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Abstract

Atmospheric water-soluble organic gases such as pyruvic acid are produced in large quantities by
photochemical oxidation of biogenic and anthropogenic emissions and undergo water-mediated
reactions in aerosols and hydrometeors. These reactions can contribute to aerosol mass by forming
less volatile compounds. While progress is being made in understanding the relevant aqueous
chemistry, little is known about the chemistry that takes place during droplet evaporation. Here we
examine the evaporation of aqueous pyruvic acid droplets using both the Vibrating Orifice Aerosol
Generator (VOAG) and an electrodynamic balance (EDB). In some cases pyruvic acid was first
oxidized by OH radicals. The evaporation behavior of oxidized mixtures was consistent with
expectations based on known volatilities of reaction products. However, independent VOAG and
EDB evaporation experiments conducted without oxidation also resulted in stable residual
particles; the estimated volume yield was 10-30% of the initial pyruvic acid. Yields varied with
temperature and pyruvic acid concentration across cloud, fog, and aerosol-relevant concentrations.
The formation of low volatility products, likely cyclic dimers, suggests that pyruvic acid accretion
reactions occurring during droplet evaporation could contribute to the gas-to-particle conversion

of carbonyls in the atmosphere.

Introduction

Aerosols affect global climate and impact air quality, human health, and visibility. A substantial
fraction of aerosol mass is organic, much of which is formed in-situ in the atmosphere. Despite its
ubiquity, predictions of secondary organic aerosol (SOA) formation rely on incomplete
mechanisms unlikely to capture aerosol production over a wide range of precursors and
conditions.! Water-mediated reactions, occurring in humidified aerosols, fogs, and cloud

droplets, play an important role in converting water-soluble organic gases (WSOGs) to SOA
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mass.*® However, the contribution of aqueous reactions to SOA mass remains uncertain due in
part to a limited understanding of precursors and limited laboratory results to parameterize
models.”” ! Quantifying the impacts of aqueous and multiphase chemistry on aerosol mass

remains challenging, and a more detailed understanding of product volatility is needed.

A significant fraction of low molecular weight acids, aldehydes and carbonyls dissolve into
cloud or fog droplets. In the absence of additional reactions, these WSOGs largely evaporate
during water evaporation; the trace amounts that remain in the aerosol phase are determined by
their partial pressure in the gas phase and activity in the aerosol matrix. However, multiphase
reactions can generate low-volatility products that are retained in the equilibrated aerosol. Several
important criteria determine whether aqueous processing can appreciably increase SOA mass: (1)
the precursor must be abundant, (2) it must have a high vapor pressure before aqueous reactions,
(3) it must have a high Henry’s law coefficient and thus strongly partition into water, and (4) it

must react in the aqueous phase to form less volatile products.

To date many cloud- and fog-relevant studies have focused on the aqueous OH oxidation of a

1 12-14 15,16
2

limited number of compounds meeting the above criteria, such as glyoxa glycolaldehyde,

1,19721

methacrolein,!” acetic acid,'® methylglyoxa methyl vinyl ketone,* phenolic compounds,?

d,24’25

and pyruvic aci as well as studies focusing on oxidation by singlet molecular oxygen® and

2326 photosensitization,?” and photoinitiation.?® The volatility of the

triplet excited states of oxygen,
products, or the extent to which products remain in the particle phase after water evaporation, has
been determined for some of these systems but not for pyruvic acid. Studies have also shown that

non-radical reactions can yield low-volatility compounds in deliquescent aerosols,?*

especially
for glyoxal, methylglyoxal, and isoprene-derived epoxydiols.?® 3> Because these systems rely on

catalysis, formation of oligomers is sometimes reversible; irreversible formation of low-volatility

3
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143334 or ring-opening®! reactions due to their higher

products are generally associated with radica
activation energy. Nevertheless, glyoxal and methylglyoxal form stable products in evaporating
solutions with or without inorganic catalysts***>3> due to the reactive dicarbonyl group.’> These
and other accretion reactions occurring in the absence of photooxidation have been recognized as

an important contributor to organic aerosol.*

Evaporation of droplets concentrates solutes, shifts
the solution pH, and can allow enhanced surface partitioning of surface-active compounds over
short timescales, enhancing reaction rates.*>?’*! The droplet air-liquid interface may also
accelerate reactions by confining molecules to specific orientations, enhancing their reactivity or

