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ABSTRACT

One-sided communication is a useful paradigm for irregular paral-

lel applications, but most one-sided programming environments,

including MPI’s one-sided interface and PGAS programming lan-

guages, lack application-level libraries to support these applica-

tions. We present the Berkeley Container Library, a set of generic,

cross-platform, high-performance data structures for irregular ap-

plications, including queues, hash tables, Bloom filters and more.

BCL is written in C++ using an internal DSL called the BCL Core

that provides one-sided communication primitives such as remote

get and remote put operations. The BCL Core has backends for

MPI, OpenSHMEM, GASNet-EX, and UPC++, allowing BCL data

structures to be used natively in programs written using any of

these programming environments. Along with our internal DSL,

we present the BCL ObjectContainer abstraction, which allows BCL

data structures to transparently serialize complex data types while

maintaining efficiency for primitive types. We also introduce the

set of BCL data structures and evaluate their performance across a

number of high-performance computing systems, demonstrating

that BCL programs are competitive with hand-optimized code, even

while hiding many of the underlying details of message aggregation,

serialization, and synchronization.
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· Computing methodologies → Parallel programming lan-

guages.
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1 INTRODUCTION

Writing parallel programs for supercomputers is notoriously diffi-

cult, particularly when they have irregular control flow and complex

data distribution; however, high-level languages and libraries can

make this easier. A number of languages have been developed for
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high-performance computing, including several using the Parti-

tioned Global Address Space (PGAS) model: Titanium, UPC, Coarray

Fortran, X10, and Chapel [9, 11, 12, 25, 29, 30]. These languages are

especially well-suited to problems that require asynchronous one-

sided communication, or communication that takes place without

a matching receive operation or outside of a global collective. How-

ever, PGAS languages lack the kind of high level libraries that exist

in other popular programming environments. For example, high-

performance scientific simulations written in MPI can leverage a

broad set of numerical libraries for dense or sparse matrices, or

for structured, unstructured, or adaptive meshes. PGAS languages

can sometimes use those numerical libraries, but are missing the

data structures that are important in some of the most irregular

parallel programs.

This paper describes the Berkeley Container Library (BCL) that is

intended to support applications with irregular patterns of commu-

nication and computation and data structures with asynchronous

access, for example hash tables and queues, that can be distributed

across processes but manipulated independently by each process.

BCL is designed to provide a complementary set of abstractions for

data analytics problems, various types of search algorithms, and

other applications that do not easily fit a bulk-synchronous model.

BCL is written in C++ and its data structures are designed to be co-

ordination free, using one-sided communication primitives that can

be executed using RDMA hardware without requiring coordination

with remote CPUs. In this way, BCL is consistent with the spirit of

PGAS languages, but provides higher level operations such as insert

and find in a hash table, rather than low-level remote read and

write. As in PGAS languages, BCL data structures live in a global

address space and can be accessed by every process in a parallel

program. BCL data structures are also partitioned to ensure good

locality whenever possible and allow for scalable implementations

across multiple nodes with physically disjoint memory.

BCL is cross-platform, and is designed to be agnostic about the

underlying communication layer as long as it provides one-sided

communication primitives. It runs on top of MPI’s one-sided com-

munication primitives, OpenSHMEM, and GASNet-EX, all of which

provide direct access to low-level remote read and write primitives

to buffers in memory [6, 10, 16]. BCL provides higher level abstrac-

tions than these communication layers, hiding many of the details

of buffering, aggregation, and synchronization from users that are

specific to a given data structure. BCL also has an experimental

UPC++ backend, allowing BCL data structures to be used inside an-

other high-level programming environment. BCL uses a high-level

data serialization abstraction called ObjectContainers to allow the

storage of arbitrarily complex datatypes inside BCL data structures.

BCL ObjectContainers use C++ compile-time type introspection to

avoid introducing any overhead in the common case that types are

byte-copyable.
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We present the design of BCL with an initial set of data struc-

tures and operations. We then evaluate BCL’s performance on ISx,

an integer sorting mini-application, Meraculous, a mini-application

taken from a large-scale genomics application, and a collection of

microbenchmarks examining the performance of individual data

structure operations. We explain how BCL’s data structures and

design decisions make developing high-performance implementa-

tions of these benchmarks more straightforward and demonstrate

that BCL is able to match or exceed the performance of both spe-

cialized, expert-tuned implementations as well as general libraries

across three different HPC systems.

1.1 Contributions

(1) A distributed data structures library that is designed for high

performance and portability by using a small set of core primi-

tives that can be executed on four distributed memory backends

(2) The BCL ObjectContainer abstraction, which allows data struc-

tures to transparently handle serialization of complex types

while maintaining high performance for simple types

(3) A distributed hash table implementation that supports fast in-

sertion and lookup phases, dynamic message aggregation, and

individual insert and find operations

(4) A distributed queue abstraction for many-to-many data ex-

changes performed without global synchronization

(5) A distributed Bloomfilter which achieves fully atomic insertions

using only one-sided operations

(6) A collection of distributed data structures that offer variable

levels of atomicity depending on the call context using an ab-

straction called concurrency promises

(7) A fast and portable implementation of the Meraculous bench-

mark built in BCL

(8) An experimental analysis of irregular data structures across

three different computing systems along with comparisons be-

tween BCL and other standard implementations.

