BCL: A Cross-Platform Distributed Data Structures Library

Benjamin Brock, Aydin Bulug, Katherine Yelick
University of California, Berkeley
Lawrence Berkeley National Laboratory
{brock,abuluc,yelick}@cs.berkeley.edu

ABSTRACT

One-sided communication is a useful paradigm for irregular paral-
lel applications, but most one-sided programming environments,
including MPTI’s one-sided interface and PGAS programming lan-
guages, lack application-level libraries to support these applica-
tions. We present the Berkeley Container Library, a set of generic,
cross-platform, high-performance data structures for irregular ap-
plications, including queues, hash tables, Bloom filters and more.
BCL is written in C++ using an internal DSL called the BCL Core
that provides one-sided communication primitives such as remote
get and remote put operations. The BCL Core has backends for
MPI, OpenSHMEM, GASNet-EX, and UPC++, allowing BCL data
structures to be used natively in programs written using any of
these programming environments. Along with our internal DSL,
we present the BCL ObjectContainer abstraction, which allows BCL
data structures to transparently serialize complex data types while
maintaining efficiency for primitive types. We also introduce the
set of BCL data structures and evaluate their performance across a
number of high-performance computing systems, demonstrating
that BCL programs are competitive with hand-optimized code, even
while hiding many of the underlying details of message aggregation,
serialization, and synchronization.

CCS CONCEPTS

« Computing methodologies — Parallel programming lan-
guages.

KEYWORDS
Parallel Programming Libraries, RDMA, Distributed Data Structures

ACM Reference Format:

Benjamin Brock, Aydin Bulug, Katherine Yelick. 2019. BCL: A Cross-Platform
Distributed Data Structures Library. In 48th International Conference on
Parallel Processing (ICPP 2019), August 5-8, 2019, Kyoto, Japan. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3337821.3337912

1 INTRODUCTION

Writing parallel programs for supercomputers is notoriously diffi-
cult, particularly when they have irregular control flow and complex
data distribution; however, high-level languages and libraries can
make this easier. A number of languages have been developed for

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08....$15.00
https://doi.org/10.1145/3337821.3337912

high-performance computing, including several using the Parti-
tioned Global Address Space (PGAS) model: Titanium, UPC, Coarray
Fortran, X10, and Chapel [9, 11, 12, 25, 29, 30]. These languages are
especially well-suited to problems that require asynchronous one-
sided communication, or communication that takes place without
a matching receive operation or outside of a global collective. How-
ever, PGAS languages lack the kind of high level libraries that exist
in other popular programming environments. For example, high-
performance scientific simulations written in MPI can leverage a
broad set of numerical libraries for dense or sparse matrices, or
for structured, unstructured, or adaptive meshes. PGAS languages
can sometimes use those numerical libraries, but are missing the
data structures that are important in some of the most irregular
parallel programs.

This paper describes the Berkeley Container Library (BCL) that is
intended to support applications with irregular patterns of commu-
nication and computation and data structures with asynchronous
access, for example hash tables and queues, that can be distributed
across processes but manipulated independently by each process.
BCL is designed to provide a complementary set of abstractions for
data analytics problems, various types of search algorithms, and
other applications that do not easily fit a bulk-synchronous model.
BCL is written in C++ and its data structures are designed to be co-
ordination free, using one-sided communication primitives that can
be executed using RDMA hardware without requiring coordination
with remote CPUs. In this way, BCL is consistent with the spirit of
PGAS languages, but provides higher level operations such as insert
and find in a hash table, rather than low-level remote read and
write. As in PGAS languages, BCL data structures live in a global
address space and can be accessed by every process in a parallel
program. BCL data structures are also partitioned to ensure good
locality whenever possible and allow for scalable implementations
across multiple nodes with physically disjoint memory.

BCL is cross-platform, and is designed to be agnostic about the
underlying communication layer as long as it provides one-sided
communication primitives. It runs on top of MPI’s one-sided com-
munication primitives, OpenSHMEM, and GASNet-EX, all of which
provide direct access to low-level remote read and write primitives
to buffers in memory [6, 10, 16]. BCL provides higher level abstrac-
tions than these communication layers, hiding many of the details
of buffering, aggregation, and synchronization from users that are
specific to a given data structure. BCL also has an experimental
UPC++ backend, allowing BCL data structures to be used inside an-
other high-level programming environment. BCL uses a high-level
data serialization abstraction called ObjectContainers to allow the
storage of arbitrarily complex datatypes inside BCL data structures.
BCL ObjectContainers use C++ compile-time type introspection to
avoid introducing any overhead in the common case that types are
byte-copyable.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

We present the design of BCL with an initial set of data struc-
tures and operations. We then evaluate BCL’s performance on ISx,
an integer sorting mini-application, Meraculous, a mini-application
taken from a large-scale genomics application, and a collection of
microbenchmarks examining the performance of individual data
structure operations. We explain how BCL’s data structures and
design decisions make developing high-performance implementa-
tions of these benchmarks more straightforward and demonstrate
that BCL is able to match or exceed the performance of both spe-
cialized, expert-tuned implementations as well as general libraries
across three different HPC systems.

1.1 Contributions

(1) A distributed data structures library that is designed for high
performance and portability by using a small set of core primi-
tives that can be executed on four distributed memory backends

(2) The BCL ObjectContainer abstraction, which allows data struc-
tures to transparently handle serialization of complex types
while maintaining high performance for simple types

(3) A distributed hash table implementation that supports fast in-
sertion and lookup phases, dynamic message aggregation, and
individual insert and find operations

(4) A distributed queue abstraction for many-to-many data ex-
changes performed without global synchronization

(5) Adistributed Bloom filter which achieves fully atomic insertions
using only one-sided operations

(6) A collection of distributed data structures that offer variable
levels of atomicity depending on the call context using an ab-
straction called concurrency promises

(7) A fast and portable implementation of the Meraculous bench-
mark built in BCL

(8) An experimental analysis of irregular data structures across
three different computing systems along with comparisons be-
tween BCL and other standard implementations.

2 BACKGROUND AND HIGH-LEVEL DESIGN

Several approaches have been used to address programmability
issues in high-performance computing, including parallel languages
like Chapel, template metaprogramming libraries like UPC++, and
embedded DSLs like STAPL. These environments provide core
language abstractions that can boost productivity, and some of them
have sophisticated support for multidimensional arrays. However,
none of these environments feature the kind of rich data structure
libraries that exist in sequential programming environments like
C++ or Java. A particular need is for distributed memory data
structures that allow for nontrivial forms of concurrent access
that go beyond partitioned arrays in order to address the needs
of irregular applications. These data structures tend to have more
complicated concurrency control and locality optimizations that
go beyond tiling and ghost regions.

Our goal is to build robust, reusable, high-level components to
support these irregular computational patterns while maintaining
performance close to hardware limits. We aim to achieve this goal
using the following design principles.

