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Abstract—We design and fabricate a flow-based circuit for
edge detection in images that exploits device-level parallelism
in nanoscale memristor crossbars. In our approach, a corpus of
human-labeled edges in BSDS500 images is used to learn an edge
detection function with ternary values: true, false, and don’t-
care. A Boolean crossbar design implementing an approximation
of this ternary function using in-memory flow-based computing
is then obtained using a massively parallel simulated annealing
search executed on GPUs. We demonstrate the success of our
approach by fabricating the memristor circuit on a 300mm wafer
platform using a custom 65nm CMOS/ReRAM process technol-
ogy. We demonstrate that our flow-based computing approach is
either faster, more energy-efficient or produces fewer incorrect
edges than other competing approaches. We show that our design
has power and area requirements that are 3.3x and 2.5x lower,
respectively, than the previous state-of-the-art.

Index Terms—Computer-aided design, memristor, flow-based
computing, vision, AI.

I. INTRODUCTION

MULTIPLE computer vision and AI algorithms rely on
edge detection as a preliminary step [1]. Fast and effi-

cient edge detection in images using dedicated hardware can
enhance the usability of these algorithms, specially in edge
computing and IoT. Flow-based in-memory computations has
been shown to be both time and energy-efficient for sim-
ple arithmetic operations. These advantages of flow-based
computing are obtained by bypassing the memory bottleneck
of traditional von Neumann architectures and exploiting the
device-level parallelism of nanoscale memristor crossbars.
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Fig. 1. A layout and TEM cross-sectional image of the HfO2 ReRAM device
implementing our edge detection crossbar design [3]. The custom ReRAM
module was fabricated on a 300mm wafer using a 65nm CMOS process.

In this brief, we design and fabricate an edge detector that
leverages the time and energy efficiency of flow-based com-
puting on memristor crossbars. We create a ternary-valued
function derived from manually segmented images of the
BSDS500 dataset as the ground truth for edge detection [2].
The ternary function maps a pixel pair to a true, false, or
don’t-care value, which corresponds to an edge, not an edge,
and an uncertainty about the existence of an edge between
a pixel pair. A crossbar implementing this ternary function is
then found using simulated annealing on more than 4000 GPU
cores.
An objective function based on the human perception of

image similarity is used to control the simulated annealing
based search. A massively parallel simulated annealing search
is employed to find crossbar designs of multiple sizes with
varying accuracy and energy requirements. We design mem-
ristor crossbars of sizes 5 × 5, 6 × 6, 7 × 7, and 8 × 8, and
then fabricate them on a custom ReRAM module on a 300mm
wafer platform using a 65nm CMOS process technology. We
experimentally demonstrate that our designs can be success-
fully fabricated on physical devices. We make the following
new contributions in this brief:
1) We exploit a massively-parallel simulated annealing

search for the optimal crossbar design using two Tesla
V100s with more than 4000 GPU cores. We design a
new method to calculate the output of crossbar circuits
efficiently. This parallel approach combined with an effi-
cient calculation of crossbar output allows us to search
for smaller crossbars designs that have lower power
consumption. When compared to earlier work [4], our
design produces crossbars that are up to 2.5x smaller
and have up to 3.3x lower power requirements.
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2) We employ the human perception of similarity between
two images as the cost metric for the search algorithm.
This allows us to create crossbar designs that gener-
ate edges that are visually similar to the ground truth.
We compare the edges generated by our designs to
those generated by earlier work [4] and find a 2.78x
improvement in the perceptual difference score.

3) We have fabricated and tested our designs on a phys-
ical 1T1R ReRAM module to show that our solution
is both feasible and practical, shown in Figure 1(a).
A single fabricated ReRAM device implementing the
edge detection crossbar design is shown in Figure 1(b).
Previous work to create a flow-based ReRAM device
was published in ISCAS 2016 by Alamgir et al. [5].
But, that work only fabricated a relatively simple one-
bit adder. This brief brings the advantages of in-memory
flow-based computing to a fundamental computer vision
problem.

II. RELATED WORK

There has been continued interest in logic design using
memristor crossbars [6]–[9]. Various techniques that leverage
the unique properties of memristor crossbars to perform neuro-
morphic computing have been proposed in literature [10]–[13].
These machine learning applications of memristor crossbars
are impressive, but rely on integration with CMOS devices
to perform computations. Flow-based computing on memris-
tor crossbars is a departure from the traditional computing
paradigm and uses device-level parallelism to enable in-
memory computations that can overcome the memory bottle-
neck of the von Neumann architecture. A memristor crossbar
implementing a one-bit adder using flow-based computing was
presented in [14]. Subsequent work on flow-based comput-
ing used binary decision diagrams (BDD) [15], free binary
decision diagrams (FBDD) [16], automated synthesis via
satisfiability modulo theory [5], and AI-based search proce-
dures [17] to synthesize memristor crossbar circuits. Alamgir
and others presented a full adder crossbar implementation on
a ReRAM device [5].
The design of edge detection circuits using flow-based mem-

ristor crossbars has been presented in [4]. However, they did
not demonstrate that their designs can be fabricated on real-
world memristors. Our designs are both more compact and
more energy-efficient that the designs reported in [4]. Pajouhi
and Roy designed a memristor circuit based on ant colony
optimization to perform edge detections [18]. Our approach is
both space and energy-efficient when compared to the input-
aware flow-based approach, while it is faster than the ant
colony optimization based approach. A comparison of our
approach to these approaches is presented in Table I. The area
of our custom 1T1R crossbars is considerably increased due
to the integrated transistors in each cell as compared to a 1R
crossbar.

