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Abstract 11 

Atmospheric water-soluble organic gases such as pyruvic acid are produced in large quantities by 12 

photochemical oxidation of biogenic and anthropogenic emissions and undergo water-mediated 13 

reactions in aerosols and hydrometeors. These reactions can contribute to aerosol mass by forming 14 

less volatile compounds. While progress is being made in understanding the relevant aqueous 15 

chemistry, little is known about the chemistry that takes place during droplet evaporation. Here we 16 

examine the evaporation of aqueous pyruvic acid droplets using both the Vibrating Orifice Aerosol 17 

Generator (VOAG) and an electrodynamic balance (EDB). In some cases pyruvic acid was first 18 

oxidized by OH radicals. The evaporation behavior of oxidized mixtures was consistent with 19 

expectations based on known volatilities of reaction products. However, independent VOAG and 20 

EDB evaporation experiments conducted without oxidation also resulted in stable residual 21 

particles; the estimated volume yield was 10–30% of the initial pyruvic acid. Yields varied with 22 

temperature and pyruvic acid concentration across cloud, fog, and aerosol-relevant concentrations. 23 

The formation of low volatility products, likely cyclic dimers, suggests that pyruvic acid accretion 24 

reactions occurring during droplet evaporation could contribute to the gas-to-particle conversion 25 

of carbonyls in the atmosphere.   26 

Introduction 27 

Aerosols affect global climate and impact air quality, human health, and visibility. A substantial 28 

fraction of aerosol mass is organic, much of which is formed in-situ in the atmosphere. Despite its 29 

ubiquity, predictions of secondary organic aerosol (SOA) formation rely on incomplete 30 

mechanisms unlikely to capture aerosol production over a wide range of precursors and 31 

conditions.1–3 Water-mediated reactions, occurring in humidified aerosols, fogs, and cloud 32 

droplets, play an important role in converting water-soluble organic gases (WSOGs) to SOA 33 
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mass.4–6 However, the contribution of aqueous reactions to SOA mass remains uncertain due in 34 

part to a limited understanding of precursors and limited laboratory results to parameterize 35 

models.1,7–11 Quantifying the impacts of aqueous and multiphase chemistry on aerosol mass 36 

remains challenging, and a more detailed understanding of product volatility is needed.  37 

A significant fraction of low molecular weight acids, aldehydes and carbonyls dissolve into 38 

cloud or fog droplets. In the absence of additional reactions, these WSOGs largely evaporate 39 

during water evaporation; the trace amounts that remain in the aerosol phase are determined by 40 

their partial pressure in the gas phase and activity in the aerosol matrix. However, multiphase 41 

reactions can generate low-volatility products that are retained in the equilibrated aerosol. Several 42 

important criteria determine whether aqueous processing can appreciably increase SOA mass: (1) 43 

the precursor must be abundant, (2) it must have a high vapor pressure before aqueous reactions, 44 

(3) it must have a high Henry’s law coefficient and thus strongly partition into water, and (4) it 45 

must react in the aqueous phase to form less volatile products.  46 

To date many cloud- and fog-relevant studies have focused on the aqueous OH oxidation of a 47 

limited number of compounds meeting the above criteria, such as glyoxal,12–14 glycolaldehyde,15,16 48 

methacrolein,17 acetic acid,18 methylglyoxal,19–21 methyl vinyl ketone,22 phenolic compounds,23 49 

and pyruvic acid,24,25 as well as studies focusing on oxidation by singlet molecular oxygen23 and 50 

triplet excited states of oxygen,23,26 photosensitization,27 and photoinitiation.28 The volatility of the 51 

products, or the extent to which products remain in the particle phase after water evaporation, has 52 

been determined for some of these systems but not for pyruvic acid. Studies have also shown that 53 

non-radical reactions can yield low-volatility compounds in deliquescent aerosols,29–32 especially 54 

for glyoxal, methylglyoxal, and isoprene-derived epoxydiols.29–32 Because these systems rely on 55 

catalysis, formation of oligomers is sometimes reversible; irreversible formation of low-volatility 56 
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products are generally associated with radical4,33,34 or ring-opening31 reactions due to their higher 57 

