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Abstract—Dynamic spectrum access enables opportunistic
users (OUs) to access underutilized licensed bands by querying
spectrum databases. However, the operational details of the
incumbent users may leak to OUs during the query process.
Privacy and exclusion zones have been proposed as effective
countermeasures to protect the IUs’ privacy, while also managing
interference. In the case of multiple heterogeneous coexisting IUs,
there is an inherent tradeoff between their achieved throughput,
which is controlled by the received interference, and the utility
provided to OUs, under a fixed privacy constraint. In this paper,
we address the problem of maximizing the utility of rational
IUs, defined as the weighted sum between the IUs’ capacity
and compensation from allowing OUs’ opportunistic access while
meeting the individual IUs’ privacy constraints. We formulate the
interaction between the heterogeneous IUs as a non-cooperative
continuous game and derive the Nash equilibrium that maximizes
the utility of each IU. Our simulations show that the NE solution
improves the individual utilities of the IUs compared to a
joint optimization approach, where the sum of the utilities is
maximized while providing more fairness to the IUs.

I. INTRODUCTION

The fast-growing demand for high speed mobile services

and the profit-driven nature of spectrum providers (IUs) make

them actively seek new ways to increase their profits. One

such a way is Dynamic Spectrum Access (DSA) which allows

opportunistic users (OUs) to access underutilized channels of

higher-priority incumbent users (IUs) [1]. To enable oppor-

tunistic access, spectrum databases store detailed information

about IUs’ activity, such as their geo-locations, which could be

leaked when the database is compromised. Even if the database

is well-protected, malicious OUs can issue multiple spectrum

access queries to pinpoint the real locations of the IUs using

intersection attack [2]. Leakage of such sensitive information

affects the location privacy of IUs.

Establishing a privacy zone (PZ) inside an exclusion zone

(EZ) has recently attracted significant interest [2]–[4]. This

process is shown in Figure 1, where an IU located at x

tries to protect the privacy of its location, while managing

interference. The IU first randomly perturbs its true location

x into a fake one x
′
. Each IUm announces its PZ as a disk

centered at x
′

with radius r1m that covers x to any OU that

queries x to ask about transmitting in location x. In this way,

x is indistinguishable from all other locations inside the PZ.

To protect all the points inside the PZ from interference, the
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Figure 1: Definition of privacy and exclusion zones.

PZ is surrounded with an EZ of radius r2m [3], inside of which

all OUs remain silent. The EZ size scales with the amount of

interference that the IU tries to suppress, and PZ size is related

to the privacy level that the IU wants to achieve.

A centralized architecture, in which a central IU (IUc) is

responsible for deciding the size of the EZ associated with

each IU, was first studied in [3]. The authors investigated

the tradeoff between OUs’ transmission opportunity and IUs’

location privacy. Their scheme depends on choosing IUc at

random as the head of an anonymity cluster, which creates

a single point of failure and may not achieve privacy if the

cluster is too small. In [2], we studied the tradeoff between

opportunity, privacy, and interference by designing a PZ inside

an EZ for one IU. In [4], we generalized this model to the case

of multiple cooperative IUs. In these works, the competition

between the heterogeneous IUs was not addressed.

In practical scenarios, multiple IUs selfishly try to maximize

their utility. Consider, for example, a commercial area that

has multiple competing spectrum operators (IUs) and their

deployed micro base stations (OUs) who try to co-exist in the

spectra that allow opportunistic access such as the radar and

TV bands. Each operator can lease its exclusive spectrum to a

group of OUs located in the same area (in exchange for a cer-

tain fee). The objective of an IU is to maximize the payments

it receives from the OUs and maintain a desired degree of

service for its own OUs while limiting the interference caused

by them on IUs’ transmission.

