
Program Synthesis using Deduction-Guided
Reinforcement Learning?

Yanju Chen1(�), Chenglong Wang2, Osbert Bastani3,
Isil Dillig4, and Yu Feng1(�)

1 University of California, Santa Barbara, Santa Barbara CA 93106, USA
{yanju,yufeng}@cs.ucsb.edu

2 University of Washington, Seattle WA 98115, USA
clwang@cs.washington.edu

3 University of Pennsylvania, Philadelphia PA 19104, USA
obastani@seas.upenn.edu

4 The University of Texas at Austin, Austin TX 78712, USA
isil@cs.utexas.edu

Abstract. In this paper, we present a new program synthesis algorithm
based on reinforcement learning. Given an initial policy (i.e. statistical
model) trained off-line, our method uses this policy to guide its search
and gradually improves it by leveraging feedback obtained from a deduc-
tive reasoning engine. Specifically, we formulate program synthesis as a
reinforcement learning problem and propose a new variant of the policy
gradient algorithm that can incorporate feedback from a deduction en-
gine into the underlying statistical model. The benefit of this approach
is two-fold: First, it combines the power of deductive and statistical rea-
soning in a unified framework. Second, it leverages deduction not only to
prune the search space but also to guide search. We have implemented
the proposed approach in a tool called Concord and experimentally
evaluate it on synthesis tasks studied in prior work. Our comparison
against several baselines and two existing synthesis tools shows the ad-
vantages of our proposed approach. In particular, Concord solves 15%
more benchmarks compared to Neo, a state-of-the-art synthesis tool,
while improving synthesis time by 8.71× on benchmarks that can be
solved by both tools.

1 Introduction

Due to its potential to significantly improve both programmer productiv-
ity and software correctness, automated program synthesis has gained enormous
popularity over the last decade. Given a high-level specification of user intent,
most modern synthesizers perform some form of backtracking search in order
to find a program that satisfies the specification. However, due to the enormous

? This work was sponsored by the National Science Foundation under agreement num-
ber of 1908494, 1811865 and 1910769.

2 Y. Chen et al.

Initial policy

Specification

 Take action Deduce

 Update policy

P

Program

Fig. 1. Overview of our synthesis algorithm

size of the search space, synthesizers additionally use at least one of two other
techniques, namely deduction and statistical reasoning, to make this approach
practical. For example, many recent synthesis techniques use lightweight pro-
gram analysis or logical reasoning to significantly prune the search space [18, 53,
19, 39]. On the other hand, several recent approaches utilize a statistical model
(trained off-line) to bias the search towards programs that are more likely to sat-
isfy the specification [2, 19, 4, 7]. While both deductive and statistical reasoning
have been shown to dramatically improve synthesis efficiency, a key limitation
of existing approaches is that they do not tightly combine these two modes of
reasoning. In particular, although logical reasoning often provides very useful
feedback at synthesis time, existing synthesis algorithms do not leverage such
feedback to improve their statistical model.

In this paper, we propose a new synthesis algorithm that meaningfully com-
bines deductive and statistical reasoning. Similar to prior techniques, our ap-
proach starts with a statistical model (henceforth called a policy) that is trained
off-line on a representative set of training problems and uses this policy to guide
search. However, unlike prior techniques, our method updates this policy on-line
at synthesis time and gradually improves the policy by incorporating feedback
from a deduction engine.

To achieve this tight coupling between deductive and statistical reasoning,
we formulate syntax-guided synthesis as a reinforcement learning (RL) problem.
Specifically, given a context-free grammar for the underlying DSL, we think of
partial (i.e., incomplete) programs in this DSL as states in a Markov Decision
Process (MDP) and actions as grammar productions. Thus, a policy of this
MDP specifies how a partial program should be extended to obtain a more
specific program. Then, the goal of our reinforcement learning problem is to
improve this policy over time as some partial programs are proven infeasible by
an underlying deduction engine.

While the framework of reinforcement learning is a good fit for our problem,
standard RL algorithms (e.g., policy gradient) typically update the policy based
on feedback received from states that have already been explored. However, in
the context of program synthesis, deductive reasoning can also provide feedback
about states that have not been explored. For example, given a partial program
that is infeasible, one can analyze the root cause of failure to infer other infeasible
programs [18, 54]. To deal with this difficulty, we propose an off-policy reinforce-

Program Synthesis using Deduction-Guided Reinforcement Learning 3

ment learning algorithm that can improve the policy based on such additional
feedback from the deduction engine.

As shown schematically in Figure 1, our synthesis algorithm consists of three
conceptual elements, indicated as “Take action”, “Deduce”, and “Update pol-
icy”. Given the current policy π and partial program P , “Take Action” uses π to
expand P into a more complete program P ′. Then, “Deduce” employs existing
deductive reasoning techniques (e.g., [18, 32]) to check whether P ′ is feasible
with respect to the specification. If this is not the case, “Update policy” uses the
feedback provided by the deduction engine to improve π. Specifically, the policy
is updated using an off-policy variant of the policy gradient algorithm, where the
gradient computation is adapted to our unique setting.

We have implemented the proposed method in a new synthesis tool called
Concord and empirically evaluate it on synthesis tasks used in prior work [18,
2]. We also compare our method with several relevant baselines as well as two
existing synthesis tools. Notably, our evaluation shows that Concord can solve
15% more benchmarks compared to Neo (a state-of-the-art synthesis tool), while
being 8.71× faster on benchmarks that can be solved by both tools. Further-
more, our ablation study demonstrates the empirical benefits of our proposed
reinforcement learning algorithm.

To summarize, this paper makes the following key contributions:

– We propose a new synthesis algorithm based on reinforcement learning that
tightly couples statistical and deductive reasoning.

– We describe an off-policy reinforcement learning technique that uses the
output of the deduction engine to gradually improve its policy.

– We implement our approach in a tool called Concord and empirically
demonstrate its benefits compared to other state-of-the-art tools as well as
ablations of our own system.

The rest of this paper is structured as follows. First, we provide some back-
gound on reinforcement learning and MDPs (Section 2) and introduce our prob-
lem formulation in Section 3. After formulating the synthesis problem as an
MDP in Section 4, we then present our synthesis algorithm in Section 5. Sec-
tions 6 and 7 describe our implementation and evaluation respectively. Finally,
we discuss related work and future research directions in Section 8 and 9.

