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Abstract—Dynamic spectrum access enables opportunistic
users (OUs) to access underutilized licensed bands by querying
spectrum databases. However, the operational details of the
incumbent users may leak to OUs during the query process.
Privacy and exclusion zones have been proposed as effective
countermeasures to protect the IUs’ privacy, while also managing
interference. In the case of multiple heterogeneous coexisting IUs,
there is an inherent tradeoff between their achieved throughput,
which is controlled by the received interference, and the utility
provided to OUs, under a fixed privacy constraint. In this paper,
we address the problem of maximizing the utility of rational
IUs, defined as the weighted sum between the IUs’ capacity
and compensation from allowing OUs’ opportunistic access while
meeting the individual IUs’ privacy constraints. We formulate the
interaction between the heterogeneous IUs as a non-cooperative
continuous game and derive the Nash equilibrium that maximizes
the utility of each IU. Our simulations show that the NE solution
improves the individual utilities of the IUs compared to a
joint optimization approach, where the sum of the utilities is
maximized while providing more fairness to the IUs.

I. INTRODUCTION

The fast-growing demand for high speed mobile services
and the profit-driven nature of spectrum providers (IUs) make
them actively seek new ways to increase their profits. One
such a way is Dynamic Spectrum Access (DSA) which allows
opportunistic users (OUs) to access underutilized channels of
higher-priority incumbent users (IUs) [1]. To enable oppor-
tunistic access, spectrum databases store detailed information
about [Us’ activity, such as their geo-locations, which could be
leaked when the database is compromised. Even if the database
is well-protected, malicious OUs can issue multiple spectrum
access queries to pinpoint the real locations of the IUs using
intersection attack [2]. Leakage of such sensitive information
affects the location privacy of IUs.

Establishing a privacy zone (PZ) inside an exclusion zone
(EZ) has recently attracted significant interest [2]-[4]. This
process is shown in Figure 1, where an IU located at x
tries to protect the privacy of its location, while managing
interference. The IU first randomly perturbs its true location
x into a fake one x'. Each IU,, announces its PZ as a disk
centered at x with radius ry,, that covers x to any OU that
queries x to ask about transmitting in location x. In this way,
x 1is indistinguishable from all other locations inside the PZ.
To protect all the points inside the PZ from interference, the
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Figure 1: Definition of privacy and exclusion zones.

PZ is surrounded with an EZ of radius r»,, [3], inside of which
all OUs remain silent. The EZ size scales with the amount of
interference that the IU tries to suppress, and PZ size is related
to the privacy level that the IU wants to achieve.

A centralized architecture, in which a central IU (IU,) is
responsible for deciding the size of the EZ associated with
each IU, was first studied in [3]. The authors investigated
the tradeoff between OUs’ transmission opportunity and IUs’
location privacy. Their scheme depends on choosing /U, at
random as the head of an anonymity cluster, which creates
a single point of failure and may not achieve privacy if the
cluster is too small. In [2], we studied the tradeoff between
opportunity, privacy, and interference by designing a PZ inside
an EZ for one IU. In [4], we generalized this model to the case
of multiple cooperative IUs. In these works, the competition
between the heterogeneous IUs was not addressed.

In practical scenarios, multiple IUs selfishly try to maximize
their utility. Consider, for example, a commercial area that
has multiple competing spectrum operators (IUs) and their
deployed micro base stations (OUs) who try to co-exist in the
spectra that allow opportunistic access such as the radar and
TV bands. Each operator can lease its exclusive spectrum to a
group of OUs located in the same area (in exchange for a cer-
tain fee). The objective of an IU is to maximize the payments
it receives from the OUs and maintain a desired degree of
service for its own OUs while limiting the interference caused
by them on IUs’ transmission.

