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Abstract

Background: Bioinformatic workflows frequently make use of automated genome
assembly and protein clustering tools. At the core of most of these tools, a
significant portion of execution time is spent in determining optimal local
alignment between two sequences. This task is performed with the
Smith-Waterman algorithm, which is a dynamic programming based method.
With the advent of modern sequencing technologies and increasing size of both
genome and protein databases, a need for faster Smith-Waterman
implementations has emerged. Multiple SIMD strategies for the Smith-Waterman
algorithm are available for CPUs. However, with the move of HPC facilities
towards accelerator based architectures, a need for an efficient GPU accelerated
strategy has emerged. Existing GPU based strategies have either been optimized
for a specific type of characters (Nucleotides or Amino Acids) or for only a
handful of application use-cases.

Results: In this paper, We present ADEPT, a new sequence alignment strategy
for GPU architectures that is domain independent, supporting alignment of
sequences from both genomes and proteins. Our proposed strategy uses GPU
specific optimizations that do not rely on the nature of sequence. We
demonstrate the feasibility of this strategy by implementing the Smith-Waterman
algorithm and comparing it to similar CPU strategies as well as the fastest known
GPU methods for each domain. ADEPT’s driver enables it to scale across
multiple GPUs and allows easy integration into software pipelines which run on
large scale computational systems. We have shown that the ADEPT based
Smith-Waterman algorithm scales well across multiple GPUs and demonstrates a
peak performance of 360 GCUPS and 497 GCUPs for Protein based and DNA
based datasets respectively on a single GPU node (8 GPUs) of the Cori
Supercomputer. Overall ADEPT shows 10x faster performance in a node-to-node
comparison against a corresponding SIMD CPU implementation.

Conclusions: ADEPT demonstrates a performance that is either comparable to
or better than existing domain specific GPU strategies, while only leveraging
architecture specific optimizations oblivious of type of sequence. We
demonstrated the efficacy of ADEPT in supporting existing bionformatics
software pipelines by integrating ADEPT in MetaHipMer a high-performance de
novo metagenome assembler and PASTIS a high-performance protein similarity
graph construction software pipeline. Our results show 10% and 30% boost of
performance in MetaHipMer and PASTIS pipelines respectively.
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Background
Sequence alignment lies at the core of most bioinformatics applications. Aligning

two sequences determines a degree of similarity which may yield homology of the

proteins or genes and their functional information. Local sequence alignment has

been used in de novo sequence assembly to determine how different regions of a

genome are connected [1, 2] and for determining overlapping regions of long reads

[3]. It has been used to determine conserved regions in proteins and genes, which

has applications in evolutionary biology and functional genomics [4].

Smith-Waterman is a sequence alignment algorithm that scores all possible lo-

cal alignments between two sequences using a dynamic programming method and

outputs the optimal alignment [5]. Gotoh modifications enable the algorithm to

account for gap openings and extensions [6]. Because of its exhaustive nature, the

Smith-Waterman algorithm has a worst-case time and space complexity of O(nm)

where n and m represent the lengths of two sequences to be aligned. Its quadratic

time complexity makes performing large number of alignments or aligning long se-

quences time consuming. As a solution, heuristic based strategies were presented in

the form of BLAST and Gapped BLAST which speed up the process considerably

with the trade-off being an approximate solution [7, 8].

In this paper we present ADEPT, a novel domain independent sequence align-

ment strategy for GPU architectures and demonstrate it by implementing a GPU-

accelerated complete Smith-Waterman algorithm for the use case of pairwise se-

quence alignments. ADEPT derives its performance from architecture specific opti-

mizations and is performant regardless of the type of sequence. Our analysis shows

that ADEPT out-performs similar CPU approaches and either closely matches or

out-performs domain specific existing GPU approaches. ADEPT provides an added

advantage of built in capability of scaling across multiple GPUs with minimal effort

from the developer. It can effectively be used as a drop-in replacement for CPU

libraries. For the rest of this paper, the acronym ADEPT will be used interchange-

ably for the ADEPT-based implementation of the Smith-Waterman algorithm and

the proposed strategy in general.

Prior Work

With the introduction of multi-core and GPU devices, multiple parallel strategies for

exploiting modern architectures were introduced. Parallelizing the Smith-Waterman

algorithm is particularly challenging because of the inter-cell dependencies in the

dynamic programming matrix [9]. Computation of each cell depends on the cell

above, diagonally above and on the left, as shown in Figure 2. These strategies can

be classified into two major categories 1) Intra-Task Parallelism, where fine-grained

parallelism is introduced for aligning two sequences and 2) Inter-Task Parallelism,

where each sequence alignment is considered as an independent task and performed

in parallel. The first category includes wavefront parallelism, where the cells along

the anti-diagonals can be computed in parallel as shown in Figure 1 (B.1). This

strategy has been implemented for CPU SIMD units by Wozniak and a GPU version

was implemented in CUDAlign, which targets the use case of Megabase (DNA)

alignment where the sequences to be aligned are very long [10, 11]. Another intra-

task approach of computing the cells along the query sequence (as shown in Figure
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1(B.2)) was introduced and implemented by Rognes et. al [12] for CPU SIMD units,

the same colored boxes show how the regions of table are mapped to SIMD units.

Currently, there is no known GPU implementation for this method. In 2006 Michael

Farrar introduced another intra-task approach in the form of the Striped Smith-

Waterman algorithm for CPU SIMD units, as shown in Figure 1 (B.3) [13]. This

strategy proposed computing the cells in a striped manner parallel to the query

sequence, while ignoring certain dependencies and making up for that by including

an error correction loop for ensuring correctness. There is also no known GPU

implementation for the Striped strategy.

Inter-task parallelism strategies translate to embarrassingly parallel approaches

that compute multiple alignments in parallel. One such implementation, which has

been discussed by Rognes [9], involves mapping a sequence alignment per processing

unit such that multiple DP tables are constructed in parallel (for different align-

ments) and cells of each are computed concurrently (see Figure 1 (A)). The basic

idea of this strategy, accompanied by some device and application specific opti-

mizations, has yielded good results for GPU developers. For instance, CUDASW

[14] utilizes a hybrid method consisting of wavefront parallelism and an embarrass-

ingly parallel method to perform protein sequence alignments. Depending upon the

sequence lengths CUDASW switches algorithms between wavefront and inter-task

approaches. It also utilizes a query profile, a common optimization strategy for pro-

tein database alignments to minimize memory accesses [13]. Another protein specific

GPU implementation has been discussed in [15], which also implements the embar-

rassingly parallel approach where each CUDA thread aligns a protein sequence from

a database, with the query protein. The authors used optimizations to better exploit

GPU architectures, such as ensuring that consecutive threads perform almost same

amount of work and clustering together data accesses to minimize cache misses.