activation energy. Nevertheless, glyoxal and methylglyoxal form stable products in evaporating 58 

solutions with or without inorganic catalysts30,32,35 due to the reactive dicarbonyl group.35 These 59 

and other accretion reactions occurring in the absence of photooxidation have been recognized as 60 

an important contributor to organic aerosol.36 Evaporation of droplets concentrates solutes, shifts 61 

the solution pH, and can allow enhanced surface partitioning of surface-active compounds over 62 

short timescales, enhancing reaction rates.32,37–41 The droplet air-liquid interface may also 63 

accelerate reactions by confining molecules to specific orientations, enhancing their reactivity or 64 

acidity,42–46 and molecular partitioning to the air-liquid interface and self-organization in the 65 

surface layer can affect gas uptake and reaction rates.47,48  66 

Pyruvic acid is abundant in aerosols, fogs, and clouds, and is produced19,24,25,49,50 67 

photochemically in the atmosphere50,51 mainly through gas-phase oxidation of aromatic 68 

hydrocarbons,52–54 biomass burning,55 and aqueous OH oxidation of methylglyoxal.49,56 Pyruvic 69 

acid has an intermediate volatility34 and partitions between the gas and aerosol phases.51,53,57 70 

Studies of aqueous pyruvic acid processing have focused on photolysis26,56,58 and OH-radical 71 

initiated photooxidation.24,25,59 Evidence for dark pyruvic acid accretion reactions from 72 

environmental chamber studies shows that partitioning of pyruvic acid and other acids or carbonyls 73 

to SOA exceeds expectations based on their high vapor pressures.52,60 Here we extend these studies 74 

to include dark processing of pyruvic acid in evaporating cloud droplets.  75 

Method 76 

Pyruvic acid evaporation experiments followed two methods and spanned concentration ranges 77 

from 10 µM to 2 M. Vibrating Orifice Aerosol Generator (VOAG)61 Evaporation and Residual 78 

Analysis (VERA) was performed for a series of solutions between 10 µM and 20 mM, a 79 
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concentration range that reflects cloud concentrations and concentrations as cloud droplets 80 

evaporate. Additional pyruvic acid evaporation experiments were performed using an 81 

electrodynamic balance (EDB) at 2 M. The EDB concentration is relevant to deliquescent aerosols 82 

rather than clouds; the choice of concentrations for EDB experiments was dictated by instrumental 83 

constraints. For comparison, VERA experiments were also performed for other organic acids (10 84 

µM–20 mM) and for aqueous pyruvic acid after OH-radical oxidation (300 µM pyruvic acid; fog-85 

relevant concentration). An evaporation model was used to aid in the interpretation of data. VERA 86 

and EDB techniques, oxidation experiments, and modeling are described in the following 87 

paragraphs.  88 

VOAG Evaporation and Residual Analysis (VERA) 89 

Droplet evaporation experiments were performed for aqueous solutions of pyruvic acid (with 90 

and without OH oxidation) or other organic acids/carbonyls using VERA as described 91 

previously.16 VERA emulates cloud droplet evaporation by generating micron-scale droplets with 92 

very narrow size distributions (monodispersed and near cloud-relevant sizes),62 and evaporating 93 

them in a turbulent flow tube. Briefly, a VOAG (TSI 3450) was used to generate monodisperse 94 

droplets. Water evaporated rapidly (~1 s) and size distributions of the organic residuals were 95 

detected in real time downstream by an aerosol spectrometer (GRIMM Aerosol Technik Ainring 96 

GmbH; model 1.109). Evaporation of the organic was used to quantify its vapor pressure. 97 

