013;
31(6): 533-538.
9. Brown CT, Irber L: sourmash: a library for MinHash sketching of PubMed Abstract | Publisher Full Text
DNAI J Open Source Softw. 2016; 1(5): 27. 20. Reiter T, Brown CT: Microbial contamination in the genome of the
Publisher Full Text : .
domesticated olive. 2018.
10. Solomon B, Kingsford C: Fast search of thousands of short-read Publisher Full Text
sequencing experiments. Nat Biotechnol. 2016; 34(3): 300-2. . X .
PubMed Abstract | Publisher Full Text | Free Full Text 21. Shakya M, Qumce C. Campk_)ell JH’ et.a/.. Cpmparatwe .
. metagenomic and rRNA microbial diversity characterization
11, Matsakis ND, Klock FS II: The rust language. Ada Lett. 2014; 34(3): using archaeal and bacterial synthetic communities. Environ
103-104. Microbiol. 2013; 15(6): 1882—1899.
Publisher Full Text PubMed Abstract | Publisher Full Text | Free Full Text
12, Wood DE, Salzberg SL: Kraken: ultrafast metagenomic sequence 22. Awad S, Irber L, Brown CT: Evaluating metagenome assembly
classification using exact alignments. Genome Biol. 2014; 15(3): on a simple defined community with many strain variants. 2017.
R46. _ Publisher Full Text
PubMed Abstract | Publisher Full Text | Free Full Text 23. Brown CT, Moritz D, O'brien M, et al.: Exploring neighborhoods in
13. Crusoe MR, Alameldin HF, Awad S, et al.: The khmer software large metagenome assembly graphs reveals hidden sequence

package: enabling efficient nucleotide sequence analysis
[version 1; peer review: 2 approved, 1 approved with

diversity. BioRxiv. 2019; 462788.
Publisher Full Text

Page 15 of 22

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
https://www.cs.princeton.edu/courses/archive/spring13/cos598C/broder97resemblance.pdf
http://www.ncbi.nlm.nih.gov/pubmed/27323842
http://dx.doi.org/10.1186/s13059-016-0997-x
http://www.ncbi.nlm.nih.gov/pmc/articles/4915045
http://dx.doi.org/10.21105/joss.00505
http://www.ncbi.nlm.nih.gov/pubmed/30052763
http://dx.doi.org/10.1093/bioinformatics/bty651
http://www.ncbi.nlm.nih.gov/pubmed/30878035
http://dx.doi.org/10.1186/s40168-019-0653-2
http://www.ncbi.nlm.nih.gov/pmc/articles/6420756
http://dx.doi.org/10.1016/j.amc.2019.02.018
https://genomeinformatics.github.io/mash-screen/
http://dx.doi.org/10.21105/joss.00027
http://www.ncbi.nlm.nih.gov/pubmed/26854477
http://dx.doi.org/10.1038/nbt.3442
http://www.ncbi.nlm.nih.gov/pmc/articles/4804353
http://dx.doi.org/10.1145/2692956.2663188
http://www.ncbi.nlm.nih.gov/pubmed/24580807
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pmc/articles/4053813
http://www.ncbi.nlm.nih.gov/pubmed/26535114
http://dx.doi.org/10.12688/f1000research.6924.1
http://www.ncbi.nlm.nih.gov/pmc/articles/4608353
http://www.ncbi.nlm.nih.gov/pubmed/26813401
http://dx.doi.org/10.1186/s13059-016-0881-8
http://www.ncbi.nlm.nih.gov/pmc/articles/4728800
http://www.ncbi.nlm.nih.gov/pubmed/27022035
http://dx.doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pmc/articles/4878611
http://www.ncbi.nlm.nih.gov/pubmed/28263959
http://dx.doi.org/10.1038/nmeth.4197
http://www.ncbi.nlm.nih.gov/pmc/articles/5600148
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pmc/articles/2796818
http://www.ncbi.nlm.nih.gov/pubmed/12566393
http://dx.doi.org/10.1101/gr.335003
http://www.ncbi.nlm.nih.gov/pmc/articles/420360
http://www.ncbi.nlm.nih.gov/pubmed/23707974
http://dx.doi.org/10.1038/nbt.2579
http://dx.doi.org/10.1101/499541
http://www.ncbi.nlm.nih.gov/pubmed/23387867
http://dx.doi.org/10.1111/1462-2920.12086
http://www.ncbi.nlm.nih.gov/pmc/articles/3665634
http://dx.doi.org/10.1101/155358
http://dx.doi.org/10.1101/462788

