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Abstract

A flexible approach for modeling both dynamic event counting and dynamic link-
based networks based on counting processes is proposed, and estimation in these models
is studied. We consider nonparametric likelihood based estimation of parameter functi-
ons via kernel smoothing. The asymptotic behavior of these estimators is rigorously
analyzed by allowing the number of nodes to tend to infinity. The finite sample per-
formance of the estimators is illustrated through an empirical analysis of bike share
data.
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1 Introduction

In this paper we present a modeling approach that can be applied to both, dynamic inte-
ractions in networks as well as dynamic link deletion and addition in networks. The case of
dynamic interactions considers a network as a collection of actors who can cause instanta-
neous interactions. Both directed and undirected interactions are considered. In the model
we assume that the time at which an interaction happens, and the pair of actors involved
in this interaction, are random, and we model the joint distribution of these quantities as
depending on parameters that may change over time. We call this model a dynamic network
interaction model. The Enron e-mail data set provides a typical example for a data set that
can be modeled in such a way. Here one person sending an e-mail to another person is
interpreted as the interaction. While such interactions can be thought of as edges between
two nodes, and while the nodes themselves persist over time, each such edge only exists for
an infinitesimal time.

In contrast to interaction events, we also consider models for connections between the actors
of a network that persist over a longer time period. In this case, connections comprise
four quantities: sender, receiver (a pair of actors), and starting and ending time of each
connection. Again we allow the parameters of their distributions to depend on time. Here
we speak of dynamic networks. Examples for such models are social networks with links
indicating an ongoing friendship between two actors. The notions of dynamic network
interactions and of dynamic networks are di↵erent but they are closely related. A dynamic
network defines two network interaction models, one given by the starting time and one
given by the ending time of a connection. Furthermore, a network interaction model of
e-mails defines a dynamic network by aggregation, where the network shows a connection
between two actors as long as they have exchanged e-mails over a certain time period in
the past.

In this paper we will make use of counting process models from survival analysis that
we adapt for our network models. We will develop asymptotic theory for a kernel-based
estimator of local parameters in the models. The estimator is based on a localized likelihood
criterion.

1.1 Literature Review and Related Work

Random networks/graphs have been considered in various scientific branches since a long
time, in particular in the social sciences (c.f. the textbook by Wasserman and Faust, 1995).
The importance of the analysis of random networks within the more statistical and machine
learning literature is more recent, but corresponding literature is significant by now (e.g.
see Kolaczyk, 2009 or Goldenberg et al. 2010). The reason for this increase in significance
is not least due to the development of modern technologies that lead to the ever increasing
number of complex data sets that are encoding relational structures. Examples for real
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network data can be found at the Koblenz Network Collection KONECT, the European
network data collection SocioPatterns, the MIT based collection Reality Commons, the
data sets made available by the Max Planck Institute for Softwaresysteme (MPI-SWS), or
the Stanford Large Network Dataset Collection (SNAP). In this paper, we will use the Capi-
tal Bikeshare Performance Data (see http://www.capitalbikeshare.com/system-data),
which is a data set collected on the Washington, DC bikeshare system.

Modeling and analyzing dynamic random networks is challenging as networks can have a
multitude of di↵erent topological properties. Such topological properties are measured by
various quantities, including the flow through the network, the degree distribution, centra-
lity, the existence of hubs, sparsity etc. Time-varying or dynamic random networks appear
quite naturally, even though the dynamic aspect significantly adds to the complexity of mo-
deling and analyzing the networks. Early work on networks involving temporal structures
can already be found in Katz and Proctor (1959), who consider a discrete time Markov
process for friendships (links). Other relevant literature using discrete time settings include
work on dynamic exponential random graph models (Sarkar and Moore, 2006, Sarkar et
al., 2007, Guo et al., 2007, Ahmed and Xing, 2009, Hanneke, Fu and Xing, 2010, Krivitsky,
2012, Krivitsky and Handcock, 2014), dynamic infinite relational models (Ishiguro et al.
2010), dynamic block models (Ho et al. 2011, Xing et al., 2014, Xu and Hero, 2014, Xu,
2015), dynamic nodal states models (Kolar and Xing, 2009, Kolar et al., 2010), various
dynamic latent features model (Foulds et al, 2011), dynamic multi-group membership mo-
dels (Kim and Leskovec, 2013), dynamic latent space models (Durante and Dunsen, 2014,
Sewell and Chen, 2015), and dynamic Gaussian graphical models (Zhou et al, 2008, Kolar
and Xing, 2012). Also time-continuous models have been discussed in the literature. They
include link-based continuous-time Markov processes (Wassermann, 1980, Leenders, 1995,
Lee and Priebe, 2011), actor-based continuous-time Markov processes (Snijders, 1996, 2001,
Snijders et al. 2010), and also models based on counting processes as in Perry and Wolfe
(2013), who are considering the modeling of network interaction data and Butts (2008),
who applies such a model to radio communication data. Link Prediction, a problem re-
lated to the analysis of dynamic networks, received quite some attention in the computer
science literature (e.g. see Liben-Nowell and Kleinberg, 2007, or Backstrom and Leskovec,
2011).

1.2 Our Work

We begin by making the above informal descriptions precise. Let V
n

:= {1, . . . , n} denote
the set of actors (also called agents or nodes), and let L

n

✓ {(i, j) : i < j, i, j 2 V } denote
the set of all possible links among them. (For directed networks L

n

is the set of all ordered
pairs.) Furthermore, let G

n

:= (V
n

, L
n

) be the corresponding graph. For each pair of
actors (i, j) 2 L

n

we denote by N
n,ij

: [0, T ] ! N the number of interactions between these
two

N
n,ij

(t) = #{interaction events between i and j before or at time t}.
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We assume that for (i, j) 2 L
n

, the processes N
n,ij

are one-dimensional counting processes
with respect to an increasing, right continuous, complete filtration F

t

, t 2 [0, T ], i.e. the
filtration obeys the conditions habituelles, see Andersen et al. (1993), pp. 60. The �-field
F
t

contains all information available up to the time point t. For simplicity we formulate
all results for undirected interactions only, i.e, we assume that N

n,ij

= N
n,ji

for all pairs
(i, j) 2 L

n

. All results can be formulated for the directed case as well (see also discussion
in Section 2.3 after assumption (A1)).

In our approach, we model the intensities of the counting processes N
n,ij

at time t only for
a subset of edges {(i, j) 2 L

n

: C
n,ij

(t) = 1}. The functions C
n,ij

(t) 2 {0, 1} are indicator
functions assumed to be predictable with respect to the filtration F

t

, and they determine
the active part of the network. Our aim is to model the active part. The definition of the
active part depends on the application. For instance, modeling the edges between actors i
and j might depend on whether i and j have had a low or a high interaction intensity in
the past. We will come back to this point later.

For the set {(i, j) 2 L
n

: C
n,ij

(t) = 1} the intensities of the counting processes N
n,ij

are
modeled by

�
n,ij

(✓, t) := �(✓(t); (Y
n,ij

(s))
i,j=1,...,n

: s  t),

where X
n,ij

: [0, T ] ! Rq are F
t

-predictable covariates, � is a link function, and the pa-
rameter function ✓ : [0, T ] ! Rq is the target of our estimation method. The presented
above approach is quite flexible and general. In order to be more specific, and for modeling
reasons explained in Section 2.1, we will, in the following, assume that � has the following
Cox-type form

�(✓; (C
n,ij

(s), X
n,ij

(s))
i,j=1,...,n

: s  t) = C
n,ij

(t) exp(✓T (t)X
n,ij

(t)). (1.1)

Butts (2008) used a similar modeling framework in an empirical analysis to radio communi-
cation data from responders to the World Trade Center Disaster. Another related model can
be found in Leenders (1995). Perry and Wolfe (2013) studied a model similar to (1.1) with
constant parameters. In their specification the intensity was equal to �(t) exp(✓TX

n,ij

(t))
where �(t) is an unknown baseline hazard. They developed asymptotic theory for maxi-
mum partial likelihood estimators of ✓ in an asymptotic framework where the time horizon
T converges to infinity. Our work was motivated by their research but it di↵ers in several
respects. First of all we allow the parameters to change over time. Our estimates of the
parameter functions can be used for statistical inference on time changes in the e↵ects of

covariates. Furthermore, by choosing the first component X
(1)

n,ij

= 1 our model includes

the time-varying baseline intensity e✓
(1)

(t). Thus in contrast to Perry and Wolfe (2013) we
propose a fit of the full specification of the intensity function including all parameters and
the baseline intensity. Furthermore, our aim is to model large networks whereas Perry and
Wolfe (2013) considered relatively small networks over a long time period T . Thus in our
asymptotics we let the number of actors converge to infinity instead of T . We will argue
below (at then end of Section 2.1 and after Assumption (A6) in Section 2.3) that appropri-
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ate choices of the censoring factor C
n,ij

(t) allow for modeling large networks with degrees
of the nodes/actors being relatively small compared to the size of the network.

Despite the strong interest in dynamic models for networks, rigorous statistical analysis of
corresponding estimators (asymptotic distribution theory) are relatively sparse, in parti-
cular in the case of time-varying parameters, as considered here. The temporal models in
the literature are usually Markovian in nature. In contrast to that, our continuous-time
model based on counting processes allows for non-Markovian structures (i.e. dependence
on the infinite past). This increases flexibility in the modeling of the temporal dynamics.
Our model also allows for a change of the network size over time without the networks
degenerating in the limit. Moreover, we are presenting a rigorous analysis of distributional
asymptotic properties of the corresponding maximum likelihood estimators. To the best of
our knowledge, no such analysis can be found in the literature, even for the simpler models
indicated above.

In section 2, we discuss our model (Section 2.1), define our likelihood-based estimators, and
present our main result on the point-wise asymptotic normality of our estimators in section
2.2. In section 3, we demonstrate the flexibility of our approach by presenting an analysis
of the Capital Bike-share Data. The proof of our main result is deferred to Section 4.
The appendix contains additional simulations where we compare network characteristics
as degree distributions, cluster coe�cients and diameters of the observed network with
networks distributed according to the fitted model. Moreover, we discuss data adaptive
bandwidth choices in the appendix.