Modifications to the instrument liquid feed, orifice, and flow tube following Barr et al.63–65 are 98 

described in the Supporting Information (SI) alongside the measurement schematic (Figure S1); 99 

analysis is described below. A 20 μm orifice was used and produced 35±0.053 μm droplets under 100 

typical conditions. For an involatile solute, solutions of 9.4 μM to 19 mM result in dry residual 101 

diameters (hereafter referred to as “nominal diameters”) of 0.30 to 3.9 μm. Equilibrium water 102 
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retention was estimated from molar volume66,67 and did not exceed 2–5% of nominal particle 103 

volume. Calculation details and spectrometer calibration are described in the SI. Observed residual 104 

diameters were taken as the peak of the measured size distribution. The evaporation process and 105 

the influence of physicochemical properties are described in the Evaporation Modeling section 106 

below.  107 

Evaporation in the Electrodynamic Balance (EDB) 108 

Pyruvic acid solutions were evaporated in an EDB as described previously.68–70 Aqueous 109 

solutions of 2 M pyruvic acid in ultrapure water were prepared. The higher concentration was 110 

necessary due to experimental constraints and is comparable to total organic carbon (TOC) in 111 

deliquescent aerosols.71 Droplets were produced using a piezoelectric droplet-on-demand 112 

generator and trapped in an electrodynamic potential well generated from two pairs of concentric 113 

cylindrical electrodes. Trapped droplets evaporated in a 3 cm s-1 N2 gas flow at constant 114 

temperature and relative humidity (RH). A green laser (532 nm) illuminated the droplet and the 115 

scattered diffraction pattern was used to determine droplet size with a time resolution of 10 ms. 116 

Experiments were performed at 10, 20, and 25°C. Additional tests included variable RH or a 117 

different initial solvent. EDB experiments were conducted at the University of Bristol. Each 118 

experiment was repeated 4–9 times.  119 

Oxidation and Product Quantification for Pyruvic Acid + OH(aq) 120 

Aqueous solutions of 300 μM (10.8 ppm-C) pyruvic acid were oxidized via OH radicals using 121 

a water-jacketed 1 L photochemical batch reactor at 25°C as described previously and products 122 

were quantified by ion chromatography.19,72 The pyruvic acid concentration is similar to the total 123 

organic carbon found in fog water or polluted cloud water.73,74 Estimated steady-state [OH] was 124 

~5.5×10-12 M during pyruvic acid oxidation.75 Additional experimental details are provided in the 125 
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SI. Typical cloudwater [OH] is believed to be 10-13 M or lower.76,77 We used higher concentrations 126 

to focus on OH initiated reactions and to access a wide range of equivalent atmospheric oxidation 127 

timescales from minutes to days.76  128 

Aliquots of 10–12 mL were withdrawn at increasing time intervals and offline analysis was 129 

performed within one day. Samples were analyzed for organic acids using ion chromatography 130 

(IC; Dionex ICS-3000) and for TOC (Sievers M9). Evaporation experiments using VERA were 131 

performed for a subset of aliquots directly and after serial dilution.  132 

Evaporation Model 133 

Evaporation of pyruvic acid solution droplets in VERA was estimated following Su et al.70,78 134 

and Bilde et al.79,80 A model description is included in the SI. Particle velocity relative to the gas 135 

was assumed to be the terminal settling velocity80 and the gas-phase concentration of organic was 136 

assumed to be zero in the flow tube (we estimate it was < 2% saturated). Pyruvic acid diffusivity 137 

in air was estimated to be 8.1×10-2 cm2 s-1 via the Hirschfelder equation.79,81,82 VERA was 138 

emulated by modeling water evaporation from the droplet until reaching the organic nominal 139 

residual diameter, then modeling organic evaporation until the time of observation by the 140 

spectrometer. Modeled RH was 11% and measured RH was 10–13%. In addition to modeling 141 

binary water-organic solutions, we modeled scenarios introducing a second solute with lower 142 

vapor pressure (10-4 Pa) into the droplet. The modeled residual diameter is mainly controlled by 143 

aqueous solution concentration, organic vapor pressure, evaporation time and RH.  144 

Figure S2 shows the evaporation model for the VERA technique. After water evaporation the 145 