2 Background on Reinforcement Learning

At a high level, the goal of reinforcement learning (RL) is to train an agent, such
as a robot, to make a sequence of decisions (e.g., move up/down/left/right) in
order to accomplish a task. All relevant information about the environment and
the task is specified as a Markov decision process (MDP). Given an MDP, the
goal is to compute a policy that specifies how the agent should act in each state
to maximize their chances of accomplishing the task.

In the remainder of this section, we provide background on MDPs and de-
scribe the policy gradient algorithm that our method will build upon.

4 Y. Chen et al.

Markov decision process. We formalize a Markov decision process (MDP) as
a tuple M = (S,SI ,ST ,A,F ,R), where:

– S is a set of states (e.g., the robot’s current position),

– SI is the initial state distribution,

– ST is a set of the final states (e.g., a dead end),

– A is a set of actions (e.g., move up/down/left/right),

– F : S ×A → S is a set of transitions,

– R : S → R is a reward function that assigns a reward to each state (e.g., 1
for reaching the goal and 0 otherwise).

In general, transitions in an MDP can be stochastic; however, for our setting,
we only consider deterministic transitions and rewards.

Policy. A policy for an MDP specifies how the agent should act in each state.
Specifically, we consider a (stochastic) policy π : S×A → R, where π(S,A) is the
probability of taking action A in state S. Alternatively, we can also think of π
as a mapping from states to distributions over actions. Thus, we write A ∼ π(S)
to denote that action A is sampled from the distribution for state s.

Rollout. Given an MDPM and policy π, a rollout is a sequence of state-action-
reward tuples obtained by sampling an initial state and then using π to make
decisions until a final state is reached. More formally, for a rollout of the form:

ζ = ((S1, A1, R1), ..., (Sm−1, Am−1, Rm−1), (Sm,∅, Rm)),

we have Sm ∈ ST , S1 ∼ SI (i.e., S1 is sampled from an initial state), and, for
each i ∈ {1, ...,m− 1}, Ai ∼ π(Si), Ri = R(Si), and Si+1 = F(Si, Ai).

In general, a policy π induces a distribution Dπ over the rollouts of an MDP
M. Since we assume that MDP transitions are deterministic, we have:

Dπ(ζ) =

m−1∏
i=1

π(Si, Ai).

RL problem. Given an MDPM, the goal of reinforcement learning is to com-
pute an optimal policy π∗ forM. More formally, π∗ should maximize cumulative
expected reward :

π∗ = arg max
π

J(π)

where the cumulative expected reward J(π) is computed as follows:

J(π) = Eζ∼Dπ

[
m∑
i=1

Ri

]

Program Synthesis using Deduction-Guided Reinforcement Learning 5

Policy gradient algorithm. The policy gradient algorithm is a well-known RL
algorithm for finding optimal policies. It assumes a parametric policy family πθ
with parameters θ ∈ Rd. For example, πθ may be a deep neural network (DNN),
where θ denotes the parameters of the DNN. At a high level, the policy gradient
algorithm uses the following theorem to optimize J(πθ) [48]:

Theorem 1. We have

∇θJ(πθ) = Eζ∼Dπθ [`(ζ)] where `(ζ) =
m−1∑
i=1

 m∑
j=i+1

Rj

∇θ log πθ(Si, Ai).

(1)

In this theorem, the term ∇θ log πθ(Si, Ai) intuitively gives a direction in the
parameter space that, when moving the policy parameters towards it, increases
the probability of taking action Ai at state Si. Also, the sum

∑m
j=i+1Rj is the

total future reward after taking action Ai . Thus, `(ζ) is just the sum of different
directions in the parameter space weighted by their corresponding future reward.
Thus, the gradient∇θJ(πθ) moves policy parameters in a direction that increases
the probability of taking actions that lead to higher rewards.

Based on this theorem, we can estimate the gradient ∇θJ(πθ) using rollouts
sampled from Dπθ :

∇θJ(πθ) ≈
1

n

n∑
k=1

`(ζ(k)), (2)

where ζ(k) ∼ Dπθ for each k ∈ {1, ..., n}. The policy gradient algorithm uses
stochastic gradient ascent in conjunction with Eq. (2) to maximize J(πθ) [48].

3 Problem Formulation

In this paper, we focus on the setting of syntax-guided synthesis [1]. Specifically,
given a domain-specific language (DSL) L and a specification φ, our goal is to
find a program in L that satisfies φ. In the remainder of this section, we formally
define our synthesis problem and clarify our assumptions.

DSL. We assume a domain-specific language L specified as a context-free gram-
mar L = (V,Σ,R, S), where V,Σ denote non-terminals and terminals respec-
tively, R is a set of productions, and S is the start symbol.

Definition 1. (Partial program) A partial program P is a sequence P ∈
(Σ ∪ V)∗ such that S

∗⇒ P (i.e., P can be derived from S via a sequence of
productions). We refer to any non-terminal in P as a hole hole, and we say that
P is complete if it does not contain any holes.

6 Y. Chen et al.

S → N | L
N → 0 | . . . | 10 | xi
L → xi | take(L,N) | drop(L,N) | sort(L)

| reverse(L) | add(L,L) | sub(L,L) | sumUpTo(L)

Fig. 2. A simple programming language used for illustration. Here, take (resp. drop)
keeps (resp. removes) the first N elements in the input list. Also, add (resp. sub)
compute a new list by adding (resp. subtracting) elements from the two lists pair-wise.
Finally, sumUpTo generates a new list where the i’th element in the output list is the
sum of all previous elements (including the i’th element) in the input list.

Given a partial program P containing a hole H, we can fill this hole by
replacing H with the right-hand-side of any grammar production r of the form
H → e. We use the notation P

r⇒ P ′ to indicate that P ′ is the partial program
obtained by replacing the first occurrence of H with the right-hand-side of r,
and we write Fill(P, r) = P ′ whenever P

r⇒ P ′.

Example 1. Consider the small programming language shown in Figure 2 for
manipulating lists of integers. The following partial program P over this DSL
contains three holes, namely L1, L2, N1:

add(L1, take(L2, N1))

Now, consider the production r ≡ L → reverse(L). In this case, Fill(P, r)
yields the following partial program P ′:

add(reverse(L1), take(L2, N1))

Program synthesis problem. Given a specification φ and language L =
(V,Σ,R, S), the goal of program synthesis is to find a complete program P

such that S
∗⇒ P and P satisfies φ. We use the notation P |= φ to indicate that

P is a complete program that satisfies specification φ.