Consequently, there is a fundamental tradeoff between the

IUs’ spectrum revenue (from active OUs) and the IUs’ trans-
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Figure 2: Two IUs, covered by an exclusion zone (EZ) and a

privacy zone (PZ), and surrounded by OU groups (G1, G2).

mission capacity. For example, if IU1 in Figure. 2 wants to

improve its transmission capacity at the expense of revenue

(or to get more privacy), IU1 would increase the size of its EZ

to reduce interference from OUs. This affects the revenue of

IU2, as more of its OUs, located in IU1’s EZ, are forced to be

silent. However, if an IU2 decides to shrink its EZ and improve

its revenue, IU1 would receive more interference from more

active OUs. Therefore, having more interference suppression

(or more privacy) means having less spectrum revenue, and

vice versa, where the parameter that controls the tradeoff is

the EZ radius. Given that each IU individually decides its

own EZ radius, there will be a conflict of interests between

the IUs in terms of privacy and interference. Therefore, an

implicit agreement must be reached among IUs so that no IU

can benefit from unilaterally deviating.

In this paper, we formulate the problem of maximizing the

utility of IUs under privacy constraints as a non-cooperative

game, with IUs as players, EZ radii as actions, and the

weighted sum between the total payments that an IU gets

and IU’s capacity, as payoffs. We choose the non-cooperative

game because IUs represents separate entities competing for

revenue. We prove that the proposed game has a unique Nash

equilibrium (NE).

The contributions of this paper are summarized as follows:

1) We propose a non-cooperative game to study the tradeoff

between IUs’ utilities and their privacy in DSA.

2) For the case of two IUs, we prove that our proposed

game has a unique NE, which we obtain numerically

by simultaneously solving the best-response equations

to find the EZ radii of the two IUs at NE.

3) For the case of multiple IUs, due to the complexity

of using the exact method, we use the sub-gradient

algorithm to reach a sub-optimal NE and we show that

it has a small performance gap with the exact NE.

4) Simulation results show that a) the NE has a small price

of anarchy compared with JO solution; b) there is a

tradeoff between the PZ size and the IUs’ utility; c) NE

solution is fairer, has less utility variance, compared with

JO solution; d) our work outperforms the work in [3].

To the best of our knowledge, this is the first work to jointly

consider interference from OU activity and IU privacy in a

distributed multi-operator setting.

II. SYSTEM MODEL

A. Spectrum Sharing Architecture and Query Process

We consider two types of spectrum users: incumbent users

(IUs), opportunistic users (OUs). We assume a set of M

independent IUs who coexist with OUs in the same geographic

area. To maintain location privacy, each IUm determines a

circular privacy zone (PZm) [5] centered at a fake location

x
′
m. To limit the interference, each IUm is surrounded with

another circular protection region EZm with radius r2m, as

shown in Figure 1. Any OU inside the EZm remains inactive.

Therefore, the IUm can control the interference it experiences

by shrinking and expanding EZm. Also, we assume that

information such as OUs’ transmission power, IUs’ PZ radii

and λm, can be known to all the IUs via a common channel

through which the IUs can exchange information.

Each IUm has a group of OU subscribers, denoted by

Gm, that access IUm’s spectrum when IUm allows it. For

mathematical convenience, the subscribers of IUm are assumed

to be uniformly distributed by a Poisson point process [6] with

density λm. The value of λm can be obtained from general

location statistical data such as prior query history [7].

Each group of OUs accesses the spectrum opportunistically

by querying a spectrum access database (SASm) managed by

IUm. The query of an OU ∈ Gm includes its location ℓi and the

channel requested. The IU checks its SASm and returns ‘1’ if

ℓi < E Z and the requested channel/time is available (granted

access), and ‘0’ otherwise (denied access). The query and

response process is executed in rounds. IUm grants channel

access to querying OUs at the beginning of every round for a

fixed time period. If a longer access period is needed, the OUs

repeat the query process. Each IUm independently decides the

query results sent to Gm. This decision is made based on a

utility function related to the transmission capacity of the IUs

and the payment (spectrum fee) they receive from the OUs.

The IU’s are assumed to be rational in the sense that they

selfishly try to maximize their utilities. This model captures

a non-cooperative spectrum management approach without

coordination between heterogeneous spectrum providers.