A more recent approach in the same category is GASAL2 [16], which implements

an inter-task parallelism approach to perform pairwise DNA alignments. GASAL2

targets the use-case of short read alignments, and has been optimized for DNA

sequences only. It uses domain specific optimizations such as encoding DNA bases

using only four bits to maximize memory bandwidth utilization. GASAL2 is the

fastest GPU implementation for aligning DNA short reads [16]. However, GASAL2

does not support protein alignment.

Problem Statement

A very common scenario in bioinformatics applications requires pairwise sequence

alignments where one-to-one alignments are performed between two given sets of

sequences [16, 1]. This problem is different than all-to-all approaches presented in

[14, 15] and requires a different approach. A typical all-to-all approach is that of

a protein database where each query sequence is compared against all the possible

targets in the reference set [13], which would lead to NM total alignments, where

N and M are sizes of query and reference sets respectively. One-to-one alignment

deals with aligning only those sequences which are present at same indices in two

sets of sequences, i.e. given that total sequences in query and reference sets are N ,

then total alignments would also be N .

Use cases of one-to-one pairwise alignments are quite common in short-read DNA

mapping [17, 18] and in DNA assemblers [19, 20]. In these cases all-to-all alignments
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are not required; in fact selected sets of reads are aligned with selected sets of target

candidates, which can be achieved using one-to-one pairwise alignment.

Similarly, one-to-one pairwise alignments play an important role in inferring ho-

mologous proteins. The detection of homologous proteins is fundamental to several

applications such as functional annotation (assigning functions to unknown pro-

teins), gene localization (identifying genes that are of a particular functionality of

interest), or identifying protein families (the proteins that descend from a common

ancestor). For example, a common method for the identification of protein families

is (i) to first perform a similarity search [21, 22] in a filtered set of amino acid

sequence pairs by running a batch of pairwise local or global alignments, (ii) then

use this alignment information to form a protein similarity network, and (iii) fi-

nally cluster [23, 24, 25] this network to discover the protein families. Here, the

information obtained from pairwise alignments include metrics such as identity,

score, coverage, etc. and they are used in determining the structure of the pro-

tein similarity network. The batch pairwise alignment usually constitutes the most

time-consuming step and it is important for this step to benefit from accelerators

to enable identification of families in large protein datasets.

However, the available GPU implementations employ methods which are either

domain specific, such as query profile construction for protein database search [14]

and use of bit-encoding for DNA sequences [16], or use-case specific, such as the

Megabase use-case [11]. These methods do not allow for performance portability

across all domains and applications of bioinformatics and are highly specialized. By

contrast, CPU SIMD libraries like Seqan [26] and SSW-Library [27] are domain-

independent and derive their performance by better exploiting the hardware archi-

tecture rather than relying on domain specific optimizations.

This leaves a gap for a parallel strategy that leverages a GPU’s hardware to

derive performance rather than relying on application specific approaches. Such

a method could enable offloading of sequence alignments to the GPU regardless

of the type of sequence (Protein or DNA). Such libraries are widely available for

CPUs and have enabled the development of numerous tools due to their generic

nature. In an attempt to mitigate this gap, in this paper we introduce ADEPT, a

parallelization strategy that can exploit a GPU’s architecture for performance, to

provide a consolidated GPU-accelerated sequence-alignment library.

Smith-Waterman Algorithm

Consider two sequences Q and R to be aligned; Q is a query sequence repre-

sented as Q = {q1, q2, q3, . . . , qn} and R is a reference sequence represented as

R = {r1, r2, r3, . . . , rm}, where n = |Q| and m = |R|. In this paper we consider the

case of one-to-one alignments where, given two sets of sequences, A and B, each

sequence in set A will be aligned to one sequence in set B located at the same index.

The total number of sequences in set A is equal to the number of sequences in set

B.

Given the sequences Q and R, Smith-Waterman with Gotoh scoring computes

three scoring tables E, F and H, following the equations below:

Eij = Max(Ei,j−1 + Gext, Hi,j−1 + Ginit) (1)
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Fij = Max(Fi−1,j + Gext, Hi−1,j + Ginit) (2)

Hij = Max(Ei,j , Fi,j , Hi−1,j−1 + S(qi, ri), 0) (3)

In the above equations, matrix E and F are used for keeping track of gap insertions

in reference and query sequences. A gap insertion in query sequence can be seen as

a deletion in reference sequence or vice versa. Gap insertion/deletion or collectively

known as indels enable accurate alignment of two sequences even if they are not of

equal lengths. Without matrices E and F it is not possible to penalize gap insertion

separately. Matrix H keeps track of alignment extensions. Ginit is the gap initialize

penalty, Gext is the gap extend penalty and S(a, b) is the match or mismatch score

based on how closely characters a and b match. The algorithm starts by initializing

the first row and column of tables E, F and H with zeroes. The first phase involves

computing each cell of table H with the help of tables E and F , using the above

equations. While scoring the table H, information is maintained to keep track of

the highest scoring cell (from Eq. 3) in each iteration. After populating the scoring

matrix H, the second phase involves obtaining the highest scoring cell hi,j from

table H. Indices i and j of this cell indicate the ending location of the optimal

alignment. The third phase involves performing a traceback step starting from the

highest scoring cell and following the optimal path until a cell with a score of zero

is reached; this gives the starting location of the optimal alignment.

Graphics Processing Units

Graphics Processing Units (GPUs) were introduced as dedicated graphics processing

devices, but with the development of advanced programming tools and improvement

in GPU hardware, they have rapidly emerged as accelerators of choice across the

High-Performance Computing community. A typical CPU-GPU computing setup

involves selecting a computationally intensive portion of an application and offload-

ing it to GPU. This involves offloading the data to the GPU’s Global Memory,

launching a kernel to run on the GPU, and then moving the results back from

the GPU to the CPU. CPU and GPU communication happens via a PCI express

connection.

GPU hardware consists of multiple Streaming Multiprocessors (SM), where each

SM contains multiple Floating-Point units, Integer operation units and in more re-

cent devices Tensor operation units. All the cores collectively provide GPUs with

their massively parallel nature. For instance, NVIDIA’s V100 GPU contains a to-

tal of 80 SMs and 64 FP32 units giving a total of 5,376 computing cores. GPUs

traditionally have an on-chip memory resource, termed Shared Memory, and off-

chip Memory or Global Memory [28]. Typically, Global Memory is of the order of

gigabytes and is the primary location where data is offloaded from the CPU for

processing. In comparison, Shared Memory is quite scarce and is usually on the

order of kilobytes. A portion of the shared memory can be configured to be used as
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an L1 cache to improve compiler aided optimizations or be used as shared memory

or a programmer controlled cache. An L2 cache is also present to improve memory

re-use but is not controlled by the programmer. To understand typical sizes of these

memories, consider the NVIDIA V100 GPU, which has 16GB of Global Memory,

96KB of Shared Memory/L1 cache per SM and 6144KB of L2 cache in total. The

register file size for each SM is 256 KB. A better use of a GPU’s memory hierarchy

can yield considerably better application performance [29].