Low Cost for Abstraction. While BCL offers data structures with
high-level primitives like hash table and queue insertions, these

Benjamin Brock, Aydin Bulug, Katherine Yelick

commands will be compiled directly into a small number of one-
sided remote memory operations. Where hardware support is avail-
able, all primary data structure operations, such as reads, writes,
inserts, and finds, are executed purely in RDMA without requiring
coordination with remote CPUs.

Portability. BCL is cross-platform and can be used natively in
programs written in MPI, OpenSHMEM, GASNet-EX, and UPC++.

When programs only use BCL data structures, users can pick whichever

backend’s implementation is most optimized for their system and
network hardware.

Software Toolchain Complexity. BCL is a header-only library,
so users need only include the appropriate header files and compile
with a C++-14 compliant compiler to build a BCL program. BCL
data structures can be used in part of an application without having
to re-write the whole application or include any new dependencies.

3 BCL CORE

The BCL Core is the cross-platform internal DSL we use to imple-
ment BCL data structures. It provides a high-level PGAS memory
model based on global pointers, which are C++ objects that allow
the manipulation of remote memory. Similar to other PGAS pro-
gramming models, each process has a shared memory segment, and
each process can allocate memory in that segment using global
pointers, which in BCL are regular C++ objects that can be passed
around between processes or stored in global memory. Global point-
ers support remote get and remote write operations. Remote com-
pletion of put operations is not guaranteed until after a memory
fence such as a flush or a barrier.

Although BCL is not designed for bulk synchronous program-
ming, it provides a limited set of collective operations such as
broadcast and allreduce for transporting pointer and control values.

BCL adheres firmly to the idea of one-sided communication and
avoids the use of remote operations that require the use of a remote
CPU. The BCL core instead relies on remote memory operations
and atomics, which can be supported by network hardware and
do not interrupt computations running on the CPU. BCL backends
must implement at least the atomic compare-and-swap (CAS) op-
eration, since all other atomic memory operations (AMOs) can be
implemented on top of CAS [19]. Other common atomics include
fetch-and-op atomics which can perform addition and bitwise op-
erations. More details on the semantics of the BCL Core are in our
preprint [7].

Backends, which include MPI, OpenSHMEM, GASNet-EX, and
an in-progress UPC++ backend, provide provide a small number
of functions to support the BCL Core. Necessary functions include
an init function that allocates symmetric shared memory segments,
barrier, read, and write functions, and at least an atomic CAS
operation.

4 PARALLEL PATTERNS IN BCL

When choosing data structures to implement in BCL, we wanted
to focus on data structures that could exploit particular high-level
parallel patterns [22, 23]. While BCL also efficiently supports com-
monly known data structure patterns such as the Distributed Array
Pattern [22], its novelty lies in its support for more challenging
irregular data access patterns as first-class citizens. In particular,

BCL: A Cross-Platform Distributed Data Structures Library

we chose to focus on exposing high-level data structures that ex-
ploit two parallel patterns: (1) fine-grained, low-latency reads and
writes, and (2) asynchronous many-to-many redistribution of data.
These patterns occur in many applications that perform concurrent
reads and writes in an unpredictable manner, with prime examples
in graph algorithms, computational chemistry, and bioinformatics.
These patterns can also be used in loosely synchronous applications
that require data redistribution due to changes in the computational
structure as the algorithms proceed [26].

4.1 Fine-Grained RDMA Operations

For the first pattern, we wanted to provide high-level interfaces
for fine-grained operations that are potentially complex, such as
hash table operations, but in many cases will be executed as a
single RDMA operation. For these low-latency operations, design-
ing a low-cost, header-only library where user code is compiled
down to a small number of calls to a backend library is essential to
achieve performance. Also essential to achieving performance for
low-latency operations across a variety of computing platforms is
supporting multiple backends, since oftentimes the best communica-
tion backend varies across supercomputing platforms. Examples of
data structures we implemented which expose this pattern include
hash tables and Bloom filters, discussed in Sections 5.2 and 5.4.

4.2 Many-to-Many Data Redistribution

For the second pattern, we are interested in applications where each
process wishes to push data to other processes in an asynchronous,
arbitrary manner. MPI all-to-all provides a restricted implemen-
tation of this pattern, where each process gathers its data to be
sent to each other process, then all processes take part in a bulk
synchronous all-to-all operation. While there are asynchronous
versions of MPI all-to-all, it still restricts processes from generating
new data after the all-to-all operation has started, thus limiting
the possibility for overlap between communication and computa-
tion. Sometimes this pattern is explicitly present, such as in sorting
or histogramming, but sometimes it can be exposed by buffering
and aggregating fine-grained operations. In this paper, we first
build queue data structures (Section 5.1) that allow for arbitrary
data redistribution using asynchronous queue insertions. Then,
we design a “hash table buffer” data structure (Section 5.3) that
allows users to buffer and aggregate hash table insertions trans-
parently, transforming fine-grained, latency-bound operations into
bulk, bandwidth-bound ones.

5 BCL DATA STRUCTURES

BCL data structures are split into two categories: distributed and
hosted. Distributed data structures live in globally addressable mem-
ory and are automatically distributed among all the ranks in a BCL
program. Hosted data structures, while resident in globally address-
able memory, are hosted only on a particular process. All other
processes may read or write from the data structure lying on the
host process. We have found hosted data structures to be an impor-
tant building block in creating distributed data structures.

All BCL data structures are coordination free, by which we mean
that primary data structure operations, such as insertions, deletions,
updates, reads, and writes, can be performed without coordinating

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Data Structure Locality Description

BCL : :HashMap Distributed | Hash Table

BCL::CircularQueue | Hosted Multiple Reader/Writer Queue

BCL: : FastQueue Hosted Multi-Reader or Multi-Writer Queue
BCL: :HashMapBuffer | Distributed | Aggregate hash table insertions
BCL: :BloomFilter Distributed | Distributed Bloom filter

BCL: :DArray Distributed | 1-D Array

BCL: :Array Hosted 1-D Array on one process

TABLE 1: A SUMMARY OF BCL DATA STRUCTURES.

with the CPUs of other nodes, but purely in RDMA where hard-
ware support is available. Other operations, such as resizing or
migrating hosted data structures from one node to another, may
require coordination. In particular, operations which modify the
size and location of the data portions of BCL data structures must be
performed collectively, on both distributed and hosted data struc-
tures. This is because coordination-free data structure methods,
such as insertions, use global knowledge of the size and location
of the data portion of the data structure. For example, one process
cannot change the size or location of a hash table without alerting
other processes, since they may try to insert into the old hash table
memory locations. Tables 1 and 2 give an overview of the available
data structures and operations. Table 2 also gives the best-case cost
of each operation in terms of remote reads R, remote writes W,
atomic operations A, local operations ¢, and global barriers B. As
demonstrated by the table, each high-level data structure operation
is compiled down to a small number of remote memory operations.