Consequently, there is a fundamental tradeoff between the
IUs’ spectrum revenue (from active OUs) and the IUs’ trans-
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Figure 2: Two IUs, covered by an exclusion zone (EZ) and a
privacy zone (PZ), and surrounded by OU groups (G, G»).

mission capacity. For example, if IU; in Figure. 2 wants to
improve its transmission capacity at the expense of revenue
(or to get more privacy), [U; would increase the size of its EZ
to reduce interference from OUs. This affects the revenue of
1U,, as more of its OUs, located in IU;’s EZ, are forced to be
silent. However, if an IU; decides to shrink its EZ and improve
its revenue, IU; would receive more interference from more
active OUs. Therefore, having more interference suppression
(or more privacy) means having less spectrum revenue, and
vice versa, where the parameter that controls the tradeoff is
the EZ radius. Given that each IU individually decides its
own EZ radius, there will be a conflict of interests between
the IUs in terms of privacy and interference. Therefore, an
implicit agreement must be reached among IUs so that no IU
can benefit from unilaterally deviating.

In this paper, we formulate the problem of maximizing the
utility of IUs under privacy constraints as a non-cooperative
game, with IUs as players, EZ radii as actions, and the
weighted sum between the total payments that an IU gets
and IU’s capacity, as payoffs. We choose the non-cooperative
game because IUs represents separate entities competing for
revenue. We prove that the proposed game has a unique Nash
equilibrium (NE).

The contributions of this paper are summarized as follows:

1) We propose a non-cooperative game to study the tradeoff
between IUs’ utilities and their privacy in DSA.

2) For the case of two IUs, we prove that our proposed
game has a unique NE, which we obtain numerically
by simultaneously solving the best-response equations
to find the EZ radii of the two IUs at NE.

3) For the case of multiple IUs, due to the complexity
of using the exact method, we use the sub-gradient
algorithm to reach a sub-optimal NE and we show that
it has a small performance gap with the exact NE.

4) Simulation results show that a) the NE has a small price
of anarchy compared with JO solution; b) there is a
tradeoff between the PZ size and the IUs’ utility; ¢) NE
solution is fairer, has less utility variance, compared with
JO solution; d) our work outperforms the work in [3].

To the best of our knowledge, this is the first work to jointly
consider interference from OU activity and IU privacy in a
distributed multi-operator setting.

II. SYSTEM MODEL
A. Spectrum Sharing Architecture and Query Process

We consider two types of spectrum users: incumbent users
(IUs), opportunistic users (OUs). We assume a set of M
independent IUs who coexist with OUs in the same geographic
area. To maintain location privacy, each IU,, determines a
circular privacy zone (PZ,,) [5] centered at a fake location
x;n. To limit the interference, each IU,, is surrounded with
another circular protection region EZ,, with radius ry,,, as
shown in Figure 1. Any OU inside the EZ,, remains inactive.
Therefore, the 1U,,, can control the interference it experiences
by shrinking and expanding EZ,. Also, we assume that
information such as OUs’ transmission power, IUs’ PZ radii
and A,,, can be known to all the IUs via a common channel
through which the IUs can exchange information.

Each IU,, has a group of OU subscribers, denoted by
Gm, that access IU,,’s spectrum when IU,, allows it. For
mathematical convenience, the subscribers of IU,,, are assumed
to be uniformly distributed by a Poisson point process [6] with
density A,,,. The value of A,, can be obtained from general
location statistical data such as prior query history [7].

Each group of OUs accesses the spectrum opportunistically
by querying a spectrum access database (SAS,,;) managed by
IU,,. The query of an OU € G,, includes its location ¢; and the
channel requested. The IU checks its SAS,,, and returns ‘1’ if
{; ¢ EZ and the requested channel/time is available (granted
access), and ‘0’ otherwise (denied access). The query and
response process is executed in rounds. IU,, grants channel
access to querying OUs at the beginning of every round for a
fixed time period. If a longer access period is needed, the OUs
repeat the query process. Each IU,, independently decides the
query results sent to G,,. This decision is made based on a
utility function related to the transmission capacity of the I[Us
and the payment (spectrum fee) they receive from the OUs.
The IU’s are assumed to be rational in the sense that they
selfishly try to maximize their utilities. This model captures
a non-cooperative spectrum management approach without
coordination between heterogeneous spectrum providers.