B. Utility of Incumbent Users

Each IUm independently decides on the sizes of the PZ and

the EZ by selecting r1m and r2m, respectively. The value of r1m

satisfies a desirable privacy constraint whereas r2m balances

the tradeoff between interference at IUm and transmission

opportunity of Gm, for which IU receives payment. The

following utility function Um captures this tradeoff:

Um = ωmNmCOU + CIUm
, (1)

where ωm is weight controls the first term, Nm is the number

of OUs ∈ Gm that that do not belong to any EZ. We consider

payment to be equal to a constant transmission capacity COU

of an OU. Therefore, the total payment is ωmNmCOU . The

Shannon capacity CIUm
achieved by IUm is given by:

CIUm
= log(1 + PmHm

Im + N
), (2)



where Pm is the transmission power of IUm, N is the noise

power, Hm is the combination of the channel impulse response

and antennae gains at IUm’s receiver, and Im is the cumulative

interference experienced at IUm due to all active OUs

Im = ImOU −
M∑

m,k

Isk (3)

where Im
OU

is the total interference from all OU groups to

IUm and
∑M

m,k Is
k

is the total suppressed interference due to

the existence of other EZs. We calculate Ik
OU

and Is
k

following

the model in [2]. The expected interference Ik
OU

, caused by

OUs outside EZm, is calculated at a point y on the boundary

of PZk . The interference effect could be partitioned to circles,

where each circle A = B(y, r) is with center y and a different

radius r that ranges from r2m − r1m to ∞ (Figure 2). The

density of OUs on a circle A is λ =
∑M

m=1
λm/AH , where λms

are independent and, according to [8], they are equivalent to

normal distribution in a two-dimensional space. The density

λm is scaled down by AH to indicate the actual number of

active OUs. For every value of r , A has an average number of

OUs = 2πrλ and each OU on this circle produces interference

Por−α, where α is the propagation coefficient and Po is the

OU power and we assume it is constant for all OUs. Therefore,

the aggregated interference Im
OU

due to all A circles on y can

be obtained by integrating over-all the values of r:

ImOU =

∫ ∞

r2m−r1m

GPor−αλ2πr dr, (4)

where G is the OU’s channel gain, and G = 1 without

loss of generality. According to [4], we calculate Iak
as the

interference from the center of EZk to the nearest boundary

point on PZm multiplied by the area of EZk . The closed-form

expressions of Im
OU

and Iak
are given as follows:

ImOU = Poλπ[
0.502πr3

1m
− 0.5r2

1m

(r2mr3

1m
+ r3

2m
r1m)

+

2(r2m + r1m)2−α
α − 2

+

(1.645r2mr1m − 0.5r2

2m
) ln( r2m−r1m

r1m+r2m
)

(r2mr3

1m
+ r3

2m
r1m)

] (5)

Isk =
πλr2

2k

(dmk − r1k)α
(6)

where dmk is the distance between IUm and IUk .

C. Privacy

IUs aim at maintaining their location privacy by introducing

PZs. IUs’ privacy can be violated by the OUs curious about the

operational details of the IUs. If a traditional EZ is adopted

(IU is in the center of EZ without PZ), with many queries,

the OUs will be able to accurately estimate the IU location

through an “intersection attack” [9]. That is, for every query

that returns ‘0’ answer, it means that IU is located within a

circle with radius equal to the transmission range of the OU

(up to an error margin), centered at the OU’s location. We

adopt conditional entropy to quantify the uncertainty given the

information available to the OUs, i.e., the EZ and PZ uploaded

by each IU. Note that the EZ does not provide any additional

information about x, since by design, we know that the IU

cannot reside in the region between the PZ and EZ. Thus,

it is safe to say that for IUm, where m ∈ {1, · · · ,M}, the

conditional entropy of H(Xm |E Zm, PZm) = H(Xm |PZm):

Definition 1 (Privacy (P)). Let random variable Xm rep-

resents IUm’s location. The privacy P of IUm is the

H(Xm |PZm): the uncertainty of Xm given PZm is known.

When Xm has a uniform prior distribution, H(Xm |PZm) is

maximized when:

P(Xm = x |PZm) =
1

|PZm |
, ∀x ∈ PZm, (7)

where |PZm | is the size of the PZm. In other words, by pub-

lishing the PZm, the IU’s location is indistinguishable among

all the locations in the PZm. Note that P(Xm = x |PZm) is

inversely proportional to the PZm size. Therefore, H(Xm |PZm)
increases with the PZm size.