All BCL data structures are also generic, meaning they can be
used to hold any type, including complex, user-defined types. Most
common types will be handled automatically, without any interven-
tion by the user. See Section 6 for a detailed description of BCL’s
lightweight serialization mechanism.

Many distributed data structure operations have multiple pos-
sible implementations that offer varying levels of atomicity. De-
pending on the context of a particular callsite, only some of these
implementations may be valid. We formalize a mechanism, called
concurrency promises, that allows users to optionally assert invari-
ants about a callsite context. This allows BCL data structures to use
optimized implementations that offer fewer atomicity guarantees
when a user guarantees that this is possible. This mechanism is
discussed in Section 7.

5.1 Queues

BCL includes two types of queues: one, CircularQueue, is a general
multi-reader, multi-writer queue which supports variable levels
of atomicity. The second, FastQueue, supports multiple readers
or multiple writers, but requires that read and write phases be
separated by a barrier. Both queues are implemented as ring buffers
and are initialized with a fixed size as a hosted data structure, so
while a queue is globally visible, it is resident on only one process
at a time.

FastQueue uses three shared objects: a data segment, where queue
elements are stored; a shared integer that stores the head of the
queue; and a shared integer that stores the tail of the queue. To
insert, a process first increments the tail using an atomic fetch-and-
add operation, checks that this does not surpass the head pointer,
and then inserts its value or values into the data segment of the

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Benjamin Brock, Aydin Bulug, Katherine Yelick

Data Structure Method ‘ Collective | Description ‘ Cost ‘
BCL: : HashMap
bool insert(const K &key, const V &val) N Insert item into hash table. 2A+W
bool find(const K &key, V &val) N Find item in table, return val. 2A +R
BCL: :BloomFilter
bool insert(const T &val) N Insert item into Bloom filter, return true if already present. | A
bool find(const T &val) N Return true if item is likely to be in filter, false otherwise. | R
BCL: :CircularQueue
bool push(const T &val) N Insert item into queue. 2A+ W
bool pop(T &val) N Pop item into queue. 2A+R
bool push(const std::vector <T> &vals) N Insert items into queue. 2A+nW
bool pop(std::vector <T> &vals, size_t n) | N Pop items from queue. 2A + nR
bool local_nonatomic_pop(T &val) N Nonatomically pop item from a local queue. l
void resize(size_t n) Y Resize queue. B+¢
void migrate(size_t n) Y Migrate queue to new host. B+nW

TABLE 2: A selection of BCL data structure methods. Costs are best case, without any concurrency promises. R, W, A, B, {, and
n are the costs of a remote read, write, atomic memory op., barrier, local memory op., and number of elements, respectively.

Method | Concurrency Promise l Description l Cost ‘
insert
(@) | find | insert Fully Atomic | 2A+ W
(b) | local Local Insert | ¢
find

(¢ | find | insert
(d | find

Fully Atomic | 2A + R
Only Finds R

TAaBLE 3: Implementations for hash table methods.

Method | Concurrency Promise [Description [Cost ‘

push
(a) | push | pop Fully Atomic | 2A+ W
(b) | push Only Pushes | 2A+ W
() | local Local Push ¢

pop
(@ | push | pop Fully Atomic | 2A+R
(e) | POP Only Pops 2A+R
(f) | local Local Pop 4

TaBLE 4: Implementations for circular queue methods.

queue. An illustration of a push operation is shown in Figure 1. In
general, the head overrun check is performed without a remote
memory operation by caching the position of the head pointer,
so an insertion requires only two remote memory operations. We
similarly cache the location of the tail pointer, so pops to the queue
usually require only one atomic memory operation to increment
the head pointer and one remote memory operation to read the
popped values.

CircularQueue. To support concurrent reads and writes, circular
queue has an additional set of head and tail pointers which indicate
which portions of data in the queue are ready to be read. There are
multiple implementations of push and pop for a circular queue data
structure, as listed in Table 4.

Push and Pop Operations. The default fully atomic implementa-
tion used for insertion (Table 4a) into a circularqueue data structure
involves 2 atomic operations and a remote put operation with a
flush. First, we issue a fetch-and-add operation to increment the tail

Filled

.| Reserved

Head —>|:

Tail —>

©

fetch_and_addl

rput

New Tail —>::

Figure 1: Process for pushing values to a BCL FastQueue.
First (1) a fetch_and_add operation is performed, which re-
turns a reserved location where values can be inserted. Then
(2) the values to be inserted are copied to the queue.

pointer, then write the data to the queue and flush it. Finally, we
must perform a CAS operation to increment the “tail ready” pointer,
indicating that the pushed data is ready to be read. A CAS is neces-
sary for the final step because a fetch-and-add could increment the
ready pointer to mistakenly mark other processes’ writes as ready
to be read. In the case where no pop operations will be performed
before a barrier, we may perform the final atomic increment using
a fetch-and-add (Table 4b). An analogous implementation is used
for pop operations (Table 4d and 4e).

Both queues support resizing as well as migrating to another host

process, both as collective operations. We evaluate the performance
of our circular queue data structures in Section 8.1.
Advantage of FastQueue. FastQueue has the advantage of requir-
ing one fewer AMO per push or pop. While the CircularQueue
does support variable levels of atomicity, allowing the final pop to
be a single non-blocking fetch-and-add operation, we felt that this
was an important enough overhead to warrant a separate version
of the data structure, since queues that support only multi-reader
and multi-writer phases are crucial to several of the algorithms that
we explored.

5.2 Hash Table

BCL’s hash table is implemented as a single logically contiguous
array of hash table buckets distributed block-wise among all pro-
cesses. Each bucket is a struct including a key, value, and status

BCL: A Cross-Platform Distributed Data Structures Library

flag. Our hash table uses open addressing with quadratic probing
to resolve hash collisions. As a result, neither insert nor find op-
erations to our hash table require any coordination with remote
ranks. Where hardware support is available, hash table operations
will only use RDMA operations.

Interface. BCL’s BCL: :HashMap is a distributed data structure.
Users can create a BCL: :HashMap by calling the constructor as
a collective operation. BCL hash tables are created with a fixed key
and value type as well as a fixed size. BCL hash tables use Object-
Containers, discussed in Section 6, to store any arbitrary data types.
The hash table supports two primary methods, insert and find.
Section 8 gives a performance analysis of our hash table.
Atomicity. By default, hash table insert and find operations are
atomic with respect to one another, including simultaneous insert
operations and find operations using the same key. In addition to
this default level of atomicity, users can pass a concurrency promise
as an optional argument at each callsite that can allow the data
structure to select a more optimized implementation with less strict
atomicity guarantees. All the available implementations for insert
and find operations are shown in Table 3.

Our hash table uses a lightweight, per-bucket locking scheme.