CUDA platform overview

CUDA is a parallel programming platform which enables the use of CUDA-enabled

GPUs for general purpose computing. CUDA provides lower level software access to

the computational elements of GPUs and enables a programmer to write kernels for

offloading computational load to GPUs. The CUDA programming model provides

two levels of parallelism in the form of a grid of CUDA blocks, where each CUDA

block consists of multiple threads. CUDA Threads are the basic computational unit;

each thread can be identified by a unique thread id and a block id representing

its parent block. Inter-thread communication can take place either via the Shared

Memory or using register-to-register data transfers. Inter-block communication can

happen only via the Global Memory. In NVIDIA hardware, the threads of a block

are scheduled on to the SMs in groups of 32 known as warps. Depending upon the

resource availability, multiple warps may be scheduled on the same SM.

Implementation
Initialization

Our ADEPT implementation has two parts: a driver and a kernel. The driver ini-

tializes the GPU memory, packs the sequences into batches, and once enough se-

quences are available to saturate the GPU global memory, transfers all this data

to the GPU. Additionally, the driver also detects different GPUs available on the

node and balances the amount of work across all the available GPUs as shown in

Figure 7

Batched sequences are stored in two arrays, one for query sequences and the other

for reference sequences. The number of sequences in the query and reference arrays

are the same, and sequences located at the same indices are aligned with each other.

For instance, if there are N query sequences and N reference sequences, a total of N

alignments will be performed. Each alignment is mapped to a unique CUDA block.

Then, inside each CUDA block a more fine-grained approach is implemented. From

here on, all the implementation details are per-block and the same algorithm is

replicated across each CUDA block.

Tracking Inter-thread dependencies

As discussed in the Background section, to compute each cell Hij of the dynamic

programming table H, cells Hi−1,j , Hi,j−1, and Hi−1,j−1 need to have been com-

puted. Because of this aspect of the algorithm, parallelism is restricted only along

the ant-diagonal of the matrix as shown in Figure 2. It can be further observed in the

figure that first the amount of parallel work increases as the algorithm progresses,

then remains constant for some iterations, and finally starts to decrease near the
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bottom right triangle of the matrix (shown in red). The maximum number of cells

that can be calculated in parallel at any given time is equal to the length of the

shorter of the two sequences. This poses the unique challenge of keeping track of

dependencies for different cells and masking out the threads for which dependencies

are not ready.

To calculate the scoring table H, we start by assigning one CUDA thread per

column (as in Figure 2) such that it computes all the scoring cells within that

column. Here we assume that of the two sequences being aligned, the longer sequence

is mapped along the column and is referred to as R. As discussed before, because of

dependencies, not all the threads can progress together. To tackle this problem, we

introduce a Binary Masking Array (BMA) for masking out threads in each iteration

for which dependencies are not ready. The BMA has a length b, where b is equal to

3 ∗ |Q| and BMA is initialized as:

xi =

0, if (i < |Q|)or(i > 2 ∗ |Q|)
1, otherwise

(4)

In the above equation, xi is the ith element of BMA. The number of threads that

need to track their state is equal to the size of query sequence. Since each thread

needs to track its state in three different phases of algorithm, the length of BMA is

fixed to three times the size of query sequence.

Figure 3 shows the BMA array for a query of length 6. Here, each thread keeps

track of an element in BMA. After each iteration, if the algorithm is in the yellow

region (see Figure 2), the array shifts to right, activating one more thread. Condition

C is used to keep track of the region which the algorithm is in.

C = I < |Q|orI >= |R| (5)

In the above equation, I is the iteration number, which also corresponds to the diag-

onal being computed. It can be observed in Figure 3 that initially no CUDA thread

was active and as the algorithm progresses more and more threads are activated to

perform the work. Once the algorithm reaches the orange region, the condition C

becomes false and the array stops shifting until the algorithm enters the red region.

Here again the array starts shifting to the right (as shown in Figure 4) with each

iteration, but this time threads are getting masked out with each iteration because

of the decreasing diagonal size, this can be observed in Figure 2. Pseudo code in

Algorithm 1 shows the usage of BMA in keeping tracking of algorithm’s state.

Dynamic Programming Table Storage and Memory Access issues

To compute the highest scoring cell a pass over the complete table H is required.

Since the total number of cells that are computed in the table H are n ∗m, if we

use 2 bytes to store each cell, storing the complete dynamic programming table in

memory requires N ∗ (2 ∗mn) bytes. Where N is the size of a batch. This yields a

total global memory requirement of several hundred GBs for a million alignments,

and even top of the line GPUs have global memory of only a few GBs.
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Apart from the storage size of the dynamic programming table, another challenge

that occurs often on GPUs is that of non-coalesced global memory accesses. The

Global memory accessed by threads of a CUDA warp is bundled into the minimum

number of cache loads, where L1 cache line size is 128 bytes. Thus if the two threads

are accessing a memory location that is more than 128 bytes apart, the memory

accesses will be un-coalesced. It can be observed in Figure 5 that while performing

a write back to global memory to store the table H, memory accesses are about

2 ∗ (n− 1) bytes apart, which can be more than 200 bytes apart if n is larger than

100.

It can be seen in Figure 2 that to compute a given anti-diagonal using the proposed

parallel approach only the two recent most anti-diagonals are required. Apart from

computing the maximum scoring cell at the end of scoring phase, there is no reason

for storing the complete scoring matrix, except for the two most recent diagonals.

As a solution to the problem of computing the maximum scoring cell, we modified

our implementation so that each thread can maintain a running maximum score

for the column it has been assigned; this can be kept in the thread’s register. Thus,

we can effectively discard the scoring matrix beyond the two most recent diagonals.

Since this requires storing only a portion of the matrix, this can be done inside

thread registers thus avoiding the problem of non-coalesced memory accesses.