Deduction engine. In the remainder of this paper, we assume access to a
deduction engine that can determine whether a partial program P is feasible
with respect to specification φ. To make this more precise, we introduce the
following notion of feasibility.

Definition 2. (Feasible partial program) Given a specification φ and lan-
guage L = (V,Σ,R, S), a partial program P is said to be feasible with respect to

φ if there exists any complete program P ′ such that P
∗⇒ P ′ and P ′ |= φ.

In other words, a feasible partial program can be refined into a complete
program that satisfies the specification. We assume that our deduction oracle
over-approximates feasibility. That is, if P is feasible with respect to specification
φ, then Deduce(P, φ) should report that P is feasible but not necessarily vice
versa. Note that almost all deduction techniques used in the program synthesis
literature satisfy this assumption [53, 18, 27, 19, 21].

Program Synthesis using Deduction-Guided Reinforcement Learning 7

Example 2. Consider again the DSL from Figure 2 and the specification φ de-
fined by the following input-output example:

[65, 2, 73, 62, 78] 7→ [143, 129, 213, 204, 345]

The partial program add(reverse(x), take(x,N)) is infeasible because, no mat-
ter what production we use to fill non-terminal N , the resulting program cannot
satisfy the provided specification for the following reason:

– Given a list l and integer n where n < length(l), take(l, n) returns the first
n elements in l. Thus, the length of take(l, n) is smaller than that of l.

– The construct reverse(l) reverses its input; thus, the size of the output list
is the same as its input.

– Finally, add(l1, l2) constructs a new list by adding the elements of its input
lists pair-wise. Thus, add expects the two input lists to be the same size.

– Since the outputs of reverse and take do not have the same size, we cannot
combine them using add.

Several techniques from prior work (e.g., [19, 18, 53, 39]) can prove the infeasi-
bility of such partial programs by using an SMT solver (provided specifications
are given for the DSL constructs).

Beyond checking feasibility, some deduction techniques used for synthesis
can also provide additional information [18, 54, 32]. In particular, given a partial
program P that is infeasible with respect to specification φ, several deduction
engines can generate a set of other infeasible partial programs P1, . . . , Pn that
are infeasible for the same reason as P . To unify both types of feedback, we
assume that the output of the deduction oracle O is a set S of partial programs
such that S is empty if and only if O decides that the partial program is feasible.

This discussion is summarized by the following definition:

Definition 3. (Deduction engine) Given a partial program P and specifica-
tion φ, Deduce(P, φ) yields a set of partial programs S such that (1) if S 6= ∅,
then P is infeasible, and (2) for every P ′ ∈ S, it must be the case that P ′ is
infeasible with respect to φ.

Example 3. Consider again the same infeasible partial program P given in Exam-
ple 2. Since drop(l, n) drops the first n elements from list l (where n < length(l)),
it also produces a list whose length is smaller than that of the input. Thus, the
following partial program P ′ is also infeasible for the same reason as P :

P ′ ≡ add(reverse(x), drop(x,N))

Thus, Deduce(P, φ) may return the set {P, P ′}.

4 MDP Formulation of Deduction-guided Synthesis

Given a specification φ and language L = (V,Σ,R, S), we can formulate the
program synthesis problem as an MDP Mφ = (S,SI ,ST ,A,F ,R), where:

8 Y. Chen et al.

– States S include all partial programs P such that S
∗⇒ P as well as a special

label ⊥ indicating a syntactically ill-formed partial program
– SI places all probability mass on the empty program S, i.e.,

SI(P) =

{
1 if P = S
0 if P 6= S

– ST includes complete programs as well as infeasible partial programs, i.e.,

P ∈ ST ⇐⇒ IsComplete(P) ∨ Deduce(P, φ) 6= ∅ ∨ P = ⊥

– Actions A are exactly the productions R for the DSL
– Transitions F correspond to filling a hole using some production i.e.,

F(P, r = (H → e)) =

{
⊥ if H is not a hole in P
Fill(P, r) otherwise

– The reward function penalizes infeasible programs and rewards correct so-
lutions, i.e.,

R(P) =


1 if P |= φ

−1 if P = ⊥ ∨Deduce(P, φ) 6= ∅ ∨ (IsComplete(P) ∧ P 6|= φ)

0 otherwise.

Observe that our reward function encodes the goal of synthesizing a complete
program P that satisfies φ, while avoiding the exploration of as many infeasible
programs as possible. Thus, if we have a good policy π for this MDP, then a
rollout of π is likely to correspond to a solution of the given synthesis problem.

Example 4. Consider the same specification (i.e., input-output example) φ from
Example 2 and the DSL from Example 1. The partial program

P ≡ add(reverse(x), take(x,N))

is a terminal state of Mφ since Deduce(P, φ) yields a non-empty set, and we
have R(P) = −1. Thus, the following sequence corresponds to a rollout of Mφ:

(S, S → L, 0), (L,L→ add(L,L), 0), (add(L1, L2), L→ reverse(L), 0)
(add(reverse(L1), L2), L→ x, 0), (add(reverse(x), L), L→ take(L,N), 0)
(add(reverse(x), take(L,N)), L→ x, 0), (add(reverse(x), take(x,N)),∅,−1).

Simplified policy gradient estimate for Mφ. Since our synthesis algorithm
will be based on policy gradient, we will now derive a simplified policy gradient
for our MDP Mφ. First, by construction of Mφ, a rollout ζ has the form

(P1, r1, 0), ..., (Pm,∅, q)

Program Synthesis using Deduction-Guided Reinforcement Learning 9

where q = 1 if Pm |= φ and q = −1 otherwise. Thus, the term `(P) from Eq.1
can be simplified as follows:

`(Pm) =
m−1∑
i=1

q · ∇θ log πθ(Pi, ri), (3)

where Pm ∼ Dπθ is a final state (i.e., complete program or infeasible partial
program) sampled using πθ. Then, Eq. 1 is equivalently

∇θJ(πθ) ≈
1

n

n∑
k=1

`(P (k)), (4)

where P (k) ∼ Dπθ for each k ∈ {1, ..., n}.

5 RL-Based Synthesis Algorithm

In this section, we describe our synthesis algorithm based on reinforcement learn-
ing. Our method is an off-policy variant of the standard (on-policy) policy gra-
dient algorithm and incorporates additional feedback – in the form of other
infeasible programs – provided by the deduction engine when improving its pol-
icy parameters. We first give a high-level overview of the synthesis algorithm
and then explain how to update the policy.