B. Utility of Incumbent Users

Each IU,, independently decides on the sizes of the PZ and
the EZ by selecting r,, and r,,, respectively. The value of ry,
satisfies a desirable privacy constraint whereas r,, balances
the tradeoff between interference at IU,, and transmission
opportunity of G,,, for which IU receives payment. The
following utility function U, captures this tradeoff:

Un = omNmCou + Cru,,. (D

where w,, is weight controls the first term, N, is the number
of OUs € G,, that that do not belong to any EZ. We consider
payment to be equal to a constant transmission capacity Coy
of an OU. Therefore, the total payment is w,,N;,;Coy. The
Shannon capacity Cjy,, achieved by IU,, is given by:
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where P, is the transmission power of IU,,, N is the noise
power, H,, is the combination of the channel impulse response
and antennae gains at IU,,’s receiver, and 7, is the cumulative
interference experienced at IU,, due to all active OUs
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where [}, is the total interference from all OU groups to

IU,, and an\f 4« I 1s the total suppressed interference due to

the existence of other EZs. We calculate / é y and I} following
the model in [2]. The expected interference ISU, caused by

OUs outside EZ,,, is calculated at a point y on the boundary
of PZ;. The interference effect could be partitioned to circles,
where each circle A = B(y,r) is with center y and a different
radius r that ranges from ry,, — i, to co (Figure 2). The
density of OUs on a circle A is A = 2%:1 Am/Ag, where 4,8
are independent and, according to [8], they are equivalent to
normal distribution in a two-dimensional space. The density
A 1s scaled down by Ap to indicate the actual number of
active OUs. For every value of r, A has an average number of
OUs = 2nrA and each OU on this circle produces interference
P,r~®, where « is the propagation coefficient and P, is the
OU power and we assume it is constant for all OUs. Therefore,
the aggregated interference I}, due to all A circles on y can
be obtained by integrating over-all the values of r:
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where G is the OU’s channel gain, and G = 1 without
loss of generality. According to [4], we calculate I, as the
interference from the center of EZ; to the nearest boundary
point on PZ,, multiplied by the area of EZ;. The closed-form
expressions of 17}, and I,, are given as follows:
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where d,,,; is the distance between IU,, and IUy.

C. Privacy

IUs aim at maintaining their location privacy by introducing
PZs. IUs’ privacy can be violated by the OUs curious about the
operational details of the IUs. If a traditional EZ is adopted
(IU is in the center of EZ without PZ), with many queries,
the OUs will be able to accurately estimate the IU location
through an “intersection attack™ [9]. That is, for every query
that returns ‘0’ answer, it means that IU is located within a
circle with radius equal to the transmission range of the OU
(up to an error margin), centered at the OU’s location. We
adopt conditional entropy to quantify the uncertainty given the
information available to the OUs, i.e., the EZ and PZ uploaded

by each IU. Note that the EZ does not provide any additional
information about x, since by design, we know that the U
cannot reside in the region between the PZ and EZ. Thus,
it is safe to say that for IU,,, where m € {1,---, M}, the
conditional entropy of H(X,,|EZ, PZ,,) = H(X,,|PZ,):

Definition 1 (Privacy (P)). Let random variable X, rep-
resents IU,,’s location. The privacy P of IU,, is the
H(X;n|PZy,): the uncertainty of X, given PZ,, is known.

When X, has a uniform prior distribution, H(X,,|PZ,,) is
maximized when:

1
P(X;y = x|PZy,) = |PZm|’Vx € PZy, (7)
where |PZ,,| is the size of the PZ,,. In other words, by pub-
lishing the PZ,,, the IU’s location is indistinguishable among
all the locations in the PZ,. Note that P(X,, = x|PZ,,) is
inversely proportional to the PZ,, size. Therefore, H(X,,,|PZ,,)
increases with the PZ,, size.