2 BACKGROUND AND HIGH-LEVEL DESIGN

Several approaches have been used to address programmability

issues in high-performance computing, including parallel languages

like Chapel, template metaprogramming libraries like UPC++, and

embedded DSLs like STAPL. These environments provide core

language abstractions that can boost productivity, and some of them

have sophisticated support for multidimensional arrays. However,

none of these environments feature the kind of rich data structure

libraries that exist in sequential programming environments like

C++ or Java. A particular need is for distributed memory data

structures that allow for nontrivial forms of concurrent access

that go beyond partitioned arrays in order to address the needs

of irregular applications. These data structures tend to have more

complicated concurrency control and locality optimizations that

go beyond tiling and ghost regions.

Our goal is to build robust, reusable, high-level components to

support these irregular computational patterns while maintaining

performance close to hardware limits. We aim to achieve this goal

using the following design principles.

Low Cost for Abstraction.While BCL offers data structures with

high-level primitives like hash table and queue insertions, these

commands will be compiled directly into a small number of one-

sided remote memory operations. Where hardware support is avail-

able, all primary data structure operations, such as reads, writes,

inserts, and finds, are executed purely in RDMA without requiring

coordination with remote CPUs.

Portability. BCL is cross-platform and can be used natively in

programs written in MPI, OpenSHMEM, GASNet-EX, and UPC++.

When programs only use BCL data structures, users can pickwhichever

backend’s implementation is most optimized for their system and

network hardware.

Software Toolchain Complexity. BCL is a header-only library,

so users need only include the appropriate header files and compile

with a C++-14 compliant compiler to build a BCL program. BCL

data structures can be used in part of an application without having

to re-write the whole application or include any new dependencies.

3 BCL CORE

The BCL Core is the cross-platform internal DSL we use to imple-

ment BCL data structures. It provides a high-level PGAS memory

model based on global pointers, which are C++ objects that allow

the manipulation of remote memory. Similar to other PGAS pro-

gramming models, each process has a shared memory segment, and

each process can allocate memory in that segment using global

pointers, which in BCL are regular C++ objects that can be passed

around between processes or stored in global memory. Global point-

ers support remote get and remote write operations. Remote com-

pletion of put operations is not guaranteed until after a memory

fence such as a flush or a barrier.

Although BCL is not designed for bulk synchronous program-

ming, it provides a limited set of collective operations such as

broadcast and allreduce for transporting pointer and control values.

BCL adheres firmly to the idea of one-sided communication and

avoids the use of remote operations that require the use of a remote

CPU. The BCL core instead relies on remote memory operations

and atomics, which can be supported by network hardware and

do not interrupt computations running on the CPU. BCL backends

must implement at least the atomic compare-and-swap (CAS) op-

eration, since all other atomic memory operations (AMOs) can be

implemented on top of CAS [19]. Other common atomics include

fetch-and-op atomics which can perform addition and bitwise op-

erations. More details on the semantics of the BCL Core are in our

preprint [7].

Backends, which include MPI, OpenSHMEM, GASNet-EX, and

an in-progress UPC++ backend, provide provide a small number

of functions to support the BCL Core. Necessary functions include

an init function that allocates symmetric shared memory segments,

barrier, read, and write functions, and at least an atomic CAS

operation.

4 PARALLEL PATTERNS IN BCL

When choosing data structures to implement in BCL, we wanted

to focus on data structures that could exploit particular high-level

parallel patterns [22, 23]. While BCL also efficiently supports com-

monly known data structure patterns such as the Distributed Array

Pattern [22], its novelty lies in its support for more challenging

irregular data access patterns as first-class citizens. In particular,
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we chose to focus on exposing high-level data structures that ex-

ploit two parallel patterns: (1) fine-grained, low-latency reads and

writes, and (2) asynchronous many-to-many redistribution of data.

These patterns occur in many applications that perform concurrent

reads and writes in an unpredictable manner, with prime examples

in graph algorithms, computational chemistry, and bioinformatics.

These patterns can also be used in loosely synchronous applications

that require data redistribution due to changes in the computational

structure as the algorithms proceed [26].

4.1 Fine-Grained RDMA Operations

For the first pattern, we wanted to provide high-level interfaces

for fine-grained operations that are potentially complex, such as

hash table operations, but in many cases will be executed as a

single RDMA operation. For these low-latency operations, design-

ing a low-cost, header-only library where user code is compiled

down to a small number of calls to a backend library is essential to

achieve performance. Also essential to achieving performance for

low-latency operations across a variety of computing platforms is

supportingmultiple backends, since oftentimes the best communica-

tion backend varies across supercomputing platforms. Examples of

data structures we implemented which expose this pattern include

hash tables and Bloom filters, discussed in Sections 5.2 and 5.4.

4.2 Many-to-Many Data Redistribution

For the second pattern, we are interested in applications where each

process wishes to push data to other processes in an asynchronous,

arbitrary manner. MPI all-to-all provides a restricted implemen-

tation of this pattern, where each process gathers its data to be

sent to each other process, then all processes take part in a bulk

synchronous all-to-all operation. While there are asynchronous

versions of MPI all-to-all, it still restricts processes from generating

new data after the all-to-all operation has started, thus limiting

the possibility for overlap between communication and computa-

tion. Sometimes this pattern is explicitly present, such as in sorting

or histogramming, but sometimes it can be exposed by buffering

and aggregating fine-grained operations. In this paper, we first

build queue data structures (Section 5.1) that allow for arbitrary

data redistribution using asynchronous queue insertions. Then,

we design a łhash table bufferž data structure (Section 5.3) that

allows users to buffer and aggregate hash table insertions trans-

parently, transforming fine-grained, latency-bound operations into

bulk, bandwidth-bound ones.