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Open Peer Review

Current Peer Review Status: v

Reviewer Report 02 September 2019

https://doi.org/10.5256/f1000research.21579.r52218

© 2019 Chikhi R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Rayan Chikhi
C3BI USR 3756, CNRS (French National Center for Scientific Research), Institut Pasteur, Paris, France

The authors present sourmash 2, a tool that implements a novel combination of SBTs and MinHashes,
which are both fascinating computational concepts; thus, their mix is quite an interesting one. Sourmash 2
enables to perform large-scale sequences-vs-database similarity searches. The article offers a
comprehensive guide for many of the software features, with biologically relevant scenarios. This is a
useful contribution that is highly relevant to current needs in biology. There are a few technical issues with
the current manuscript version that | list below. But otherwise, most of my remarks are for adding some
extra perspective. | believe the manuscript can be approved after the technical fixes.

Major remarks:
1. A quick recap of the state of the art in containment search would be helpful. Here you claim to use

‘a modulo approach’. Mash screen and containment minhash use different approaches (see e.g.
the blog post of ‘Mash screen’). It would be nice if, in this paper, the usage of the modulo approach
was put into perspective compared to those two aforementioned methods.

. Infact, in the blog post cited as reference 8, Ondov writes that “the modulo approach is

problematic for metagenomic applications (e.g. finding a virus in a metagenome).” The problem is
indirectly mentioned in the manuscript (“can sacrifice some of the memory and storage benefits of
standard MinHash techniques, as the signature size scales with the number of unique k-mers”). It
would be neat to get the authors’ comparative perspective here as to why using modulo is the
better approach.

. My main comment would perhaps be the lack of comparison with other software. | do not know if

this is a requirement for F1000Research in the “Software Tool Article” category. | suppose that
sourmash is the only tool that implements SBT-Minhashes, so of course here there is no
competitor in that category. It would however be nice to have some indication on whether
sourmash is best-in-class in each of the proposed features (the uses cases), or whether other tools
already exist and somehow do a similar job. And, the other way around, which areas where

Page 16 of 22

https://doi.org/10.5256/f1000research.21579.r52218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-1099-8735

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

sourmash is really the only tool capable of doing X in reasonable time. | do not expect a
comprehensive benchmark, but some informal indication would already be appreciated.

What are roughly the limits of similarity queries? E.g. sequences shorter than X or having identity
below Y% have no chances to be reported.

A summary of all the features demonstrated in the main text could be helpful. For instance, reading
only the introduction, it is not explicit that a natural application of sourmash is outlier/contaminant
detection.

Minor remarks:

1.

10.

11.

“Sequence Read Archive now contains over 20 Petabases of data1”: seems to be over 30 PB in
2019 according to the plot in reference 1.

It is not clear what the ‘LCA’ term stands for in the context of the database format introduced here.
Is it the lowest common ancestor?

The description of LCA (in section “LCA database”) is imprecise. What does a “named list” mean in
this context? A Figure would be helpful to see a small example.

. A sentence in the manuscript mentions ‘a second database format’. The “first format’ is supposedly

the SBTMH but it is only implicit that SBTMH is a ‘format’.

The introduction mentions a bunch of features implemented in other tools (“Jaccard similarity
comparisons, .., k-mer abundance comparisons, decrease runtime and memory requirements,
and work on streaming input data.”) Are all of these implemented in sourmash2, or only a subset of
them? (It seems to me that most are implemented.)

The description of the modulo approach used is imprecise. How is the hash space divided into s
equal ‘bands’ (undefined term), precisely? Also, | suppose this somewhat different from the modulo
approach proposed by Broder, and clarified in Mash screen’s blog post, but how so?