III. GAME FORMULATION AND EQUILIBRIUM
A. The Non-cooperative IU game

Assume that IUs are rational users with the main objective
of maximizing their payoffs. [Us cannot decide their EZs’ radii
arbitrarily. If IU,,, wants to decrease the interference it receives
from the OUs, it can increase its EZ radius, ry,,. In this case,
the EZ could continue to expand until no OUs can transmit.
This decreases the OUs’ transmission opportunities, for all OU
groups, as well as the revenue of the other IUs. Therefore,
1U,,,’s EZ decision affects the other IUs as well. If an IU
increases its EZ radius, OUs from other groups will be silenced
which affect the other IUs utilities: 1) the IUs’ payments will
decrease 2) their communication capacity will sub-linearly
increase. If an /Uy solely decides to decrease its EZ, to get
more payments from Gy, other IUs will get more payments
as well because of the new active OUs. However, they will
experience more interference. Therefore, there is a tradeoff
between the IUs’ utility and interference they experience. The
larger the EZ the larger the suppressed interference and less
revenue and vice versa. This tradeoff cannot satisfy all the IUs
without having an implicit agreement, i.e., equilibrium.

We formulate the interaction between the IUs as a non-
cooperative game [10]. Our game consists of the following:

1) Players: the 1Us.

2) Actions: the action of a player IU,, is the EZ radius 7y,
which has continuous support, i.e., 2, € [Fim, dmk—T1x ],
where Uy is the nearest IU.

3) Payoffs (Utilities): a weighted sum of all the payments
that IU,,, receives from the OUs and its transmission
capacity. The utility of IU,, is written as follows:

M
Un = 0mdm(A - Z nry)Cou + Cru,., (3)

k=1
where (A is the total area which we assume to be very large to
decrease the border effect [8]. The first term (7),) represents
the payments that the IU gets from the OUs. This payment
is a fee (can be virtual money) that the OU give to the IU



in return for granting them spectrum access. We calculate N,,
by multiplying A, by the EZ-free area A; = (A - X7, nr2,),
where Z,’y: h 7rr22k is the sum of all EZ areas. The second term
(T.) represents the transmission capacity of IU,,. We notice
that 7}, is large, compared to 7., as it represents the effect
of a lot of OUs transmitting data. However, all OUs cannot
transmit at the same time due to interference. Therefore, we
introduce w,, = % as weight to get the actual number

: . . A
of OUs that can simultaneously transmit which equals ﬁ,

where Ay = 2V3R? is the area of the hexagon that encloses
the transmission range circle of an active OU [11], R is the
radius at which the OU power reaches P,,;,, and S8 is a weight
that tunes down T),.

Our game is continuous as its action space has continuous
support. Also, the players have complete information which
means that [Um knows the PZ radii, the transmission powers,
A Ym, etc of the other IUs. Information exchange is attained
by a common channel between the IUs. Finally, the game is
symmetric because the pay-off functions take the same form.

B. Nash Equilibrium

NE is a stable state of a game involving the interaction of
different players, in which no player can increase its payoff
by unilaterally changing its action. If the following conditions
can be satisfied, a continuous game has at least one NE: (1)
the action set is compact and convex; (2) the utility function
is continuous and concave [12].

Theorem IIl.1. Our proposed game has a NE,
Proof:

1) The action set is compact as it is closed and bounded.
The action set is convex as it is continuous linear range.
2) The utility function is continuous as it has continuous
support and it is defined over-all the points. The utility
function is concave because: (a) the term w;,; A, ACou
is linear; (b) the term —w;,4,,Cou Z,Ic"i ) r22k is concave;
(¢) Cry,, 1s concave as it is a concave function of a
monotonically decreasing function 7, [13] O
Hence, our game has a NE which can be obtained in two
steps. The first step is obtaining the best response of each
player 1U,,,, noted by BR;,,(r2;,), by differentiating each utility
function U,, by the decision rp,, and equaling it to zero
(%Y = () which yields:

rom

~ 1 —PyHuI,,
wn2n2iCou (N + Ly)(Ly + N + H,, Pyyy)

Note that (9) is a nonlinear ordinary differential equation.