5.1 Overview of Synthesis Algorithm

Our RL-based synthesis algorithm is presented in Figure 3. In addition to speci-
fication φ and domain-specific language L, this algorithm also takes as input an
initial policy π0 that has been trained off-line on a representative set of train-
ing problems. 5 In each iteration of the main synthesis loop, we first obtain a
rollout of the current policy by calling the GetRollout procedure at line 7.
Here, each rollout either corresponds to a complete program P or an infeasible
partial program. If P is complete and satisfies the specification, we return it as
a solution in line 8. Otherwise, we use feedback C provided by the deduction
engine to improve the current policy (line 9). In the following subsections, we
explain the GetRollout and UpdatePolicy procedures in more detail.

5.2 Sampling Rollouts

The GetRollout procedure iteratively expands a partial program, starting
from the start symbol S of the grammar (line 11). In each iteration (lines 12–
19), we first check whether the current partial program P is feasible by calling
Deduce. If P is infeasible (i.e., C is non-empty), then we have reached a terminal

5 We explain how to train this initial policy in Section 6.

10 Y. Chen et al.

1: procedure Synthesize(L, φ, π0)
2: input: Domain-specific language L = (V,Σ,R, S)
3: input: Specification φ; initial policy π0

4: output: Complete program P such that P |= φ

5: πθ ← π0

6: while true do
7: (P, C)← GetRollout(L, φ, πθ)
8: if C = ∅ then return P
9: else πθ ← UpdatePolicy(πθ, C)

10: procedure GetRollout(L, φ, πθ)
11: P ← S
12: while true do
13: C ← Deduce(P, φ)
14: if C 6= ∅ then return (P, C)
15: choose r ∼ πθ(P) ∧ Lhs(r) ∈ Holes(P)
16: P ← Fill(P, r)
17: if IsComplete(P) then
18: if P |= φ then return (P,∅)
19: else return (P, {P})

20: procedure UpdatePolicy(πθ, C)
21: for k ∈ {1, ..., n′} do
22: P (k) ∼ Uniform(C)
23: θ′ ← θ + η

∑n′

k=1 `(P
(k)) · Dπθ (P

(k))

1/|C|
24: return πθ′

Fig. 3. Deduction-guided synthesis algorithm based on reinforcement learning

state of the MDP; thus, we return P as the final state of the rollout. Otherwise,
we continue expanding P according to the current policy πθ. Specifically, we
first sample an action (i.e., grammar production) r that is applicable to the
current state (i.e., the left-hand-side of r is a hole in P), and, then, we expand
P by calling the Fill procedure (defined in Section 3) at line 16. If the resulting
program is complete , we have reached a terminal state and return P ; otherwise,
we continue expanding P according to the current policy.

5.3 Improving the Policy

As mentioned earlier, our algorithm improves the policy by using the feedback
C provided by the deduction engine. Specifically, consider an infeasible program
P explored by the synthesis algorithm at line 7. Since Deduce(P, φ) yields a
set of infeasible programs, for every program P ′ ∈ C, we know that the reward
should be −1. As a consequence, we should be able to incorporate the rollout
used to construct P into the policy gradient estimate based on Eq. (3). However,
the challenge to doing so is that Eq. (4) relies on on-policy samples – i.e., the

Program Synthesis using Deduction-Guided Reinforcement Learning 11

programs P (k) in Eq. (4) must be sampled using the current policy πθ. Since
P ′ ∈ C is not sampled using πθ, we cannot directly use it in Eq. (4).

Instead, we use off-policy RL to incorporate P ′ into the estimate of∇θJ(πθ) [28].
Essentially, the idea is to use importance weighting to incorporate data sampled
from a different distribution than Dπθ . In particular, suppose we are given a
distribution D̃ over final states. Then, we can derive the following gradient:

∇θJ(πθ) = EP∼Dπθ [`(P)] (5)

= EP∼D̃

[
`(P) · Dπθ (P)

D̃(P)

]

Intuitively, the importance weight
Dπθ (P)

D̃(P)
accounts for the fact that P is sampled

from the “wrong” distribution.
Now, we can use the distribution D̃ = Uniform(Deduce(P ′, φ)) for a ran-

domly sampled final state P ′ ∼ Dπθ . Thus, we have: 6

Theorem 2. The policy gradient is

∇θJ(πθ) = EP ′∼Dπθ ,P∼Uniform(Deduce(P ′,φ))

[
`(P) · Dπθ (P)

1/|Deduce(P ′, φ)|

]
. (6)

Proof. Note that

∇θJ(πθ) = EP ′∼Dπθ [∇θJ(πθ)]

= EP ′∼Dπθ ,P∼Uniform(Deduce(P ′,φ))

[
`(P) · Dπθ (P)

1/|Deduce(P ′, φ)|

]
,

as claimed. ut

The corresponding estimate of ∇θJ(πθ) is given by the following equation:

∇θJ(θ) ≈ 1

n

n∑
k=1

1

n′

n′∑
k′=1

`(P (k,k′)) · Dπθ (P (k,k′))

1/|Deduce(P (k), φ)|
,

where P (k) ∼ D̃ and P (k,k′) ∼ Uniform(Deduce(P (k), φ)) for each k ∈ {1, ..., n}
and k′ ∈ {1, ..., n′}. Our actual implementation uses n = 1, in which case this
equation can be simplified to the following:

∇θJ(θ) ≈ 1

n′

n′∑
k′=1

`(P) · Dπθ (P (k′))

1/|Deduce(P, φ)|
, (7)

where P ∼ D̃ and P (k′) ∼ Uniform(Deduce(P, φ)) for each k′ ∈ {1, ..., n′}.
6 Technically, importance weighting requires that the support of D̃ contains the sup-

port of Dπθ . We can address this issue by combining D̃ and Dπθ—in particular, take
D̃(P) = (1− ε) ·Uniform(Deduce(P ′, φ))(P) + ε · Dπθ (P), for any ε > 0.

12 Y. Chen et al.

Now, going back to our synthesis algorithm from Figure 3, the UpdatePol-
icy procedure uses Equation 7 to update the policy parameters θ. Specifi-
cally, given a set C of infeasible partial programs, we first sample n′ programs
P (1), . . . , P (n′) from C uniformly at random (line 22). Then, we use the proba-
bility of each P (k) being sampled from the current distribution Dπθ to update
the policy parameters to a new value θ′ according to Equation 7.