. The concept of ‘hash subset retention’ is not well defined. | suppose it is the set of hashes that

result from a MinHash computation.
Abundance filtering (as in Finch) is not performed in sourmash2, right?

Some of the ‘signature utilities’ are self-explanatory. However, what is the difference between
‘intersect’ and ‘overlap’? What is ‘flatten’?

Regarding the sentence: “although we recommend using more accurate approaches for detailed
comparisons.” To make the paper self-contained, a short explanation would be needed to
delineate what sort of concrete use-case(s) is/are meant behind the term ‘detailed comparisons’.

The “similarity queries” and “containment queries” sections could benefit from at least one
use-case example per query. This is to illustrate the two sections, which are a bit obscure without
examples. (I realize that use cases are given later in the codes examples, so perhaps a

Page 17 of 22

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

12.

13.

14.

15.

16.

forward-reference could work, albeit less elegant.) A proposal for similarity queries: find all
genomes in the SBTMH (leaves) that are similar to a query genome’.

Awkward formulation of that part of the sentence: [..] ‘using a k-mer size of 4, use all 4-mers, and
track abundance.’ (although | understood that the k-mer size was 4 and the ‘use all k-mers’ refers
to a scaling factor of 1)

The “Tetranucleotide Frequency Clustering“ section is quite nice. It should be emphasized
however this isn’t really a minhash sketch: all 4-mers are considered.

Regarding the sentence “We see that the minimum similarity in the matrix is 0%”, how is that seen?
visual inspection of ecoli.comp.matrix.png?

Regarding the sentence “This process is repeated until the threshold is reached.”: | forgot.. which
threshold?

Regarding the sentence “We see that 20.1% of k-mers match 82 genomes in GenBank.”: how is
this seen? Also “we see two matches between P. ruminis strains among all matches.” In the output
above that text, | see only one match. (I could not test that section due to the missing download
URL.)

Regardlng the software commands:

As an important note, one cannot easily copy-paste the command lines as short dashes (-) are
converted to long dashes (). Nevertheless, | still automatically replaced all the dashes and tested
all command lines. I'll report any problem below.

Extra \’ at the end of the command: “curl -L —o ecoli-reads.khmer.fq.gz
https://osf.io/26xm9/download \".

Missing url in command (and also extra ‘\’ at the end): “[..] unmapped-qc-to-ref.fq.sig
https://osf.io//download \” Thus | could not test this part.

The streaming operation at the beginning of the MDS section overwrites the file
‘ERR458584.khmer.sig‘ produced before, perhaps make a note of that.

The url “curl -L —o genbank-d2—k31.tar.gz \
https:// s3-us-west-2.amazonaws.com/
sourmash-databases/2018-03-29/
genbank—-d2-k31.tar.gz“ has extra new lines

In the command “sourmash index —k 31 ecolidb \
escherichia-sigs /*.sig”, a space is wrongly inserted after “escherichia-sigs”

And also, in the command that follows, one of the V' is extra and another ‘\’ is missing.
The SBT path inside the file fungi-k31.sbt.json’ is wrongly hardcoded. Also, when fixing it, | get

“WARNING: this is an old index version, please run “sourmash migrate’ to update it.” Although it
did end up working.

Page 18 of 22

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Algorithms and data structures for sequence bioinformatics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 27 August 2019

https://doi.org/10.5256/f1000research.21579.r52588

© 2019 Solomon B. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Brad Solomon
Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore,
MD, USA

This manuscript presents an improved software library, sourmash 2.0, for the efficient construction and
analysis of MinHash sketches of genomic and proteomic sequence data. The primary innovations of
sourmash 2.0 are the novel applications and modified implementations of several existing sketching and
indexing methods. In particular, the two main advancements are (1) a ‘modulo approach’ to sketch
construction and the development of a modified Sequence Bloom Tree (SBT) index over MinHash
sketches. In addition, unlike conventional MinHash methods, sourmash 2.0 can also track the abundance
of retained hash elements, allowing some degree of abundance comparison and abundance estimation of
genomic datasets.