Therefore, to simplify (9), we solve the differential equation
and the solution [14] is given by

©))
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3 , (10)
er2m
_ 1 . . .
where C.m = omTinCop, and K,,., is an mteg.ratlon cops.tz}nt
we obtain from the initial conditions. Consider the initial
condition ry,, = r1,, which causes maximum interference 1},

on PZ’s boundary [2]. Then, at the initial condition, we have:

K, = oin _Dax ~ T i + N (1n
m — m
Iy — XM IS+ N + Py Hy,

We can use the simplified version (10) instead of (9) as
BR,,. The IUs decide their own ry,, based on their privacy
preferences and exchange information like ry,,,4,,,etc. The
second step is jointly solving (12) and (13) which results in a
NE point. In other words, IU,,, obtains the value of the Nash-
optimal 5 = to operate on. For example, we consider the case
of two players IU; and IU,. Then, we use (3) and (6) and (10)
with @ = 3 to get expressions of 7 in terms of rp; and vice
versa as follows:

2 (dp-m) KiH P

=— " (N +1 -—), 12
21 (/l] +/l2)P07T( OU](rzz) eV§2/2C1 ) ( )
2 (dy =) K>H, P>

= — (N +1 ) — ————), 13
r22 (/ll n /12)P07T( OU,(ray) €r221/2c2 ) ( )

However, solving (12) and (13) simultaneously results in a
quintic (5th order) equation which does not have an explicit
solution. Therefore, we solve this system of equations numer-
ically by finding an intersection point between them which
gives us the NE point (we explain that in Section IV).

This method (NE-exact) gives the exact solution to our
game. However, this method is very hard to be used beyond
two IUs for the following reasons. First, simultaneously solv-
ing (12) and (13) gives a two quintic equations and for three
IUs, we have three 15th order equations which doesn’t have
a closed-form solution. Second, we solve the best response
equation by intersection which is a form of exhaustive search
and its complexity grows exponentially with the number of
IUs Third, NE-exact requires that the IUs exchange a lot of
information which increases communication overhead.

C. Nash Equilibrium for Multiple 1Us

For the case of more than two IUs, we use a sub-gradient
algorithm, which has several merits, we propose using the sub-
gradient algorithm (SGA) [15] to solve the problem of multiple
IUs which has several merits. First, the computational com-
plexity of SGA is O(1/€?) [16] iterations which asymptotically
depend on the target tolerance € and not M like NE-exact.
Second, the SGA has low overhead as it only requires, at each
iteration, the exchange of M EZ values updates.

The NE-SGA method proceeds as follows. First, all the
IUs initialize their EZ radii (rp,, Ym) by the value of their
PZs (ri;,, Vm). Second, given the actions of the other IUs,
each IU,, increases/decreases ry,, if the increasing/decreasing
action increases its individual utility value, and if not, rp,,
should stay unchanged. The amount of decrease and increase
at iteration ¢ for IU,, is dictated by the value 6V(U,,), where
o is the step size, V is the gradient of the differentiable utility
function U,,. Then, algorithm goes on until the convergence
criteria is achieved and NE is reached. The SGA method is
summarized in Algorithm 1.

The SGA algorithm has been proved to converge to L>§/2
gap (L is Lipschitz constant), at most, from the optimal



Algorithm 1: Sub-gradient Algorithm (SGA)
0

Each 1U,,, initializes 3 DY Tim-
while U, (r3 ) = Un(rs )] <= € do
for m=1,---,M do
- IU,,, stores the current value of the EZ radius.

- IU,,, calculates:

Tinc = rém + 5V(U(l‘ém)),

Fdec = rﬁm - 6V(U(r£m)),
if (Un(ragec), Un(r},)) < Un(rinc) then

t+1 _
Ty = Tine

else
if Up(rine) < Un(rgec) then

t+1 _
Ty, = Tdec

else
=,
end if
end if
-1U,, inform the other IUs about r}*!.
end for

end while

solution and it converges to the optimal solution if U,,(r,)
is differentiable, see [16]. Furthermore, in our work, it almost
converges to the exact NE in less than 15 iterations. Since
implementation shows that SGA has perfect convergence, we
choose € = 0 as our stoppage criteria. For the step size o, we
choose it to be around 200 m as this value guaranties the fastest
convergence and the nearest utility value to the NE-exact.