5 BCL DATA STRUCTURES

BCL data structures are split into two categories: distributed and

hosted. Distributed data structures live in globally addressable mem-

ory and are automatically distributed among all the ranks in a BCL

program. Hosted data structures, while resident in globally address-

able memory, are hosted only on a particular process. All other

processes may read or write from the data structure lying on the

host process. We have found hosted data structures to be an impor-

tant building block in creating distributed data structures.

All BCL data structures are coordination free, by which we mean

that primary data structure operations, such as insertions, deletions,

updates, reads, and writes, can be performed without coordinating

Data Structure Locality Description

BCL::HashMap Distributed Hash Table

BCL::CircularQueue Hosted Multiple Reader/Writer Queue

BCL::FastQueue Hosted Multi-Reader or Multi-Writer Queue

BCL::HashMapBuffer Distributed Aggregate hash table insertions

BCL::BloomFilter Distributed Distributed Bloom filter

BCL::DArray Distributed 1-D Array

BCL::Array Hosted 1-D Array on one process

Table 1: A summary of BCL data structures.

with the CPUs of other nodes, but purely in RDMA where hard-

ware support is available. Other operations, such as resizing or

migrating hosted data structures from one node to another, may

require coordination. In particular, operations which modify the

size and location of the data portions of BCL data structures must be

performed collectively, on both distributed and hosted data struc-

tures. This is because coordination-free data structure methods,

such as insertions, use global knowledge of the size and location

of the data portion of the data structure. For example, one process

cannot change the size or location of a hash table without alerting

other processes, since they may try to insert into the old hash table

memory locations. Tables 1 and 2 give an overview of the available

data structures and operations. Table 2 also gives the best-case cost

of each operation in terms of remote reads R, remote writesW ,

atomic operations A, local operations ℓ, and global barriers B. As

demonstrated by the table, each high-level data structure operation

is compiled down to a small number of remote memory operations.

All BCL data structures are also generic, meaning they can be

used to hold any type, including complex, user-defined types. Most

common types will be handled automatically, without any interven-

tion by the user. See Section 6 for a detailed description of BCL’s

lightweight serialization mechanism.

Many distributed data structure operations have multiple pos-

sible implementations that offer varying levels of atomicity. De-

pending on the context of a particular callsite, only some of these

implementations may be valid. We formalize a mechanism, called

concurrency promises, that allows users to optionally assert invari-

ants about a callsite context. This allows BCL data structures to use

optimized implementations that offer fewer atomicity guarantees

when a user guarantees that this is possible. This mechanism is

discussed in Section 7.

5.1 Queues

BCL includes two types of queues: one, CircularQueue, is a general

multi-reader, multi-writer queue which supports variable levels

of atomicity. The second, FastQueue, supports multiple readers

or multiple writers, but requires that read and write phases be

separated by a barrier. Both queues are implemented as ring buffers

and are initialized with a fixed size as a hosted data structure, so

while a queue is globally visible, it is resident on only one process

at a time.

FastQueue uses three shared objects: a data segment, where queue

elements are stored; a shared integer that stores the head of the

queue; and a shared integer that stores the tail of the queue. To

insert, a process first increments the tail using an atomic fetch-and-

add operation, checks that this does not surpass the head pointer,

and then inserts its value or values into the data segment of the
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Data Structure Method Collective Description Cost

BCL::HashMap

bool insert(const K &key, const V &val) N Insert item into hash table. 2A + W

bool find(const K &key, V &val) N Find item in table, return val. 2A + R

BCL::BloomFilter

bool insert(const T &val) N Insert item into Bloom filter, return true if already present. A

bool find(const T &val) N Return true if item is likely to be in filter, false otherwise. R

BCL::CircularQueue

bool push(const T &val) N Insert item into queue. 2A +W

bool pop(T &val) N Pop item into queue. 2A + R

bool push(const std::vector <T> &vals) N Insert items into queue. 2A + nW

bool pop(std::vector <T> &vals, size_t n) N Pop items from queue. 2A + nR

bool local_nonatomic_pop(T &val) N Nonatomically pop item from a local queue. ℓ

void resize(size_t n) Y Resize queue. B + ℓ

void migrate(size_t n) Y Migrate queue to new host. B + nW

Table 2: A selection of BCL data structure methods. Costs are best case, without any concurrency promises. R,W , A, B, ℓ, and

n are the costs of a remote read, write, atomic memory op., barrier, local memory op., and number of elements, respectively.

Method Concurrency Promise Description Cost

insert

(a) find | insert Fully Atomic 2A +W

(b) local Local Insert ℓ

find

(c) find | insert Fully Atomic 2A + R

(d) find Only Finds R

Table 3: Implementations for hash table methods.

Method Concurrency Promise Description Cost

push

(a) push | pop Fully Atomic 2A +W

(b) push Only Pushes 2A +W

(c) local Local Push ℓ

pop

(d) push | pop Fully Atomic 2A + R

(e) pop Only Pops 2A + R

(f) local Local Pop ℓ

Table 4: Implementations for circular queue methods.

queue. An illustration of a push operation is shown in Figure 1. In

general, the head overrun check is performed without a remote

memory operation by caching the position of the head pointer,

so an insertion requires only two remote memory operations. We

similarly cache the location of the tail pointer, so pops to the queue

usually require only one atomic memory operation to increment

the head pointer and one remote memory operation to read the

popped values.