Once all the cells have been computed we use CUDA’s warp shuffle intrinsics to

implement a block-wide reduction for obtaining the highest scoring cell as shown in

Algorithm 1. Our implementation of block-wide reduction has been adopted from

NVIDIA’s own reduction method [30] with modifications introduced to obtain the

indices of the highest scoring cell along with the score.
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Algorithm 1: Per thread pseudo Code for ADEPT Smith-Waterman Kernel

Result: ref end, que end, best score

Input: ref sequene, que sequence

initialize registers();

initialize shared mem();

initialize BMA();

initialize state(alg state, thread state);

for each diagonal do

p prev E = prev E, prev E = curr E, curr E = 0;

p prev F = prev F, prev F = curr F, curr F = 0;

p prev H = prev H, prev H = curr H, curr H = 0;

thread state = BMA Shift(state);

if !(thread state) or inter warp comm then

spill registers();

else

end

if thread state then

curr F = compute F(prev F);

if src thread valid then

curr E = compute E(register shuffle);

curr H = compute H(register shuffle);

else

curr E = compute E(shared mem);

curr H = compute H(shared mem);

end

max score = compute max(curr E, curr F, curr H);

col max = update col max();

else

end

end

que end, ref end, best score = warp shuffle reduction(col max);

Efficient Inter Thread Communications

Figure 2 shows the mapping of CUDA threads to columns of the scoring matrix. It

can be observed in the figure that because of the cell-dependencies there is inter-

thread communication required between the two consecutive threads. For a thread

j to compute the cell Hi,j it requires values from cells Hi−1,j , Hi,j−1 and Hi−1,j−1.

In the figure it can be observed that the cell Hi−1,j is computed by thread j while

the other two cells are computed by thread j − 1. For this inter-thread transfer we

explored two methods of data sharing between threads i.e. communication using

shared memory and register-to-register memory transfer.

CUDA’s warp shuffle intrinsics allow threads to perform direct register-to-register

data exchange without performing any memory loads and stores, while use of shared

memory involves going through the on-chip shared memory. Due to much faster

performance we opted for the register-to-register data exchange method.
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However, register-to-register transfers are only allowed among the non-predicated

threads of the same warp. This introduces several edge cases, for example in the

CUDA platform where a warp is 32 threads wide, a communication between thread

(32 ∗ q) − 1 and 32 ∗ q (where q > 0) would not be possible through register-to-

register transfers because these do not belong to same warp. For instance, in Figure

2, threads 3 and 4 belong to different warps (assuming that a warp is three threads

wide), so they cannot communicate via the register exchange method. For such

cases, the last thread of each warp spills its registers to the shared memory every

iteration so that first thread of the next warp can retrieve that data.

Similarly, while computing the scores for cells Hm,j , the threads j-1 would have

been predicated (in Figure 2, each thread is masked after it has computed the last

cell of the column it is assigned to) and a register-to-register transfer would not be

possible. To cater for these edge cases, we use shared memory arrays to spill the

values of thread registers whenever such edge cases occur. Using the BMA method

discussed in previous section, it becomes quite straight forward to determine if a

certain thread will be predicated in the next iteration so that its registers are timely

spilt to shared memory and then any dependent threads can access the required

values from shared memory.

Using the above method provides fast inter-thread communication along with free-

ing up significant amount of shared memory, which helps improve GPU utilization

and also helps avoid shared memory bank conflicts. A bank conflict occurs when

multiple threads access same bank of shared memory, this enforces sequential access

to that portion of memory and results in performance degradation.

An overall step by step kernel pseudo code for forward phase has been provided

in Algorithm 1.

Reverse Scoring

The third phase of the Smith-Waterman algorithm involves performing a traceback

starting from the highest scoring cell and ending when the score drops to zero or

the top left end of the matrix is reached. This requires maintaining the traceback

pointers, which can be stored in the form of two matrices, one for storing the

indices of the query sequences and the other for storing the indices of the reference

sequences. However, storing these matrices yields two sets of challenges. First, the

amount of memory required to store traceback matrices equals 2 ∗ N ∗ (n ∗ m),

which can be several hundred GBs when N is close to a million alignments and

unlike the scoring phase we cannot discard parts of the traceback matrices because

that may lead to missing optimal alignments. The second challenge is that of un-

coalesced memory accesses, as mentioned before. The write-back to the traceback

matrices occurs along the anti-diagonals and since the matrices are laid down in the

global memory in row-major indexing, this leads to un-coalesced memory accesses

as shown in Figure 5.

However, in most of the practical Smith-Waterman applications, complete align-

ment details are rarely required. The majority of the applications only require the

optimal alignment score and the optimal alignment start and end indices [1, 27, 13].

Details of insertions and deletions are typically not required when the Smith-

Waterman algorithm is being used as a part of a computational pipeline, in partic-
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ular for the case of pairwise alignments. Considering this practical reason, rather

than performing a detailed traceback, we use a reverse scoring phase.

Reverse Scoring Phase

To obtain the start positions of the alignment we make use of the symmetric na-

ture of the optimal alignment. An optimal alignment is symmetrical i.e. scoring

two sequences forward or with their directions reversed yields the same optimal

alignment.

For reverse scoring, we make use of this property as previously done in [27] and

compute a reverse scoring matrix with both the sequences flipped from the indices

of the highest scoring cell in the forward scoring matrix. When scoring in reverse,

the highest score will correspond to the same alignment as the one in the forward

scoring phase as shown in Figure 6.

Using the indices of the highest scoring cell in the reverse scoring phase, we can

compute the start index of alignment. Using the reverse scoring phase enables us

to avoid storing traceback matrices and helps free up GBs of space. The reverse

scoring kernel follows the same implementation as the forward scoring kernel that

has been shown in Algorithm 1, hence we re-use that implementation by providing

flipped sequences at the input. It must be noted that the reverse scoring matrix in

most of the cases ends up having less total work because of known end positions.

Support for Protein Alignment

Thus far, ADEPT has not required any domain specific optimizations, and the

Smith-Waterman implementation discussed above has been oblivious of the types

of sequence.

The difference between aligning protein sequences and DNA sequences is between

the scoring methods. When aligning DNA sequences, if two of the same nucleotide

bases align, that is considered a match and a fixed match score is used for computing

the total score; similarly if the bases do not match, a mismatch score is used instead.

When aligning protein sequences, two aligning amino acids need to be scored based

on their chemical similarity. Similarity scores for all possible comparison of amino

acids are characterized and available in the form of a scoring matrix [31]. Instead

of a match/mismatch score for protein sequencing a user needs to provide a scoring

matrix.

Since a scoring matrix needs to be accessed very frequently, in our implemen-

tation we move the static scoring matrix to the GPU’s shared memory to reduce

the overhead associated with multiple accesses. For simplifying the scoring matrix

lookups and minimizing shared memory usage, we use a decoding matrix to index

into the scoring matrix. Typically, the scoring matrix is indexed by the amino acid

characters, which leads to large amount of memory being reserved for the matrix.

In this implementation, we first index a with the ASCII code associated with the

amino acid character to retrieve an encoded index, which is then used to access the

scoring matrix.