Multiple use cases for sourmash 2.0 are provided including sketch construction, similarity comparisons,

Page 19 of 22

https://doi.org/10.5256/f1000research.21579.r52588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

containment querying, classification, and metagenome decomposition. The manuscript is very thorough
in describing sketch construction with example run commands for full-length genomes, proteomes, as
well as raw reads. The ease of use is further demonstrated with a single line command that, while
involving multiple pipes, is capable of constructing a signature through a download data stream. Similarly,
several uses of sketch comparisons are demonstrated including visualization and outlier detection. Lastly
the use of the SBT MinHash (SBTMH) is demonstrated for classification or containment of arbitrary
sequence queries. The download instructions and example run commands are fully functional and the
input datasets are reasonably sized for toy examples (most on the order of <100 MB).

Excluding the description of the modulo approach of sketch construction, the manuscript itself is
technically sound. The topic is high impact -- sketching approaches are increasingly popular solutions to a
multitude of research topics in computational biology. Many of these potential use cases are
demonstrated successfully in the manuscript. That said, there are numerous existing solutions to each of
the use cases presented in the manuscript and little to no attempt was made to provide benchmarking
information or to demonstrate the improvements sourmash 2.0 has over its competitors. While sourmash
2.0 has an ease of use that will undoubtedly facilitate use, it does not adequately demonstrate an
improved capacity for analysis over these other tools. This is primarily a suggestion for improvement as,
based on the F1000 Research guidelines, the manuscript is correct and valid in its current state.

Major Comments:

1. The ‘modulo approach’ for sketch construction, despite being one of the main innovations of the
method, is particularly unclear in the manuscript. The cited literature (Broder 1997) describes an
approach that sub-samples hash values based on a modulo factor to address the inherent
weakness of a Minhash in a mixture of several distinct components. However the description of the
sourmash implementation instead describes splitting the hash space into ‘equal bands’ and
selecting only the minimum band. As the existing modulo approach has no guarantees on
equal-sized (or even equal-fraction as the manuscript claims elsewhere) sub-sampling, this
appears to be a novel and significant contribution to the field. However there are no details that
explain (1) how the hash space is divided, (2) how the minimum band is selected, and (3) how
downsampling is performed.

2. Sourmash 2.0 is motivated by “a particular focus towards enabling efficient containment queries
using large databases”. However the manuscript does not include any true comparisons about
sourmash’s performance against existing tools, alternative approaches, or benchmarking
information for even conventionally sized datasets. This greatly limits the potential impact of
sourmash given there are many competing sketch strategies and an even larger range of available
implementations.

While it is unreasonable to expect a full review of the available methods, the inclusion of even a
single ‘large-scale’ dataset in the test set or use cases would go a long way towards demonstrating
the scalability of sourmash. Selecting a biologically relevant subset from a public genomic
repository such as the NIH SRA, TCGA, or GTEx (to name just a few) would alleviate the need to
host such a dataset while allowing large-scale reproducibility and benchmarking.

Minor Comments:
1. The ‘Salmon & edgeR’ MDS plot in Figure 1 does not have points associated with the text labels.
As there is no consistency in the placement of labels versus nodes in the first plot (Sourmash
Compare MDS), even approximate values are difficult to determine.

Page 20 of 22

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

2. The commands listed in the manuscript are using the wrong character (‘- vs *-’). None of them run
properly without manual adjustments or retyping. | imagine this is a formatting issue more than a
coding one but it would make reproducing the results a lot simpler if it was resolved.

Other:

1. The inclusion of limited abundance information is a particularly interesting improvement over
standard MinHash sketches. The manuscript suggests that the abundance tracking can play a
significant role when ‘comparing many signatures’ but there is no concrete claim to assess. While
outside the scope or focus of this work, a follow-up piece which explores the theoretical or practical
impact of systematically sub-sampled counting information would be potentially high impact.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Computational Biology, Algorithms and Data Structures, Genomics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Page 21 of 22

FIOOOResearch F1000Research 2019, 8:1006 Last updated: 02 SEP 2019

The benefits of publishing with F1000Research:

® Your article is published within days, with no editorial bias

® You can publish traditional articles, null/negative results, case reports, data notes and more
® The peer review process is transparent and collaborative

® Your article is indexed in PubMed after passing peer review

® Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com F](mResearCh

Page 22 of 22