III. GAME FORMULATION AND EQUILIBRIUM

A. The Non-cooperative IU game

Assume that IUs are rational users with the main objective

of maximizing their payoffs. IUs cannot decide their EZs’ radii

arbitrarily. If IUm wants to decrease the interference it receives

from the OUs, it can increase its EZ radius, r2m. In this case,

the EZ could continue to expand until no OUs can transmit.

This decreases the OUs’ transmission opportunities, for all OU

groups, as well as the revenue of the other IUs. Therefore,

IUm’s EZ decision affects the other IUs as well. If an IU

increases its EZ radius, OUs from other groups will be silenced

which affect the other IUs utilities: 1) the IUs’ payments will

decrease 2) their communication capacity will sub-linearly

increase. If an IUk solely decides to decrease its EZ, to get

more payments from Gk , other IUs will get more payments

as well because of the new active OUs. However, they will

experience more interference. Therefore, there is a tradeoff

between the IUs’ utility and interference they experience. The

larger the EZ the larger the suppressed interference and less

revenue and vice versa. This tradeoff cannot satisfy all the IUs

without having an implicit agreement, i.e., equilibrium.

We formulate the interaction between the IUs as a non-

cooperative game [10]. Our game consists of the following:

1) Players: the IUs.

2) Actions: the action of a player IUm is the EZ radius r2m

which has continuous support, i.e., r2m ∈ [r1m, dmk−r1k],
where IUk is the nearest IU.

3) Payoffs (Utilities): a weighted sum of all the payments

that IUm receives from the OUs and its transmission

capacity. The utility of IUm is written as follows:

Um = ωmλm(A −
M∑
k=1

πr2

2k)COU + CIUm
, (8)

where A is the total area which we assume to be very large to

decrease the border effect [8]. The first term (Tp) represents

the payments that the IU gets from the OUs. This payment

is a fee (can be virtual money) that the OU give to the IU



in return for granting them spectrum access. We calculate Nm

by multiplying λm by the EZ-free area Af = (A −∑M
k=1
πr2

2k
),

where
∑M

k=1
πr2

2k
is the sum of all EZ areas. The second term

(Tc) represents the transmission capacity of IUm. We notice

that Tp is large, compared to Tc , as it represents the effect

of a lot of OUs transmitting data. However, all OUs cannot

transmit at the same time due to interference. Therefore, we

introduce ωm =
β

λmAH
as weight to get the actual number

of OUs that can simultaneously transmit which equals
A f

AH
,

where AH = 2
√

3R2 is the area of the hexagon that encloses

the transmission range circle of an active OU [11], R is the

radius at which the OU power reaches Pmin, and β is a weight

that tunes down Tp .

Our game is continuous as its action space has continuous

support. Also, the players have complete information which

means that IUm knows the PZ radii, the transmission powers,

λm ∀m, etc of the other IUs. Information exchange is attained

by a common channel between the IUs. Finally, the game is

symmetric because the pay-off functions take the same form.

B. Nash Equilibrium

NE is a stable state of a game involving the interaction of

different players, in which no player can increase its payoff

by unilaterally changing its action. If the following conditions

can be satisfied, a continuous game has at least one NE: (1)

the action set is compact and convex; (2) the utility function

is continuous and concave [12].

Theorem III.1. Our proposed game has a NE,

Proof:

1) The action set is compact as it is closed and bounded.

The action set is convex as it is continuous linear range.

2) The utility function is continuous as it has continuous

support and it is defined over-all the points. The utility

function is concave because: (a) the term ωmλmACOU

is linear; (b) the term −ωmλmCOU

∑M
k=1

r2

2k
is concave;

(c) CIUm
is concave as it is a concave function of a

monotonically decreasing function Im [13] �

Hence, our game has a NE which can be obtained in two

steps. The first step is obtaining the best response of each

player IUm, noted by BRm(r2m), by differentiating each utility

function Um by the decision r2m and equaling it to zero

(
δUm

δr2m
= 0) which yields:

r2m =
1

ωm2πλiCOU

−PmHmI
′
m

(N + Im)(Im + N + HmPm)
(9)

Note that (9) is a nonlinear ordinary differential equation.