Underlying kernel for protein and DNA alignment still remains the same, for

protein alignment the only difference is that instead of a match/mis-match score

and similarity score is obtained from the scoring matrix, everything else remains

the same as in Algorithm 1.
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In order to make the switch between protein kernel and DNA kernel easy for the

user, we provide two different kernels for protein alignment and DNA alignment.

The DNA kernel accepts match, mismatch, gap open and gap extend scores at

input while the protein kernel accepts a scoring matrix along with gap open and

gap extend scores at compile time.

Multi-GPU Asynchronous Pipeline

In a typical CPU-GPU setup, the CPU prepares a batch of data that is offloaded to

a GPU and launches a GPU kernel to process that data; once the data is processed,

the results are moved back to CPU. However, with the evolution of GPU technology,

a widespread adoption of GPUs has taken place, and instead of having one GPU

per node, a typical GPU system has several GPUs on each node. For instance, the

Summit supercomputer [32] has six GPUs per node and the upcoming Perlmutter

supercomputer is planned to have four GPUs per node [33]. This calls for a software

setup which would determine the type and memory capacity of each GPU on a

node dynamically and divide the work among all GPUs accordingly. As a solution,

ADEPT contains a driver component which manages all the communication, load

balancing and batch size determination for the GPU kernels while keeping the

developer oblivious of these intricacies.

ADEPT’s driver gathers hardware information about all the GPUs installed on a

node and then divides the work equally among them. A separate context is created

for each GPU where a unique CPU thread is assigned to a particular GPU. This

CPU thread divides the total computational load into smaller batch sizes depending

on the memory capacity of the GPU assigned to it. Each batch is then prepared

and packed into a data structure which is then passed to a GPU kernel call. Using

CUDA streams, the GPU kernel call and the data packing stage are overlapped so

that CPU and GPU work can be carried out in parallel. An overview of ADEPT’s

design can be seen in Figure 7.

ADEPT’s driver makes it easier for the developers to integrate ADEPT in high

performance bioinformatics software pipelines by reducing the complexities of deal-

ing with multiple GPUs, and requiring just one call to the driver function. Effec-

tively, making ADEPT a drop-in replacement for existing CPU libraries, whereas

existing GPU libraries require significant amount of work in order for them to be

included in an existing software pipeline.

Results
We evaluate the performance of ADEPT against two of the popular CPU libraries

which can perform both Protein and DNA alignments. Among existing GPU im-

plementations we chose GASAL2 for comparison because it is the fastest known

GPU library for performing DNA pairwise alignments [16]. The only known GPU

alignment library that can perform pairwise protein alignments is NVBIO [34], so

we compared ADEPT against the protein alignment tool of NVBIO. The libraries

we are evaluating ADEPT against include:

SSW-Library

Striped Smith Waterman or SSW-Library [27] is an implementation of Farrar’s

algorithm [13] and is one of the fastest known CPU implementations of the Smith-

Waterman algorithm. SSW-Library leverages the CPU’s vector instruction set.
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Seqan Library

Seqan Library is a widely used CPU sequence alignment library [26]. For this paper

we use the Seqan test suit developed by the authors of the Seqan library [35]. For

these experiments we made use of align bench par program as it performs pairwise

alignments. We used the build option for AVX2 instructions with scoring range set

at 16 bit for optimized performance.

GASAL2

GASAL2 is a recently developed GPU implementation for short read DNA analysis

that performs pairwise alignments. The authors of GASAL2 have comprehensively

demonstrated that GASAL2 is the fastest GPU implementation for pairwise align-

ments [16]. Hence, to avoid redundancy, we only use GASAL2 among GPU libraries

for performance comparison. GASAL2 has been optimized only for DNA sequences

and does not support protein alignments.

NVBIO

NVBIO is a GPU based library developed by NVIDIA developers which provides

multiple algorithms implemented for accelerating bioinformatics pipelines. For this

paper we used the proteinsw program provided with the NVBIO library. Here, it

needs to be considered that NVBIO has not been maintained for some time now

and we found out that with the same scoring conditions, using the same dataset,

NVBIO’s protein alignment output does not match with the well known Smith-

Waterman implementations. An issue has been opened at their github page regard-

ing this. The NVBIO-based experiments in this paper were performed assuming

that the library still computes the complete scoring matrix, but because of a bug

in the protein scoring function the results do not match with other libraries.

Experimental Data

To evaluate the performance of ADEPT against existing methods we identified use

cases in genomics and proteomics that require performing large numbers of pairwise

alignments. For each of these use-cases we obtained real world datasets, which were

then processed to form three curated sets of Query and Reference sequences. Below

we discuss in detail the data generation process for DNA and Protein evaluation

datasets.

DNA Data

For the alignment of DNA sequences, we used a set of 29 million FASTQ reads, of

lengths from 150 to 300, from the SYNTH64 dataset [36] as the query sequences. For

the reference sequence set, we used a collection of 283842 contigs assembled from the

reads, using the MetaHipMer [19] assembler. The sequences in the resulting query

and reference sets were then binned based on the length of the query sequence to

obtain three different datasets i.e. DNA-1, DNA-2 and DNA-3. Details of these

datasets are available in Table 1.
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Table 1 This table shows features of three datasets that were curated for evaluating performance
for DNA based applications.

Dataset Query Set Reference Set Total Alignments
Min. Size Max. Size Min. Size Max. Size

DNA-1 150 200 99 779 31,071,476
DNA-2 201 250 99 979 8,892,748
DNA-3 251 300 99 1,131 16,308,186

Protein Data

For the alignment of protein sequences, we use a curated (a combination of au-

tomatic and manual curation) dataset called SCOPe (Structural Classification of

Proteins - extended) [37]. The current version of this dataset (2.07) contains around

244k proteins, of which we select the unique 77,040. The pairwise alignments are

constructed within a protein family identification pipeline [38]. In this pipeline,

a set of candidate pairs are filtered and passed to the aligner to obtain various

alignment information. The number of pairs filtered by this pipeline is 54.5 million.

The obtained alignment information is then used to construct the protein similarity

network.

For all the pairwise alignments we assumed the longer sequence is the reference

and the shorter sequence is the query. These sequences were then binned based on

the length of the query sequences into three different datasets: Protein-1, Protein-2

and Protein-3. Details are provided in Table 2.

Table 2 Features of three datasets that were curated for evaluating performance for Protein based
applications.