Each hash table bucket has a 32-bit used flag that ensures atomicity
of operations. The lowest 2 bits of this flag indicate the reservation
status of the bucket. There are three possible states: (1) free, (2)
reserved, and (3) ready. The free state represents an unused bucket,
the reserved state represents a bucket that has been reserved is
being modified, and the ready state indicates that a bucket is ready
to be read. The remaining 30 bits are read flag bits, and they indicate,
if flipped, that a process is currently reading the hash table entry.
This prevents another process from writing to the entry before the
other process has finished reading.
Insert Operations. The default, fully atomic process for inserting
(Table 3a) requires two atomic memory operations (AMOs) and
a remote put with a flush. First, the inserting process computes
the appropriate bucket. Then it uses a compare-and-swap (CAS)
operation to set the bucket’s status to reserved, a remote put to
write the correct key and value to the reserved bucket, followed by
a flush to ensure completion of the put, then finally an atomic XOR
to set the status of the bucket to ready.

In some special cases, we may wish to have processes perform

local insertions into their own portions of the hash table. This may
be done with only local CPU instructions, not involving the NIC.
Crucially, this cannot be done when other operations, such as gen-
eral find or insert operations, might be executed, since CPU atomics
are not atomic with respect to NIC atomics. This implementation
requires the concurrency promise local (Table 3b).
Find Operations. The default, fully atomic implementation of the
find operation (Table 3c) again involves two AMOs and a remote
read. First, the process uses a fetch-and-or to set a random read bit.
This keeps other processes from writing to the hash bucket before
the process has finished reading it. Then, it reads the value, and,
after reading, unsets the read bit.

In the common case of a traversal phase of an application, where
no insert operations may occur concurrent with find operations,
we may use an alternate implementation that requires no atomic
operations (Table 3d), but just a single read operation to read the
whole bucket including the reserved flag, key, and value.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Hash Table Size. A current limitation of BCL is that, since hash
tables are initialized to a fixed size and do not dynamically resize, an
insertion may fail. In the future, we plan to support a dynamically
resizing hash table. Currently, the user must call the collective
resize method herself when the hash table becomes full.

5.3 Buffering Hash Table Insertions

Many applications, such as the Meraculous benchmark, exhibit
phasal behavior, where there is an insert phase, followed by a bar-
rier, followed by a read phase. We anticipate that this is likely to be
a common case, and so have created a hash table buffer data struc-
ture that accelerates hash table insertion phases. An application
programmer can create a new BCL: :HashMapBuffer on top of an
existing hash table. The user then inserts directly into the hash map
buffer object using the same methods provided by the hash table.
This simple code transformation is demonstrated in Figure 3. While
the hash table interface ensures ordering of hash table insertions,
insertions into the hash table buffer are non-blocking, and ordering
is no longer guaranteed until after an explicit flush operation. The
hash table buffer implementation creates a FastQueue on each node
as well as local buffers for each other node. When a user inserts
into the hash table buffer, the insert will be stored in a buffer until
the buffer reaches its maximum size, when it will be pushed to the
queue lying on the appropriate node to be staged for insertion. At
the end of an insert phase, the user calls the flush() method to
force all buffered insertions to complete. Insertions into the actual
table will be completed using a local, fast hash table insertion (Ta-
ble 3b). The hash map buffer results in a significant performance
boost for phasal applications, as discussed in Section 8.2.

5.4 Bloom Filters

A Bloom filter is a space-efficient, probabilistic data structure that
answers queries about set membership [5]. Bloom filters can be
used to improve the efficiency of hash tables, sets, and other key-
based data structures. Bloom filters support two operations, insert
and find. To insert a value into the Bloom filter, we use k hash
functions to pick k locations in a bit array that will all be set to
one. To find if a value is present in a Bloom filter, we check if each
of the corresponding k bits is set, and if so, the value is said to be
present. Because of hash collisions, a Bloom filter may return false
positives, although it will never return false negatives.
Distributed Bloom Filter. We implement a distributed Bloom
filter as a distributed collection of blocked Bloom filters [27], each
of which is 64 bits. To insert an element into the distributed Bloom
filter, we hash the value once, to pick a Bloom filter, then k times to
pick which bits in the filter to set. This allows us to insert into the
distributed Bloom filter with a single atomic fetch-and-or operation,
which also atomically returns whether the value was previously
present. A find operation is completed with a single read operation.
More details of our Bloom filter is in our extended preprint [7].

6 BCL OBJECTCONTAINERS

All BCL data structures use BCL ObjectContainers, which provide a
transparent abstraction for storing complex data types in distributed
memory with low overhead. BCL ObjectContainers are necessary
because not all data types can be stored in distributed memory by

ICPP 2019, August 5-8, 2019, Kyoto, Japan

1 auto sort(const std::vector<int>& data) {

2 std: :vector<std: :vector<int>> buffers(BCL: :nprocs());
3 std: :vector<BCL: :FastQueue<int>> queues;

4 for (size_t rank = @; rank < BCL::nprocs(); rank++) {

5 queues.push_back(BCL: : FastQueue<int>(rank, queue_size));
6o}

7 for (auto& : data) {

8 size_t rank = map_to_rank(val);

9 buffers[rank].push_back(val);

10 if (buffers[rank].size() >= message_size) {
11 queues[rank].push(buffers[rank]);

12 buffers[rank].clear();

13 }

14 }

15 for (size_t i = 0; i < buffers.size(); i++) {
16 queues[i].push(buffers[i]);

17 }

18 BCL: :barrier();
19 std::sort(queues[BCL::rank()].begin().local(),

20 queues[BCL: :rank()].end().local());
21 return queues[BCL: :rank()].as_vector();
2 }

Figure 2: Our bucket sort implementation in BCL for the ISx

benchmark.

1 BCL::HashMap<int, int> map(size);
2 BCL::HashMapBuffer<int, int> buffer(map, queue_size,

3 message_size);
4 for (...) {

s buffer.insert(key, value);

6 3

7 buffer.flush();

Figure 3: A small change to user code—inserting into the
HashMapBuffer instead of the HashMap—causes inserts to be
batched together.

byte copying. The common case for this is a struct or class, such as

the C++ standard library’s std: : string, which contains a pointer.

The pointer contained inside the class is no longer meaningful once
transferred to another node, since it refers to local memory that is
now inaccessible, so we must use some other method to serialize
and deserialize our object in a way that is meaningful to remote
processes. At the same time, we would like to optimize for the
common case where objects can be byte copied and avoid making
unnecessary copies.
Implementation. BCL ObjectContainers are implemented using
the C++ type system. A BCL ObjectContainer is a C++ struct that
takes two template parameters: (1) a type of object that the Object-
Container will hold, and (2) a C++ struct with methods to serialize
and deserialize objects of that type. BCL ObjectContainers them-
selves are of a fixed size and can be byte copied to and from shared
memory. An ObjectContainer has a set method, which allows the
user to store an object in the ObjectContainer, and a get method,
which allows the user to retrieve the object from the container.
BCL automatically detects and handles trivially serializable types,
which do not require serialization, using C++ type traits, and BCL
includes automatic handling for a number of common C++ types.