2 Link-based dynamic models

2.1 Link-based dynamic models with constant parameters

We will first discuss the model described in Section 1.2 with general link function � and
constant parameter function ✓ ⌘ ✓

0

. Andersen et al. (1993) show the following form of the
log-likelihood for the parameter ✓:

`
T

(✓) =
X

0<tT

X

(i,j)2Ln

�N
n,ij

(t) log �
n,ij

(✓, t)�
Z

T

0

X

(i,j)2Ln

�
n,ij

(✓, t)dt, (2.1)

where �N
n,ij

(t) := N
n,ij

(t) � N
n,ij

(t�) (and N
n,ij

(t�) := lim
�!0,�>0

N
n,ij

(t � �)) is the
jump height (either 0 or 1) of N

n,ij

at t. And hence, we obtain the maximum likelihood
estimator as

✓̂ := argmax
✓2⇥

`
T

(✓),

where ⇥ denotes the range in which the true parameter is located. The choice of � as
in (1.1) allows for an easy interpretation of the parameters: The intensity has the form
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Q
q

k=1

e✓kX
(k)
n,ij(t), where X(k)

n,ij

(t) denotes the k-th component of X
n,ij

(t). Hence, ✓
k

quantifies

the impact of X(k)

n,ij

(t) on the intensity, given that the remaining covariate vector stays the
same.

The presence of the function C
n,ij

(t) enhances the modeling flexibility significantly. By
choosing C

n,ij

the researcher who applies the model is able to fit the model only to a
sub-network. This becomes necessary when it is natural to assume that certain pairs of
actors behave fundamentally di↵erent from others. For instance, consider a social media
network, and contrast pairs exchanging messages regularly, having a big impact on each
other’s activity in the network, with pairs living in di↵erent continents who never had
any interaction or indirect relation over related friendship sub-networks. It is intuitive
that these two pairs cannot be modeled accurately by the same model. It would instead be
advantageous to ignore interactions between pairs of people who have been totally separated
in the recent past when we want to estimate the parameters for the behavior of people living
near by. On the other hand, the interaction intensity of course is dynamic, and thus di↵erent
pairs might be included over time. This is achieved by the presence of the selector variables
C
n,ij

(t). Also note that C
n,ij

(t) = 0 for t 2 [a, b] does not necessarily mean that there will
be no interactions between i and j in [a, b], it rather means that interactions which happen
between i and j in [a, b] are not fitted by our model.

Two things should be noted about these selectors: Firstly, choosing (C
n,ij

)
i,j

too conser-
vatively is not a problem in the sense that we still estimate the ‘correct’ parameters. For
instance, suppose that C

n,ij

(t) and ✓ are the correct quantities to be used in the model
(1.1). Assume now that C⇤

n,ij

is a predictable selector that is more conservative than C
n,ij

,
i.e., C

n,ij

(t) = 0 implies C⇤
n,ij

(t) = 0. Then, the observations are given by t 7! N⇤
n,ij

(t) :=R
t

0

C⇤
n,ij

(s)dN
n,ij

(s) for t 2 [0, T ]. Clearly, N⇤
n,ij

is a counting process comprising those
jumps of N

n,ij

at which C⇤
n,ij

equals 1. By assumption, C⇤
nij

(t)C
n,ij

(t) = C⇤
n,ij

(t) and hence

the compensator of N⇤
n,ij

is given by C⇤
n,ij

(t) exp(✓T (t)X
n,ij

(t)). Thus, the processes N⇤
n,ij

can also be used to estimate ✓. On the other hand, using fewer data of course leads to a
loss of information, and this might e↵ect the rates of convergence of the parameters (cf.
Theorem 2.1). We do not attempt here to determine the best C

n,ij

in a data driven way.
Instead, in real data applications, and motivated by this discussion, we attempt to choose
C
n,ij

in a way that is not too liberal. This is illustrated in section 3, where we set C
n,ij

(t)
equal to zero, if there was no event between i and j for a certain period �t = (t� �, t), for
some � > 0, so that our model is only fitted to “active” pairs. For pairs with low activity
one may look for a di↵erent model. Thus a proper choice of C

n,ij

(t) allows to split up the
analysis into di↵erent regimes.

Secondly, consider the social media example again. We will assume that, with positive
probability, links can form at any time 0 < t < T , i.e., P(C

n,ij

(t) = 1) > 0. However, it is
intuitive that even when more people connect to the platform, one actor will not acquire
an infinite number of friends but the number of friends is bounded by some constant  2 N.
Then, the fraction of C

n,ij

that equal 1 with respect to all n(n�1)

2

available C
n,ij

at time
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t, should be of order 1

n

. Hence, in this case it is natural to have that P(C
n,ij

(t) = 1) ! 0
as n ! 1. This way sparsity in the observations can be captured in the model. For the
asymptotic result (Theorem 2.1) to hold, the network cannot be too sparse (essentially an
increase in the number of actors must lead to an increase in the number of selected pairs).
This will be made precise in the assumptions given in Section 2.3.

2.2 Estimation in time-varying coe�cient models

In time series applications, it turns out that powerful fits can be achieved by letting the
time series parameters depend on time, and this is what we consider here as well. We will
use the above model with ✓ in (1.1) depending on t, or in other words, ✓ = ✓(t) is now a
parameter function.

An estimator of this parameter function at a given point t
0

can be obtained by maximizing
the following local likelihood function in µ which is obtained by localizing the likelihood
(2.1) for a constant parameter at time t

0

by means of a kernel K

`
T

(µ, t
0

) =
X

0<tT

1

h
K

✓
t� t

0

h

◆ X

(i,j)2Ln

�N
n,ij

(t) log �
n,ij

(µ, t) (2.2)

�
Z

T

0

X

(i,j)2Ln

1

h
K

✓
t� t

0

h

◆
�
n,ij

(µ, t)dt,

where K is a kernel function (positive and integrating to one), and h = h
n

is the bandwidth.
The corresponding local MLE is defined as

✓̂(t
0

) = argmax
✓2⇥

`
T

(✓, t
0

), (2.3)

with ⇥ being the allowed range of the parameter function ✓. Recall that we use the following
Cox-type form of the intensity:

�
n,ij

(✓, t) = C
n,ij

(t) exp
�
✓(t)TX

n,ij

(t)
 
. (2.4)

Using the hazard functions from (2.4), the local log-likelihood can be written as:

`
T

(✓, t
0

) =
nX

i,j=1

1

h

✓Z
T

0

K

✓
t� t

0

h

◆
✓TX

n,ij

(t)dN
n,ij

(t)

�
Z

T

0

K

✓
t� t

0

h

◆
C
n,ij

(t) exp(✓TX
n,ij

(t))dt

◆
. (2.5)

The maximum likelihood estimator ✓̂
n

(t
0

) studied in this paper is defined as the maximizer
of (2.5) over ✓. Denote by L

n

(t
0

) the set of active edges, i.e., the set of all pairs (i, j), such
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that, C
n,ij

(t
0

) = 1. We denote by |L
n

(t
0

)| the size of the set L
n

(t
0

). Our main theoretical
result, given below, says that for a given t

0

2 (0, T ), the maximum likelihood estimator
✓̂
n

(t
0

) exists, is asymptotically consistent, and is asymptotically normal.

To formulate our main result, the following technical assumptions are needed.

2.3 Assumptions

Our assumptions do not specify the dynamics of the covariates X
n,ij

(t) and of the censoring
variable C

n,ij

(t). Instead of this, we assume that the stochastic behavior of these variables
stabilizes for n ! 1. Assumption (A1) is specific to our setting and it states our general
understanding of the dynamics, while assumptions (A2), (A3) and (A5) are standard. As-
sumption (A4) guarantees that the covariates are well behaved and can be found similarly
in Perry and Wolfe (2013). Finally, (A6) and (A7) specifically describe the dependence
situation in our context. They quantify how we make the idea mathematically precise that
while the network grows the actors get further and further apart and hence influence each
other less and less. The structure in the following is that we firstly state an assumption
and then discuss its meaning and the intuition behind them.

(A1) For every n and for any t 2 [t
0

�h, t
0

+h], the joint distribution of (C
n,ij

(t), X
n,ij

(t))
is identical for all pairs (i, j). Furthermore, for any s, t 2 [t

0

� h, t
0

+ h], the conditional

distribution of the covariate X
n,ij

(t) given that C
n,ij

(s) = 1, has a density f
s,t

(y) with

respect to a measure µ on Rq

, and this conditional distribution does not depend on (i, j)
and n. We use the shorthand notation f

s

for f
s,s

. Finally, it holds that: n ! 1, h ! 0,

and with l
n

:= n(n�1)

2

P(C
n,12

(t
0

) = 1) ! 1, we have l
n

h ! 1, and l
n

h5 = O(1).

Note that, l
n

= n(n�1)

2

· P(C
n,12

(t
0

) = 1) is the e↵ective sample size at time t
0

, because
n(n�1)

2

is the number of possible links between vertices, of which, in average, we observe

the fraction P(C
n,12

(t
0

) = 1). (For directed networks, one simply has to replace n(n�1)

2

by
n(n� 1) in the definition of l

n

.) With this in mind, the assumptions on the bandwidth are
standard. The most restrictive assumption in (A1) is that the conditional distribution of
X

n,ij

(t), given C
n,ij

(s) = 1, does not depend on i, j. Observe that this holds if the array of
(C

n,ij

, X
n,ij

)
i,j

is jointly exchangeable in (i, j) for any fixed n. The additional assumption
that the conditional distribution of X

n,ij

(t), given C
n,ij

(s), does not change with n is not
very restrictive, because it is natural to assume that the distribution depends only on the
local structure of the network. For instance, if we assume that a fixed vertex i has only a
bounded number of close interaction partners j while the network grows, then it is natural
to assume that the local structure given by the interacting partners does not undergo major
changes for n ! 1 (we discuss after assumption (A6) in more detail how this scenario gets
incorporated in the C

n,ij

). We make this additional assumption mainly to avoid stating
lengthy technical assumptions allowing to interchange the order of di↵erentiation and inte-
gration at several places in the proof.
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We add some standard assumptions on the kernel.