Therefore, to simplify (9), we solve the differential equation

and the solution [14] is given by

Im = −N +
PmHmKm

er
2

2m
/2Cm

, (10)

where Cm =
1

ωm2πλmCOU
and Km is an integration constant

we obtain from the initial conditions. Consider the initial

condition r2m = r1m which causes maximum interference Immax

on PZ’s boundary [2]. Then, at the initial condition, we have:

Km = e
r2

1m
2Cm

Immax −
∑M

m,k Is
k
+ N

Immax −
∑M

m,k Is
k
+ N + PmHm

(11)

We can use the simplified version (10) instead of (9) as

BRm. The IUs decide their own r1m based on their privacy

preferences and exchange information like r1m,λm,etc. The

second step is jointly solving (12) and (13) which results in a

NE point. In other words, IUm obtains the value of the Nash-

optimal r∗
2m

to operate on. For example, we consider the case

of two players IU1 and IU2. Then, we use (3) and (6) and (10)

with α = 3 to get expressions of r21 in terms of r22 and vice

versa as follows:

r∗
2

21
=

(d12 − r11)3
(λ1 + λ2)Poπ

(N + IOU1(r22) −
K1H1P1

er
2

22
/2c1

), (12)

r∗
2

22
=

(d21 − r12)3
(λ1 + λ2)Poπ

(N + IOU2(r21) −
K2H2P2

er
2

21
/2c2

), (13)

However, solving (12) and (13) simultaneously results in a

quintic (5th order) equation which does not have an explicit

solution. Therefore, we solve this system of equations numer-

ically by finding an intersection point between them which

gives us the NE point (we explain that in Section IV).

This method (NE-exact) gives the exact solution to our

game. However, this method is very hard to be used beyond

two IUs for the following reasons. First, simultaneously solv-

ing (12) and (13) gives a two quintic equations and for three

IUs, we have three 15th order equations which doesn’t have

a closed-form solution. Second, we solve the best response

equation by intersection which is a form of exhaustive search

and its complexity grows exponentially with the number of

IUs Third, NE-exact requires that the IUs exchange a lot of

information which increases communication overhead.

C. Nash Equilibrium for Multiple IUs

For the case of more than two IUs, we use a sub-gradient

algorithm, which has several merits, we propose using the sub-

gradient algorithm (SGA) [15] to solve the problem of multiple

IUs which has several merits. First, the computational com-

plexity of SGA is O(1/ǫ2) [16] iterations which asymptotically

depend on the target tolerance ǫ and not M like NE-exact.

Second, the SGA has low overhead as it only requires, at each

iteration, the exchange of M EZ values updates.

The NE-SGA method proceeds as follows. First, all the

IUs initialize their EZ radii (r2m ∀m) by the value of their

PZs (r1m ∀m). Second, given the actions of the other IUs,

each IUm increases/decreases r2m if the increasing/decreasing

action increases its individual utility value, and if not, r2m

should stay unchanged. The amount of decrease and increase

at iteration t for IUm is dictated by the value δ∇(Um), where

δ is the step size, ∇ is the gradient of the differentiable utility

function Um. Then, algorithm goes on until the convergence

criteria is achieved and NE is reached. The SGA method is

summarized in Algorithm 1.

The SGA algorithm has been proved to converge to L2δ/2
gap (L is Lipschitz constant), at most, from the optimal



Algorithm 1: Sub-gradient Algorithm (SGA)

Each IUm initializes r0

2m
by r1m.

while |Um(r t2m) − Um(r t−1

2m
)| <= ǫ do

for m = 1, · · · ,M do

- IUm stores the current value of the EZ radius.

- IUm calculates:

rinc = r t
2m + δ∇(U(r t

2m)),

rdec = r t
2m − δ∇(U(r t

2m)),

if (Um(rdec),Um(r t2m)) ≤ Um(rinc) then

-r t+1

2m
= rinc

else

if Um(rinc) ≤ Um(rdec) then

-r t+1

2m
= rdec

else

-r t+1

2m
= r t

2m

end if

end if

-IUm inform the other IUs about r t+1

2m
.

end for

end while

solution and it converges to the optimal solution if Um(r2m)
is differentiable, see [16]. Furthermore, in our work, it almost

converges to the exact NE in less than 15 iterations. Since

implementation shows that SGA has perfect convergence, we

choose ǫ = 0 as our stoppage criteria. For the step size δ, we

choose it to be around 200 m as this value guaranties the fastest

convergence and the nearest utility value to the NE-exact.