“nominal diameter” of the residual organic particle is calculated from the initial solution 146 

concentration assuming no evaporation of the organic (x-axis). However, because the organic 147 
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matter partially evaporates, the “observed diameter” (residual diameter observed by the 148 

spectrometer), on the y-axis, is dependent on the organic vapor pressure.  149 

Panel A shows the expected “observed diameter” for a pyruvic acid-like compound with 150 

different assigned vapor pressures. The lines bend because evaporation is proportional to droplet 151 

surface area. The line spacing shows the vapor pressure resolution for organics of similar size and 152 

functionality. Vapor pressures (𝑝𝑜) between 3 and 0.3 Pa are resolved under current operating 153 

conditions. Panel B shows the result of adding an involatile second solute to the modeled droplets, 154 

simulating the conversion of some of the pyruvic acid to a less volatile compound – one that does 155 

not evaporate on the timescale of the measurement. The inset is a three-bin volatility basis set for 156 

this setup, where bin 1 (𝑝𝑜 ≤ 0.3 Pa) describes compounds that do not evaporate, bin 2 (0.3 ≤ 𝑝𝑜 157 

≤ 3 Pa) describes compounds that partially evaporate, and bin 3 (𝑝𝑜 ≥ 3 Pa) describes compounds 158 

evaporating completely before detection.  159 

Figure S2 shows the droplet size after 4.9 s of evaporation (the flow tube residence time), to 160 

simulate what is measured by VERA. It does not show the time-resolved evaporation of multiple 161 

solution components because VERA uses a fixed observation time and multiple experiments with 162 

different concentrations to generate a plot of nominal vs observed diameter. The model is therefore 163 

helpful in interpreting the data. The presence or absence of curvature in the observations is an 164 

indication of the volume fraction of solute in each of the volatility bins shown in Panel B. If 165 

observations include curvature, some component falls in bin 2 and its vapor pressure can be 166 

determined with greater precision. In the absence of curvature, all components are in bins 1 and 3, 167 

with the fraction in bin 1 shown by the angle of the line of observed diameters. For example, if the 168 

angle is 0° (x-axis), all compounds are in bin 3 (evaporated), and if the angle is 45° (1:1 line), all 169 

compounds are in bin 1 (did not evaporate). Evaporation data (nominal vs observed residual 170 
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diameter) falling on a line between 0° and 45° in Figure S2 panel B are fitted and the slope of the 171 

fit line is indicative of the fraction of organic that did not evaporate.  172 

Results and Discussion 173 

In the following paragraph we show that OH oxidation of pyruvic acid slowly produces acetic 174 

and oxalic acids, consistent with known mechanisms, and that oxidation reduces the volatility of 175 

the mixture. Then we present the dark evaporation of aqueous pyruvic acid using VERA and EDB 176 

techniques. Despite expectations based on the vapor pressure of pyruvic acid, droplet evaporation 177 

resulted in the formation of stable residual particles. A possible oligomerization mechanism and 178 

atmospheric implications are discussed.  179 

Oxidation Experiments 180 
Figure 1 shows the evolving composition of 300 µM aqueous pyruvic acid undergoing OH 181 

radical-initiated oxidation over 150 min, as determined by ion chromatography. Oxidation 182 

converts pyruvic acid mainly to oxalic and acetic acid. This delayed formation of oxalic acid is 183 

consistent with the known multistep oxidation mechanisms.19,75,83 Evaporation of these solutions 184 

and their volatility is discussed below.  185 

 186 

Figure 1. Oxidation products of pyruvic acid + OH(aq) as quantified by ion chromatography. 187 
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VERA Evaporation Experiments 188 

Figure 2 shows the results of VERA experiments for oxidized pyruvic acid and for (dark) 189 

standard solutions of pyruvic acid or other organics. As oxidation converts pyruvic acid to oxalic 190 

acid, the net result is lower volatility, as seen by an increase in the slope of Figure 2A. By 191 

comparing the slope of the observations with the modeled lines we estimate that the volume 192 

fraction of organics in volatility bin 1 (𝑝𝑜 < 0.3 Pa) was ~60% after 150 min of oxidation. The 193 

remaining 40% was likely unreacted pyruvic acid and volatile products such as acetic and formic 194 

acids. Panel B shows evaporated standard solutions. Most organics longer than 3 carbons did not 195 

evaporate before observation and thus fall in bin 1 and are observed on the 1:1 line. Additional 196 

experiments falling on the 1:1 line were omitted for clarity (glyoxal, glyoxylic acid, and malic 197 

acids). Compounds evaporating completely fall in bin 3 (𝑝𝑜 > 3) and are observed on the x-axis. 198 