IV. SIMULATION RESULTS

We simulate a system consists of 16 IUs randomly placed
on the positions of base stations in a suburban area. If it is
not specified, the densities 4,, = 0.01 OoU/m?, P,, = 30 dBm,
each OU transmits with constant power P, = 20 dbm, the
weights are similar w,, = 10~* and ry,,, = 500 m. The game
takes place in a large area A = 60 km? and the players
exist around A’s center to avoid the boundary effect. For NE-
exact, the simulation happens as follows. First, for each IU, the
best response function is calculated and simplified according
to (10) and (11) and the best response equation in (12) and
(13) are published. Then, each IU plots (12) and (13) on the
range [rim, di2], where dj, is the distance between /U; and
11U, , and find the intersection between the two curves which
gives the NE point. For NE-SGA, more than two IUs, we
follow the steps of Algotithm1 and the parameters provided in
Section IV. For the joint optimization (JO) case (only adopted
for comparison), all the IUs send their information to an U,
which solves the following problem to get the optimal global
solution ry,, Vm.

max
rm Ym

M
Z U,  St. Fim < I ¥, (14)
m=1

A. The Exact NE for Two IUs

Figure 3 shows the intersection between the best response
equations to get the NE point. When rj; = r and all the
parameters are identical, the value of NE point becomes the
same for both IUs. For the case when the IUs select different
PZ sizes (r11 > r12), increasing the rj; causes an increase in
the interference on the PZ boundary which results in a super-
linear decrease in IU; s capacity. Therefore, r}, becomes larger
which makes IU, suffer from payment decrease due to the
enlargement of the EZ;. However, this enlargement benefits
IU; in terms of suppressed interference. Therefore, EZ, would
decrease slightly or remain unchanged.

In Figure 4, we show the behaviour of NE against different
values of identical PZ radii which results in identical EZs as
well. We note that increasing the PZ size causes an increase to
EZ’s size to cancel the excess interference on PZ’s boundary.

Figure 5 shows the utility convergence of NE-SGA and JO
(obtained by line search [13]) and compares them to the exact
NE, for the case of 2 IUs. We can see that JO performs
better than NE-exact and NE-SGA because JO takes into
account all the parameters jointly which produces a solution
that jointly maximizes the utilities of both IUs. We can see
also that there is a small gap between the NE methods
and JO. Furthermore, NE-exact and NE-SGA are almost the
same with NE-SGA having the merit of less computational
complexity. We notice also that for a higher weight value
the gap between NE-SGA and the JO becomes smaller and
the utility value becomes higher, and the algorithm converges
faster. This happens because the payment term 7, becomes
higher which means having smaller EZs, a quadratic increase
in the payments, and hence more interference which super-
linearly decreases the capacity.

B. The Sub-gradient Algorithm for Multiple I1Us

Figure 6 shows the convergence of the EZ radius for
different schemes(M = 16, w = 10™*). We can see that JO has
the smallest EZ as ry,, is obtained optimally and the utilities
of all IUs are considered jointly. However, NE-SGA waits
for the approval of all IUs on the equilibrium decision that
triggers no deviation, consequently, convergence takes much
more iterations, and more EZ radius, to be reached.

In Figure 7, we plot the average IUs utility versus their
number. We can see that average utility decreases as having
more [Us requires having more EZs, and hence, less over-all
payments from the OUs. We can see also that the gap between
NE-SGA and JO becomes bigger as the number of IUs
increases. NE-SGA consumes a bigger area to approximates
JO and this results in bigger EZs4, as M increases, and hence
lower overall utilities for NE-SGA.

Figure 8 shows how the utility changes with dif-
ferent combinations of w for three IUs with PZs=
1000m, 800mandb 500m. We see that having high w = 107
for IUs gives higher utility as 7,, dominates the utility. How-
ever, if we have low w = 0.5 %107, for all IUs, 7. dominates
the utility, the EZs gets bigger and the overall utility decreases.
We notice that JO always does better with the smallest PZ
(the first and second groups, third bar) as it produces the
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smallest EZ and hence better utility. For the third group,
we fixed the PZs and had the following weight combination
w =10.25,0.5, 1] = 10~*. We can see that as the dependency on
T}, decreases (lower w) NE-SGA performs better as it produces
bigger EZs. Note that, although JO could be outperformed in
some cases, it has a better over-all utility, but obviously higher
variance.