Example 5. Suppose that the current policy assigns the following probabilities
to these state, action pairs:

πθ((add(reverse(x), L)), L→ take(L,N)) = 0.3

πθ((add(reverse(x), L)), L→ drop(L,N)) = 0.3

πθ((add(reverse(x), L)), L→ sumUpTo(L)) = 0.1

Furthermore, suppose that we sample the following rollout using this policy:

P ≡ add(reverse(x), take(x,N)),

This corresponds to an infeasible partial program, and, as in Example 3, Deduce(P ,φ)
yields {P, P ′} where P ′ ≡ add(reverse(x), drop(x,N)). Using the gradients de-
rived by Equation 7, we update the policy parameters θ to θ′. The updated
policy now assigns the following probabilities to the same state, action pairs:

πθ′((add(reverse(x), L)), L→ take(L,N)) = 0.15

πθ′((add(reverse(x), L)), L→ drop(L,N)) = 0.15

πθ′((add(reverse(x), L)), L→ sumUpTo(L)) = 0.2

Observe that the updated policy makes it less likely that we will expand the
partial program add(reverse(x), L)) using the drop production in addition to
the take production. Thus, if we reach the same state add(reverse(x), L) during
rollout sampling in the next iteration, the policy will make it more likely to
explore the sumUpTo production, which does occur in the desired program

add(reverse(x), sumUpTo(x))

that meets the specification from Example 2.

6 Implementation

We have implemented the proposed algorithm in a new tool called Concord
written in Python. In what follows, we elaborate on various aspects of our im-
plementation.

6.1 Deduction Engine

Concord uses the same deduction engine described by Feng et al. [18]. Specif-
ically, given a partial program P , Concord first generates a specification ϕ of

Program Synthesis using Deduction-Guided Reinforcement Learning 13

Spec
Encoder

GRU
(t=0)

GRU
(t=1)

GRU
(t=2)

S L→ L add(L1,L2)→ L reverse(L)→

L add(L1,L2)

S L add(L1, L2)

……

fill fill fill

add(reverse(L1),L2)

Fig. 4. The architecture of the policy network showing how to roll out the partial
program in Example 4.

P by leveraging the abstract semantics of each DSL construct. Then, Concord
issues a satisfiability query to the Z3 SMT solver [15] to check whether ϕ is con-
sistent with the provided specification. If it is not, this means that P is infeasible,
and Concord proceeds to infer other partial programs that are also infeasible
for the same reason as P . To do so, Concord first obtains an unsatisfiable core
ψ for the queried formula, and, for each clause ci of ψ originating from DSL con-
struct fi, it identifies a set Si of other DSL constructs whose semantics imply ci.
Finally, it generates a set of other infeasible programs by replacing all fi’s in the
current program with another construct drawn from its corresponding set Si.

6.2 Policy Network

Architecture. As shown by Figure 4, Concord represents its underlying policy
using a deep neural network (DNN) πθ(r | P), which takes as input the current
state (i.e., a partial program P) and outputs a probability distribution over
actions (i.e., productions r in the DSL). We represent each program P as a flat
sequence of statements and use a recurrent neural network (RNN) architecture,
as this is a natural choice for sequence inputs. In particular, our policy network
is a gated recurrent unit (GRU) network [13], which is a state-of-the-art RNN
architecture. Our policy network has one hidden layer with 256 neurons; this
layer is sequentially applied to each statement in the partial program together
with the latent vector from processing the previous statement. Once the entire
partial program P has been encoded into a vector, πθ has a final layer that
outputs a distribution over DSL productions r based on this vector.

Pretraining the initial policy. Recall from Section 5 that our synthesis algo-
rithm takes a input an initial policy network that is updated during the synthesis
process. One way to initialize the the policy network would be to use a stan-
dard random initialization of the network weights. However, a more effective
alternative is to pretrain the policy on a benchmark suite of program synthesis
problems [44]. Specifically, consider a representative training set Xtrain of syn-

14 Y. Chen et al.

thesis problems of the form (φ, P), where φ is the specification and P is the
desired program. To obtain an initial policy, we augment our policy network to
take as input an encoding of the specification φ for the current synthesis problem
– i.e., it has the form πθ(r | P, φ). 7 Then, we use supervised learning to train
πθ to predict P given φ —i.e.,

θ0 = arg max
θ

∑
(φ,P)∈Xtrain

|P |−1∑
i=1

πθ(ri | Pi, φ).

We optimize θ using stochastic-gradient descent (SGD) on this objective.
Given a new synthesis problem φ, we use πθ0 as the initial policy. Our RL

algorithm then continues to update the parameters starting from θ0.

6.3 Input Featurization

As standard, we need a way to featurize the inputs to our policy network – i.e.,
the statements in each partial program P , and the specification φ. Our current
implementation assumes that statements are drawn from a finite set and featur-
izes them by training a different embedding vector for each kind of statement.
While our general methodology can be applied to different types specifications,
our implementation featurizes the specification under the assumption that it
consists of input-output examples and uses the same methodology described by
Balog et al. [2].

6.4 Optimizations

Our implementation performs a few optimization over the algorithm presented
in Section 5. First, since it is possible to sample the same rollout multiple times,
our implementation uses a hash map to check whether a rollout has already
been explored. Second, in different invocations of the GetRollout procedure
from Figure 3, we may end up querying the feasibility of the same state (i.e.,
partial program) many times. Since checking feasibility requires a potentially-
expensive call to the SMT solver, our implementation also memoizes the results
of feasibility checks for each state. Finally, similar to Chen et al. [11], we use a
3-model ensemble to alleviate some of the randomness in the synthesis process
and return a solution as soon as one of the models in the ensemble finds a correct
solution.

7 Evaluation

In this section, we describe the results from our experimental evaluation, which
is designed to answer the following key research questions:

7 Including the specification as an input to πθ is unnecessary if we do not use pre-
training, since φ does not change for a single synthesis problem.

Program Synthesis using Deduction-Guided Reinforcement Learning 15

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

#Benchmarks

T
im

e

Concord

Neo

DeepCoder

Fig. 5. Comparison between Concord, Neo, and DeepCoder

1. How does Concord compare against existing synthesis tools?

2. What is the impact of updating the statistical model during synthesis? (i.e.,
is reinforcement learning actually useful)?