CircularQueue. To support concurrent reads and writes, circular

queue has an additional set of head and tail pointers which indicate

which portions of data in the queue are ready to be read. There are

multiple implementations of push and pop for a circular queue data

structure, as listed in Table 4.

Push and Pop Operations. The default fully atomic implementa-

tion used for insertion (Table 4a) into a circularqueue data structure

involves 2 atomic operations and a remote put operation with a

flush. First, we issue a fetch-and-add operation to increment the tail

Head

Tail

New Tail

fetch_and_add rput

1 2

Filled

Reserved

Figure 1: Process for pushing values to a BCL FastQueue.

First (1) a fetch_and_add operation is performed, which re-

turns a reserved locationwhere values can be inserted. Then

(2) the values to be inserted are copied to the queue.

pointer, then write the data to the queue and flush it. Finally, we

must perform a CAS operation to increment the łtail readyž pointer,

indicating that the pushed data is ready to be read. A CAS is neces-

sary for the final step because a fetch-and-add could increment the

ready pointer to mistakenly mark other processes’ writes as ready

to be read. In the case where no pop operations will be performed

before a barrier, we may perform the final atomic increment using

a fetch-and-add (Table 4b). An analogous implementation is used

for pop operations (Table 4d and 4e).

Both queues support resizing as well as migrating to another host

process, both as collective operations. We evaluate the performance

of our circular queue data structures in Section 8.1.

Advantage of FastQueue. FastQueue has the advantage of requir-

ing one fewer AMO per push or pop. While the CircularQueue

does support variable levels of atomicity, allowing the final pop to

be a single non-blocking fetch-and-add operation, we felt that this

was an important enough overhead to warrant a separate version

of the data structure, since queues that support only multi-reader

and multi-writer phases are crucial to several of the algorithms that

we explored.

5.2 Hash Table

BCL’s hash table is implemented as a single logically contiguous

array of hash table buckets distributed block-wise among all pro-

cesses. Each bucket is a struct including a key, value, and status
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flag. Our hash table uses open addressing with quadratic probing

to resolve hash collisions. As a result, neither insert nor find op-

erations to our hash table require any coordination with remote

ranks. Where hardware support is available, hash table operations

will only use RDMA operations.

Interface. BCL’s BCL::HashMap is a distributed data structure.

Users can create a BCL::HashMap by calling the constructor as

a collective operation. BCL hash tables are created with a fixed key

and value type as well as a fixed size. BCL hash tables use Object-

Containers, discussed in Section 6, to store any arbitrary data types.

The hash table supports two primary methods, insert and find.

Section 8 gives a performance analysis of our hash table.

Atomicity. By default, hash table insert and find operations are

atomic with respect to one another, including simultaneous insert

operations and find operations using the same key. In addition to

this default level of atomicity, users can pass a concurrency promise

as an optional argument at each callsite that can allow the data

structure to select a more optimized implementation with less strict

atomicity guarantees. All the available implementations for insert

and find operations are shown in Table 3.

Our hash table uses a lightweight, per-bucket locking scheme.

Each hash table bucket has a 32-bit used flag that ensures atomicity

of operations. The lowest 2 bits of this flag indicate the reservation

status of the bucket. There are three possible states: (1) free, (2)

reserved, and (3) ready. The free state represents an unused bucket,

the reserved state represents a bucket that has been reserved is

being modified, and the ready state indicates that a bucket is ready

to be read. The remaining 30 bits are read flag bits, and they indicate,

if flipped, that a process is currently reading the hash table entry.

This prevents another process from writing to the entry before the

other process has finished reading.

Insert Operations. The default, fully atomic process for inserting

(Table 3a) requires two atomic memory operations (AMOs) and

a remote put with a flush. First, the inserting process computes

the appropriate bucket. Then it uses a compare-and-swap (CAS)

operation to set the bucket’s status to reserved, a remote put to

write the correct key and value to the reserved bucket, followed by

a flush to ensure completion of the put, then finally an atomic XOR

to set the status of the bucket to ready.

In some special cases, we may wish to have processes perform

local insertions into their own portions of the hash table. This may

be done with only local CPU instructions, not involving the NIC.

Crucially, this cannot be done when other operations, such as gen-

eral find or insert operations, might be executed, since CPU atomics

are not atomic with respect to NIC atomics. This implementation

requires the concurrency promise local (Table 3b).

Find Operations. The default, fully atomic implementation of the

find operation (Table 3c) again involves two AMOs and a remote

read. First, the process uses a fetch-and-or to set a random read bit.

This keeps other processes from writing to the hash bucket before

the process has finished reading it. Then, it reads the value, and,

after reading, unsets the read bit.

In the common case of a traversal phase of an application, where

no insert operations may occur concurrent with find operations,

we may use an alternate implementation that requires no atomic

operations (Table 3d), but just a single read operation to read the

whole bucket including the reserved flag, key, and value.

Hash Table Size. A current limitation of BCL is that, since hash

tables are initialized to a fixed size and do not dynamically resize, an

insertion may fail. In the future, we plan to support a dynamically

resizing hash table. Currently, the user must call the collective

resize method herself when the hash table becomes full.

5.3 Buffering Hash Table Insertions

Many applications, such as the Meraculous benchmark, exhibit

phasal behavior, where there is an insert phase, followed by a bar-

rier, followed by a read phase. We anticipate that this is likely to be

a common case, and so have created a hash table buffer data struc-

ture that accelerates hash table insertion phases. An application

programmer can create a new BCL::HashMapBuffer on top of an

existing hash table. The user then inserts directly into the hash map

buffer object using the same methods provided by the hash table.