42-46

acidity, and molecular partitioning to the air-liquid interface and self-organization in the

surface layer can affect gas uptake and reaction rates.*’*®

Pyruvic acid is abundant in aerosols, fogs, and clouds, and is produced!®?*2>4%30

50,51

photochemically in the atmosphere mainly through gas-phase oxidation of aromatic

hydrocarbons,**>* biomass burning,’> and aqueous OH oxidation of methylglyoxal.*-* Pyruvic
acid has an intermediate volatility** and partitions between the gas and aerosol phases.’!3-7
Studies of aqueous pyruvic acid processing have focused on photolysis?®***® and OH-radical
initiated photooxidation.?*?*>? Evidence for dark pyruvic acid accretion reactions from
environmental chamber studies shows that partitioning of pyruvic acid and other acids or carbonyls

to SOA exceeds expectations based on their high vapor pressures.’>*° Here we extend these studies

to include dark processing of pyruvic acid in evaporating cloud droplets.

Method

Pyruvic acid evaporation experiments followed two methods and spanned concentration ranges
from 10 uM to 2 M. Vibrating Orifice Aerosol Generator (VOAG)®' Evaporation and Residual

Analysis (VERA) was performed for a series of solutions between 10 uM and 20 mM, a
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concentration range that reflects cloud concentrations and concentrations as cloud droplets
evaporate. Additional pyruvic acid evaporation experiments were performed using an
electrodynamic balance (EDB) at 2 M. The EDB concentration is relevant to deliquescent aerosols
rather than clouds; the choice of concentrations for EDB experiments was dictated by instrumental
constraints. For comparison, VERA experiments were also performed for other organic acids (10
uM—-20 mM) and for aqueous pyruvic acid after OH-radical oxidation (300 uM pyruvic acid; fog-
relevant concentration). An evaporation model was used to aid in the interpretation of data. VERA
and EDB techniques, oxidation experiments, and modeling are described in the following

paragraphs.

VOAG Evaporation and Residual Analysis (VERA)

Droplet evaporation experiments were performed for aqueous solutions of pyruvic acid (with
and without OH oxidation) or other organic acids/carbonyls using VERA as described
previously.!® VERA emulates cloud droplet evaporation by generating micron-scale droplets with
very narrow size distributions (monodispersed and near cloud-relevant sizes),*? and evaporating
them in a turbulent flow tube. Briefly, a VOAG (TSI 3450) was used to generate monodisperse
droplets. Water evaporated rapidly (~1 s) and size distributions of the organic residuals were
detected in real time downstream by an aerosol spectrometer (GRIMM Aerosol Technik Ainring
GmbH; model 1.109). Evaporation of the organic was used to quantify its vapor pressure.
Modifications to the instrument liquid feed, orifice, and flow tube following Barr et al.®*® are
described in the Supporting Information (SI) alongside the measurement schematic (Figure S1);
analysis is described below. A 20 um orifice was used and produced 35+0.053 um droplets under
typical conditions. For an involatile solute, solutions of 9.4 uM to 19 mM result in dry residual

diameters (hereafter referred to as “nominal diameters”) of 0.30 to 3.9 um. Equilibrium water
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retention was estimated from molar volume®-®’

and did not exceed 2-5% of nominal particle
volume. Calculation details and spectrometer calibration are described in the SI. Observed residual
diameters were taken as the peak of the measured size distribution. The evaporation process and

the influence of physicochemical properties are described in the Evaporation Modeling section

below.