Dataset Query Set Reference Set Total Alignments
Min. Size Max. Size Min. Size Max. Size

Protein-1 20 200 200 1,664 31,846,093
Protein-2 20 400 400 1,664 38,610,219
Protein-3 20 600 600 1,664 12,148,680

Comparison with Existing Methods

For each of the above discussed datasets we performed three experiments to evaluate

ADEPT’s performance against existing approaches. First we compare the Giga Cell

Updates Per Seconds (GCUPS) for each approach, which was done by running all

the methods in only forward scoring phase to obtain only the highest score. Then

we compute the total cells (of the DP table) that were processed for that dataset

and divide that by the total runtime, which is given by:

GCUPS =
Total Cells

Forward Scoring Time
(6)

In the second experiment, we turn on the reverse scoring phase for all the algo-

rithms (algorithms which do not support a reverse scoring phase were omitted from

this experiment) and evaluate the total execution time for obtaining the score, start

and end positions of the optimal alignment.

Finally, we repeat the above experiments by running all of the algorithms on com-

plete CPU and GPU nodes of the Cori Supercomputer [39] to evaluate the ability

of these implementations to support multiple numbers of GPUs, as is expected by

high-performance bioinformatics pipelines.
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Experimental Conditions

For all the CPU runs we made use of the Cori Supercomputer’s Haswell nodes [40],

each of which consists of two sockets of Intel Xeon Processor E5-2698 v3, operating

at 2.3 GHz with 16 CPU cores each, with a total of 32 cores per node. All the

CPU libraries were built using GCC version 8.3.0 with optimizations turned on.

For GPU runs we made use of the Cori Supercomputer’s GPU nodes [41], each of

which consists of eight NVIDIA V100 GPUs. Each V100 GPU consists of 16 GB

of Global Memory, 96KB of Shared Memory/L1 cache per SM and 6144KB of L2

cache in total. For computations, each V100 GPU contains a total of 80 Streaming

Processors (SMs) and 64 FP32 units, giving a total of 5,376 computing cores. The

GPU libraries were built using CUDA version 10.2.89.

For DNA alignments we used the same scores for all algorithms, i.e. match-score

of 6, mismatch penalty of 4, gap open penalty of 4 and gap extension penalty of

1. For Protein alignments we used the Blosum 62 matrix [31], with a gap open

penalty of 6 and gap extension penalty of 1. Typically, ADEPT’s driver determines

the batch size at runtime but for these experiments we fixed the batch size to 20,000

since that provides optimal performance for the V100 GPUs. The batch size is a

user configurable parameter.

Performance on DNA Alignments

We first compared the total GCUPS for all algorithms for DNA alignment datasets.

As discussed before, this was done by turning off the reverse scoring feature and

only using one socket of a Haswell Node (16 CPU cores) for CPU libraries and

one V100 GPU for GPU libraries. It can be observed in Figure. 8 that for shorter

queries (DNA-1), the GASAL2 library out-performs all the algorithms, but for

the remaining datasets where query lengths are longer, ADEPT starts performing

better because of its intra-sequence parallelization strategy. This is because, as

the size of the query increases, the number of elements that can be computed

in parallel also increases, and this results in ADEPT closely matching GASAL2’s

performance for the DNA-1 and DNA-2 datasets. For a single GPU, ADEPT gives

a peak performance of about 66 GCUPS.

To evalute the high-performance computational capability for large scale systems,

we repeated the above runs, but this time for the CPU libraries we used all the

available CPU cores on a Cori Haswell node (32 CPU cores). And for GPU codes,

we performed analysis for 2 GPUs, 4 GPUs and full node runs with all 8 GPUs.

GASAL2 does not have support for multiple GPUs, hence it was not included in

these experiments. It can be observed in Figure 9 that ADEPT scales quite well for

an increasing number of GPUs and can provide a peak node performance of 497

GCUPS. An overall, node-to-node speedup of 11x and 10x was achieved over the

SSW library and Seqan library respectively.

To compare overall performance, we turned on the reverse scoring feature for all

algorithms so that each can compute the start position of the alignment as well. The

Seqan benchmarking suite did not have an option of obtaining the start position

using reverse scoring and instead performs a complete traceback which is a very

slow, so in the interests of fairness, we did not include Seqan in these experiments.

These experiments were again performed using a single socket (16 CPU cores) and
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a single GPU first and then repeated for full nodes to evaluate their ability for large

scale bioinformatics tools.

It can again be observed in Figure 10, that GASAL2 performs better for the

DNA-1 dataset where query lengths are limited to only 200 bases long. As we move

onto the datasets with longer query sequences, ADEPT’s intra-sequence approach

starts catching up owing to increased fine-grained parallelism. For full node runs we

did not include GASAL2 because it does not provide multi-GPU support. Figure

11 shows that ADEPT out-performs the SSW-Library by about 10x in node-to-

node comparisons and scales well for an increasing number of GPUs, even with the

reverse scoring phase turned on.

Performance on Protein Alignments

We repeated the same experiments for Protein datasets; for these experiments we

do not include GASAL2 library because it does not support protein alignments.

Figure 12 shows that for single GPU ADEPT out-performs NVBIO by about 8x

for the Protein-1 dataset and consistently performs better than NVBIO for the

remaining datasets. With CPU Libraries utilizing 16 CPU cores, ADEPT out per-

forms them for the Protein-1 and Protein-2 dataset but for the Protein-3 dataset the

SSW-Library catches up. This is because the SSW-Library uses a heuristic based

approach and performs less work overall, so with increasing sequence lengths we see

an improvement in the performance of the CPU Libraries. However, the true po-

tential of the GPU accelerated approach is observed when performing node-to-node

analysis, as typically an HPC cluster has more GPUs per node than CPU sockets.

In Figure 13, we perform a node-to-node analysis with the CPU libraries making

use of all the 32 CPU cores on each Haswell node of the Cori Supercomputer, while

ADEPT utilizes all 8 GPUs available on a Cori GPU node. It can be observed that

for complete node-to-node analysis, ADEPT dominates and gives a peak perfor-

mance of 360 GCUPS when using all eight GPUs. Since NVBIO does not provide

a driver program like ADEPT to support multiple GPUs, we did not include it in

these experiments.

To evaluate the performance for protein alignments with reverse scoring phase

turned on, we compared only the SSW-Library and ADEPT because the Seqan test

suite and NVBIO do not have the reverse scoring feature. For single socket (16 CPU

core) vs single GPU comparison, ADEPT out-performs SSW for the Protein-1 and

Protein-2 datasets (Figure 14). But for the larger sequence dataset (Protein-3), the

SSW Library catches up owing to its heuristic based scoring algorithm.

But for node level analysis, ADEPT (Figure 15) out performs SSW-Library by

almost 8x.

Application Use Cases
To demonstrate ADEPT-SW’s effectiveness in preparing large-scale bioinformatics

software pipelines for GPU-heavy systems, we chose two applications from differ-

ent domains. The first is MetaHipMer [19, 42], which is a large-scale metagenome

assembly pipeline for performing denovo assembly of metagenomic data sets, and

the second is PASTIS [38], a distributed protein network construction pipeline.