IV. SIMULATION RESULTS

We simulate a system consists of 16 IUs randomly placed

on the positions of base stations in a suburban area. If it is

not specified, the densities λm = 0.01 OU/m2, Pm = 30 dBm,

each OU transmits with constant power Po = 20 dbm, the

weights are similar ωm = 10
−4 and r1m = 500 m. The game

takes place in a large area A = 60 km2 and the players

exist around A’s center to avoid the boundary effect. For NE-

exact, the simulation happens as follows. First, for each IU, the

best response function is calculated and simplified according

to (10) and (11) and the best response equation in (12) and

(13) are published. Then, each IU plots (12) and (13) on the

range [r1m, d12], where d12 is the distance between IU1 and

IU2 , and find the intersection between the two curves which

gives the NE point. For NE-SGA, more than two IUs, we

follow the steps of Algotithm1 and the parameters provided in

Section IV. For the joint optimization (JO) case (only adopted

for comparison), all the IUs send their information to an IUc

which solves the following problem to get the optimal global

solution r2m ∀m.

max
r2m ∀m

M∑
m=1

Um st . r1m ≤ r2m ∀m, (14)

A. The Exact NE for Two IUs

Figure 3 shows the intersection between the best response

equations to get the NE point. When r11 = r12 and all the

parameters are identical, the value of NE point becomes the

same for both IUs. For the case when the IUs select different

PZ sizes (r11 ≥ r12), increasing the r11 causes an increase in

the interference on the PZ boundary which results in a super-

linear decrease in IU1’s capacity. Therefore, r∗
21

becomes larger

which makes IU2 suffer from payment decrease due to the

enlargement of the EZ1. However, this enlargement benefits

IU2 in terms of suppressed interference. Therefore, EZ2 would

decrease slightly or remain unchanged.

In Figure 4, we show the behaviour of NE against different

values of identical PZ radii which results in identical EZs as

well. We note that increasing the PZ size causes an increase to

EZ’s size to cancel the excess interference on PZ’s boundary.

Figure 5 shows the utility convergence of NE-SGA and JO

(obtained by line search [13]) and compares them to the exact

NE, for the case of 2 IUs. We can see that JO performs

better than NE-exact and NE-SGA because JO takes into

account all the parameters jointly which produces a solution

that jointly maximizes the utilities of both IUs. We can see

also that there is a small gap between the NE methods

and JO. Furthermore, NE-exact and NE-SGA are almost the

same with NE-SGA having the merit of less computational

complexity. We notice also that for a higher weight value

the gap between NE-SGA and the JO becomes smaller and

the utility value becomes higher, and the algorithm converges

faster. This happens because the payment term Tp becomes

higher which means having smaller EZs, a quadratic increase

in the payments, and hence more interference which super-

linearly decreases the capacity.

B. The Sub-gradient Algorithm for Multiple IUs

Figure 6 shows the convergence of the EZ radius for

different schemes(M = 16, ω = 10
−4). We can see that JO has

the smallest EZ as r2m is obtained optimally and the utilities

of all IUs are considered jointly. However, NE-SGA waits

for the approval of all IUs on the equilibrium decision that

triggers no deviation, consequently, convergence takes much

more iterations, and more EZ radius, to be reached.

In Figure 7, we plot the average IUs utility versus their

number. We can see that average utility decreases as having

more IUs requires having more EZs, and hence, less over-all

payments from the OUs. We can see also that the gap between

NE-SGA and JO becomes bigger as the number of IUs

increases. NE-SGA consumes a bigger area to approximates

JO and this results in bigger EZs4, as M increases, and hence

lower overall utilities for NE-SGA.

Figure 8 shows how the utility changes with dif-

ferent combinations of ω for three IUs with PZs=

1000m, 800mandb 500m. We see that having high ω = 10
−4

for IUs gives higher utility as Tp dominates the utility. How-

ever, if we have low ω = 0.5 ∗ 10
−4, for all IUs, Tc dominates

the utility, the EZs gets bigger and the overall utility decreases.