This simple code transformation is demonstrated in Figure 3. While

the hash table interface ensures ordering of hash table insertions,

insertions into the hash table buffer are non-blocking, and ordering

is no longer guaranteed until after an explicit flush operation. The

hash table buffer implementation creates a FastQueue on each node

as well as local buffers for each other node. When a user inserts

into the hash table buffer, the insert will be stored in a buffer until

the buffer reaches its maximum size, when it will be pushed to the

queue lying on the appropriate node to be staged for insertion. At

the end of an insert phase, the user calls the flush() method to

force all buffered insertions to complete. Insertions into the actual

table will be completed using a local, fast hash table insertion (Ta-

ble 3b). The hash map buffer results in a significant performance

boost for phasal applications, as discussed in Section 8.2.

5.4 Bloom Filters

A Bloom filter is a space-efficient, probabilistic data structure that

answers queries about set membership [5]. Bloom filters can be

used to improve the efficiency of hash tables, sets, and other key-

based data structures. Bloom filters support two operations, insert

and find. To insert a value into the Bloom filter, we use k hash

functions to pick k locations in a bit array that will all be set to

one. To find if a value is present in a Bloom filter, we check if each

of the corresponding k bits is set, and if so, the value is said to be

present. Because of hash collisions, a Bloom filter may return false

positives, although it will never return false negatives.

Distributed Bloom Filter. We implement a distributed Bloom

filter as a distributed collection of blocked Bloom filters [27], each

of which is 64 bits. To insert an element into the distributed Bloom

filter, we hash the value once, to pick a Bloom filter, then k times to

pick which bits in the filter to set. This allows us to insert into the

distributed Bloom filter with a single atomic fetch-and-or operation,

which also atomically returns whether the value was previously

present. A find operation is completed with a single read operation.

More details of our Bloom filter is in our extended preprint [7].

6 BCL OBJECTCONTAINERS

All BCL data structures use BCL ObjectContainers, which provide a

transparent abstraction for storing complex data types in distributed

memory with low overhead. BCL ObjectContainers are necessary

because not all data types can be stored in distributed memory by
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1 auto sort(const std::vector<int>& data) {

2 std::vector<std::vector<int>> buffers(BCL::nprocs());

3 std::vector<BCL::FastQueue<int>> queues;

4 for (size_t rank = 0; rank < BCL::nprocs(); rank++) {

5 queues.push_back(BCL::FastQueue<int>(rank, queue_size));

6 }

7 for (auto& val : data) {

8 size_t rank = map_to_rank(val);

9 buffers[rank].push_back(val);

10 if (buffers[rank].size() >= message_size) {

11 queues[rank].push(buffers[rank]);

12 buffers[rank].clear();

13 }

14 }

15 for (size_t i = 0; i < buffers.size(); i++) {

16 queues[i].push(buffers[i]);

17 }

18 BCL::barrier();

19 std::sort(queues[BCL::rank()].begin().local(),

20 queues[BCL::rank()].end().local());

21 return queues[BCL::rank()].as_vector();

22 }

Figure 2: Our bucket sort implementation in BCL for the ISx

benchmark.

1 BCL::HashMap<int, int> map(size);

2 BCL::HashMapBuffer<int, int> buffer(map, queue_size,

3 message_size);

4 for (...) {

5 buffer.insert(key, value);

6 }

7 buffer.flush();

Figure 3: A small change to user codeÐinserting into the

HashMapBuffer instead of the HashMapÐcauses inserts to be

batched together.

byte copying. The common case for this is a struct or class, such as

the C++ standard library’s std::string, which contains a pointer.

The pointer contained inside the class is no longer meaningful once

transferred to another node, since it refers to local memory that is

now inaccessible, so we must use some other method to serialize

and deserialize our object in a way that is meaningful to remote

processes. At the same time, we would like to optimize for the

common case where objects can be byte copied and avoid making

unnecessary copies.

Implementation. BCL ObjectContainers are implemented using

the C++ type system. A BCL ObjectContainer is a C++ struct that

takes two template parameters: (1) a type of object that the Object-

Container will hold, and (2) a C++ struct with methods to serialize

and deserialize objects of that type. BCL ObjectContainers them-

selves are of a fixed size and can be byte copied to and from shared

memory. An ObjectContainer has a set method, which allows the

user to store an object in the ObjectContainer, and a get method,

which allows the user to retrieve the object from the container.

BCL automatically detects and handles trivially serializable types,

which do not require serialization, using C++ type traits, and BCL

includes automatic handling for a number of common C++ types.

Users will usually not have to write their own serialization and

deserialization methods unless they wish to use custom types which

use heap memory or other local resources.

A finer point of BCL serialization structs is that theymay serialize

objects to either fixed length or variable length types. This is handled

automatically at compile time by looking at the return type of the

serialization struct: if the serialization struct returns an object of

any normal type, then the serialized object is taken to be fixed size

and is stored directly as a member variable of the serialization struct.

If, however, the serialization struct returns an object of the special

type BCL::serial_ptr, this signifies that the object is variable

length, even when serialized, so we must instead store a global

pointer to the serialized object inside the ObjectContainer.

User-Defined Types. To store user-defined types in BCL data

structures, users can simply define serialization structs for their type

and inject the struct into the BCL namespace. For byte-copyable

types, this struct can be an empty struct that inherits from an

łidentity serializationž struct.