(A2) The kernel K is positive and supported on [�1, 1], and it satisfies

R
1

�1

K(u)du = 1,
R
1

�1

K(u)udu = 0 and max�1u1

K(u) < 1.

The next condition makes smoothness assumptions for the parameter curve ✓
0

and the
density f

s

(y).

(A3) The parameter space ⇥ is compact and convex. Let ⌧ := sup
✓2⇥ k✓k < 1. The para-

meter function ✓
0

(t) takes values in ⇥, and, in a neighborhood of t
0

, it is twice continuously

di↵erentiable. The value ✓
0

(t
0

) lies in the interior of ⇥.

We continue with some tail conditions on f
s

(y) and its derivatives. They are fulfilled if,
e.g., the covariates are bounded.

(A4) For µ-almost all y (see (A1) for a definition of µ), the density f
s

(y) is twice conti-

nuously di↵erentiable in s. For an open neighborhood U of t
0

and U
h

:= [t
0

� h, t
0

+ h] it
holds for all pairs (i, j) and (k, l)

Z
sup
s2U

⇢�
1 + kyk+ kyk2 + kyk3

�
|f

s

(y)|+
�
1 + kyk+ kyk2

� ����
d

ds
f
s

(y)

����

+(1 + kyk)
����
d2

ds2
f
s

(y)

����+ kyk2 · f
s,t0(y)

�
· exp(⌧ · kyk)dµ(y) < 1, (2.6)

sup
s,t2Uh

E
✓
kX

n,ij

(s)k2 · kX
n,kl

(t)k2

· e⌧(kXn,ij(s)k+kXn,kl(t)k)
���C

n,ij

(t
0

) = 1, C
n,kl

(t
0

) = 1
⌘
= O(1), (2.7)

For k 2 {2, 3} :

sup
s2Uh

E
✓
kX

n,12

(s)kke⌧kXn,12(s)k
����Cn,12

(s) = 1, C
n,12

(t
0

) = 0

◆
= O(1), (2.8)

E
✓

sup
s2Uh

⇥
kX

n,12

(s)k+ kX
n,12

(s)k2 + kX
n,12

(s)k3 + kX
n,12

(s)k4
⇤

·e⌧kXn,12(s)k
����Cn,12

(s) = 1

◆
< +1. (2.9)

The next assumption guarantees identifiability.

(A5) ✓TX
n,12

(t
0

) = 0 a.s. (w.r.t. f
t0) implies that ✓ = 0.
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The following assumption addresses the asymptotic behavior of the distributions of the
processes C

n,ij

(t). In particular, for t in a neighborhood of t
0

, the assumptions address
asymptotic stability of the marginal distributions of these processes, and also a certain kind
of asymptotic independence of C

n,ij

and C
n,kl

for |{i, j} \ {k, l}| = 0.

(A6) For w(u) = K(u) and w(u) = K2(u)/
R
K2(v)dv it holds that

Z
1

�1

w(u)
P(C

n,12

(t
0

+ uh) = 1)

P(C
n,12

(t
0

) = 1)
du ! 1 (2.10)

for n ! 1. For

A
n,ij,kl

:=

Z
1

�1

Z
1

�1

w(u)w(v)
P(C

n,ij

(t
0

+ uh) = 1, C
n,kl

(t
0

+ vh) = 1)

P(C
n,12

(t
0

) = 1)2
dudv,

we assume that

A
n,ij,kl

=

8
<

:

o(n2) for |{i, j} \ {k, l}| = 2,
o(n) for |{i, j} \ {k, l}| = 1,

1 + o(1) for |{i, j} \ {k, l}| = 0.
(2.11)

Furthermore, it holds that

Z
T

0

1

h
K

✓
s� t

0

h

◆
P(C

n,12

(t
0

) = 0, C
n,12

(s) = 1)

P(C
n,12

(t
0

) = 1)
ds = O(h), (2.12)

and for edges with |{i, j} \ {k, l}|  1

P(C
n,ij

(t
0

) = 1, C
n,kl

(t
0

) = 1)
�
P(C

n,12

(t
0

) = 1)
�
2

= O(1). (2.13)

Note firstly that, due to the localization of our likelihood function, all time dependence is
only locally around the target time t

0

. Condition (2.10) appears reasonable in the regime
of asymptotics in the size of the network: Consider, for instance a dynamic social media
network, and assume, for example, that we consider data from a certain geographic region.
One might assume that over night the number of active pairs, i.e. the pairs with C

n,ij

= 1, is
lower than during the day, and we expect that there will be a gradual decrease between, e.g.,
8pm and 11pm. This time window does not get narrower when n increases and hence slow
change of the distribution seems to be a reasonable assumption. Assumption (2.12) holds
for example in the following model: Assume that in the previous example communications
between pairs are ended at �

0

:= 8pm plus a certain random time �
n,ij

, i.e., C
n,ij

(t) = (t 
�
0

+ �
n,ij

). In this case, the ratio of probabilities in (2.12) becomes

P(C
n,ij

(t
0

) = 0, C
n,kl

(s) = 1)

P(C
n,12

(t
0

) = 1)
=

P(�
n,ij

2 [s� �
0

, t
0

� �
0

))

P(�
n,ij

� t
0

� �
0

)
.
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Since we are using a localizing kernel, the length of the interval [s � �
0

, t
0

� �
0

) is of the
order h, and if �

n,ij

has a density, then (2.12) holds.

If we assume that relabeling the vertices does not change the joint distribution of the whole
process (i.e. if we assume exchangeability). Then, the joint distribution of two pairs (i, j)
and (k, l) depends only on |{i, j}\ {k, l}|. Hence, it is very natural to distinguish the three
regimes |{i, j} \ {k, l}| 2 {0, 1, 2}. This pattern will appear again in the next Assumption
(A7). Let us for the moment consider C

n,ij

that are constant over time. Then, in (2.11), in

the case |{i, j} \ {k, l}| = 2, the assumption is true because
P(Cn,ij=1,Cn,kl=1)

P(Cn,ij=1)

2 = P(C
n,12

=

1)�1 = o(n2) according to Assumption (A1).

We discuss the remaining cases for the uniform configuration model. In the uniform con-
figuration model all vertices have (approximately) the same pre-defined degree , and we
assume that the C

n,ij

are created as follows: Equip each vertex i = 1, ..., n with  edge
stubs, and create edges by randomly pairing the stubs. After that, discard multiple edges
and self-loops. If two vertices i and j are connected after this process, set C

n,ij

= 1. We use
the same heuristics as e.g. in Newman (2010), Chapter 13.2, to compute the probability of
edges. Fix i and j, then for any fixed edge stub of i there are n� 1 stubs left to pair with,
 of which belonging to vertex j. Hence, the probability of connecting to j is given by 

2

n�1

as there are  edge stubs from i as well. Approximating n� 1 by n, as n gets large, we
obtain the following probabilities:

P(C
n,12

= 1) ⇡ 

n

P(C
n,12

= 1, C
n,23

= 1) = P(C
n,12

= 1|C
n,23

= 1) · P(C
n,23

= 1) ⇡ (� 1)

n2

P(C
n,12

= 1, C
n,34

= 1) = P(C
n,12

= 1|C
n,34

= 1) · P(C
n,34

= 1) ⇡ 2

n2

.

We see now that also in the cases |{i, j}\{k, l}|  1, the assumptions (2.11) and (2.13) hold.

The next assumption involves ✓
0,n

, defined as the maximizer of

✓ 7!
Z

T

0

1

h
K

✓
s� t

0

h

◆
g(✓, s)ds, (2.14)

where g is defined in (A7). We show later that ✓
0,n

is uniquely defined, and that ✓
0,n

is close
to ✓

0

(t
0

) (see Lemma 4.2 and Proposition 4.2, respectively). Define furthermore

⌧
n,ij

(✓, s) := X
n,ij

(s)X
n,ij

(s)T exp(✓TX
n,ij

(s)), (2.15)

g(✓, t) := E
⇥
✓TX

n,ij

(t) exp(✓
0

(t)TX
n,ij

(t)) (2.16)

� exp(✓TX
n,ij

(t))|C
n,ij

(t) = 1
⇤

=

Z

Rq

⇣
✓T ye✓0(t)

T
y � e✓

T
y

⌘
f
t

(y)dµ(y), (2.17)
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f
n,1

(✓, s, t|(i, j), (k, l)) := E(⌧
n,ij

(✓, s)⌧
n,kl

(✓, t)|C
n,ij

(s) = 1, C
n,kl

(t) = 1),

f
2

(✓, t) := E(⌧
n,ij

(✓, t)|C
n,ij

(t) = 1) = �@
✓

2g(✓, t),

r
n,ij

(s) := C
n,ij

(s)X
n,ij

(s)
⇣
e✓0(s)

T
Xn,ij(s) � e✓

T
0,nXn,ij(s)

⌘

�@
✓

g(✓
0,n

, s).

Note that, by Assumption (A1), f
2

and g do not depend on (i, j) and n.