Evaporation in the Electrodynamic Balance (EDB)

Pyruvic acid solutions were evaporated in an EDB as described previously.®® 7 Aqueous
solutions of 2 M pyruvic acid in ultrapure water were prepared. The higher concentration was
necessary due to experimental constraints and is comparable to total organic carbon (TOC) in
deliquescent aerosols.”! Droplets were produced using a piezoelectric droplet-on-demand
generator and trapped in an electrodynamic potential well generated from two pairs of concentric
cylindrical electrodes. Trapped droplets evaporated in a 3 cm s N, gas flow at constant
temperature and relative humidity (RH). A green laser (532 nm) illuminated the droplet and the
scattered diffraction pattern was used to determine droplet size with a time resolution of 10 ms.
Experiments were performed at 10, 20, and 25°C. Additional tests included variable RH or a
different initial solvent. EDB experiments were conducted at the University of Bristol. Each

experiment was repeated 4-9 times.

Oxidation and Product Quantification for Pyruvic Acid + OH(aq)
Aqueous solutions of 300 uM (10.8 ppm-C) pyruvic acid were oxidized via OH radicals using

a water-jacketed 1 L photochemical batch reactor at 25°C as described previously and products
were quantified by ion chromatography.!®”? The pyruvic acid concentration is similar to the total
organic carbon found in fog water or polluted cloud water.”>’* Estimated steady-state [OH] was

~5.5%107'2 M during pyruvic acid oxidation.”> Additional experimental details are provided in the
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SI. Typical cloudwater [OH] is believed to be 107> M or lower.’®”” We used higher concentrations
to focus on OH initiated reactions and to access a wide range of equivalent atmospheric oxidation

timescales from minutes to days.”®

Aliquots of 10-12 mL were withdrawn at increasing time intervals and offline analysis was
performed within one day. Samples were analyzed for organic acids using ion chromatography
(IC; Dionex ICS-3000) and for TOC (Sievers M9). Evaporation experiments using VERA were

performed for a subset of aliquots directly and after serial dilution.

Evaporation Model

Evaporation of pyruvic acid solution droplets in VERA was estimated following Su et al.”®’®

and Bilde et al.””*® A model description is included in the SI. Particle velocity relative to the gas
was assumed to be the terminal settling velocity®” and the gas-phase concentration of organic was
assumed to be zero in the flow tube (we estimate it was < 2% saturated). Pyruvic acid diffusivity
in air was estimated to be 8.1x102 cm? s via the Hirschfelder equation.””®82 VERA was
emulated by modeling water evaporation from the droplet until reaching the organic nominal
residual diameter, then modeling organic evaporation until the time of observation by the
spectrometer. Modeled RH was 11% and measured RH was 10-13%. In addition to modeling
binary water-organic solutions, we modeled scenarios introducing a second solute with lower
vapor pressure (10 Pa) into the droplet. The modeled residual diameter is mainly controlled by
aqueous solution concentration, organic vapor pressure, evaporation time and RH.

Figure S2 shows the evaporation model for the VERA technique. After water evaporation the
“nominal diameter” of the residual organic particle is calculated from the initial solution

concentration assuming no evaporation of the organic (x-axis). However, because the organic
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matter partially evaporates, the “observed diameter” (residual diameter observed by the

spectrometer), on the y-axis, is dependent on the organic vapor pressure.

Panel A shows the expected “observed diameter” for a pyruvic acid-like compound with
different assigned vapor pressures. The lines bend because evaporation is proportional to droplet
surface area. The line spacing shows the vapor pressure resolution for organics of similar size and
functionality. Vapor pressures (p°) between 3 and 0.3 Pa are resolved under current operating
conditions. Panel B shows the result of adding an involatile second solute to the modeled droplets,
simulating the conversion of some of the pyruvic acid to a less volatile compound — one that does
not evaporate on the timescale of the measurement. The inset is a three-bin volatility basis set for
this setup, where bin 1 (p° < 0.3 Pa) describes compounds that do not evaporate, bin 2 (0.3 < p°
< 3 Pa) describes compounds that partially evaporate, and bin 3 (p° > 3 Pa) describes compounds

evaporating completely before detection.