ADEPT-SW was integrated into both these pipelines to accelerate the portion
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which makes use of the Smith-Waterman local alignment algorithm. Based on the

design of these pipelines, different approaches were adopted to take advantage of

the GPU-accelerated ADEPT-SW library.

Use-Case: Metagenome Assembly

MetaHipMer is a specialized version of a large scale denovo genome assembler Hip-

Mer [2]. Metagenome assembly involves processing a DNA dataset obtained from a

microbial colony into a complete representation of the underlying genome. MetaHip-

Mer has been designed for large scale supercomputers using a partitioned global

address space (PGAS) programming model which enables it to run on a shared

memory computer as well as a large-scale distributed machine. An overview of the

MetaHipMer pipeline can be seen in Figure 16. The fourth step highlighted in red

is the alignment phase of MetaHipMer where the input reads are aligned against

target sequences that have been built in the stages before. At the core of alignment

step, MetaHipMer uses a CPU-based kernel of a Smith-Waterman Library called

SSW [27], which has also been discussed before in section Results.

A simplified overview of the alignment phase of MetaHipMer can be seen in Figure

17. MetaHipMer uses multiple processes on each node to take advantage of the

underlying parallel hardware. Each process parses a set of reads independently,

performs a candidate lookup in the distributed index and obtains a set of possible

candidates to which that read might align. The target and read pair is then passed

to SW-Kernel on the CPU to process the alignment.

ADEPT-SW Integration

We modified the MetaHipMer pipeline so that instead of performing a SW alignment

immediately after the lookup, it adds it to a batch of alignments. Once the batch size

is large enough, a call is made to the ADEPT-SW kernel which then takes control.

The ADEPT-SW kernel detects the number of available GPUs and the number of

processes running on the CPU and then performs a mapping from CPU to GPU

in a round-robin fashion. If the number of GPUs is smaller than the number of

processes on the node, multiple processes may be mapped to a same GPU. During

the mapping the ADEPT-SW kernel ensures that if a GPU is shared by more than

one process, the global memory of the GPU is divided among the processes such

that there is no overlap. The ADEPT-SW driver then launches GPU kernels as

shown in Figure 7. The modified version of the mteaHipMer alignment phase can

be seen in Figure 18.

Results

For this study a UPC++ based version of MetaHipMer was used. All the experi-

ments were performed on Cori GPU Nodes [41]; each GPU node consists of eight

NVIDIA V100 GPUs and two sockets of Intel Xeon Gold 6148 (Skylake) processors,

where each socket consists of 20 CPU cores, making a node total of 40 CPU cores.

We used arctic ArcticSynth dataset for these experiments [42].

Figure 19 shows the performance comparison between MetaHipMer and ADEPT

integrated MetaHipMer. The Smith-Waterman portion portion improves by 2.9x

which gives the alignment phase a performance boost of 36% and an overall pipeline

performance improvement of 10% was observed for a single node run.
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Use-Case: Protein Similarity Graph Construction

PASTIS [38] is a distributed-memory software for performing large-scale protein

similarity search. Its goal is to facilitate the fast construction of huge protein sim-

ilarity graphs, which are then usually utilized in a clustering phase to discover

similar proteins. It encodes protein sequence information within distributed sparse

matrices and relies on sparse matrix operations to discover candidate protein se-

quence pairs for further alignment. The main components of PASTIS are illustrated

in Figure 20. The alignment of candidate protein sequence pairs is performed after

discovering overlapping protein sequence pairs and it constitutes one of the most

computationally expensive components. In PASTIS, the alignments performed by

a process are independent from the alignments performed by other processes, i.e.,

they are performed locally by each individual process. Hence, although ADEPT-SW

does not support distributed memory parallelism, PASTIS can still make use of it

as the alignment component is local to each process.

PASTIS needs certain information regarding the aligned sequence pairs in the

construction of the protein similarity graph. These information include average

nucleotide identity, raw alignment score, coverage, etc. The alignments that do

not meet certain criteria are eliminated and they are not included in the protein

similarity graph. Note that each aligned sequence pair corresponds to a possible edge

in the protein similarity graph, where the weight of the edge signifies the strength of

similarity between the aligned sequence pair. For that purpose, PASTIS can make

use of either average nucleotide identity or normalized raw alignment score.

ADEPT-SW Integration

PASTIS originally relies on Seqan C++ library (The Library for Sequence Analy-

sis) [26] for alignment. Its representation of protein sequences via matrices allows

easy integration. In the matrix produced by PASTIS at the end of the overlap de-

tection component in Figure 20, each process stores a distinct rectangular block of

this matrix. Each non-zero element in this block signifies an alignment to be exe-

cuted by the aligner. Hence, at each process, we traverse these elements in batch by

storing them in necessary structures required by ADEPT. Then, the control passes

to ADEPT driver component, which performs alignments across all the GPUs avail-

able on the node and produces output information required by PASTIS. Specifically,

PASTIS uses the raw score and coverage of each alignment computed by ADEPT

in the formation of the protein similarity graph.

Results

In the evaluation of PASTIS, we follow a similar setting to that of MetaHipMer.

The experiments are performed on a single node of Cori GPU Nodes [41]. We used

SCOPe (Structural Classification of Proteins - extended) [37] dataset for PASTIS.

For the alignment component, we tested out Seqan’s Smith-Waterman alignment

algorithm and ADEPT-SW. We turned off trace-back component of Seqan, as is

the case for ADEPT-SW. For PASTIS, we used a k-mer size of 6 and 10 substitute

k-mers. This results in around 31.2 million sequence pairs that need to be aligned

by Seqan or ADEPT-SW.

Figure 21 shows the runtime dissection of PASTIS when run with Seqan and

ADEPT-SW. The alignment constitutes almost half of the execution time of
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PASTIS when it is run with Seqan (indicated with the legends sw kernel and

align internal). A comparison of performance in Figure 21 shows that PASTIS with

ADEPT integration performs Smith Waterman alignments about 2.7x faster than

Seqan (compare the values for legend sw kernel) and improves the performance of

overall pipeline by 30%.

Conclusions

Aligning two biological sequences is fundamental to a majority of computational pipelines in modern bioinformatics.

Applications such as homology, the study of proteins and genes, protein database search, protein clustering, de novo

genome sequencing, metagenome analysis and functional genomics and proteomics, frequently make use of sequence

alignment algorithms at their core. Optimal sequence alignment algorithms like Smith-Waterman are based on

dynamic programming approaches which makes them computationally intensive and difficult to parallelize owing to

their convoluted dependencies. With the move of supercomputing facilities towards heterogeneous architectures, a

lot of effort is being made to port existing bioinformatics workflows to the new architectures. In this process,

sequence alignment algorithms have emerged as a computational as well as an implementation challenge. Existing

GPU libraries employ domain and application specific strategies for optimizing an algorithm’s performance on GPUs,

but such strategies are not generic and have restricted use-cases. This called for a domain independent strategy that

targeted the hardware for speed and not the data, similar to the methods widely available for CPUs.