(A7)We assume that f
n,1

depends on (i, j) and (k, l) only through |{i, j}\{k, l}|. Moreover,

we assume that, for all sequences ✓
n

! ✓
0

(t
0

) and u, v 2 [�1, 1], it holds that f
n,1

(✓
n

, t
0

+
uh, t

0

+vh, (i, j), (k, l)) converges to a value that depends only on |{i, j}\{k, l}|. We denote

this limit by f
1

(✓
0

(t
0

), |{i, j} \ {k, l}|), and assume that

f
1

(✓
0

(t
0

), 0) = f
2

(✓
0

(t
0

), t
0

)2. (2.18)

For r
n,ij

(s), we assume that, with ⇢
n,ijkl

(u, v) := r
n,ij

(t
0

+uh)r
n,kl

(t
0

+vh) and for |{i, j}\
{k, l}| = 0,

ZZ

[�1,1]

2

K(u)K(v)E(⇢
n,ijkl

(u, v)|C
n,ij

(t
0

) = 1,C
n,kl

(t
0

) = 1)dudv = o
��
l
n

h
��1

�
. (2.19)

Assumption (A7) specifies in which sense the covariates are asymptotically uncorrelated.
For motivating these assumptions build a graph G with vertices 1, ..., n and (i, j) is an edge
if C

n,ij

(t
0

) = 1. Denote by dG the distance function between edges on G (adjacent edges
have distance 0). In the same heuristic as explained after Assumption (A6), this graph is
very large (asymptotics over the number of vertices) and sparse (n vertices and of order n
edges), because every vertex is incident to at most  edges. In this scenario, the number
of pairs of edges e

1

and e
2

for which dG(e1, e2) = d is of order ( � 1)d · n, and there
are of order n2 many pairs of edges in total. Let now A

i,j

be arbitrary, centered random
variables indexed by the edges of G. We make the assumption that A

i,j

is influenced equally
by all A

k,l

with (k, l) being adjacent to (i, j). In mathematical terms, we formulate this
assumption as E(A

i,j

A
k,l

|dG((i, j), (k, l)) = d) ⇡ C · �d. Then, we obtain for non-adjacent
edges (i, j) and (k, l)

E(A
i,j

A
k,l

) =
1X

d=1

P(dG((i, j), (k, l)) = d) · E(A
i,j

A
k,l

|dG((i, j), (k, l)) = d)

⇡
1X

d=1

n(� 1)d

n2

C · �d

=
C

n
(� 1),

which converges to zero after being multiplied with l
n

h ⇡ nh (in this case). Because, in
(2.18) and (2.19), we consider only expectations conditional on C

n,ij

(t) = 1, we can think of
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A
n,ij

being the random variables ⌧
n,ij

(a centered version of it) or r
n,ij

and the expectations
in the above heuristic are conditional expectations conditionally the respective conditions
in (2.18) and (2.19). This serves as motivation for these two assumptions. Moreover,
unconditionally, ⌧

n,ij

and ⌧
n,kl

(and r
n,ij

and r
n,kl

) do not need to be uncorrelated.

2.4 The main asymptotic result

Theorem 2.1. Suppose that Assumptions (A1)–(A7) hold for a point t
0

2 (0, T ). Then,

with probability tending to one, the derivative of the local log-likelihood function `
T

(✓, t
0

)
has a root ✓̂

n

(t
0

), satisfying

p
l
n

h

✓
✓̂
n

(t
0

)� ✓
0

(t
0

) +
1

2
h2⌃�1v � h2B

n

◆
! N

✓
0,

Z
1

�1

K(u)2du ⌃�1

◆
(2.20)

with

v :=

Z
1

�1

K(u)u2du · @
✓

@
t

2g(✓
0

(t
0

), t
0

),

⌃ := �@
✓

2g(✓
0

(t
0

), t
0

),

�
n,ij

(s) := (1� C
n,ij

(t
0

))C
n,ij

(s),

B
n

:=
1

l
n

nX

i,j=1

Z
T

0

1

h
K

✓
s� t

0

h

◆
�
n,ij

(s)

h
⌧
n,ij

(✓
0

(s), s)✓0
0

(t
0

)
t
0

� s

h
ds,

and ⌧
n,ij

(✓, s) = X
n,ij

(s)X
n,ij

(s)T exp(✓TX
n,ij

(s)) was defined in (2.15). If, in addition,

|Ln(t0)|
ln

P! 1, then l
n

can be replaced by |L
n

(t
0

)|.

Recalling that l
n

= n(n�1)

2

P(C
n,ij

(t
0

) = 1) (in the case of undirected networks) is the
e↵ective sample size, i.e., the expected number of pairs relevant for estimation of ✓

0

(t
0

), we
see that Theorem 2.1 is a classical asymptotic normality result up to the additional bias
term B

n

, which we will discuss next. It holds that

E(|B
n

|)

 1

l
n

nX

i,j=1

Z
T

0

1

h
K

✓
s� t

0

h

◆
E
✓
�
n,ij

(s)

h
k⌧

n,ij

(✓
0

(s), s)k
◆
k✓0

0

(t
0

)k |t0 � s|
h

ds

=

Z
T

0

1

h
K

✓
s� t

0

h

◆
P(C

n,12

(t
0

) = 0, C
n,12

(s) = 1)

hP(C
n,12

(t
0

) = 1)

|t
0

� s|
h

ds · k✓0
0

(t
0

)k

⇥ sup
s2Uh

E
h
k⌧

n,12

(✓
0

(s), s)k
���C

n,12

(s) = 1, C
n,12

(t
0

) = 1
i
.

This is of order O(1) by (2.12) and (2.8). Hence, we get that B
n

= O
P

(1). In general
one cannot argue that the expectation converges to 0. Thus, in general we will have an
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additional bias term of order h2. Let us suppose that one can show B
n

� E(B
n

) = o(1) by
using some additional assumptions that bound the second moment of this term. We have

that E(B
n

) = o(1) if P(Cn,12(t0)=0,Cn,12(s)=1)

hP(Cn,12(t0)=1)

= o(h). This assumption can only hold if only

for a negligible minority of edges the membership to the active set changes. In particular,
for the extreme case of C

n,ij

being constant, we have �
n,ij

⌘ 0 and B
n

= 0. Hence, the bias
term B

n

is induced by a change in the sparsity of the active set.

2.5 Direct network modeling

We consider the following general model for the link-based dynamics of a random network,
using a multivariate continuous-time counting process approach allowing for arbitrary de-
pendence structure between the links by applying the model for dynamic interactions twice:
Once for the formation of new links and once for the deletion of existing links (this sepa-
ration can also be found in Krivitsky and Handcock (2014)). As before let V

n

= {1, ..., n}
be the set of vertices and L

n

be the set of edges. Note that here we are considering undi-
rected networks. But directed networks can be handled similarly. For a given link (i, j), we
let

Z
n,ij

(t) =

(
1 if link from i to j is present at time t

0 otherwise.

Then
Z
n

(t) =
�
Z
n,ij

(t)
�
(i,j)2Ln

describes the random network, or, equivalently, the (upper half of the) adjacency matrix at
time t. To describe the dynamics of the links over time we introduce two processes, N+

n,ij

(t)

and N�
n,ij

(t), counting how often a link (i, j) was added or deleted, respectively, until time
t. Formally,

N+

n,ij

(t) = #{s  t : Z
n,ij

(s)� Z
n,ij

(s�) = 1},
N�

n,ij

(t) = #{s  t : Z
n,ij

(s)� Z
n,ij

(s�) = �1}.

With these definitions, we can write, for (i, j) 2 L
n

,

Z
n,ij

(t) = Z
n,ij

(0) +N+

n,ij

(t)�N�
n,ij

(t).

For v 2 {+,�} the intensities of the counting processes Nv

n,ij

(t) are here defined as

�v

n,ij

(✓, t) = �v

n,ij

(✓v; (Z
n

(s), Xv

n,ij

(s)) : s < t) (2.21)

with

�+

n,ij

(✓+; (Z
n

(s), X+

n,ij

(s)) : s < t)

13



= �+
n,ij

(✓+; (Z
n

(s), X+

n,ij

(s)) : s < t)
�
1� Z

n,ij

(t�)
�
, (2.22)

��
n,ij

(✓�; (Z
n

(s), X�
n,ij

(s)) : s < t)

= ��
n,ij

(✓�; (Z
n

(s), X�
n,ij

(s)) : s < t)Z
ij

(t�) (2.23)

for some functions �+ and �� respectively, where ✓+ and ✓� are two di↵erent parameters,
determining the addition and the deletion processes, respectively. The vectors Xv

n,ij

(t)
for v 2 {+,�} denote covariates that are assumed to be F

t

-predictable. Note that this
definition of the intensities makes sure that, as it should be, a link can only be added if
none was present immediately before, and similarly for the removal for a link.

These definitions of the intensities fit into the framework of Section 2.2 with intensity
function (2.4), when choosing �v

n,ij

(✓v, t) = Cv

n,ij

(t) · exp(✓v(t)TXv

n,ij

(t)) with Cv

n,ij

(t) being

predictable {0, 1}-valued processes that fulfill C+

n,ij

(t) = 0 if Z
n,ij

(t�) = 1 and C�
n,ij

(t) = 0
if Z

n,ij

(t�) = 0. Again, as in Section 2.2, we allow that the parameter is a function of time.
To sum it up: The processes N+

n,ij

are modeled with intensity �+

n,ij

(✓+
0

, t) and the processes

N�
n,ij

are modeled with intensity function ��
n,ij

(✓�
0

, t). Our model allows the covariates
Xv

n,ij

and the true parameter functions ✓v
0

to be di↵erent for v =0 +0 and v =0 �0. For
estimating the parameters, we consider observations of the same type only, i.e., we will
compute two maximum likelihood estimators: the estimator of ✓+

0

(t) based on the processes
N+

n,ij

, and the estimator for ✓�
0

based on the processes N�
n,ij

. Both estimators can be treated
as coming from an interaction based model and hence the theory from Section 2.2 can be
applied.

3 Application to Bike Data

We intend to illustrate the finite sample performance of our estimation procedure described
above, by considering the Capital Bikeshare (CB) Performance Data, publicly available
at http://www.capitalbikeshare.com/system-data. This data describes the usage of
the CB-system at Washington D.C. from Jan. 2012 to March 2016. Using this data, we
construct a network as follows. Each bike station j will become a node in our network,
and edges between two stations i, j will be formed depending an whether a bike was rented
at station i and returned to station j (or vice versa) at the same day. So, in our analysis,
rentals over several days have been ignored. We ignore the direction of travel as well because
we aggregate over days and assume that directed e↵ects cancel out (most riders go one way
in the morning and the other way in the evening).