Figure S2 shows the droplet size after 4.9 s of evaporation (the flow tube residence time), to
simulate what is measured by VERA. It does not show the time-resolved evaporation of multiple
solution components because VERA uses a fixed observation time and multiple experiments with
different concentrations to generate a plot of nominal vs observed diameter. The model is therefore
helpful in interpreting the data. The presence or absence of curvature in the observations is an
indication of the volume fraction of solute in each of the volatility bins shown in Panel B. If
observations include curvature, some component falls in bin 2 and its vapor pressure can be
determined with greater precision. In the absence of curvature, all components are in bins 1 and 3,
with the fraction in bin 1 shown by the angle of the line of observed diameters. For example, if the
angle is 0° (x-axis), all compounds are in bin 3 (evaporated), and if the angle is 45° (1:1 line), all
compounds are in bin 1 (did not evaporate). Evaporation data (nominal vs observed residual

8
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diameter) falling on a line between 0° and 45° in Figure S2 panel B are fitted and the slope of the

fit line is indicative of the fraction of organic that did not evaporate.

Results and Discussion

In the following paragraph we show that OH oxidation of pyruvic acid slowly produces acetic
and oxalic acids, consistent with known mechanisms, and that oxidation reduces the volatility of
the mixture. Then we present the dark evaporation of aqueous pyruvic acid using VERA and EDB
techniques. Despite expectations based on the vapor pressure of pyruvic acid, droplet evaporation
resulted in the formation of stable residual particles. A possible oligomerization mechanism and

atmospheric implications are discussed.

Oxidation Experiments

Figure 1 shows the evolving composition of 300 uM aqueous pyruvic acid undergoing OH
radical-initiated oxidation over 150 min, as determined by ion chromatography. Oxidation
converts pyruvic acid mainly to oxalic and acetic acid. This delayed formation of oxalic acid is
consistent with the known multistep oxidation mechanisms.!*”>33 Evaporation of these solutions
and their volatility is discussed below.

OH exposure (x10-8 M s)
0 05 1 15 2 25 3 35 4 45 5

3005 ° o
-o-Oxalic Acid
S 250 -e-Acetic Acid
= -e- Malonic + Tartaric
5 200+
.@
< 1501
(O]
2
O 100_
(@]
50+ o
g . ° ° ° °
0 Q- ---9----8--- - 8- --- 8- - - - - Tg
0 1020 40 60 80 100 120 150
Time (min)

Figure 1. Oxidation products of pyruvic acid + OH(aq) as quantified by ion chromatography.

9
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VERA Evaporation Experiments

Figure 2 shows the results of VERA experiments for oxidized pyruvic acid and for (dark)
standard solutions of pyruvic acid or other organics. As oxidation converts pyruvic acid to oxalic
acid, the net result is lower volatility, as seen by an increase in the slope of Figure 2A. By
comparing the slope of the observations with the modeled lines we estimate that the volume
fraction of organics in volatility bin 1 (p° < 0.3 Pa) was ~60% after 150 min of oxidation. The
remaining 40% was likely unreacted pyruvic acid and volatile products such as acetic and formic
acids. Panel B shows evaporated standard solutions. Most organics longer than 3 carbons did not
evaporate before observation and thus fall in bin 1 and are observed on the 1:1 line. Additional
experiments falling on the 1:1 line were omitted for clarity (glyoxal, glyoxylic acid, and malic
acids). Compounds evaporating completely fall in bin 3 (p® > 3) and are observed on the x-axis.
Pyruvic acid solutions evaporated partially (dark blue). As described in section 3, the lack of
curvature in the observation indicates that some of the solute was volatile (pyruvic acid falls in
volatility bin 3) and some of the solute did not evaporate (unknown compound falling in volatility
bin 1). Assuming volume additivity, ~10+5% of the pyruvic acid by volume was converted to a
lower volatility product. The volume conversion is likely lower when accounting for solvation

effects.