Copy Elision Optimization. An important consideration when

using serialization is overhead in the common case, when no seri-

alization is actually required. In the common byte-copyable case,

where the serialization struct simply returns a reference to the

original object, intelligent compilers are able to offer some implicit

copy elision automatically. We have observed, by examining the

assembly produced, that the GNU and Clang compilers are able to

optimize away unnecessary copies when a ObjectContainer object

is retrieved from distributed memory and get() is called to retrieve

the item lying inside. However, when an array of items is retrieved

from distributed memory and unpacked, the necessary loop com-

plicates analysis and prevents the compiler from performing copy

elision.

For this reason, BCL data structures perform explicit copy elision

when reading or writing from an array of ObjectContainers stored

in distributed memory when the ObjectContainer inherits from the

łidentity serializationž struct, which signifies that it is byte copyable.

This is a compile-time check, so there is no runtime cost for this

optimization.

7 CONCURRENCY PROMISES

As we have shown for various BCL data structures, distributed data

structure operations often have multiple alternate implementations,

only some of which will be correct in the context in which an

operation is issued. A common example of this is phasal operations,

where data structures are manipulated in separate phases, each of

which is separated by a barrier. Figures 2 and 3 both demonstrate

phasal operations. Crucially, the barriers associated with phasal

operations provide atomicity between different types of operations

that often allows the use of implementations with fewer atomicity

guarantees. For example, a find operation in a hash table can be

executed with a more optimized implementationÐa single remote

get operation, rather than 2 AMOs and a remote getÐwhen we are

guaranteed that only find operations will be executed in the same

barrier region.

To allow users to take advantage of these optimized implemen-

tations in a straightforward manner, we allow users to optionally
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Figure 4: The ISx benchmark on three different computing systems. All runs measure weak scaling with 224 items per process.

Name Processors Interconnect

Cori Phase I Intel Xeon Haswell Cray Aries

Summitdev IBM POWER8 Mellanox EDR Infiniband

AWS c3.4xlarge Intel Xeon 10Gb/s Ethernet

Table 5: Summary of systems used in evaluation.

provide concurrency promises, which are lists of data structure op-

erations that could take place concurrently with the operation be-

ing issued. To use an optimized version of hash table find, we

can pass as an extra argument to the find function the value

ConProm::HashMap::find. This indicates that only find opera-

tions may occur simultaneously with this invocation. Similarly, if in

a particular context a find operation might also occur concurrently

with a insert operation, we can pass the concurrency promise

ConProm::HashMap::find | ConProm::HashMap::insert.

It’s important to note that, since C++ templatemetaprogramming

does not have full-program knowledge (unless the whole program is

expressed as a single expression), it is not possible to automatically

identify these optimization opportunities using a library. Instead,

it would require static analysis using either a preprocessing tool

or a separate parallel programming language with an intermediate

representation that preserves semantic knowledge of data structure

operations. Our approach here is to make it easy for the user to

provide the invariants, rather than to identify them automatically.

8 EXPERIMENTAL EVALUATION

We evaluated the performance of BCL’s data structures using ISx,

an integer sorting mini-application, Meraculous, a mini-application

taken from large-scale genome assembly, and a collection of mi-

crobenchmarks. In order to evaluate the performance portability

of BCL programs, we tested the first two benchmarks across three

different computer systems, as outlined in Table 5. On Cori, experi-

ments are performed up to 512 nodes. On Summitdev, experiments

are performed up to 54 nodes, which is the size of the whole cluster.

On AWS, we provisioned a 64 node cluster and performed scaling

experiments up to its full size. For reasons of space, the microbench-

marks are presented only on Cori up to 64 nodes.

8.1 ISx Benchmark

We tested our queue’s performance by implementing the ISx bucket

sort benchmark [17]. ISx is performed on uniformly distributed

data and consists of two stages, a distribution stage and a local sort

stage. In the distribution stage, processes use pre-existing knowl-

edge about the distribution of the randomly generated data to trans-

fer each key to a bucket, with one bucket on each node by default.

Next, each process performs a local sort on its data. The original

ISx benchmark includes an MPI implementation, which uses an

all-to-all collective for the distribution stage, and an OpenSHMEM

implementation, which sends data asynchronously. An implemen-

tation in Chapel, a high-level parallel programming language, has

also been published [1, 18].

We implemented our bucket sort in BCL using the circular queue

data structure. First, during initialization, we place one circular

queue on each process. During the distribution phase, each process

pushes its keys into the appropriate remote queues. After a global

barrier, each node performs a local sort on the items in its queue.

During the distribution phase, we perform aggregation of inserts to

amortize the latency costs of individual inserts. Instead of directly

pushing individual items to the remote queues, we first place items

in local buffers corresponding to the appropriate remote queue.

Once a bucket reaches a set message size, we push the whole bucket

of items at once and clear the local bucket. It’s important to note

that this push is asynchronous, meaning that the communication

involved with pushing items to the queue can be overlapped with

computation involved with sorting the items. The fact that BCL

circular queue’s push method accepts a vector of items to insert

simultaneously makes adding aggregation very straightforward.

Even with this optimization, our full BCL sorting benchmark code,

including initialization and timing, is only 72 lines long, compared

to the original MPI and SHMEM reference implementations at 838

and 899 lines, and the Chapel implementation at 244 lines. A slightly

abbreviated version of our implementation is listed in Figure 2.

As shown in Figure 4, our BCL implementation of ISx performs

competitively with the reference and Chapel implementations. On

Cori, BCL outperforms the other implementations. This is because

BCL is able to overlap communication with computation: asyn-

chronous queue insertions overlap with sorting values into buckets.