3. How important is the proposed off-policy RL algorithm compared to stan-
dard policy gradient?

4. How important is it to get feedback from the deduction engine when updating
the policy?

Benchmarks. We evaluate the proposed technique on a total of 100 synthesis
tasks used in prior work [2, 18]. Specifically, these synthesis tasks require perform-
ing non-trivial transformations and computations over lists using a functional
programming language. Since these benchmarks have been used to evaluate both
Neo [18] and DeepCoder [2], they provide a fair ground for comparing our ap-
proach against two of the most closely-related techniques. In particular, note
that DeepCoder uses a pre-trained deep neural network to guide its search,
whereas Neo uses both statistical and logical reasoning (i.e., statistical model
to guide search and deduction to prune the search space). However, unlike our
proposed approach, neither Neo nor DeepCoder update their statistical model
during synthesis time.

Training. Recall that our algorithm utilizes a pre-trained initial policy. To gen-
erate the initial policy, we use the same methodology described in DeepCoder [2]
and adopted in Neo [18]. Specifically, we randomly generate both programs and
inputs, and we obtain the corresponding output by executing the program. Then,
we train the DNN model discussed in Section 6 on the Google Cloud Platform
with a 2.20GHz Intel Xeon CPU and an NVIDIA Tesla K80 GPU using 16GB
of memory.

16 Y. Chen et al.

7.1 Comparison Against Existing Tools

To answer our first research question, we compare Concord against both Neo
and DeepCoder on the 100 synthesis benchmarks discussed earlier. The result
of this comparison is shown in Figure 5, which plots the number of benchmarks
solved within a given time limit for each of the three tools. As we can see from this
figure, Concord outperforms DeepCoder and Neo both in terms of synthesis
time as well as the number of benchmarks solved within the 5-minute time limit.
In particular, Concord can solve 82% of these benchmarks with an average
running time of 36 seconds, whereas Neo (resp. DeepCoder) solves 71% (resp.
32%) with an average running time of 99 seconds (resp. 205 seconds). Thus, we
believe these results answer our first research question in a positive way.

7.2 Ablation Study

To answer our remaining research questions, we perform an ablation study in
which we compare Concord against three variants:

– Concord-noRL: This variant does not use reinforcement learning to update
its policy during synthesis. However, it still uses the pre-trained policy to
guide search, and it also uses deduction to prune infeasible partial programs.
In other words, Concord-noRL is the same as the synthesis algorithm from
Figure 3 but it does not invoke the UpdatePolicy procedure to improve its
policy during synthesis.

– Concord-NoDeduce: This variant uses reinforcement learning; however,
it does not incorporate feedback from the deduction engine. That is, rather
than checking feasibility of partial programs, it instead samples complete
programs and uses the percentage of passing input-output examples as the
reward signal. Note that this variant of Concord essentially corresponds to
the technique proposed by Si et al [44]. 8

– Concord-StandardPG: Recall that our algorithm uses an off-policy vari-
ant of the standard policy gradient algorithm to incorporate additional feed-
back from the deduction engine. To evaluate the benefit of our proposed
approach, we created a variant called Concord-StandardPG that uses the
standard (i.e., on-policy) policy gradient algorithm. In other words, Con-
cordStandardPG implements the same synthesis algorithm from Figure 3
except that it uses Theorem 1 to update θ instead of Theorem 2.

The results from this evaluation are summarized in Table 1. Here, the first
column labeled “# solved” shows the number of solved benchmarks, and the
second column shows percentage improvement over Neo in terms of benchmarks
solved. The third column shows average synthesis time for benchmarks that can

8 We reimplement the RL algorithm proposed in [44] since we cannot directly compare
against their tool. Specifically, the policy network in their implementation is tailored
to their problem domain.

Program Synthesis using Deduction-Guided Reinforcement Learning 17

solved Delta to Neo Avg. time (s) Speedup over Neo

Concord-noRL 56 -21% 48 1.63×
Concord-NoDeduce 65 -8% 21 3.66×
Concord-StandardPG 65 -8% 27 2.88×
Concord 82 +15% 9 8.71×

Table 1. Results of ablation study result comparing different variants.

be solved by all variants and Neo. Finally, the last column shows speed-up in
terms of synthesis time compared to Neo.

As we can see from this table, all variants are significantly worse than Con-
cord in terms of the number of benchmarks that can be solved within a 5-minute
time limit 9. Furthermore, as we can see from the column labeled “Delta to Neo”,
all of our proposed ideas are important for improving over the state-of-the-art,
as Neo outperforms all three variants but not the full Concord system, which
solves 15% more benchmarks compared to Neo.

Next, looking at the third column of Table 1, we see that all three variants of
Concord are significantly slower compared to Concord in terms of synthesis
time. While both Concord and all of its variants outperform Neo in terms of
synthesis time (for benchmarks solved by all tools), Concord by far achieves
the greatest speed-up over Neo.

In summary, the results from Table 1 highlight that all of our proposed ideas
(i.e., (1) improving policy at synthesis time; (2) using feedback from deduction;
and (3) off-policy RL) make a significant difference in practice. Thus, we conclude
that the ablation study positively answers our last three research questions.

8 Related Work

In this section, we survey prior work that is closely related to the techniques
proposed in this paper.

Program synthesis. Over the past decade, there has been significant inter-
est in automatically synthesizing programs from high-level expressions of user
intent [46, 23, 39, 2, 6, 21, 40, 25]. Some of these techniques are geared towards
computer end-users and therefore utilize informal specifications such as input-
output examples [23, 40, 50], natural language [55, 56, 24, 42], or a combination of
both [10, 12]. On the other hand, program synthesis techniques geared towards
programmers often utilize additional information, such as a program sketch [46,

9 To understand the improvement brought by the pre-trainedd policy, we also conduct
a baseline experiment by using randomly initialized policy in Concord. Given the
setting, Concord can solve as many as 27% of the benchmarks in the given 5-minute
time limit.

18 Y. Chen et al.

49, 17, 36] or types [39, 33] in addition to test cases [20, 30] or logical specifica-
tions [49, 6]. While the synthesis methodology proposed in this paper can, in
principle, be applied to a broad set of specifications, the particular featurization
strategy we use in our implementation is tailored towards input-output exam-
ples.