Benjamin Brock, Aydin Bulug, Katherine Yelick

Users will usually not have to write their own serialization and
deserialization methods unless they wish to use custom types which
use heap memory or other local resources.

A finer point of BCL serialization structs is that they may serialize

objects to either fixed length or variable length types. This is handled
automatically at compile time by looking at the return type of the
serialization struct: if the serialization struct returns an object of
any normal type, then the serialized object is taken to be fixed size
and is stored directly as a member variable of the serialization struct.
If, however, the serialization struct returns an object of the special
type BCL: :serial_ptr, this signifies that the object is variable
length, even when serialized, so we must instead store a global
pointer to the serialized object inside the ObjectContainer.
User-Defined Types. To store user-defined types in BCL data
structures, users can simply define serialization structs for their type
and inject the struct into the BCL namespace. For byte-copyable
types, this struct can be an empty struct that inherits from an
“identity serialization” struct.
Copy Elision Optimization. An important consideration when
using serialization is overhead in the common case, when no seri-
alization is actually required. In the common byte-copyable case,
where the serialization struct simply returns a reference to the
original object, intelligent compilers are able to offer some implicit
copy elision automatically. We have observed, by examining the
assembly produced, that the GNU and Clang compilers are able to
optimize away unnecessary copies when a ObjectContainer object
is retrieved from distributed memory and get () is called to retrieve
the item lying inside. However, when an array of items is retrieved
from distributed memory and unpacked, the necessary loop com-
plicates analysis and prevents the compiler from performing copy
elision.

For this reason, BCL data structures perform explicit copy elision
when reading or writing from an array of ObjectContainers stored
in distributed memory when the ObjectContainer inherits from the
“identity serialization” struct, which signifies that it is byte copyable.
This is a compile-time check, so there is no runtime cost for this
optimization.

7 CONCURRENCY PROMISES

As we have shown for various BCL data structures, distributed data
structure operations often have multiple alternate implementations,
only some of which will be correct in the context in which an
operation is issued. A common example of this is phasal operations,
where data structures are manipulated in separate phases, each of
which is separated by a barrier. Figures 2 and 3 both demonstrate
phasal operations. Crucially, the barriers associated with phasal
operations provide atomicity between different types of operations
that often allows the use of implementations with fewer atomicity
guarantees. For example, a find operation in a hash table can be
executed with a more optimized implementation—a single remote
get operation, rather than 2 AMOs and a remote get—when we are
guaranteed that only find operations will be executed in the same
barrier region.

To allow users to take advantage of these optimized implemen-
tations in a straightforward manner, we allow users to optionally

BCL: A Cross-Platform Distributed Data Structures Library

16.0

ISx Weak Scaling, Cori Phase |

—O~ BCL (MPI Backend)
BCL (SHMEM Backend)

ICPP 2019, August 5-8, 2019, Kyoto, Japan

ISx Weak Scaling, Summitdev 160 ISx Weak Scaling, AWS c3.4xlarge Cluster

—— BCL (MPI Backend)
BCL (SHMEM Backend)
—>— BCL (GASNet-EX Backend)

\/’/

~— BCL (GASNet-EX Backend)
801 —— chapel
—o— SHMEM ™

—+— MPI

Runtime (s)
IS
s
N
Runtime (s)
S

—

—— Chapel
—O— SHMEM
—+— MPI

/

4.0
.

2.0
. —— BCL (MPI Backend)
/ ~— BCL (GASNet-EX Backend)

—=— Chapel
o —— MPI

80 /
—

Runtime (s)

1 2 4 8 6 32 64 128 256 512 1 2 4
Number of Nodes

Figure 4: The ISx benchmark on three different computing systems. All runs measure weak scaling with

8
Number of Nodes

Name Processors ‘ Interconnect

Cori Phase I Intel Xeon Haswell | Cray Aries

Summitdev IBM POWERS Mellanox EDR Infiniband
AWS c3.4xlarge | Intel Xeon 10Gb/s Ethernet

TABLE 5: SUMMARY OF SYSTEMS USED IN EVALUATION.

provide concurrency promises, which are lists of data structure op-
erations that could take place concurrently with the operation be-
ing issued. To use an optimized version of hash table find, we
can pass as an extra argument to the find function the value
ConProm: :HashMap: : find. This indicates that only find opera-
tions may occur simultaneously with this invocation. Similarly, if in
a particular context a find operation might also occur concurrently
with a insert operation, we can pass the concurrency promise
ConProm: :HashMap: :find | ConProm::HashMap::insert.

It’s important to note that, since C++ template metaprogramming
does not have full-program knowledge (unless the whole program is
expressed as a single expression), it is not possible to automatically
identify these optimization opportunities using a library. Instead,
it would require static analysis using either a preprocessing tool
or a separate parallel programming language with an intermediate
representation that preserves semantic knowledge of data structure
operations. Our approach here is to make it easy for the user to
provide the invariants, rather than to identify them automatically.

8 EXPERIMENTAL EVALUATION

We evaluated the performance of BCL’s data structures using ISx,
an integer sorting mini-application, Meraculous, a mini-application
taken from large-scale genome assembly, and a collection of mi-
crobenchmarks. In order to evaluate the performance portability
of BCL programs, we tested the first two benchmarks across three
different computer systems, as outlined in Table 5. On Cori, experi-
ments are performed up to 512 nodes. On Summitdev, experiments
are performed up to 54 nodes, which is the size of the whole cluster.
On AWS, we provisioned a 64 node cluster and performed scaling
experiments up to its full size. For reasons of space, the microbench-
marks are presented only on Cori up to 64 nodes.

8.1 ISx Benchmark

We tested our queue’s performance by implementing the ISx bucket
sort benchmark [17]. ISx is performed on uniformly distributed
data and consists of two stages, a distribution stage and a local sort

16 32 54 1 2 4 8 16 32 64
Number of Nodes

224 items per process.

stage. In the distribution stage, processes use pre-existing knowl-
edge about the distribution of the randomly generated data to trans-
fer each key to a bucket, with one bucket on each node by default.
Next, each process performs a local sort on its data. The original
ISx benchmark includes an MPI implementation, which uses an
all-to-all collective for the distribution stage, and an OpenSHMEM
implementation, which sends data asynchronously. An implemen-
tation in Chapel, a high-level parallel programming language, has
also been published [1, 18].