Pyruvic acid solutions evaporated partially (dark blue). As described in section 3, the lack of 199 

curvature in the observation indicates that some of the solute was volatile (pyruvic acid falls in 200 

volatility bin 3) and some of the solute did not evaporate (unknown compound falling in volatility 201 

bin 1). Assuming volume additivity, ~10±5% of the pyruvic acid by volume was converted to a 202 

lower volatility product. The volume conversion is likely lower when accounting for solvation 203 

effects.  204 

  205 
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 206 
Figure 2. VERA evaporation of (A) oxidized pyruvic acid solutions (background subtracted) and 207 

(B) aqueous pyruvic acid and other compounds. Observed diameter is by spectrometer and 208 

nominal diameters are involatile-equivalent diameters from solution concentration. Grey lines 209 

show estimated fraction with lower volatility (volatility bin 1;  < 0.3 Pa). (C) Percentage of 210 

solute in bin 1 (  < 0.3) estimated independently from VERA slope (circles; data from panel A) 211 

and from IC data (line; data from Figure 1). 212 

Figure 2C shows that oxidation shifted products into the lower-volatility bin (bin 1). Colored 213 

circles indicate the fitted slope of VERA experiments in Panel A and the black line is an 214 

independent estimate of non-evaporating compounds for the same mixtures using ion 215 

chromatography, shown in Figure 1. The close agreement between these two estimates of 216 

evaporation corroborates the VERA model. The exception is near 0 minutes of oxidation, where 217 

evaporation of the pyruvic acid produced a 10% unknown residual (see blue circles, Figure 2C). 218 

Further experiments investigating this phenomenon were performed using the EDB and are 219 

detailed below.  220 

EDB Evaporation Experiments 221 
Figure 3 shows the evaporation of pyruvic acid solutions in the EDB. The sequential 222 

evaporation of water and pyruvic acid followed by the retention of an unknown low-volatility 223 

substance is clearly delineated by two sharp changes in evaporation rate (Panel A). Evaporation 224 
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rate slowed as remaining droplet constituents became less volatile. Abruptly raising the RH did 225 

not change the final residual diameter (Panel B). In the evaporation of pyruvic acid + isopropanol 226 

(Panel C) the sequential evaporation of solvent and pyruvic acid is also observed, again resulting 227 

in a less volatile residual. The volume conversion of pyruvic acid to low-volatility residual 228 

(assuming volume additivity and constant density equal to that of pyruvic acid) was ~15–30% 229 

across all EDB experiments.  230 

 231 

Figure 3. Evaporation of 0.1 mass fraction pyruvic acid solution droplets as observed by the EDB. 232 

(A) aqueous pyruvic acid evaporating in dry N2 at three gas-phase temperatures. (inset) residual 233 

volumes at different temperatures. (B) aqueous pyruvic acid response to abruptly increasing RH 234 

during evaporation (at different times as indicated), (C) pyruvic acid in isopropanol evaporating at 235 

20°C.  236 

Varying experimental conditions affected the production of the low-volatility component. 237 

Figure 3A shows that the residual volume of low-volatility product increases at colder 238 

temperatures, demonstrating that the sustained period of high pyruvic acid concentration in the 239 

evaporating droplet has a greater effect on the reaction rate than the reduction in molecular 240 

collisions expected at low temperatures. The volatility of the residual remained below the limit of 241 

quantification by EDB (<5×10-3 Pa) at all temperatures. Additional experiments operating on much 242 
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longer timescales would have been necessary to quantify the evaporation of the formed particles. 243 

Although vapor pressure increases with increasing temperature, the effect of temperature-244 

dependent vapor pressure on the evaporation of a single compound would result in different 245 

evaporation rates and not different yields. Higher initial droplet concentrations using the same 246 

initial droplet size (VERA vs EDB) doubled the volumetric yield. When RH was increased from 247 

0% to 90% at different times during droplet evaporation (Figure 3B), the observed residual 248 

diameter was unchanged. Note that the residual here is larger due to equilibrium water uptake 249 