10
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2 A S 5rB S 60 ¢
@ 0 (avg w/o oxidation) D(Q o succinic acid Q)Q
E oxidation time (min) TE\ 4 A malonic acid o S ;Q\ 50 Estimated using VERA
215} 00 =1 ¢ glutaric acid S ~ slope and evaporation
— | os o = 0 tartaric acid L model (Panel A)
% 080 % @ oxalic acid o0 C% 40
€ 8128 I 3] e pyruvic acid QO‘O =
<o 1 o @© @ acetic acid ’ »\/Q’ 5 30
[a] o B formic acid .\(\‘0\(\ A0 I
3 32 «© 3
S S o 20
e 2 =
20.5 g
Q Q 4 10 Volume fraction of
(@] o o ¢ (oxalic + malonic + tartaric acid)
® e men- B0 - Om - .de.‘ef}'iofw”j‘.‘ from lon Chromatography (Figure 1)
0 - : - 0
0 1 2 3 0 1 2 3 4 5 0 50 100 150

Nominal Diameter (um) Nominal Diameter (um) Oxidation Time (min)
Figure 2. VERA evaporation of (A) oxidized pyruvic acid solutions (background subtracted) and
(B) aqueous pyruvic acid and other compounds. Observed diameter is by spectrometer and
nominal diameters are involatile-equivalent diameters from solution concentration. Grey lines
show estimated fraction with lower volatility (volatility bin 1; p° < 0.3 Pa). (C) Percentage of
solute in bin 1 (p° < 0.3) estimated independently from VERA slope (circles; data from panel A)
and from IC data (line; data from Figure 1).

Figure 2C shows that oxidation shifted products into the lower-volatility bin (bin 1). Colored
circles indicate the fitted slope of VERA experiments in Panel A and the black line is an
independent estimate of non-evaporating compounds for the same mixtures using ion
chromatography, shown in Figure 1. The close agreement between these two estimates of
evaporation corroborates the VERA model. The exception is near 0 minutes of oxidation, where
evaporation of the pyruvic acid produced a 10% unknown residual (see blue circles, Figure 2C).

Further experiments investigating this phenomenon were performed using the EDB and are

detailed below.

EDB Evaporation Experiments

Figure 3 shows the evaporation of pyruvic acid solutions in the EDB. The sequential
evaporation of water and pyruvic acid followed by the retention of an unknown low-volatility

substance is clearly delineated by two sharp changes in evaporation rate (Panel A). Evaporation

11
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rate slowed as remaining droplet constituents became less volatile. Abruptly raising the RH did
not change the final residual diameter (Panel B). In the evaporation of pyruvic acid + isopropanol
(Panel C) the sequential evaporation of solvent and pyruvic acid is also observed, again resulting
in a less volatile residual. The volume conversion of pyruvic acid to low-volatility residual
(assuming volume additivity and constant density equal to that of pyruvic acid) was ~15-30%

across all EDB experiments.

s0l A 10°C— 91 B time of RH increase 50| C in isopropanol
20°C — from 0 to 90% at 20°C
45 25°C — 45 at20°c 45
E 40 residual (% PA volume) 40 ) 50733_ 40
5 35 243 35 2855—
© 30 22 30 298s— 30
§ 3.85 55—
a 25 g 3 2 25
20 20° 25° 20 20 |
15 15 hydrated residual —30% 12
10 10 10
5 5 5
9% 20 40 60 9% 20 40 60 9% 20 40 60

Time (s) Time (s) Time (s)

Figure 3. Evaporation of 0.1 mass fraction pyruvic acid solution droplets as observed by the EDB.
(A) aqueous pyruvic acid evaporating in dry N> at three gas-phase temperatures. (inset) residual
volumes at different temperatures. (B) aqueous pyruvic acid response to abruptly increasing RH
during evaporation (at different times as indicated), (C) pyruvic acid in isopropanol evaporating at

20°C.