We implemented our bucket sort in BCL using the circular queue
data structure. First, during initialization, we place one circular
queue on each process. During the distribution phase, each process
pushes its keys into the appropriate remote queues. After a global
barrier, each node performs a local sort on the items in its queue.
During the distribution phase, we perform aggregation of inserts to
amortize the latency costs of individual inserts. Instead of directly
pushing individual items to the remote queues, we first place items
in local buffers corresponding to the appropriate remote queue.
Once a bucket reaches a set message size, we push the whole bucket
of items at once and clear the local bucket. It’s important to note
that this push is asynchronous, meaning that the communication
involved with pushing items to the queue can be overlapped with
computation involved with sorting the items. The fact that BCL
circular queue’s push method accepts a vector of items to insert
simultaneously makes adding aggregation very straightforward.
Even with this optimization, our full BCL sorting benchmark code,
including initialization and timing, is only 72 lines long, compared
to the original MPI and SHMEM reference implementations at 838
and 899 lines, and the Chapel implementation at 244 lines. A slightly
abbreviated version of our implementation is listed in Figure 2.

As shown in Figure 4, our BCL implementation of ISx performs
competitively with the reference and Chapel implementations. On
Cori, BCL outperforms the other implementations. This is because
BCL is able to overlap communication with computation: asyn-
chronous queue insertions overlap with sorting values into buckets.
This is an optimization that would be complex to apply in a low-
level MPI or SHMEM implementation, but is straightforward using
BCL’s high-level interface.

There is an upward trend in the BCL scaling curves toward the
high extreme of the graph on Cori. This is because as the number
of processes increases, the number of values sent to each process
decreases. At 512 nodes with 32 processes per node, each process
will send, on average, 1024 values to each other process. With our

ICPP 2019, August 5-8, 2019, Kyoto, Japan

message size of 1024, on average only one push is sent to each
other process, and the potential for communication and computa-
tion overlap is much smaller, thus our solution degenerates to the
synchronous all-to-all solution, and our performance matches the
reference SHMEM implementation. Note that performance with
the MPI backend is poor on Cori; we believe this is because the MPI
implementation is failing to use hardware atomics.

Performance on Summitdev is similar, except for a slight down-
ward trend in all the scaling lines because of cache effects. As the
number of processes increases, the keyspace on each node decreases,
and the local sort becomes more cache efficient.

PGAS programs historically perform poorly on Ethernet clus-
ters, since they often rely on fast hardware RDMA support. With
our bucket sort, we can increase the message size to amortize the
cost of slow atomic operations. While our performance on AWS
does not scale as well as the reference MPI implementation, we
consider the performance acceptable given that it is a high-level
implementation running in an environment traditionally deemed
the exclusive domain of message-passing. On the Ethernet network,
the GASNet-EX backend using the UDP conduit performs better
than the MPI backend, which is using Open MPL

8.2 Genome Assembly

We evaluated our generic hash table by using it to implement one
one stage of a de novo genome assembly pipeline, contig generation.
During contig generation, many error-prone reads recorded by a
DNA sequencer have been condensed into k-mers, which are short
error-free strands of DNA that overlap each other by exactly k
bases. The goal of contig generation is to process k-mers to produce
contigs, which are long strands of contiguous DNA [14].

Assembling k-mers into longer strands of DNA involves using a
hash table to traverse the de Bruijn graph of overlapping k-mers.
This is performed by taking a k-mer, computing the next overlap-
ping k-mer in the sequence, and then looking it up in the hash table.
This process is repeated recursively until a k-mer is found which
does not match the preceding k-mer or has an invalid base.

A fast implementation for contig generation is relatively simple
in a serial program, since using any of a large number of generic
hash table libraries will yield high performance. However, things
are not so simple in distributed memory. The baseline parallel
solution for Meraculous, written in UPC, is nearly 4,000 lines long
and includes a large amount of boilerplate C code for operations
like reading and writing to memory buffers [2].

The implementation of the contig generation phase is greatly
simplified by the availability of a generic distributed hash table. As
described above, contig generation is really a simple application
split into two phases, an insert phase, which builds the hash table,
and a traversal phase, which uses the hash table to traverse the
de Bruijn graph of overlapping symbols. Because of this phasal
behavior, we can optimize the performance of the hash table us-
ing BCL’s hash map buffer, which aggregates hash table inserts
with bulk insertions to local queues on the appropriate node, then
transfers them to the hash table using a fast local operation once a
flush operation is invoked. Our implementation of the Meraculous
benchmark is only 600 lines long, 400 of which are for reading,
parsing, and manipulating k-mer objects.

Benjamin Brock, Aydin Bulug, Katherine Yelick

We implemented contig generation using the Meraculous algo-
rithm [14, 15]. Our implementation is similar to the high-performance
UPC implementation [15], but (1) uses our generic hash table instead
of a highly specialized hash table and (2) uses a less sophisticated
locking scheme, so sometimes processes may redundantly perform
extra work by reconstructing an already constructed contig.

We benchmarked our hash table across the same three HPC sys-
tems described in Table 5 using the chr14 (human chromosome 14)
dataset. We compared our implementation to the high-performance
UPC reference Meraculous benchmark implementation provided
on the NERSC website, which we compiled with Berkeley UPC with
hardware atomics enabled [2, 15]. We should note that the Meracu-
lous UPC benchmark is based on the HipMer application, which
may have higher performance [14]. We also compared our hash
table to PapyrusKV, a high-performance general-purpose hash table
implemented in MPI which has a Meraculous benchmark imple-
mentation available [21]. All performance results were obtained by
with one process per core. Benchmarks for the UPC implementation
are not available on Summitdev because the code fails on POWER
processors due to an endianness issue. As shown in Figure 5, the
BCL implementation matches or exceeds the performance of both
the reference high-performance implementation of Meraculous and
the general PapyrusKV hash table.

8.3 Microbenchmarks

We prepared a collection of microbenchmarks to compare (1) dif-
ferent backends’ performance across data structure operations and
(2) the relative performance of different implementations of data
structure operations. Each benchmark tests a single data structure
operation. Turning first to the HashMap microbenchmarks in Figure
6: we see clear differences between fully atomic versions of data
structure operations (find_atomic and insert) and those with
fewer atomicity guarantees or buffering (find and insert_buffer).
We see that buffering offers an order of magnitude increase in per-
formance, which is expected when transforming a latency-bound
operation into a bandwidth-bound operation. The optimized find
operation increases performance by 2-3x, as we would expect from
the relative best-case costs (2A + R and R).

The queue performance features two kinds of benchmarks: bench-
marks looking at operations by all processes on a single queue,
and benchmarks looking at operations by all processes on a col-
lection of queues, one on each processor (the latter benchmarks
are labeled “many”). In the CircularQueue benchmarks, we see
that fully atomic operations (pop_pushpop and push_pushpop)
are quite expensive when all processes are inserting into a sin-
gle queue, compared to the less-atomic pop_pop and push_push.
This is unsurprising, since the final CAS operation in an atomic
CircularQueue push or pop essentially serializes the completion
of operations. When pushing to multiple queues, using the less-
atomic operation gives a factor of two performance improvement
(push_many_pushpop vs. push_many_push).