(hygroscopicity estimate of κ ~ 0.015,84 which is comparable to that of larger molecules found in 250 

SOA85). This indicates that changing the hygroscopically-bound water in the evaporating pyruvic 251 

acid solution does not speed up the low-volatility product formation. In Panel C, evaporating the 252 

pyruvic acid in pure isopropanol resulted in evaporation rates and residuals similar to those of 253 

aqueous solutions, but a little higher (23±1% residual), perhaps reflecting slightly different 254 

chemistry. Because carbonyls do not undergo hydration reactions to form gem-diols as readily in 255 

isopropanol as they do in water, this suggests that the reaction producing the residual is not 256 

accelerated by the formation of a gem-diol as observed for glyoxal.35  257 

Proposed Mechanism for Self-Reaction of Pyruvic Acid 258 

Potential formation mechanisms and structures of a low-volatility residual are now discussed. 259 

The residual volume is larger than the stated pyruvic acid impurity of 2% (all EDB experiments 260 

used brand-new stock), and several independent sources of pyruvic acid standards produced 261 

similar results. Some of this residual may form in the stock solution prior to use; however, the 262 

changing volumetric yields with changing temperatures suggests that reactions occur during 263 

evaporation experiments. Evaporation rates of the low volatility residual were below detection 264 
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limit, thus the influence of temperature on vapor pressure did not affect the observed yield. Gas-265 

phase impurities are ruled out with the EDB and are unlikely with VERA.  266 

Pyruvic acid exists as several species in solution and these equilibria are shifted by the changing 267 

pH during evaporation. The carboxylic acid group can deprotonate to form the pyruvate anion and 268 

the keto group can hydrate to form a gem-diol or tautomerize to form an enol. At room temperature, 269 

roughly 10% of pyruvate, or 60% of pyruvic acid, forms a diol.86 Equilibrium between these forms 270 

of pyruvic acid is complicated by the high surface-to-volume ratio and rapid removal of both water 271 

and the volatile carboxylic acid form of pyruvic acid during evaporation of droplets.37,42,44  272 

The formation of C–O–C bonds by attack of an ROH group on the double bond of either the 273 

carboxyl group or the keto group of pyruvic acid is plausible36,87,88 and oligoester products in SOA 274 

have been observed in both laboratory and field studies.89,90 For example, the gem-diol of a 275 

hydrated pyruvic acid molecule can attack the double bond of the carboxyl group of another 276 

pyruvic acid molecule. In isopropanol, the isopropanol can attack the carboxyl double bond, 277 

producing a similar ester (Figure 3C). Either isopropanol or the pyruvic gem-diol may attack the 278 

hydrated keto group of another pyruvic acid molecule, forming a hemiacetal and potentially 279 

repeating to form an acetal, as has been reported for glyoxal91 and 2-methylglyceric acid.89,90 280 

Formation of an acetal may be promoted by the removal of pyruvic acid and water from the droplet 281 

during evaporation92,93 and enhanced acidity and reactivity in the surface phase.42,44,45  282 

Aldol addition and condensation reactions occur by the attack of the enol tautomer of pyruvic 283 

acid on a protonated keto group of another molecule. Aldol addition has been proposed as a 284 

thermodynamically favorable reaction in bulk aqueous systems,94–96 and these reactions are likely 285 

accelerated at the droplet surface42,44,45 and by evaporation of water and pyruvic acid.92,93 Figure 286 

S5 shows a proposed mechanism with a cyclic dimer as a potential end product of the aqueous 287 
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evaporation experiments in this work. Pyruvic acid tautomerizes readily in solution,97 and aldol 288 

addition can proceed without hydration of the keto group to a gem-diol. Self-reactions by aldol 289 

addition have been reported for evaporating aqueous droplets of methylglyoxal and glyoxal30 and 290 

for pyruvic acid in both dark and photochemical reaction systems.56,98  291 

Atmospheric Implications 292 

Pyruvic acid has diverse removal processes in the atmosphere, where it can partition between 293 

aerosol, aqueous, and gas phases and can dissociate, hydrate, or tautomerize in solution. The 294 

primary source of pyruvic acid outside of urban areas is the aqueous phase OH oxidation of 295 

isoprene oxidation products such as methylglyoxal and lactic acid,19,57,99 and under dry conditions 296 

it is found largely in gas phase (rather than the aerosol), where it is removed by direct photolysis 297 

and dry deposition.51,53,100 In the presence of fogs and clouds pyruvic acid can be retained by (or 298 

re-partition back into) the aqueous phase due to its high water solubility (Henry’s law constant of 299 