It should be noted that, while we believe that this example serves as a serious and interesting
illustration of our proposed method, it is not meant to be a full-fledged analysis of bike
sharing performance. In particular, for computational and coding simplicity, we ignored
that bike stations might be full or empty and thus prohibiting certain bike rides. Also, the
authors’ personal bike sharing experience is that entirely empty or full bike stations are not
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encountered too often, and so the hope is that the bias induced by ignoring this e↵ect is
negligible.
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Figure 1: Simple descriptive statistics of the bike data

Figure 1 shows some summary statistics of the data. In Figure 1a, we see the number of
available bike stations, which is strongly increasing. Figure 1b shows the number of bike
tours on Fridays. An obvious periodicity is visible: The cycling activity is much lower in
winter than during summer.

We aim at modeling the bike sharing activities on Fridays, seen on the right panel of Figure 1.
We choose Fridays because we believe that there is a di↵erence between di↵erent days, so we
wanted to concentrate on one day, Friday. We use the event (interaction) counting approach
as introduced in Section 1.2, where event here means that a bike is rented at station i and
returned at station j, or vice versa. We will also refer to this event as a tour between i and j.
In order to reduce computational complexity to a minimum (fitting the model takes several
minutes on standard laptop), we assume that the covariates change only at midnight and
stay constant over the day. Furthermore, we estimate the time-varying parameter function
✓ only for one time point per day, namely 12pm noon. The next paragraph contains more
details.

Since we do not consider any asymptotics here, we omit the index n. Time t is measured
in hours of consecutive Fridays. So, if k is the current week, and r is the time on Friday (in
24h), then t := (k � 1) · 24 + r. Thus, with r

t

:= (t mod 24), the quantity k
t

:= t�rt
24

+ 1
gives the week the time point t falls into. The processes N

i,j

(t), counting the number
of tours between i and j on Fridays, are modeled as counting processes with intensities
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�
i,j

(✓(t), t) := ↵(t) exp(✓TX
i,j

(k
t

))·C
i,j

(k
t

). The covariate vector X
i,j

(k
t

) and the censoring
indicator C

i,j

(k
t

) will be defined later. Note that they both only depend on k
t

, i.e. on the
current week, and not on the actual time on the Friday under consideration. The function ↵
is 24 periodic and integrates to one over a period, i.e., ↵(t) = ↵(t+24) and

R
t+24

t

↵(s)ds = 1.
The function ↵ is introduced to model the reasonable assumption that the activity varies
during the day. Suppose now, that our target is the estimation of the parameter vector
✓(t

0

) with t
0

= (k
t0 � 1)24 + r

0

and r
0

= 12, say. We choose a piecewise constant kernel
K with K((24k + x)/h) = K(24k/h), for all k 2 N and 0  x < 24. Substituting in these
choices of the intensity and the kernel to the log-likelihood (2.2), we see that our maximum
likelihood estimator maximizes the function

✓ 7!
kTX

k=0

K


(k � k
t0)✓

TX
i,j

(k)

Z
(k+1)·24

k·24
dN

i,j

(t)

�
kTX

k=0

K


(k � k
t0) exp(✓

TX
i,j

(k))C
i,j

(k),

where
R
(k+1)·24
k·24 dN

i,j

(t) gives the number of tours between i and j on the Friday in week
k, and where K



(k) = K(k/) with  = h/24. In our empirical analysis, we chose K


(k)
as triangle weights with support {�, ...,} and considered only integer choices of the
bandwidth . The bandwidth choice is discussed at the end of this section.

We explain now the choice of our covariate vector X
i,j

. Denote by �
i,j

(k, d) the number of
tours between i and j on day d in week k, where d = 4 means Monday and d = 7 refers to
Thursday (for us the week starts on Fridays, i.e. Friday is d = 1). For r 2 (0, 1), we encode
the activity between i and j in week k as A

i,j,k

= (1 � r)
P

7

d=4

r7�d�
i,j

(k, d) (mind the
limits of the summation - Fridays are not included). In our simulations, we chose r = 0.8
(this choice is somewhat arbitrary, and a full study of the data would include investigating
the sensitivity of the parameter estimate on the choice of r as well as a data driven choice.
We do not attempt to do this here). We construct a network G(k), for every week k, by
connecting i and j, if and only if, there was at least one tour on the Friday in that week. We
denote by I

i,j,k

the number of common neighbors of i and j in the graph G(k). We let d
i,k

be the degree of node i in G(k), T
i,j,k

the number of tours between i and j on the Friday in
the k-th week, and T

i,j,k,k�1

= (T
i,j,k

+ T
i,j,k�1

)/2 the average number of tours on the two
Fridays in weeks k and k � 1. Finally we collect everything in the covariate vector:

X
i,j

(k) :=

 
1, A

i,j,k�1

, I
i,j,k�1

,max(d
i,k�1

, d
j,k�1

),

T
i,j,k�1,k�2

, (T
i,j,k�1,k�2

= 0)

!
T

.

The censoring indicator function C
i,j

is defined to be equal to zero, if there was no tour
between stations i and j in the last four weeks. In summary, we estimate a total of six
parameter curves, corresponding to the e↵ects of six covariates in our model:
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• ✓
1

(t) , baseline

• ✓
2

(t) , activity between stations on previous week-days

• ✓
3

(t) , common neighbors of stations

• ✓
4

(t) , popularity of station, measured by degrees

• ✓
5

(t) , activity between stations on two previous Fridays

• ✓
6

(t) , inactivity between stations on two previous Fridays

The resulting estimated parameter curves are shown in Figures 2 and 3. All calculations
have been executed on the BwForCluster (cf. Acknowledgement). In all six parameter
curves in Figures 2 and 3, we observe a clearly visible seasonality. Looking at Figure 2b, we
see that importance of the activity in the week (Monday to Thursday) is higher during the
winter months than in the summer. A plausible interpretation for this might be that the
opportunist cyclists might be less active in winter because of the colder weather. So only
those keep using a bike, who ride the same tour every day regardless of the weather. This
makes the activity in the week a better predictor. Moreover, the weather in winter is more
persistent, e.g., when there is snow it is likely to remain for a while.

Figure 2c shows that the number of common neighbors always has a significant positive
e↵ect on the hazard. This reflects the empirical finding that observed networks cluster
more than totally random networks (e.g. see Jackson, 2008).

The influence of the popularity of the involved bike stations is investigated in Figure 3a
(measured by the degree of the bike station). Interestingly, it always has a significant
negative impact. The size of the impact is higher in the summer months, which again
supports the hypothesis that in summer the behavior of the network as a whole appears
more random than in winter. But still, the negative impact is a bit unforeseen. This finding
can be interpreted as the observed network having no hubs. Another reason for this e↵ect
might be, that stations can only host a fixed number of bikes: If a station i is empty, no
new neighbors can be formed. A similar saturation e↵ect happens if a lot of bikes arrive at
station i. Moreover, it is plausible that e↵ects caused by the degrees are already included in
2b, as well as in Figure 3b. They show the e↵ect of the bike rides on the days immediately
preceding the current Friday, and the e↵ect of the average number of bike tours on the last
two Fridays, respectively. In Figure 3b, we observe a similar behavior as in Figure 2b (even
more pronounced): In summer the predictive power of the tours on the last two Fridays is
significantly lower than in winter, underpinning the theory that the destinations in summer
tend to be based on more spontaneous decisions. Finally, in Figure 3c, we observe that no
bike tours on the last two Fridays between a given pair of stations always has a significant
negative impact on the hazard. Again a very plausible finding.

We are currently working on testing whether the parameter functions depend on time, i.e.,
on testing for constancy of the parameter functions. For a complete data analysis it would
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Figure 2: Estimates of ✓
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(t). The dotted lines indicate (pointwise) 99%
confidence regions (plus minus 2.58 times the asymptotic standard deviation).
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then be interesting to add time as a covariate (or time dependent covariates), and to see if
the parameter functions show always a significant time-dependency.

Modeling other network characteristics. In stochastic network analysis, a cen-
tral strand of research is concerned with the question of whether characteristics observed
in real networks can be adequately mimicked by stochastic network models. Important
characteristics are degree distribution, clustering coe�cient and diameter (these and other
characteristics can be found in Jackson (2008) Chapter 2.2, we define them also in the
appendix). As in Zafarani et al. (2014), Chapter 4, we compare these three characteristics
with a typical network produced by our model. In order to see how much our fitted model
is able to capture these characteristics, we have simulated 38401 networks corresponding to
three randomly chosen days, by using the network model with the fitted parameters of the
corresponding day. We then compared the simulated three characteristics on these three
days to the ones observed in the networks (this way of assessing the goodness of fit is also
used in Hunter et al. (2008)). Here, we present the results for the degree distribution on
7th December 2012. The other results are reported in the appendix.

In our analysis, we consider fitting sub-networks defined by the popularity of their edges:
For given values 0  l

1

< l
2

 1, the network is constructed by placing an edge between a
pair of nodes (i, j), if the number of tours between i and j falls between l

1

and l
2

. Di↵erent
ranges of l

1

and l
2

are considered. The idea is to consider the network of low frequented
tours (for l

1

= 1 and l
2

= 3) up to the network of highly frequented tours (for l
1

= 10 and
l
2

= 1)..

Figure 4 shows the simulated degree distributions for six di↵erent choices of l
1

and l
2

.
The dotted lines indicate 10% and 90% quantiles of the simulated graphs, and the solid
line shows the true degree distribution. We see that, in all six cases, the approximation
is reasonable accurate, in particular if one takes into account that we did not specifically
aim at reproducing the degree distributions. The plots show that the largest degree of
the simulated networks and the observed network lie not too far from each other, and the
overall shape of the degree distribution is captured well. It should also be noted that we
used only six covariates, whereas in other related empirical work much higher dimensional
models have been used, see e.g. the discussions in Perry and Wolfe (2013).