As a way forward through this problem, we have introduced ADEPT in this paper, which is a domain independent

strategy for sequence alignment that leverages the GPU’s architecture for accelerating dynamic programming based

sequence alignment algorithms. We introduced a novel data structure to tackle the inter-thread dependencies and

utilized register-to-register data transfers for efficient communication between CUDA threads. We demonstrated the

performance of this strategy by implementing the Smith-Waterman algorithm, an optimal local alignment algorithm,

and comparing its performance with similar approaches for CPU SIMD units and the existing fastest GPU

implementations available for DNA and Protein alignment. ADEPT has shown performance that either closely

matches or is better than existing CPU and GPU methods. We used a variety of real world datasets, ranging from

proteins and DNA sequences with varying reference and query lengths, to rigorously evaluate the performance of

ADEPT. For DNA and protein use-cases, ADEPT demonstrated a peak speed up of 10x and 7x respectively in

node-to-node analysis against CPU libraries, while out-performing or closely matching the performance of existing

GPU libraries. We also demonstrated the usability of ADEPT by integrating it into existing bioinformatics software

pipelines and demonstrate a 10% and 30% boost in performance of MetaHipmer and PASTIS softwares.

ADEPT is a generic strategy and can be easily extended for other dynamic programming-based sequence alignment

algorithms such as those used for global and semi-global alignments. We hope ADEPT’s capability of exploiting a

GPU’s architecture to provide a unified solution to GPU sequence alignment, its ability to scale across multiple

GPUs and ease of use will enable it to take a central role in future high-performance bioinformatics application

development and porting.
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figures/figure 1.jpg

Figure 1 In this figure, similarly colored boxes are computed in parallel. A) Shows the typical inter
task parallelism strategy where multiple DP tables are constructed in parallel. B.1) Shows the
wavefront parallelism strategy. B.2) Shows Rognes’ Intra task approach. B.3) Shows Farrar’s
striped approach.

figures/figure 2.pdf

Figure 2 Arrow heads point towards the cell being computed while arrow tails lie in the cells that
computation depends upon. At a given time, only the cells along the anti-diagonal can be
calculated by the algorithm in parallel. Three shaded region show different parts of the algorithm:
in the yellow region the parallelism increases with each iteration, in the orange region it remains
constant, while in the red region it starts to decrease.
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Figure 3 The zero/one array in this figure represents the Binary Masking Array (BMA) in the
yellow region of the algorithm for the DP table in Figure 2. With each iteration the array shifts to
the right, activating one additional thread per iteration (given that the condition C is valid).
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Figure 4 The zero/one array in this figure represents the Binary Masking Array (BMA) while the
algorithm is in the red region for the DP table in Figure 2. With each iteration the array shifts to
the right, deactivating one additional thread per iteration (given that the condition C is valid).
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Figure 5 When reading or writing along the anti-diagonals of a matrix that has been stored in a
column major way, consecutive elements of an anti-diagonal are placed 2 ∗ (|Q| − 1) bytes apart.
This leads to un-coalesced global memory accesses in GPU.
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Figure 6 Sequences are flipped in the reverse scoring phase and the same kernel is used as the
forward phase. The highest scoring cell in the reverse phase then provides the start location of
alignment.

figures/figure 7.pdf

Figure 7 The overall pipeline of the ADEPT strategy. ADEPT’s driver detects all the available
GPUs and their available memory. Based on this, it determines the amount of work that can be
dispatched to each GPU. A separate CPU context is created for each GPU. On the CPU side, the
batch size is determined based on the GPU’s available memory or the batch size can also be fixed
by the user. To overlap the data preparation step, data transfers and the GPU computation,
multiple CUDA streams are used. Immediately after making the GPU to CPU transfer call, the
CPU returns to the data preparation step while kernel execution is still going on at the GPU side.
This asynchronous behavior overlaps the CPU and GPU parts of the computation.
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Figure 8 Total GCUPS (higher is better) for each algorithm when processing the DNA datasets
using 1 CPU socket and 1 GPU.
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Figure 9 Total GCUPS (higher is better) for each algorithm when processing the DNA datasets
while using complete nodes.
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Figure 10 Total execution times (lower is better) for each algorithm when processing the DNA
datasets with reverse scoring turned on, when using single CPU socket and single GPU.
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Figure 11 Total execution times (lower is better) for each algorithm when processing the DNA
datasets with reverse scoring turned on, when using complete nodes.
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Figure 12 Total GCUPS (higher is better) for each algorithm when processing the Protein
datasets using 1 CPU socket and 1 GPU.
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Figure 13 Total GCUPS (higher is better) for each algorithm when processing the Protein
datasets while using complete nodes.
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Figure 14 Total execution times (lower is better) for each algorithm when processing the DNA
datasets with reverse scoring turned on, using single CPU socket and single GPU.
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Figure 15 Total execution times (lower is better) for each algorithm when processing the Protein
datasets with reverse scoring turned on, using complete nodes.
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Figure 16 An overview of MetaHipMer pipeline. The alignment step (highlighted in red) makes
use of Smith-Waterman alignments to map short reads to longer target sequences.

figures/figure 17.pdf

Figure 17 MetaHipMer’s alignment phase using the CPU Smith-Waterman Kernel. Each rank gets
a set of target sequences which are used to construct a global seed index stored in shared memory.
Each process then performs a lookup in the distributed seed index and obtains a set of possible
target candidates. A pair of target and read candidates are then passed to the SSW Kernel.

figures/figure 18.pdf

Figure 18 MetaHipMer’s alignment phase is modified so that instead of calling the CPU SSW
kernel, the read and target pair is added to a batch. This batch is then passed to the ADEPT-SW
driver, which then takes over and performs a CPU-process to GPU mapping and balances the load
so that each GPU is performing an equal amount of work.

figures/figure 19.pdf

Figure 19 It can be observed that Smith Waterman (sw kernel in legend) portion of pipeline
speeds up by 2.9x giving alignment portion a speedup of 36%. Overall, MetaHipMer pipeline
shows 10% performance improvement with ADEPT-SW integration

figures/figure 20.png

Figure 20 Components of PASTIS.

figures/figure 21.pdf

Figure 21 PASTIS with ADEPT integeration sees about 2.7x reduction in Smith Waterman
alignments duration (sw kernel in legend). Overall 30% improvement in the performance of
PASTIS is observed.