3.1×105 M atm-1).101 The aqueous phase photochemistry is then competitive with the gas-phase 300 

direct photolysis as a sink for pyruvic acid.102 In clouds and fogs, some pyruvic acid undergoes 301 

OH oxidation to yield acetic acid, CO2, and oxalic acid through a glyoxylic acid intermediate.19 302 

Because of the multistep chemistry, conversion of pyruvic to oxalic acid takes hours and occurs 303 

over multiple cloud cycles or in a persistent fog. Aqueous dehydrated pyruvic acid is light-304 

absorbing and can undergo direct photolysis or photosensitized reactions resulting in acetoin, lactic 305 

and acetic acid, and oligomers through the excited triplet state of the carbonyl oxygen.26,28 306 

However, dark reactions in clouds and fogs can also occur. Dicarbonyls similar to pyruvic acid 307 

such as glyoxal and methylglyoxal can oligomerize in evaporating droplets.29,30,32,35,88 This work 308 

shows the potential for pyruvic acid to oligomerize during cloud and fog droplet evaporation.  309 
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Figure 4 depicts the volatility evolution of aqueous solutions of pyruvic acid. The box in the 310 

upper left-hand corner shows volatile and semivolatile carboxylic acids that are highly water 311 

soluble, often result from aqueous oxidation, and partition readily into droplets. Processes reducing 312 

the volatility of these compounds can increase the fraction of organic mass that remains in the 313 

particle phase after water evaporation. Among these is pyruvic acid, with a vapor pressure of ~102 314 

Pa at 20°C.103,104 Aqueous OH-radical initiated oxidation, dark acid-catalyzed accretion reactions 315 

and, salt formation of pyruvic acid (not shown) have the potential to reduce the volatility of pyruvic 316 

acid. Aqueous OH oxidation of pyruvic acid forms acetic acid, glyoxylic acid, and subsequently 317 

oxalic acid, whose vapor pressure is in the semivolatile range (𝑝𝑜 = 10-2 to 10-4 Pa).105,106 The 318 

preference of oxalic acid for the particle phase in the atmosphere is likely due to the formation of 319 

low volatility oxalate salts or complexes.4,12,107 This work suggests that evaporating pyruvic acid 320 

solution droplets at aerosol, fog, cloud-relevant concentrations and atmospheric temperatures (10–321 

25°C), in the absence of an inorganic catalyst, leads to formation of acetals and/or cyclic dimers 322 

with estimated vapor pressures of 4×10-5 Pa108 and 10–30% volumetric yields. This mechanism 323 

could compete with photochemical sinks for pyruvic acid during cloud cycling.  324 

Although the vapor pressure of dimers of pyruvic acid is significantly lower than that of pyruvic 325 

acid, they are still considered semivolatile or low-volatility compounds. Dimerization enhances 326 

the partitioning of monomers to the condensed phase.36 The formed dimers, especially those with 327 

unsaturated double bonds, can participate in additional condensed-phase reactions. For example, 328 

the pyruvic acid dimers shown in Figure S5 have been shown to partition to the air-water 329 

interface,109 where they may have enhanced reactivity for subsequent reactions.38 The formation 330 

of surface active unsaturated dimers from carbonyls such as pyruvic acid during cloud or fog 331 
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evaporation is one way in which carbon can be transformed in the atmosphere and influence 332 

atmospheric chemistry.  333 

 334 

Figure 4. Vapor pressures of pyruvic acid reaction products compared to past organic 335 

measurements (20°C),110 SIMPOL.1108 -estimated vapor pressures, and volatility ranges defined 336 

by Donahue et al.34 Pyruvic dimers include several multifunctional cyclic acids (Figure S5). 337 
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