Deduction-based pruning. In this paper, we build on a line of prior work on
using deduction to prune the search space of programs in a DSL [39, 19, 18, 53,
21]. Some of these techniques utilize type-information and type-directed reason-
ing to detect infeasible partial programs [39, 21, 20, 37, 22]. On the other hand,
other approaches use some form of lightweight program analysis to prune the
search space [53, 19, 18]. Concretely, Blaze uses abstract interpretation to build
a compact version space representation capturing the space of all feasible pro-
grams [53]; Morpheus [19] and Neo [18] utilize logical specifications of DSL
constructs to derive specifications of partial programs and query an SMT solver
to check for feasibility; Scythe [50] and Viser [51] use deductive reasoning
to compute approximate results of partial programs to check their feasibility.
Our approach learns from deduction feedback to improve search efficiency. As
mentioned in Section 6, the deductive reasoning engine used in our implemen-
tation is similar to the latter category; however, it can, in principle, be used in
conjunction with other deductive reasoning techniques for pruning the search
space.

Learning from failed synthesis attempts. The technique proposed in this
paper can utilize feedback from the deduction engine in the form of other infea-
sible partial programs. This idea is known as conflict-driven learning and has
been recently adopted from the SAT solving literature [5, 57] to program synthe-
sis [18]. Specifically, Neo uses the unsat core of the program’s specification to
derive other infeasible partial programs that share the same root cause of failure,
and, as described in Section 6, we use the same idea in our implementation of
the deduction engine. While we use logical specifications to infer other infeasi-
ble programs, there also exist other techniques (e.g., based on testing [54]) to
perform this kind of inference.

Machine learning for synthesis. This paper is related to a long line of work
on using machine learning for program synthesis. Among these techniques, some
of them train a machine learning model (typically a deep neural network) to
directly predict a full program from the given specification [35, 34, 12, 16]. Many
of these approaches are based on sequence-to-sequence models [47], sequence
to tree models [56], or graph neural networks [41] commonly used in machine
translation.

A different approach, sometimes referred to as learning to search, is to train a
statistical model that is used to guide the search rather than directly predict the
target program. For example, DeepCoder [2] uses a deep neural network (DNN)
to predict the most promising grammar productions to use for the given input-

Program Synthesis using Deduction-Guided Reinforcement Learning 19

output examples. Similarly, R3NN [38] and NGDS [26] use DNNs to predict the
most promising grammar productions conditioned on both the specification and
the current partial program. In addition, there has been work on using concrete
program executions on the given input-output examples to guide the DNN [11,
52]. Our technique for pretraining the initial policy network is based on the same
ideas as these supervised learning approaches; however, their initial policies do
not change during the synthesis algorithm, whereas we continue to update the
policy using RL.

While most of the work at the intersection of synthesis and machine learn-
ing uses supervised learning techniques, recent work has also proposed using
reinforcement learning to speed up syntax-guided synthesis [8, 44, 31, 29] These
approaches are all on-policy and do not incorporate feedback from a deduction
engine. In contrast, in our problem domain, rewards are very sparse in the pro-
gram space, which makes exploration highly challenging in a on-policy learning
setting. Our approach addresses this problem using off-policy RL to incorporate
feedback from the deduction engine. Our ablation study results demonstrate that
our off-policy RL is able to scale to more complex benchmarks.

Reinforcement learning for formal methods. There has been recent inter-
est in applying reinforcement learning (RL) to solve challenging PL problems
where large amounts of labeled training data are too expensive to obtain. For
instance, Si et al. use graph-based RL to automatically infer loop invariants [43],
Singh et al. use Q-learning (a different RL algorithm) to speed up program anal-
ysis based on abstract interpretation [45], Dai et al [14] uses meta-reinforcement
learning for test data generation, and Chen et al. [9] uses RL to speed up re-
lational program verification. However, these approaches only use RL offline to
pretrain a DNN policy used to guide search. In contrast, we perform reinforce-
ment learning online during synthesis. Bastani et al. has used an RL algorithm
called Monte-carlo tree search (MCTS) to guide a specification inference algo-
rithm [3]; however, their setting does not involve any kind of deduction.

9 Conclusion and Future Work

We presented a new program synthesis algorithm based on reinforcement learn-
ing. Given an initial policy trained off-line, our method uses this policy to guide
its search at synthesis time but also gradually improves this policy using feedback
obtained from a deductive reasoning engine. Specifically, we formulated program
synthesis as a reinforcement learning problem and proposed a new variant of the
policy gradient algorithm that is better suited to solve this problem. In addition,
we implemented the proposed approach in a new tool called Concord and eval-
uated it on 100 synthesis tasks taken from prior work. Our evaluation shows that
Concord outperforms a state-of-the-art tool by solving 15% more benchmarks
with an average speedup of 8.71×. In addition, our ablation study highlights the
advantages of our proposed reinforcement learning algorithm.

20 Y. Chen et al.

There are several avenues for future work. First, while our approach is appli-
cable to different DSLs and specifications, our current implementation focuses
on input-output examples. Thus, we are interested in extending our implemen-
tation to richer types of specifications and evaluating our method in application
domains that require such specifications. Another interesting avenue for future
work is to integrate our method with other types of deductive reasoning engines.
In particular, while our deduction method is based on SMT, it would be inter-
esting to try other methods (e.g., based on types or abstract interpretation) in
conjunction with our proposed RL approach.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. IEEE
(2013)

2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
Learning to write programs. In: Proc. International Conference on Learning Rep-
resentations. OpenReview (2017)

3. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Active learning of points-to specifi-
cations. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 678–692 (2018)

4. Bavishi, R., Lemieux, C., Fox, R., Sen, K., Stoica, I.: Autopandas: neural-backed
generators for program synthesis. PACMPL 3(OOPSLA), 168:1–168:27 (2019)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning
sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications pp. 131–153 (2009)

6. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. pp. 467–481 (2017)

7. Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Generative code mod-
eling with graphs. In: ICLR (2019)

8. Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar
and reinforcement learning for neural program synthesis. In: ICLR (2018)

9. Chen, J., Wei, J., Feng, Y., Bastani, O., Dillig, I.: Relational verification using
reinforcement learning. PACMPL 3(OOPSLA), 141:1–141:30 (2019)

10. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions (2019)

11. Chen, X., Liu, C., Song, D.: Execution-guided neural program synthesis. In: ICLR
(2018)

12. Chen, Y., Martins, R., Feng, Y.: Maximal multi-layer specification synthesis. In:
Proceedings of the ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. pp. 602–612 (2019)

13. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

Program Synthesis using Deduction-Guided Reinforcement Learning 21

14. Dai, H., Li, Y., Wang, C., Singh, R., Huang, P., Kohli, P.: Learning trans-
ferable graph exploration. In: Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada. pp. 2514–2525
(2019), http://papers.nips.cc/paper/8521-learning-transferable-graph-exploration

15. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. Tools and Algo-
rithms for Construction and Analysis of Systems. pp. 337–340. Springer (2008)

16. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.r., Kohli, P.: Ro-
bustfill: Neural program learning under noisy i/o. In: Proceedings of the 34th
International Conference on Machine Learning-Volume 70. pp. 990–998. JMLR.
org (2017)

17. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics
programs from hand-drawn images. In: Advances in neural information processing
systems. pp. 6059–6068 (2018)

18. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: Proc. Conference on Programming Language Design and Im-
plementation. pp. 420–435 (2018)

19. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. In: Proc.
Conference on Programming Language Design and Implementation. pp. 422–436.
ACM (2017)

20. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.: Component-Based Synthesis
for Complex APIs. In: Proc. Symposium on Principles of Programming Languages.
pp. 599–612. ACM (2017)

21. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015. pp. 229–239 (2015)

22. Frankle, J., Osera, P., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016. pp. 802–815 (2016)

23. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Proc. Symposium on Principles of Programming Languages. pp. 317–
330. ACM (2011)

24. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Mapping language to code in
programmatic context. In: Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium, October 31 - November 4,
2018. pp. 1643–1652 (2018), https://www.aclweb.org/anthology/D18-1192/

25. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: Proc. International Conference on Software Engineering.
pp. 215–224. ACM/IEEE (2010)

26. Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-
guided deductive search for real-time program synthesis from examples. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings (2018),
https://openreview.net/forum?id=rywDjg-RW

27. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for in-
troductory automata assignments. In: Proceedings of the 2016 ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences.
pp. 70–80 (2016)

22 Y. Chen et al.

28. Levine, S., Koltun, V.: Guided policy search. In: International Conference on Ma-
chine Learning. pp. 1–9 (2013)

29. Liang, C., Norouzi, M., Berant, J., Le, Q.V., Lao, N.: Memory augmented policy
optimization for program synthesis and semantic parsing. In: Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.
pp. 10015–10027 (2018), http://papers.nips.cc/paper/8204-memory-augmented-
policy-optimization-for-program-synthesis-and-semantic-parsing

30. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for
patch generation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. pp. 727–739 (2017)

31. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from natural supervision. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019 (2019), https://openreview.net/forum?id=rJgMlhRctm

32. Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: an extensible synthesis
framework for data science. Proceedings of the VLDB Endowment 12(12), 1914–
1917 (2019)

33. Miltner, A., Maina, S., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.: Syn-
thesizing symmetric lenses. Proceedings of the ACM on Programming Languages
3(ICFP), 1–28 (2019)

34. Neelakantan, A., Le, Q.V., Abadi, M., McCallum, A., Amodei, D.: Learning a nat-
ural language interface with neural programmer. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings (2017), https://openreview.net/forum?id=ry2YOrcge

35. Neelakantan, A., Le, Q.V., Sutskever, I.: Neural programmer: Inducing latent pro-
grams with gradient descent. In: 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings (2016), http://arxiv.org/abs/1511.04834

36. Nye, M.I., Hewitt, L.B., Tenenbaum, J.B., Solar-Lezama, A.: Learning to infer
program sketches. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. pp. 4861–4870
(2019), http://proceedings.mlr.press/v97/nye19a.html

37. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Portland, OR, USA, June 15-17, 2015. pp. 619–630
(2015)

38. Parisotto, E., Mohamed, A.r., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis. In: ICLR (2017)

39. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. Proc. Conference on Programming Language Design and
Implementation pp. 522–538 (2016)

40. Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. pp. 107–126
(2015)

41. Shin, E.C., Allamanis, M., Brockschmidt, M., Polozov, A.: Program synthesis and
semantic parsing with learned code idioms. In: Advances in Neural Information
Processing Systems. pp. 10824–10834 (2019)

Program Synthesis using Deduction-Guided Reinforcement Learning 23

42. Shin, R., Allamanis, M., Brockschmidt, M., Polozov, O.: Program synthesis and
semantic parsing with learned code idioms. In: NeurIPS (2019)

43. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada. pp. 7762–7773 (2018)

44. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

45. Singh, G., Püschel, M., Vechev, M.T.: Fast numerical program analysis with re-
inforcement learning. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I. pp. 211–229 (2018)

46. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. pp. 404–415
(2006)

47. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems. pp. 3104–3112
(2014)

48. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in neural
information processing systems. pp. 1057–1063 (2000)

49. Torlak, E., Bod́ık, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. pp.
530–541 (2014)

50. Wang, C., Cheung, A., Bodik, R.: Synthesizing highly expressive sql queries from
input-output examples. In: Proc. Conference on Programming Language Design
and Implementation. pp. 452–466. ACM (2017)

51. Wang, C., Feng, Y., Bod́ık, R., Cheung, A., Dillig, I.: Visualization by ex-
ample. PACMPL 4(POPL), 49:1–49:28 (2020). https://doi.org/10.1145/3371117,
https://doi.org/10.1145/3371117

52. Wang, C., Huang, P., Polozov, A., Brockschmidt, M., Singh, R.:
Execution-guided neural program decoding. CoRR abs/1807.03100 (2018),
http://arxiv.org/abs/1807.03100

53. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement. In:
Proc. Symposium on Principles of Programming Languages. pp. 63:1–63:30. ACM
(2018)

54. Wang, Y., Dong, J., Shah, R., Dillig, I.: Synthesizing database programs for schema
refactoring. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019. pp. 286–300 (2019)

55. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: SQLizer: Query Synthesis from
Natural Language. In: Proc. International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. pp. 63:1–63:26. ACM (2017)

56. Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z., Radev, D.: Syn-
taxsqlnet: Syntax tree networks for complex and cross-domain text-to-sql task. In:
Proceedings of EMNLP. Association for Computational Linguistics (2018)

24 Y. Chen et al.

57. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: Proc. of International Conference on
Computer-Aided Design. pp. 279–285. IEEE Computer Society (2001)