We notice that JO always does better with the smallest PZ

(the first and second groups, third bar) as it produces the
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smallest EZ and hence better utility. For the third group,

we fixed the PZs and had the following weight combination

ω = [0.25, 0.5, 1]∗10
−4. We can see that as the dependency on

Tp decreases (lower ω) NE-SGA performs better as it produces

bigger EZs. Note that, although JO could be outperformed in

some cases, it has a better over-all utility, but obviously higher

variance.

Figure 9 shows the variance of utility values for different

number of IUs (we fix the weights and vary the PZs). We

can see utility variance increases with the number of IUs. We

notice that the utility variance of JO is higher as the EZs are

optimized jointly to maximizes the overall sum of the utilities

and doesn’t take into consideration the differences among the

IUs’ utilities. However, NE-SGA produces a more homoge-

neous utility values, which endorses the fairness among the

IUs.

C. A comparison with the previous work

In Figure 10 and Figure 11, we compare NE-SGA and JO

to the distinguished work done by Park et. al. [3]. In [3],

each IU has a PZ=EZ (PEZ) and this PEZ is transfigured to

add privacy, in case of no clustering (1-cluster). To add more

privacy, the IUs are clustered with their proximity of Q IUs

(Q-cluster). We can see that Park’s scheme consumes a bigger

EZs area out of the total area (compared to JO and NE-SGA)

which gives higher privacy and more interference suppression

in the expense of OUs’ utility. On the other hand, NE-SGA

has moderate utility loss compared to Park’s scheme and better

interference suppression compared to JO.

V. RELATED WORKS

Early centralized techniques focused on location obfus-

cation or spatial cloaking [5]. In this technique, the user



location is made indistinguishable inside its PZ. Also, K-

anonymity [17] was proposed to make the original location

indistinguishable among other K − 1 users. Andres et al. [18]

proposed geo-indistinguishability, which is a variant of differ-

ential privacy [19]. Their mechanism adds two dimensional

Laplacian distribution noise to a user’s real location before

uploading to an untrusted server. In this method, interference

is not explicitly calculated or optimized. Finally, cryptographic

techniques protect IU and/or OU locations by encrypting

them. In [20] Dou et al. presented a privacy-preserving SAS

design that protects IU’s privacy through secure computation

on the ciphertext domain based on homomorphic encryption

so that the IU’s EZ information is hidden from the SAS.

Although these schemes achieve location privacy, they don’t

consider the OUs’ interference to the IU. Also, they depend

on a central node which compromises the location privacy.

The high computation/communication overhead introduced

by encryption and decryption is also a concern due to the

centrality of the decision.

Game theory has been used in the literature to provide loca-

tion privacy while ensuring the user’s utility. In [21], Liu et al.

propose a distributed dummy user generation method to grant

users control over their own privacy protections. The authors

formulate a Bayesian game to analyze the non-cooperative

behavior of the users and identify the NE solutions. In [22],

Shokri et al. propose a methodology that enables the design of

optimal user-centric location obfuscation mechanisms respect-

ing each individual user’s service quality requirements, while

maximizing its location privacy by formulating a Stackelberg

Bayesian game. However, these approaches do not consider

interference while trying to solve the games. Game theory has

been used to study pure DSA problems. In [23], Sengupta

et al. model the competition between the service providers,

over users, using a multiple-bidder auction game and prove

the existence of NE. In [24], Rawat et al. model the game

between spectrum providers and secondary users as a two-

stage Stackelberg game and they find the Stackelberg-NE.

In [25], Xiao et al. the authors propose an inter-operator

spectrum aggregation coalition game which allows two or

more MNOs to cooperate and share their licensed bands to

support a common set of service types. Although these works

give promising solutions for spectrum allocation, using game

theory, they do not consider privacy as an objective.

VI. CONCLUSION

In this paper, we formulated a non-cooperative continuous

game with complete information to represent the competition

between IUs. The NE of this game maximizes the individual

utility of each IU, which is the weighted sum between the

IU’s communication capacity and the revenue it gets from OUs

that belong to it. We used numerical simulations to find NE.

Simulation results show that the NE-exact and NE-SGA has a

very small gap with JO under similar parameters. Also, results

show that our work outperforms the work in [3].
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