Varying experimental conditions affected the production of the low-volatility component.
Figure 3A shows that the residual volume of low-volatility product increases at colder
temperatures, demonstrating that the sustained period of high pyruvic acid concentration in the
evaporating droplet has a greater effect on the reaction rate than the reduction in molecular
collisions expected at low temperatures. The volatility of the residual remained below the limit of

quantification by EDB (<5x107 Pa) at all temperatures. Additional experiments operating on much
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longer timescales would have been necessary to quantify the evaporation of the formed particles.
Although vapor pressure increases with increasing temperature, the effect of temperature-
dependent vapor pressure on the evaporation of a single compound would result in different
evaporation rates and not different yields. Higher initial droplet concentrations using the same
initial droplet size (VERA vs EDB) doubled the volumetric yield. When RH was increased from
0% to 90% at different times during droplet evaporation (Figure 3B), the observed residual
diameter was unchanged. Note that the residual here is larger due to equilibrium water uptake
(hygroscopicity estimate of k ~ 0.015,3% which is comparable to that of larger molecules found in
SOA®). This indicates that changing the hygroscopically-bound water in the evaporating pyruvic
acid solution does not speed up the low-volatility product formation. In Panel C, evaporating the
pyruvic acid in pure isopropanol resulted in evaporation rates and residuals similar to those of
aqueous solutions, but a little higher (23+1% residual), perhaps reflecting slightly different
chemistry. Because carbonyls do not undergo hydration reactions to form gem-diols as readily in
isopropanol as they do in water, this suggests that the reaction producing the residual is not

accelerated by the formation of a gem-diol as observed for glyoxal.*®

Proposed Mechanism for Self-Reaction of Pyruvic Acid

Potential formation mechanisms and structures of a low-volatility residual are now discussed.
The residual volume is larger than the stated pyruvic acid impurity of 2% (all EDB experiments
used brand-new stock), and several independent sources of pyruvic acid standards produced
similar results. Some of this residual may form in the stock solution prior to use; however, the
changing volumetric yields with changing temperatures suggests that reactions occur during

evaporation experiments. Evaporation rates of the low volatility residual were below detection

13
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limit, thus the influence of temperature on vapor pressure did not affect the observed yield. Gas-
phase impurities are ruled out with the EDB and are unlikely with VERA.

Pyruvic acid exists as several species in solution and these equilibria are shifted by the changing
pH during evaporation. The carboxylic acid group can deprotonate to form the pyruvate anion and
the keto group can hydrate to form a gem-diol or tautomerize to form an enol. At room temperature,
roughly 10% of pyruvate, or 60% of pyruvic acid, forms a diol.®¢ Equilibrium between these forms
of pyruvic acid is complicated by the high surface-to-volume ratio and rapid removal of both water
and the volatile carboxylic acid form of pyruvic acid during evaporation of droplets.>”4244
The formation of C—O—C bonds by attack of an ROH group on the double bond of either the

36,87,88

carboxyl group or the keto group of pyruvic acid is plausible and oligoester products in SOA

have been observed in both laboratory and field studies.®® For example, the gem-diol of a
hydrated pyruvic acid molecule can attack the double bond of the carboxyl group of another
pyruvic acid molecule. In isopropanol, the isopropanol can attack the carboxyl double bond,
producing a similar ester (Figure 3C). Either isopropanol or the pyruvic gem-diol may attack the
hydrated keto group of another pyruvic acid molecule, forming a hemiacetal and potentially
repeating to form an acetal, as has been reported for glyoxal’! and 2-methylglyceric acid.®*°

Formation of an acetal may be promoted by the removal of pyruvic acid and water from the droplet

92,93 42,4445

during evaporation”~’> and enhanced acidity and reactivity in the surface phase.

Aldol addition and condensation reactions occur by the attack of the enol tautomer of pyruvic

acid on a protonated keto group of another molecule. Aldol addition has been proposed as a

94-96

thermodynamically favorable reaction in bulk aqueous systems, and these reactions are likely

42,4445

accelerated at the droplet surface and by evaporation of water and pyruvic acid.”>*® Figure

S5 shows a proposed mechanism with a cyclic dimer as a potential end product of the aqueous