This is an optimization that would be complex to apply in a low-

level MPI or SHMEM implementation, but is straightforward using

BCL’s high-level interface.

There is an upward trend in the BCL scaling curves toward the

high extreme of the graph on Cori. This is because as the number

of processes increases, the number of values sent to each process

decreases. At 512 nodes with 32 processes per node, each process

will send, on average, 1024 values to each other process. With our
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message size of 1024, on average only one push is sent to each

other process, and the potential for communication and computa-

tion overlap is much smaller, thus our solution degenerates to the

synchronous all-to-all solution, and our performance matches the

reference SHMEM implementation. Note that performance with

the MPI backend is poor on Cori; we believe this is because the MPI

implementation is failing to use hardware atomics.

Performance on Summitdev is similar, except for a slight down-

ward trend in all the scaling lines because of cache effects. As the

number of processes increases, the keyspace on each node decreases,

and the local sort becomes more cache efficient.

PGAS programs historically perform poorly on Ethernet clus-

ters, since they often rely on fast hardware RDMA support. With

our bucket sort, we can increase the message size to amortize the

cost of slow atomic operations. While our performance on AWS

does not scale as well as the reference MPI implementation, we

consider the performance acceptable given that it is a high-level

implementation running in an environment traditionally deemed

the exclusive domain of message-passing. On the Ethernet network,

the GASNet-EX backend using the UDP conduit performs better

than the MPI backend, which is using Open MPI.

8.2 Genome Assembly

We evaluated our generic hash table by using it to implement one

one stage of a de novo genome assembly pipeline, contig generation.

During contig generation, many error-prone reads recorded by a

DNA sequencer have been condensed into k-mers, which are short

error-free strands of DNA that overlap each other by exactly k

bases. The goal of contig generation is to process k-mers to produce

contigs, which are long strands of contiguous DNA [14].

Assembling k-mers into longer strands of DNA involves using a

hash table to traverse the de Bruijn graph of overlapping k-mers.

This is performed by taking a k-mer, computing the next overlap-

ping k-mer in the sequence, and then looking it up in the hash table.

This process is repeated recursively until a k-mer is found which

does not match the preceding k-mer or has an invalid base.

A fast implementation for contig generation is relatively simple

in a serial program, since using any of a large number of generic

hash table libraries will yield high performance. However, things

are not so simple in distributed memory. The baseline parallel

solution for Meraculous, written in UPC, is nearly 4,000 lines long

and includes a large amount of boilerplate C code for operations

like reading and writing to memory buffers [2].

The implementation of the contig generation phase is greatly

simplified by the availability of a generic distributed hash table. As

described above, contig generation is really a simple application

split into two phases, an insert phase, which builds the hash table,

and a traversal phase, which uses the hash table to traverse the

de Bruijn graph of overlapping symbols. Because of this phasal

behavior, we can optimize the performance of the hash table us-

ing BCL’s hash map buffer, which aggregates hash table inserts

with bulk insertions to local queues on the appropriate node, then

transfers them to the hash table using a fast local operation once a

flush operation is invoked. Our implementation of the Meraculous

benchmark is only 600 lines long, 400 of which are for reading,

parsing, and manipulating k-mer objects.

We implemented contig generation using the Meraculous algo-

rithm [14, 15]. Our implementation is similar to the high-performance

UPC implementation [15], but (1) uses our generic hash table instead

of a highly specialized hash table and (2) uses a less sophisticated

locking scheme, so sometimes processes may redundantly perform

extra work by reconstructing an already constructed contig.

We benchmarked our hash table across the same three HPC sys-

tems described in Table 5 using the chr14 (human chromosome 14)

dataset. We compared our implementation to the high-performance

UPC reference Meraculous benchmark implementation provided

on the NERSC website, which we compiled with Berkeley UPC with

hardware atomics enabled [2, 15]. We should note that the Meracu-

lous UPC benchmark is based on the HipMer application, which

may have higher performance [14]. We also compared our hash

table to PapyrusKV, a high-performance general-purpose hash table

implemented in MPI which has a Meraculous benchmark imple-

mentation available [21]. All performance results were obtained by

with one process per core. Benchmarks for the UPC implementation

are not available on Summitdev because the code fails on POWER

processors due to an endianness issue. As shown in Figure 5, the

BCL implementation matches or exceeds the performance of both

the reference high-performance implementation of Meraculous and

the general PapyrusKV hash table.

8.3 Microbenchmarks

We prepared a collection of microbenchmarks to compare (1) dif-

ferent backends’ performance across data structure operations and

(2) the relative performance of different implementations of data

structure operations. Each benchmark tests a single data structure

operation. Turning first to the HashMapmicrobenchmarks in Figure

6: we see clear differences between fully atomic versions of data

structure operations (find_atomic and insert) and those with

fewer atomicity guarantees or buffering (find and insert_buffer).

We see that buffering offers an order of magnitude increase in per-

formance, which is expected when transforming a latency-bound

operation into a bandwidth-bound operation. The optimized find

operation increases performance by 2-3x, as we would expect from

the relative best-case costs (2A + R and R).

The queue performance features two kinds of benchmarks: bench-

marks looking at operations by all processes on a single queue,

and benchmarks looking at operations by all processes on a col-

lection of queues, one on each processor (the latter benchmarks

are labeled łmanyž). In the CircularQueue benchmarks, we see

that fully atomic operations (pop_pushpop and push_pushpop)

are quite expensive when all processes are inserting into a sin-

gle queue, compared to the less-atomic pop_pop and push_push.