Brief remark on choice of bandwidth via one-side cross validation. To choose
the bandwidth, we calculate a local linear estimate with a one-sided kernel K

+,

(k) =
K



(k) (k < 0). For all values of , the fitted value of the conditional expectation of
X

i,j

(k
t0), given the past, is compared with the outcome of X

i,j

(k
t0). This is done for all

non-censored edges. The results for di↵erent bandwidths are shown in Figure 5. We see
that the prediction error of the model decreases, until we reach the bandwidth  = 23. In
one-sided cross-validation, one now makes use of the fact that the ratio of asymptotically
optimal bandwidths of two kernel estimators with di↵erent kernels, K and L is equal to

1
We chose to simulate 3840 networks, because we had 32 cores available, and on each of the cores we ran

120 predictions, which could be done in reasonable time.
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Figure 4: Simulated degree distributions of sub-networks with di↵erent tour frequencies
(see individual caption) for 7th December 2012. Dotted lines show 10% and 90% quantiles
of simulations and solid line shows true distributions.
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⇢ = [
R
K2(u)du(

R
u2L(u)du)2(

R
L2(u)du)�1(

R
u2K(u)du)�2]1/5. For a triangular kernel,

and its one-sided version, we get ⇢ ⇡ 1.82. The one-sided CV bandwidths is given by
dividing 23 by ⇢ which yields bandwidth roughly twelve (here we also only consider integer
bandwidths). More details on the one-sided cross-validation approach are presented in the
appendix.
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Figure 5: Mean Squared Prediction Error for di↵erent bandwidths.

4 Proof of Theorem 2.1

In the proof, we do not distinguish explicitly directed and undirected networks: in the un-
directed case, we always assume i < j, moreover we will need l

n

= O(n2P(C
n,12

(t
0

) = 1),
which is true in both cases. The processes N

n,ij

are counting processes with intensity given
by �

n,ij

(✓
0

(t), t). We can decompose these counting processes as (Doob-Meyer Decomposi-
tion, see e.g. Andersen et al.(1993) Chapter II.4)

N
n,ij

(t) = M
n,ij

(t) +

Z
t

0

�
n,ij

(✓
0

(s), s)ds, (4.1)

where M
n,ij

is a local, square integrable martingale. We use this decomposition of the
counting processes in order to decompose the likelihood and its derivatives. Let P

n

(✓) be
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defined as

P
n

(✓) :=
1

l
n

h

nX

i,j=1

Z
T

0

K

✓
s� t

0

h

◆
C
n,ij

(s)
⇥
✓TX

n,ij

(s) exp(✓
0

(s)TX
n,ij

(s))

� exp(✓TX
n,ij

(s))
⇤
ds. (4.2)

Note that we do not make the dependence of P
n

(✓) on t
0

explicit in the notation. Using
P
n

(✓), we can write

1

l
n

`(✓, t
0

) =
1

l
n

h

nX

i,j=1

Z
T

0

K

✓
t� t

0

h

◆
✓TX

n,ij

(t)dM
n,ij

(t) + P
n

(✓), (4.3)

1

l
n

· @

@✓
`(✓, t

0

) =
1

l
n

h

nX

i,j=1

Z
T

0

K

✓
t� t

0

h

◆
X

n,ij

(t)dM
n,ij

(t) + P 0
n

(✓), (4.4)

1

l
n

· @2

@✓2
`(✓, t

0

) = P 00
n

(✓). (4.5)

Recall that ✓
0,n

is defined as the maximizer of ✓ 7!
R
T

0

1

h

K
�
s�t0
h

�
g(✓, s)ds, where g is defi-

ned in (A7). Note that the function g does not depend on n, see Assumption (A1). Lemma
4.2 shows that ✓

0,n

is uniquely defined. The value ✓
0,n

is the deterministic counterpart of

the random quantity e✓
n

(t
0

) that is defined as the solution of P 0
n

(e✓
n

(t
0

)) = 0. The existence
of the latter is considered in Proposition 4.3.

Lemma 4.1. We have

✓T y exp(✓
0

(s)T y)� exp(✓T y)

 ✓
0

(s)T y exp(✓
0

(s)T y)� exp(✓
0

(s)T y).

Equality holds, if and only if, ✓
0

(s)T y = ✓T y. In particular, ✓
0

(s) is the unique maximizer

of ✓ 7! g(✓, s).

Proof. Note that, for arbitrary y 2 R,

d

dx
(xey � ex) = ey � ex

implies that the di↵erentiable function x 7! xey � ex has the unique maximizer x = y. This
also implies the second statement of the lemma.

In all lemmas and propositions of this section, we assume that Assumptions (A1)–(A7)
hold.
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Fact 4.1. For j 2 {0, 1, 2}, k 2 {0, 1, 2, 3}, with j + k  3, the partial derivatives of order

j of the function g(✓, s) with respect to s, and of order k with respect to ✓, exist, for t in a

neighborhood of t
0

, and ✓ 2 ⇥. The partial derivatives can be calculated by interchanging

the order of integration and di↵erentiation in (2.17). For ✓ 2 ⇥ and s in a neighborhood of

t
0

, all these partial derivatives of g(✓, s) are absolutely bounded. For the calculation of the

first two derivatives of g with respect to ✓, di↵erentiation and application of the expectation

operator can be interchanged in (2.16). The matrix ⌃ is invertible.

Proof. The statement of this fact follows immediately from (2.6) of Condition (A4). Note
that the functions ✓

0

, ✓0
0

and ✓00
0

are absolutely bounded in a neighborhood of t
0

. This holds
because these functions are continuous in a neighborhood of t

0

, see (A3).

Lemma 4.2. For n large enough, ✓
0,n

is uniquely defined, and it holds that ✓
0,n

! ✓
0

(t
0

)
as n ! 1.

Proof of Lemma 4.2. From Fact 4.1, we know that @
t

g(✓, t) is absolutely bounded for t in
a neighborhood of t

0

and ✓ 2 ⇥. This implies that

✓ 7!
Z

T

0

1

h
K

✓
s� t

0

h

◆
g(✓, s)ds

converges to g(✓, t
0

), uniformly for ✓ 2 ⇥. Because @
✓

2g(✓, t) is negative definite, this implies
the statement of the lemma.

Lemma 4.3. With ⌃
n

= �
R
1

�1

K(u)
R
1

0

@
✓

2g(✓
0

(t
0

) + ↵(✓
0,n

� ✓
0

(t
0

)), t
0

+ uh)d↵du, we

have

⌃
n

! ⌃ as n ! 1.

Moreover, the sequence

v
n

= 2

Z
1

�1

K(u)

Z
1

0

(1� ↵)
d2

dt2
@
✓

g(✓
0

(t
0

), t
0

+ (1� ↵)uh)u2d↵du

is bounded, and it holds that v
n

! v, as n ! 1.

Proof. Using Lemmas 4.2 and Fact 4.1, we conclude that the integrand

@
✓

2g(✓
0

(t
0

) + ↵(✓
0,n

� ✓
0

(t
0

)), t
0

+ uh) ! @
✓

2g(✓
0

(t
0

), t
0

)

(note that u 2 [�1, 1] and ↵ 2 [0, 1]). The first statement of the lemma follows by an appli-
cation of Lebesgue’s Dominated Convergence Theorem, and the fact that @

✓

2g is bounded
as a continuous function on a compact set. The second statement of the lemma follows
similarly.

Proposition 4.2. We have, for t
0

2 (0, T ),

✓
0,n

= ✓
0

(t
0

) + h2⌃�1v + o(h2).
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Proof of Proposition 4.2. Since ✓
0

(s) maximizes ✓ 7! g(✓, s) (cf. Lemma 4.1), we have
@
✓

g(✓
0

(s), s) = 0. Furthermore, by definition of ✓
0,n

, we have

Z
T

0

K

✓
s� t

0

h

◆
@
✓

g(✓
0,n

, s)ds = 0.

Having observed that, we compute, for h small enough,

0 =
1

h

Z
T

0

K

✓
s� t

0

h

◆
@
✓

g(✓
0,n

, s)ds

=

Z
1

�1

K(u)@
✓

g(✓
0,n

, t
0

+ uh)du

=

Z
1

�1

K(u)


@
✓

g(✓
0

(t
0

), t
0

+ uh)

+

Z
1

0

@
✓

2g(✓
0

(t
0

) + ↵(✓
0,n

� ✓
0

(t
0

)), t
0

+ uh)d↵(✓
0,n

� ✓
0

(t
0

))

�
du

=

Z
1

�1

K(u)@
✓

g(✓
0

(t
0

), t
0

+ uh)du+ ⌃
n

(✓
0,n

� ✓
0

(t
0

)). (4.6)

⌃
n

converges to the invertible matrix ⌃ by Lemma 4.3. The first integral is of order h2.
This follows by a Taylor expansion in the time parameter:

Z
1

�1

K(u)@
✓

g(✓
0

(t
0

), t
0

+ uh)du

=

Z
1

�1

K(u)


@
✓

g(✓
0

(t
0

), t
0

) +
d

dt
g
✓

(✓
0

(t
0

), t
0

)uh+

Z
1

0

(1� ↵)
d2

dt2
@
✓

g(✓
0

(t
0

), t
0

+ (1� ↵)uh)d↵u2h2
�
du

=
1

2
h2v

n

.

By Lemma 4.3, v
n

is bounded. Thus, together with (4.6), we have established

✓
0,n

= ✓
0

(t
0

)� (⌃�1

n

� ⌃�1 + ⌃�1)1
2

h2v
n

= ✓
0

(t
0

)� 1

2

h2⌃�1v
n

� 1

2

h2(⌃�1

n

� ⌃�1)v
n

.

The statement of the proposition now follows from v
n

! v.

Lemma 4.4. We have

P 0
n

(✓
0,n

)
P! 0. (4.7)

For any k, l 2 {1, ..., q}, it holds that

P 00
n

(✓
0,n

)
P! �⌃. (4.8)
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Moreover,

sup
k,l,r,✓

����
@2

@✓
k

@✓
l

P
0
(r)

n

(✓)

���� = O
P

(1), (4.9)

where P
0
(r)

n

denotes the r-th component of P 0
n

, the supremum runs over k, l, r 2 {1, ..., q},
and ✓ 2 ⇥.