In FastQueue benchmarks, we see that this data structure achieves
significant performance improvements, even over the less-atomic
implementations of CircularQueue’s methods.

Across all benchmarks, it appears that GASNet-EX is most effec-
tive at automatically utilizing local atomics when only running on

BCL: A Cross-Platform Distributed Data Structures

chrl4, Cori Phase |

Library

chrl4, Summitdev

ICPP 2019, August 5-8, 2019, Kyoto, Japan

chrl4, c3.4xlarge Cluster

64 —— PapyruskV —o— BCL with Buffer, GASNet-EX
—>— BCL without Buffer, GASNet-EX 128 12 —— Meraculous
32 —O— BCL with Buffer, GASNet-EX -~~~ perfect scaling
“J—— Meraculous ot
16 perfect scaling » 256
ge 2 2
k=1 =1 s 128
ngc 4 ngz 8 N ngc
BCL without Buffer, SHMEM N
N 47 —s— BCL with Buffer, SHMEM 64
—+#— BCL without Buffer, GASNet-EX \‘\\
N —O— BCL with Buffer, GASNet-EX T Ny
--- perfect scaling Sl 3 N
1 2 4 8 16 32 64 1 2 4 8 16 32 54 8 16 32 64
Number of Nodes Number of Nodes Number of Nodes
Figure 5: The Meraculous benchmark on the chri4 dataset.
1o Hash Table 'find_atomic' sa68 Hash Table 'find' CircularQueue 'pop_pushpop' CircularQueue 'push_pushpop'
g ~0— GASNet-EX —5— GASNet-EX * —5— GASNet-EX
S — wel o — e
2 e T g262] ~ SHMEM Tos —Z— SHMEM Dosf —Z— SHMEM
:3 155 %; 936 ;ao; /7 ;ao.l
g)) £
g g g g
g o —O- GASNet-EX £ %7 go0 go0
MPI
—%— SHMEM
16 16.0 0.0 0.0
1 2 4 8 16 32 64 1 2 a 8 16 32 64 1 2 a4 8 16 32 64 1 2 a4 8 16 32 64
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
0. Hash Table ‘insert' 1335 Hash Table ‘insert_buffer' 616 CircularQueue 'pop_pop' 1170 CircularQueue 'push_push'
: _—= —0— GASNet-EX // 7| - casNetex —5— GASNet-EX —
> MPI MPI
CEER CONETE] SHM;L/L//\ L7 CIETTY SHMEM/J/
g g g 2
g T = s g - g g | =
5 87 mPI 5 2552 5 32 5 28
£ % —=— SHMEM £ £ £
2 S E E
g g g g
g 33 / 13 88.2 £ 0.7 I3 04
13 305 0.2 0.1
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 a 8 16 32 64 1 2 4 8 16 32 64
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
Fi . h bl . b h k CircularQueue 'push_many_pushpop' CircularQueue 'push_many_push'
igure 6: Hash table microbenchmarks. o -
MPI /
g 2021 SHMEM E e
one node, while MPI lags behind on most benchmarks, particularly s ~ g _ /
those which make heavy use of atomic operations. 3 e 5 s A
E £
£ 10 £ s3 . g
9 RELATED WORK ; " o
—%—~ SHMEM
. . . 0.2 14
UPC, Titanium, X10, and Chapel are parallel programming lan- L e 2 i I
guages which offer a PGAS abstraction [9, 11, 12, 29, 30].
; : ; . Fast ‘pop’ Fast ‘push’
UPC++ is a C++ library which offers a PGAS programming model 80 astQueve pop’ 1541 astQueve push
) . N R)) :/"
[4] UPC++ has a heav'y focu's on asynchronous. programming that %1a / 5 o ///
is absent from BCL, including futures, promises, and callbacks. $ - s |=
UPC++’s remote procedure calls can be used to create more expres- e F
. 5 g
sive atomic operations, since all RPCs are executed atomically in g, O
. . . . = —5— GASNet-EX £ —5— GASNet-EX
UPC++. However, these operations require interrupting the remote o o
CPU, and thus have slower throughput than true RDMA atomic S N R e S R
Number of Nodes Number of Nodes
memory operations. The current version of UPC++ lacks a library
of data structures, and UPC++ is closely tied to the GASNet com- 3508 FastQueue 'pop_many' FastQueue ‘push_many'
i . K . R . —5— GASNet-EX —o— GASNet-EX
munication library, instead of supporting multiple backends. e / e /
. . . L o974y Cas| T
DASH is another C++ library that offers a PGAS programming § = 5 s
model [13]. DASH has a large focus on structured grid computa- 5 264 / 5 e /
. . C . . £ £ ”
tion, with excellent support for distributed arrays and matrices and E // g //
. - 1s . . £ 71 £ m
an emphasis on providing fast access to local portions of the dis- : =
19

tributed array. While DASH’s data structures are generic, they do
not support objects with complex types. DASH is tied to the DART
communication library, which could potentially offer performance
portability through multiple backends, but is currently limited to
MPI for distributed memory programs.

1 2 a 8 16 32 64
Number of Nodes

@ 16
Number of Nodes

Figure 7: CircularQueue and FastQueue microbenchmarks.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

HPX is a task-based runtime system for parallel C++ programs [20].
It aims to offer a runtime system for executing standard C++ algo-
rithms efficiently on parallel systems, including clusters of com-
puters. Unlike BCL, which is designed to use coordination-free
RDMA communication, HPX’s fundamental primitives are remote
procedure calls used to distribute tasks.

STAPL, or the standard adaptive template library, is an STL-
like library of parallel algorithms and data structures for C++ [28].
STAPL programs are written at a much higher level of abstraction
than BCL, in a functional style using special higher-order functions
such as map, reduce, and for-each which take lambda functions
as arguments. From this program description, STAPL generates a
hybrid OpenMP and MPI program at compile time. Some versions
of STAPL also include a runtime which provides load balancing.
The current version of STAPL is only available in a closed beta and
only includes array and vector data structures [3].

The Multipol library provided a set of concurrent data structures
on top of active messages, including dynamic load balancing and
optimistic task schedulers [8]. However, it was non-portable and
did not have the rich set of hash table data structures discussed
here nor the notion of concurrency promises.

Global Arrays provides a portable shared memory interface,
exposing globally visible array objects that can be read from and
written to by each process [24]. While many application-specific
libraries have been built on top of Global Arrays, it lacks the kind of
high-level generic data structures that are the focus of this work.

10 CONCLUSION

BCL is a distributed data structures library that offers productivity
through high-level, flexible interfaces but maintains high perfor-
mance by introducing minimal overhead, offering high-level ab-
stractions that can be directly compiled down to a small number of
one-sided remote memory operations. We have demonstrated that
BCL matches or exceeds the performance of both hand-optimized
domain-specific implementations and general libraries on a range
of benchmarks and is portable to multiple HPC systems.