This is unsurprising, since the final CAS operation in an atomic

CircularQueue push or pop essentially serializes the completion

of operations. When pushing to multiple queues, using the less-

atomic operation gives a factor of two performance improvement

(push_many_pushpop vs. push_many_push).

In FastQueue benchmarks, we see that this data structure achieves

significant performance improvements, even over the less-atomic

implementations of CircularQueue’s methods.

Across all benchmarks, it appears that GASNet-EX is most effec-

tive at automatically utilizing local atomics when only running on
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Figure 5: The Meraculous benchmark on the chr14 dataset.
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Figure 6: Hash table microbenchmarks.

one node, while MPI lags behind on most benchmarks, particularly

those which make heavy use of atomic operations.

9 RELATED WORK

UPC, Titanium, X10, and Chapel are parallel programming lan-

guages which offer a PGAS abstraction [9, 11, 12, 29, 30].

UPC++ is a C++ library which offers a PGAS programmingmodel

[4]. UPC++ has a heavy focus on asynchronous programming that

is absent from BCL, including futures, promises, and callbacks.

UPC++’s remote procedure calls can be used to create more expres-

sive atomic operations, since all RPCs are executed atomically in

UPC++. However, these operations require interrupting the remote

CPU, and thus have slower throughput than true RDMA atomic

memory operations. The current version of UPC++ lacks a library

of data structures, and UPC++ is closely tied to the GASNet com-

munication library, instead of supporting multiple backends.

DASH is another C++ library that offers a PGAS programming

model [13]. DASH has a large focus on structured grid computa-

tion, with excellent support for distributed arrays and matrices and

an emphasis on providing fast access to local portions of the dis-

tributed array. While DASH’s data structures are generic, they do

not support objects with complex types. DASH is tied to the DART

communication library, which could potentially offer performance

portability through multiple backends, but is currently limited to

MPI for distributed memory programs.

1 2 4 8 16 32 64
Number of Nodes

0.0

0.0

0.1

0.3

1.0

Th
ro

ug
hp

ut
 (M

Op
s/

s)

CircularQueue 'pop_pushpop'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.0

0.0

0.1

0.3

1.0

Th
ro

ug
hp

ut
 (M

Op
s/

s)

CircularQueue 'push_pushpop'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.2

0.7

3.2

14.7

67.6
Th

ro
ug

hp
ut

 (M
Op

s/
s)

CircularQueue 'pop_pop'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.1

0.4

2.8

18.0

117.0

Th
ro

ug
hp

ut
 (M

Op
s/

s)

CircularQueue 'push_push'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.2

1.0

6.3

40.2

255.3

Th
ro

ug
hp

ut
 (M

Op
s/

s)

CircularQueue 'push_many_pushpop'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

1.4

5.3

19.8

73.6

273.6

Th
ro

ug
hp

ut
 (M

Op
s/

s)

CircularQueue 'push_many_push'

GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.2

0.9

4.2

18.8

84.0

Th
ro

ug
hp

ut
 (M

Op
s/

s)

FastQueue 'pop'

GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

0.0

0.3

2.6

19.9

154.1

Th
ro

ug
hp

ut
 (M

Op
s/

s)

FastQueue 'push'

GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

1.9

7.1

26.4

97.4

359.8

Th
ro

ug
hp

ut
 (M

Op
s/

s)

FastQueue 'pop_many'
GASNet-EX
MPI
SHMEM

1 2 4 8 16 32 64
Number of Nodes

3.3

11.1

37.6

127.5

432.2

Th
ro

ug
hp

ut
 (M

Op
s/

s)

FastQueue 'push_many'
GASNet-EX
MPI
SHMEM

Figure 7: CircularQueue and FastQueue microbenchmarks.
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HPX is a task-based runtime system for parallel C++ programs [20].

It aims to offer a runtime system for executing standard C++ algo-

rithms efficiently on parallel systems, including clusters of com-

puters. Unlike BCL, which is designed to use coordination-free

RDMA communication, HPX’s fundamental primitives are remote

procedure calls used to distribute tasks.

STAPL, or the standard adaptive template library, is an STL-

like library of parallel algorithms and data structures for C++ [28].

STAPL programs are written at a much higher level of abstraction

than BCL, in a functional style using special higher-order functions

such as map, reduce, and for-each which take lambda functions

as arguments. From this program description, STAPL generates a

hybrid OpenMP and MPI program at compile time. Some versions

of STAPL also include a runtime which provides load balancing.

The current version of STAPL is only available in a closed beta and

only includes array and vector data structures [3].

The Multipol library provided a set of concurrent data structures

on top of active messages, including dynamic load balancing and

optimistic task schedulers [8]. However, it was non-portable and

did not have the rich set of hash table data structures discussed

here nor the notion of concurrency promises.

Global Arrays provides a portable shared memory interface,

exposing globally visible array objects that can be read from and

written to by each process [24]. While many application-specific

libraries have been built on top of Global Arrays, it lacks the kind of

high-level generic data structures that are the focus of this work.

10 CONCLUSION

BCL is a distributed data structures library that offers productivity

through high-level, flexible interfaces but maintains high perfor-

mance by introducing minimal overhead, offering high-level ab-

stractions that can be directly compiled down to a small number of

one-sided remote memory operations. We have demonstrated that

BCL matches or exceeds the performance of both hand-optimized

domain-specific implementations and general libraries on a range

of benchmarks and is portable to multiple HPC systems.
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