Proof. We start by showing that P 0
n

(✓
0,n

) = o
P

(1). This holds, if E(kP 0
n

(✓
0,n

)k) = o(1).
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(s)k ·
��exp(✓
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(s)TX
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(s))� exp(✓TX
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(s))
��. By positivity of
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(✓, s), we may apply Fubini’s Theorem, and thus we compute
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The expectation in the integral expression can be bounded by applying a Taylor expansion:
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where s
u

= t
0

+ uh. Now, by (2.9) in Assumption (A4), the expectation in the last upper
bound is bounded by a constant C, uniformly in u 2 [�1, 1]. Using sup

u2[�1,1]

k✓
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(t
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+uh)�
✓
n,0

k = o(1), we obtain
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= o(1),

where the last equality is a consequence of (2.10). This shows (4.7).
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We now show (4.8). With @
✓

2g(✓
0,n

, s) = �E(⌧
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For (4.8), it su�ces to show:
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For the proof of (4.11), we note that with a
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Here we use (2.10), and ✓
0,n

� ✓
0

(t
0

) = o(1) (see Proposition 4.2).

For the proof of (4.10), we write K
h,t0(s) := K

�
s�t0
h

�
and
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, s)] ds.

We will apply Markov’s inequality to show that this term converges to zero. When squaring
the above sum, we can split the resulting double sum into three parts, depending on whether
|{i, j}\{k, l}| = 0, 1 or 2. Thus we have to show that the following three sequences converge
to zero:
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and that the sum in (4.12) has O(n2) terms, (4.13) comprises O(n3) terms, and finally
(4.14) has O(n4) terms (these orders are true for both: directed and undirected networks).
Thus, it is su�cient to show that
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For the proof of (4.15), we note that
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(4.17)

by Assumptions (2.11) and (2.18). From (4.16) and (4.17), we obtain (4.15). This shows(4.8).

For the proof of (4.9), we calculate a bound for the expectation of the absolute value of the
third derivative of P

n

. With s = t
0

+ uh, it holds
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where (2.6) has been used to get that the order of di↵erentiation and integration can be
interchanged and where Fubini could be used because all involved terms are non-negative.
The upper bound for the expectation in the integral expression is bounded by Assumptions
(2.6) and (2.10). This shows (4.9).

Lemma 4.5. It holds that
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With B
n

from Theorem 2.1, we have
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Proof. In this proof, we use the shorthand notation K
h,t0(s) =

1

h

K
�
z�t0
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�
. We begin with

proving (4.19). Denote for vectors a, b 2 Rq by [a, b] the connecting line between a and
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We decompose (4.21) into two terms by splitting ✓
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). For the second part we obtain, by using that the parameter space
is bounded by ⌧ and convex (A3), use also Fubini in the second line and rewrite as a
conditional expectation in the last line
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where the last equality holds, because by assumption (2.12) the first factor is O(h), the
second factor is uniformly bounded by (2.8) and k✓
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We now discuss the second term of the split of (4.21). Recall therefore the definitions of
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Hence, we need to prove that (4.25) and (4.26) are o
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(1) (these lines individually without the
leading h2 from the first line) and we are done with the proof. K is supported on [�1, 1] and
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We show this similarly as in the proof of Lemma 4.4 by splitting the sum in three sums
corresponding to |{i, j}\{k, l}| = 2, 1, or 0. The corresponding sums have O(n2), O(n3) and
O(n4) terms, respectively. Before going through these three cases, we note that equations
(4.20) and (2.7) imply that sup
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By using (2.13) and (2.19), we get the following bound for the sum over edges with |{i, j}\
{k, l}| = 0:

l
n

h
P(C

n,12

(t
0

) = 1, C
n,34

(t
0

) = 1)

P(C
n,12

(t
0

) = 1)2ZZ

[�1,1]

2

K(u)K(v)E(r
n,12

(t
0

+ uh)r
n,34

(t
0

+ vh)|C
n,12

(t
0

) = 1, C
n,34

(t
0

) = 1)dudv

= o(1).

This concludes the proof of (4.18).

Proposition 4.3. With probability tending to one, the equation P 0
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To prove this proposition, we will make use of the following theorem, see Deimling (1985):

Theorem 4.4. (Newton-Kantorovich Theorem) Let R(x) = 0 be a system of equations
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proof of Proposition 4.3.

Lemma 4.6. For k, l 2 {1, ..., q}, we have that
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Moreover, it holds that
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Proof. The proof of (4.27) follows by using similar arguments as in the proof of Lemma 4.4,
with ✓
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replaced by ✓
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(s), and with K replaced by K2.

For the proof of claim (4.28), we calculate the expectation of the left hand side of (4.28).
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Here we use (2.10), max�1u1

K(u) < 1 and (2.9). This shows (4.28).

To see (4.29), we show that
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This then implies (4.29) because of (4.8).
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The expectation of the first factor is bounded because of assumptions (2.10) and (2.9).
Furthermore, the second term is of order o

P

(1) by Proposition 4.3. Thus, the product is of
order o
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(1). This shows (4.30) and concludes the proof of (4.29).

Proposition 4.5. With probability tending to one, @
✓

`
T

(✓, t
0

) = 0 has a solution ✓̂
n

(t
0

),
and

p
l
n

h · (✓̂
n

(t
0

)� e✓
n

(t
0

))
d! N

⇣
0,

Z
1

�1

K2(u)du ⌃�1

⌘
.

Proof of Proposition 4.5. The proof is based on modifications of arguments used in the
asymptotic analysis of parametric counting process models, see e.g. the proof of Theorem
VI.1.1 on p. 422 in Andersen et al.(1993). Define

U l(✓) := h@
✓l
`
T

(✓, t
0

), l = 1, . . . , q,

and let U l

t

(✓) be defined as U l(✓), but with t being the upper limit of the integral in (2.5),
(i.e., U l(✓) = U l

T

(✓)). Furthermore, we write U(✓) = (U1(✓), ..., U q(✓)), and the vector U
t

(✓)
is defined analogously. In the first step of the proof, we will show that

1p
l
n

h
U
T

(e✓
n

(t
0

))
d! N

⇣
0,

Z
1

�1

K2(u)du ⌃
⌘
. (4.31)

35



For the local, square integrable martingale M
n,ij

defined in (4.1), it holds that M
n,ij

and
M

n,i

0
j

0 are orthogonal, meaning that < M
n,ij

,M
n,i

0
j

0 >
t

= 0 if (i, j) 6= (i0, j0), i.e. the
predictable covariation process is equal to zero. For the predictable variation process of
M

n,ij

, we have

< M
n,ij

>
t

=

Z
t

0

C
n,ij

(s) exp(✓
0

(s)TX
n,ij

(s))ds. (4.32)

By definition of e✓
n

(t
0

), see the statement of Proposition 4.3, we have that (write K
h,t0(s) :=

K
�
s�t0
h

�
)

U l

t

(e✓
n

(t
0

))

=
nX

i,j=1

Z
t

0

K
h,t0(s)X

(l)

n,ij

(s)dN
n,ij

(s) (4.33)

�
Z

t

0

K
h,t0(s)Cn,ij

(s)X(l)

n,ij

(s) exp(e✓
n

(t
0

)TX
n,ij

(s))ds

=
nX

i,j=1

Z
t

0

K
h,t0(s)X

(l)

n,ij

(s)dM
n,ij

(s)

+

Z
t

0

K
h,t0(s)Cn,ij

(s)X(l)

n,ij

(s)
⇣
exp(✓

0

(s)TX
n,ij

(s))� exp(e✓
n

(t
0

)TX
n,ij

(s))
⌘
ds

=
nX

i,j=1

Z
t

0

K
h,t0(s)X

(l)

n,ij

(s)dM
n,ij

(s).

So e✓
n

(t
0

) was chosen such that the non-martingale part of @
✓

`(e✓
n

(t
0

), t
0

) vanishes. Now,
we want to apply Rebolledo’s Martingale Convergence Theorem, see e.g. Theorem II.5.1 in
Andersen et al.(1993). This theorem implies (4.31), provided a Lindeberg condition (4.28)
holds, and
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To verify (4.34), first note that (4.32) and (4.27) imply finiteness of
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with probability tending to one. Note that Lemma 4.6 is formulated with t = T , but the
integral is finite also for t < T simply because the integrand is non-negative. From now on
we assume the above integral is finite. The process
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is a local square integrable martingale, see e.g. Theorem II.3.1 on p.71 in Andersen et
al.(1993). Since the martingales M
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are orthogonal, and by using Lemma 4.6, the predic-
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This shows (4.34), and concludes the proof of (4.31).
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have the same limit distribution. Because of
(4.36) this implies the statement of the proposition.

Proof of Theorem 2.1 Combining Propositions 4.3 and 4.5, and applying Slutzky’s
Lemma, we obtain by the assumptions on the bandwidth h in (A1)
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With Proposition 4.2 this gives (2.20).
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6 Appendix

6.1 Simulations of degree distributions, cluster coe�cients and diame-
ters.

Here we report additional simulations of degree distributions, cluster coe�cients and di-
ameters. In Section 3, we have presented results for the degree distribution of networks
based on the Washington DC bikeshare activity on 7th December 2012. In this section, we
will consider the days 18th April 2014 and 10th July 2015, and also compare diameters and
clustering coe�cients of the simulated and observed networks. As above, using the corre-
sponding estimated parameter value for each of these days, we compute 3840 predictions
and compared them with the observed values. The diameter of a network is the longest
among the shortest path between two vertices in the network. Typically, in observed net-
works the diameter is much smaller than the number of vertices (cf. Jackson, 2008). The
clustering coe�cient is the number of complete triangles (triples of vertices which are com-
pletely connected) divided by the number of incomplete triangles (triples of vertices with at
least two edges). Note that every complete triangle is also incomplete, hence the clustering
coe�cient is between zero and one. The clustering coe�cient can be understood as the
empirical probability that vertices are connected given that there is a third vertex to which
both are connected. It has been reported (cf. Jackson, 2008), that in observed networks this
number is usually significantly higher than in an Erdös-Rényi network, where the presence
of edges are i.i.d. random variables.