ACKNOWLEDGMENTS

This work was supported by the NSF Graduate Research Fellow-
ship under Grant No. DGE 1752814, by the NSF under Award No.
1823034, and by the DOE Office of Science under contract No. DE-
AC02-05CH11231. It used resources of the National Energy Re-
search Scientific Computing Center and the Oak Ridge Leadership
Computing Facility, which are supported by the DOE Office of
Science under Contract Nos. DE-AC02-05CH11231 and DE-AC05-
000R22725, respectively, as well as the AWS Cloud Credits for
Research program. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of these sponsors.

REFERENCES

[1] [n.d.]. Chapel ISx Benchmark. Retrieved March 10, 2018 from https://github.
com/chapel-lang/chapel/tree/master/test/release/examples/benchmarks/isx

[2] [n.d.]. Meraculous Benchmark. Retrieved March 2, 2018 from http://www.nersc.
gov/research-and-development/apex/apex-benchmarks/meraculous/

[3] 2017. STAPL Beta Release Tutorial Guide. (2017).

[4] John Bachan, Dan Bonachea, Paul H Hargrove, Steve Hofmeyr, Mathias Jacquelin,
Amir Kamil, Brian van Straalen, and Scott B Baden. 2017. The UPC++ PGAS

—
)

(10]

[11

(12]

(13

=
&

[15

[16

(17]

[19

[20

[21]

[22

~
&

[24]

[25

[26]

[27

&
2

[29

[30

Benjamin Brock, Aydin Bulug, Katherine Yelick

library for Exascale Computing. In Proceedings of the Second Annual PGAS Appli-
cations Workshop. ACM, 7.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Dan Bonachea and P Hargrove. 2017. GASNet Specification, v1. 8.1. (2017).

B. Brock, A. Bulug, and K. Yelick. 2018. BCL: A Cross-Platform Distributed
Container Library. arXiv e-prints (Oct. 2018). arXiv:cs.DC/1810.13029

Soumen Chakrabarti, Etienne Deprit, Eun-Jin Im, Jeff Jones, Arvind Krishna-
murthy, Chih-Po Wen, and Katherine Yelick. 1995. Multipol: A distributed data
structure library. In PPoPP.

Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel
programmability and the chapel language. The International Journal of High
Performance Computing Applications 21, 3 (2007), 291-312.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM for
the PGAS community. In Conf. on Partitioned Global Address Space Programming
Models. ACM, 2.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. 2005. X10:
an object-oriented approach to non-uniform cluster computing. In Acm Sigplan
Notices, Vol. 40. ACM, 519-538.

UPC Consortium et al. 2005. UPC language specifications v1. 2. Lawrence Berkeley
National Laboratory (2005).

Karl Fiirlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH: A C++ PGAS
Library for Distributed Data Structures and Parallel Algorithms. In HPCC. Sydney,
Australia, 983-990. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya
Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. 2015.
HipMer: an extreme-scale de novo genome assembler. In Int. Conf. for High Perf.
Comp., Networking, Storage & Analysis (SC). ACM, 14.

Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Leonid Oliker, Daniel
Rokhsar, and Katherine Yelick. 2014. Parallel de bruijn graph construction and
traversal for de novo genome assembly. In Int. Conf. for High Perf. Comp., Net-
working, Storage & Analysis (SC). IEEE Press, 437-448.

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2014. Enabling highly-
scalable remote memory access programming with MPI-3 one sided. Scientific
Programming 22, 2 (2014), 75-91.

Ulf Hanebutte and Jacob Hemstad. 2015. ISx: A scalable integer sort for co-design
in the exascale era. In Conf. on Partitioned Global Address Space Programming
Models. IEEE, 102-104.

Jacob Hemstad, Ulf R Hanebutte, Ben Harshbarger, and Bradford L Chamberlain.
2016. A study of the bucket-exchange pattern in the PGAS model using the ISx
integer sort mini-application. In PGAS Applications Workshop (PAW) at SC16.
Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 13, 1 (1991), 124-149.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. 2014. HPX: A task based programming model in a global address
space. In Conference on Partitioned Global Address Space Programming Models
(PGAS). ACM, 6.

Jungwon Kim, Seyong Lee, and Jeffrey S Vetter. 2017. PapyrusKV: a high-
performance parallel key-value store for distributed NVM architectures. In Int.
Conf. for High Perf. Comp., Networking, Storage & Analysis (SC). ACM, 57.
Timothy G Mattson, Beverly Sanders, and Berna Massingill. 2004. Patterns for
parallel programming. Pearson Education.

Michael McCool, James Reinders, and Arch Robison. 2012. Structured parallel
programming: patterns for efficient computation. Elsevier.

Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield. 1996. Global
arrays: A nonuniform memory access programming model for high-performance
computers. The Journal of Supercomputing 10, 2 (1996), 169-189.

Robert W Numrich and John Reid. 1998. Co-Array Fortran for parallel program-
ming. In ACM Sigplan Fortran Forum, Vol. 17. ACM, 1-31.

Chao-Wei Ou, Sanjay Ranka, and Geoffrey Fox. 1996. Fast and parallel mapping
algorithms for irregular problems. The Journal of Supercomputing 10, 2 (1996),
119-140.

Felix Putze, Peter Sanders, and Johannes Singler. 2009. Cache-, hash-, and space-
efficient Bloom filters. Journal of Experimental Algorithmics (JEA) 14 (2009),
4.

Gabriel Tanase, Antal Buss, Adam Fidel, Harshvardhan, Ioannis Papadopoulos,
Olga Pearce, Timmie Smith, Nathan Thomas, Xiabing Xu, Nedal Mourad, Jeremy
Vu, Mauro Bianco, Nancy M. Amato, and Lawrence Rauchwerger. 2011. The
STAPL Parallel Container Framework. In PPoPP. ACM, 235-246.

Michele Weiland. 2007. Chapel, Fortress and X10: novel languages for HPC.
EPCC, The University of Edinburgh, Tech. Rep. HPCxTR0706 (2007).

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phillip Colella, et al.
1998. Titanium: A high-performance Java dialect. Concurrency Practice and
Experience 10, 11-13 (1998), 825-836.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background and High-Level Design
	3 BCL Core
	4 Parallel Patterns in BCL
	4.1 Fine-Grained RDMA Operations
	4.2 Many-to-Many Data Redistribution

	5 BCL Data Structures
	5.1 Queues
	5.2 Hash Table
	5.3 Buffering Hash Table Insertions
	5.4 Bloom Filters

	6 BCL ObjectContainers
	7 Concurrency Promises
	8 Experimental Evaluation
	8.1 ISx Benchmark
	8.2 Genome Assembly
	8.3 Microbenchmarks

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