14
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evaporation experiments in this work. Pyruvic acid tautomerizes readily in solution,”” and aldol
addition can proceed without hydration of the keto group to a gem-diol. Self-reactions by aldol
addition have been reported for evaporating aqueous droplets of methylglyoxal and glyoxal®® and

for pyruvic acid in both dark and photochemical reaction systems.>®%

Atmospheric Implications

Pyruvic acid has diverse removal processes in the atmosphere, where it can partition between
aerosol, aqueous, and gas phases and can dissociate, hydrate, or tautomerize in solution. The
primary source of pyruvic acid outside of urban areas is the aqueous phase OH oxidation of
isoprene oxidation products such as methylglyoxal and lactic acid,'®*"*? and under dry conditions
it is found largely in gas phase (rather than the aerosol), where it is removed by direct photolysis
and dry deposition.’*>1% In the presence of fogs and clouds pyruvic acid can be retained by (or
re-partition back into) the aqueous phase due to its high water solubility (Henry’s law constant of
3.1x10° M atm™).!°! The aqueous phase photochemistry is then competitive with the gas-phase
direct photolysis as a sink for pyruvic acid.'” In clouds and fogs, some pyruvic acid undergoes
OH oxidation to yield acetic acid, CO», and oxalic acid through a glyoxylic acid intermediate.'”
Because of the multistep chemistry, conversion of pyruvic to oxalic acid takes hours and occurs
over multiple cloud cycles or in a persistent fog. Aqueous dehydrated pyruvic acid is light-
absorbing and can undergo direct photolysis or photosensitized reactions resulting in acetoin, lactic
and acetic acid, and oligomers through the excited triplet state of the carbonyl oxygen.?®?
However, dark reactions in clouds and fogs can also occur. Dicarbonyls similar to pyruvic acid

such as glyoxal and methylglyoxal can oligomerize in evaporating droplets.?%%3%3>88 This work

shows the potential for pyruvic acid to oligomerize during cloud and fog droplet evaporation.

15
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Figure 4 depicts the volatility evolution of aqueous solutions of pyruvic acid. The box in the
upper left-hand corner shows volatile and semivolatile carboxylic acids that are highly water
soluble, often result from aqueous oxidation, and partition readily into droplets. Processes reducing
the volatility of these compounds can increase the fraction of organic mass that remains in the
particle phase after water evaporation. Among these is pyruvic acid, with a vapor pressure of ~10?
Pa at 20°C.'9%1% Aqueous OH-radical initiated oxidation, dark acid-catalyzed accretion reactions
and, salt formation of pyruvic acid (not shown) have the potential to reduce the volatility of pyruvic
acid. Aqueous OH oxidation of pyruvic acid forms acetic acid, glyoxylic acid, and subsequently
oxalic acid, whose vapor pressure is in the semivolatile range (p° = 10 to 10™* Pa).!%>1% The
preference of oxalic acid for the particle phase in the atmosphere is likely due to the formation of
low volatility oxalate salts or complexes.*!*!%” This work suggests that evaporating pyruvic acid
solution droplets at aerosol, fog, cloud-relevant concentrations and atmospheric temperatures (10—
25°C), in the absence of an inorganic catalyst, leads to formation of acetals and/or cyclic dimers
with estimated vapor pressures of 4x10”° Pa'® and 10-30% volumetric yields. This mechanism

could compete with photochemical sinks for pyruvic acid during cloud cycling.

Although the vapor pressure of dimers of pyruvic acid is significantly lower than that of pyruvic
acid, they are still considered semivolatile or low-volatility compounds. Dimerization enhances
the partitioning of monomers to the condensed phase.*® The formed dimers, especially those with
unsaturated double bonds, can participate in additional condensed-phase reactions. For example,
the pyruvic acid dimers shown in Figure S5 have been shown to partition to the air-water
interface,'” where they may have enhanced reactivity for subsequent reactions.*® The formation

of surface active unsaturated dimers from carbonyls such as pyruvic acid during cloud or fog

16
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evaporation is one way in which carbon can be transformed in the atmosphere and influence

atmospheric chemistry.
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Figure 4. Vapor pressures of pyruvic acid reaction products compared to past organic

measurements (20°C),''% SIMPOL.1!%® -estimated vapor pressures, and volatility ranges defined

by Donahue et al.>*
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Pyruvic dimers include several multifunctional cyclic acids (Figure S5).
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Supporting Information. Instrument modifications and schematic; oxidation details; modeling

details; reaction mechanisms.
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