Our question here is, Does a network which was simulated by our model look like the observed

network? or in other words Could one believe that the observed network is a realization of

our model?. To answer this, we consider the three network characteristics mentioned above,
and empirically and visually compare the simulated results to the observed data. The
heuristic justification underlying this approach is, that, if considered jointly, these three
characteristics are able to discriminate between a range of di↵erent types of networks (see
also Jackson, 2008 and Zafarani et al., 2014)

We start by presenting results for diameter and clustering coe�cient on 7th of December
2012. As described in Section 3, where the degree distribution was discussed, we divide
the edges between bike stations in six regimes by considering tour frequencies between the
stations on the day. Figure 6 shows the histograms of the simulated diameter in the di↵erent
regimes. We see that, in 6e (as before in Figure 4e), the simulation and the reality appear
to coincide nicely. In other words, for a moderate number of tours our model seems to fit
well. It is interesting to note that our model performs di↵erently in the di↵erent regimes
suggesting that edges with di↵erent activity have to be modeled di↵erently. Finally, in
Figure 7, we see the histograms of the simulated clustering coe�cients. The true value
in the corresponding regime is shown in the titles of the plots. Overall, the performance
appears reasonable. In particular, in Figure 7d the histogram is nicely centered around the
true value. Interestingly, the performance in the fifth regime (l

1

= 5 and l
2

= 12), shown
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in Figure 7e, is not as good as the others. One explanation for this might be that here
di↵erent covariates are needed.

In Figure 14a we see one simulated graph compared to the true graph. The color of the
edges determine how many tours happened relative the the other edges: The lowest 25% of
the edges are colored green, the next 25% yellow, then orange and the highest 25% of edges
are colored red. Due to the integral value of the activity it is not the case that exactly 25%
of the edges are green and so on. The size of the vertices is relative to their degree. We see
that the model is able to find the important (i.e. high degree) vertices. For the edges we
see that some red edges are at wrong places. But generally the vertices with high profile
edges are recognized. The remaining graphs in Figure 14 show the same comparison for the
two other dates under consideration. And we see that the results are similar.

Figures 8 till 13 show the results of the corresponding simulations for the other two dates.
Overall the results are similar. It should be pointed out that even though the model is
not able to reproduce every feature perfectly accurate, the simulated networks are still very
close to the true observation. This becomes more obvious if we remind ourselves that only
six parameters were used.

6.2 Bandwidth choice

Under our assumptions that the covariates stay constant over the day, it makes sense to
consider only integral bandwidth lengths (for us one day has length one). In order to choose
the bandwidth, we apply a one-sided cross validation (cf. Hart and Yi, 1998 and Mammen
et al., 2011) approach which was shortly motivated in Section 3 and which we now describe
in detail.

Let K and L be kernels fulfilling the assumptions in the paper and denote by ✓̂
K

(t
0

) and
✓̂
L

(t
0

) the maximum likelihood estimators using K and L respectively. Then, by Theorem
2.1, we get that asymptotically the bias and the variance of the estimators can be written
as

bias(✓̂
K

) = h2
Z

1

�1

K(u)u2du · C
1

var(✓̂
L

) =
1

l
n

h

Z
1

�1

K(u)2du · C
2

where the constants C
1

and C
2

depend on the true parameter curve ✓
0

and the time t
0

but
not on the kernel. Hence, the corresponding expressions for ✓̂

L

(t
0

) can be found, just by
replacing every K with an L. The decomposition of the asymptotic mean squared error in
squared bias plus variance yields the following asymptotically optimal bandwidths h

K

and
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Figure 6: Histograms of diameters of the graphs which arise by taking di↵erent edges into
account (see individual caption) from simulations for 7th December 2012. In the title of
the plot the observed value is shown.
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(c) Only edges with tour frequency
between three and five
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(d) Only edges with tour frequency
between four and six

Clustering Coefficient=0.081522 in 5 12

Clustering Coefficients

Fr
eq

ue
nc

y

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(e) Only edges with tour frequency
between five and twelve
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Figure 7: Histograms of clustering coe�cients of the graphs which arise by taking di↵erent
edges into account (see individual caption) from simulations for 7th December 2012. In the
title of the plot the observed value is shown.
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Figure 8: Degree distributions of the graphs which arise by taking di↵erent edges into
account (see individual caption) from simulations for 18th April 2014. Dotted lines show
10% and 90% quantiles of simulations and solid line shows true distributions.
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between two to four
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Figure 9: Histograms of diameters of the graphs which arise by taking di↵erent edges into
account (see individual caption) from simulations for 18th April 2014. In the title of the
plot the observed value is shown.
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between two to four
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(c) Only edges with tour frequency
between three to five
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(d) Only edges with tour frequency
between four to six
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Figure 10: Histograms of clustering coe�cients of the graphs which arise by taking di↵erent
edges into account (see individual caption) from simulations for 18th April 2014. In the
title of the plot the observed value is shown.
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Figure 11: Degree distributions of the graphs, which arise by taking di↵erent tour frequen-
cies into account (see individual caption) from simulations for 10th July 2015. Dotted lines
show 10% and 90% quantiles of simulations and solid line shows true distributions.
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between three to five
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Figure 12: Histograms of diameters of the graphs which arise by taking di↵erent edges into
account (see individual caption) from simulations for 10th July 2015. In the title of the plot
the observed value is shown.
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between one to three
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Figure 13: Histograms of clustering coe�cients of the graphs which arise by taking di↵erent
edges into account (see individual caption) from simulations for 10th July 2015. In the title
of the plot the observed value is shown.
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(b) 18th April 2014
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Figure 14: Compares one simulated graph with the true observation.
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h
L

, minimizing the asymptotic mean squared error:

h
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.

Again, the corresponding expression for h
L

can be found by replacing every K by L. So
the following formula, known from kernel estimation, holds also true in our setting

h
K

=

 R
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K(u)2du
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·
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L(u)u2du
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R
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L(u)2du

! 1
5

h
L

. (6.1)

This means that knowledge of the bandwidth minimizing the mean squared error for kernel
L, implies knowledge of the bandwidth minimizing the mean squared error using kernel K.
Ultimately, we use a triangular kernel K(u) = (1 + u)

[�1,0)

(u) + (1� u)
[0,1]

(u). In order
to find the bandwidth h

K

for this kernel, we want to apply cross-validation. As proposed in
Hart and Yi (1998) one-sided cross validation is an attractive method for the case of time
series data. One-sided here means that we apply cross validation to a kernel L which is
only supported on the past [�1, 0]. In order to avoid a bias, we use the one-sided kernel
together with local linear approximation. This following heuristic derivations motivates this
choice.

Firstly, in our regular maximum likelihood setting, we maximize, over µ 2 ⇥, the expres-
sion
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Deriving this expression with respect to µ, setting the derivative equal to zero, and rear-
ranging terms, yields (to save space we use here a fraction, although the denominator is a
matrix)

✓̂
K
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0

)� ✓
0

(t
0

)
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Using the notation y
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approximation
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Now define the local linear estimator ✓̂
LC,K

(t
0

), with respect to a kernel K, as the value of
µ
0

maximizing the following expression over (µ
0

, µ
1

) 2 ⇥2 :
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Using the same approximations as in the usual kernel estimation setting, and deriving the
resulting approximate likelihood, we obtain
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where M
k

:=
R
1

�1

ukK(u)du. The previous computations were just a heuristic. But nevert-
heless, the similarity between the previous display and (6.2) suggests that the local linear
estimator ✓̂

LC,K

using the kernel K is actually just a regular kernel estimator ✓̂
L

with kernel
function

L(u) = K(u)
M

2

� uM
1

M
2

�M2

1

. (6.3)

This aligns with results about kernel estimation, as, for example, stated in Mammen et al.
(2011). It can be easily computed that this new kernel is of order one, i.e.,

R
uL(u)du = 0,

even though the original kernel was not. Hence, knowledge of the optimal bandwidth for
the local linear estimator using the kernel K implies knowledge of the optimal bandwidth
for any other order one kernel by means of (6.1). Taking the same route as in Hart and Yi
(1998), the selector for the bandwidth ĥ

K

for the triangular kernel K is the following: Let
K⇤(u) := 2K(u)

[�1,0]

(u) denote the one sided version of K.

1. Find a bandwidth ĥ
L

for the local linear estimator ✓̂
LC,K

⇤ based on the kernel K⇤

via cross validation (since we use a one-sided kernel, this step is also called one-sided
cross-validation. We will make it more precise later).

54



2. Compute ĥ by using (6.1) with L defined as in (6.3) but with K replaced by K⇤.

For the one-sided cross-validation in step 1, we minimize, in our bike share data analysis,
the following function in h
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k
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X

(i,j)2L(k)

����e
ˆ

✓

(�k)
LC,K⇤ (k)

T
Xi,j(k) �X

i,j

(k)

����
2

e
ˆ

✓

(�k)
LC,K⇤ (k)TXi,j(k)

, (6.4)

where k
T

was the number of weeks (recall that we assume the covariates to remain constant
over a day, and that we only consider Fridays), i.e., k refers to the k-th Friday in the dataset.
L(k) refers to the set of pairs (i, j) between which there was a bike tour on Friday k, X

i,j

(k)

is the true number of bike tours observed between i and j on Friday k. Finally, ✓̂(�k)

LC,K

⇤(k)
is the local linear estimator with respect to the kernel K⇤ based on all but the k-th Friday.
Since K⇤ is left-sided, this really means the estimator is based on Fridays 0, ..., k � 1, and
hence the term one-sided cross-validation. The intensities are the theoretical values of the
expectation of the number of bike tours if the model is correct. So we compute the squared
di↵erence with the true number of bike rides and divide by the estimated intensity, where
we only take the non-censored edges into account.

In Section 3, we had displayed results for di↵erent bandwidths h of (6.4) in Figure 5.
The prediction error of the fit decreases, until the bandwidth is equal to 23. Afterwards the
prediction error stays roughly the same and starts to increase when the bandwidth reaches a
full year (52 weeks). This may be explained by a periodicity with a period of approximately
one year. If one uses 23 as minimal value we get as asymptotic optimal bandwidth 12 which
is approximately 23 divided by ⇢. Here, following Step 2 of the above described procedure,
we use that ⇢ is approximately equal to 1.82 for triangular kernels.
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