Figure 9 shows the variance of utility values for different
number of IUs (we fix the weights and vary the PZs). We
can see utility variance increases with the number of IUs. We
notice that the utility variance of JO is higher as the EZs are
optimized jointly to maximizes the overall sum of the utilities
and doesn’t take into consideration the differences among the
IUs’ utilities. However, NE-SGA produces a more homoge-
neous utility values, which endorses the fairness among the
1Us.

PZ radius (Km)

Figure 10: Utility comparison.

2 3
PZ radius (Km)

Figure 11: Interference comparison.

C. A comparison with the previous work

In Figure 10 and Figure 11, we compare NE-SGA and JO
to the distinguished work done by Park et. al. [3]. In [3],
each IU has a PZ=EZ (PEZ) and this PEZ is transfigured to
add privacy, in case of no clustering (1-cluster). To add more
privacy, the IUs are clustered with their proximity of Q IUs
(Q-cluster). We can see that Park’s scheme consumes a bigger
EZs area out of the total area (compared to JO and NE-SGA)
which gives higher privacy and more interference suppression
in the expense of OUs’ utility. On the other hand, NE-SGA
has moderate utility loss compared to Park’s scheme and better
interference suppression compared to JO.

V. RELATED WORKS

Early centralized techniques focused on location obfus-
cation or spatial cloaking [5]. In this technique, the user



location is made indistinguishable inside its PZ. Also, K-
anonymity [17] was proposed to make the original location
indistinguishable among other K — 1 users. Andres et al. [18]
proposed geo-indistinguishability, which is a variant of differ-
ential privacy [19]. Their mechanism adds two dimensional
Laplacian distribution noise to a user’s real location before
uploading to an untrusted server. In this method, interference
is not explicitly calculated or optimized. Finally, cryptographic
techniques protect IU and/or OU locations by encrypting
them. In [20] Dou et al. presented a privacy-preserving SAS
design that protects IU’s privacy through secure computation
on the ciphertext domain based on homomorphic encryption
so that the IU’s EZ information is hidden from the SAS.
Although these schemes achieve location privacy, they don’t
consider the OUs’ interference to the IU. Also, they depend
on a central node which compromises the location privacy.
The high computation/communication overhead introduced
by encryption and decryption is also a concern due to the
centrality of the decision.

Game theory has been used in the literature to provide loca-
tion privacy while ensuring the user’s utility. In [21], Liu ez al.
propose a distributed dummy user generation method to grant
users control over their own privacy protections. The authors
formulate a Bayesian game to analyze the non-cooperative
behavior of the users and identify the NE solutions. In [22],
Shokri et al. propose a methodology that enables the design of
optimal user-centric location obfuscation mechanisms respect-
ing each individual user’s service quality requirements, while
maximizing its location privacy by formulating a Stackelberg
Bayesian game. However, these approaches do not consider
interference while trying to solve the games. Game theory has
been used to study pure DSA problems. In [23], Sengupta
et al. model the competition between the service providers,
over users, using a multiple-bidder auction game and prove
the existence of NE. In [24], Rawat er al. model the game
between spectrum providers and secondary users as a two-
stage Stackelberg game and they find the Stackelberg-NE.
In [25], Xiao et al. the authors propose an inter-operator
spectrum aggregation coalition game which allows two or
more MNOs to cooperate and share their licensed bands to
support a common set of service types. Although these works
give promising solutions for spectrum allocation, using game
theory, they do not consider privacy as an objective.

VI. CONCLUSION

In this paper, we formulated a non-cooperative continuous
game with complete information to represent the competition
between IUs. The NE of this game maximizes the individual
utility of each IU, which is the weighted sum between the
IU’s communication capacity and the revenue it gets from OUs
that belong to it. We used numerical simulations to find NE.
Simulation results show that the NE-exact and NE-SGA has a
very small gap with JO under similar parameters. Also, results
show that our work outperforms the work in [3].
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