III. APPROACH

The design of our edge detection circuit is based on flow-
based computing [5], where an electric pulse is applied to one
nanowire, and the output current is observed from another

TABLE I
COMPARISON OF THE PERFORMANCE OF OUR APPROACH TO

INPUT-AWARE FLOW-BASED [4] AND SWARM-BASED APPROACHES [18].
THE 8 × 8 TO 5 × 5 CROSSBARS HAVE BEEN GENERATED USING OUR
APPROACH. OUR DESIGN GENERATES EDGES THAT ARE SIMILAR TO

THE GROUND TRUTH, AS DEMONSTRATED BY THE HIGH PEAK
SIGNAL-TO-NOISE RATIO (PSNR) VALUES AND LOWER
PERCEPTUAL DIFFERENCE SCORES [19]. OUR DESIGN

USES LESS POWER THAN [4], AND IT IS
FASTER THAN [18]

Fig. 2. A crossbar design that implements a full adder. Each memristor is
labeled with an input. The states of the memristors after receiving an input
is updated according the input. For inputs A = 1,B = 1 and C = 1 the
memristors labeled A, B and C are set to ON, shown by green, and memristors
labeled ¬A, ¬B and ¬C are set to OFF, shown by grey. The red path shows
the current flow from the input wire (bottom row) to the output wire (top
row).

nanowire. The crossbar array consists of programmable and
non-programmable memristors. Programmable memristor con-
tains the current input value and can change depending upon
the input, whereas non-programmable memristors stay con-
stant and do not change. An illustration of this approach
implementing a full adder on a 4 × 5 crossbar is shown in
Figure 2. The value of the input determines the programming
of the memristors. Memristors in green have been set to ON,
and memristors in gray have been set to OFF. Current flow to
calculate the sum when the values of A = 1,B = 1 and C = 1
is shown by the red path. Current flow in the top row implies
that the sum is 1, whereas no flow implies that the sum is 0.
More complex boolean functions that perform edge detec-

tion can be implemented on larger crossbars. Figure 3 shows a
crossbar synthesised by our approach to perform edge detec-
tion in images. Each crossbar accepts a pixel pair and a flow
in the rightmost column indicates an edge between a pixel-
pair. The problem of finding the memristor design that can
effectively find edges between the pixel pairs in the image is
solved in two steps: (1) finding the ternary function which per-
forms edge detection, and then (2) finding a crossbar design
that implements the ternary function found in step (1).

A. Ternary Value Function for Edge Detection

The ternary function maps pixel pairs to true, false, and
don’t-care values. True value denotes the presence of an edge
between the pixel, false value denotes the absence of an edge,
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Fig. 3. A 8× 8 memristor crossbar design for edge detection. The crossbar
is initialized using pixel pair (A,B), each pixel is 8-bit in size. Pixel A =
{a7, a6, . . . , a0} and B = {b7, b6, .., b1}. Each memristor is labeled with ai
or bi for i ∈ {0, 1, . . . , 7}. A memristor labeled ai = 1 or bi = 1 is set to On
and ai = 0 or bi = 0 is set to OFF.

and the don’t-care values denote pixel pairs where the human-
labeled data set does not indicate a consistent response. Edge
information obtained from the human-annotated BSDS500
dataset is used to calculate the pixel pair to value mapping
using the following equations:

V(x, y) =






T, if fe(x, y)/fp(x, y) ≥ θE and fe(x, y) ≥ θP

F, if fe(x, y)/fp(x, y) < θE and fe(x, y) ≥ θP

Don’t-care, otherwise

Here, x, y are values of the pixel pair, fp(x, y) is the frequency
of occurrence of pixel having values x and y in the image
dataset, and fe(x, y) is the frequency of observing an edge
between pixel pairs x and y in the human-annotated dataset.
The parameter θP and θE are the values of the threshold of fp
and fe, respectively, that determines the mapping from pixel
pair to the ternary value.

B. Ternary Function to Crossbar Design

A massively parallel implementation of the simulated
annealing algorithm is used to search for crossbar designs
that implement the approximated ternary function. The cost
function of the simulated annealing algorithm is designed to
penalize disagreement between the ternary function and the
crossbar output, and the disagreement between the generated
edges and the human-annotated edges. Flow-based crossbar
designs produce Boolean values as output and generate a true
or false result on a given input, whereas the ternary function
produces a true, false, and don’t-care as output. The disagree-
ment DT between the crossbar output C(x, y) and the ternary
function V(x, y) is calculated using the following function:

d(x, y) =






0, C(x, y) = V(x, y)
0, if V(x, y) = Don’t Care
2, if V(x, y) = T and C(x, y) %= T
1, if V(x, y) = F and C(x, y) %= F

DT =
∑

x,y

d(x, y)

Fig. 4. Edge detection memristor crossbar designs implemented using 7x7
and 6x6 crossbars.

Fig. 5. Edge detection memristor crossbar design implemented using 5x5
and the corresponding circuit representation.

Here, x, y are values of the pixel pair, V(x, y) is the ternary
value function output for a given pixel pair, and C(x, y)
is the crossbar output. The disagreement DT is then com-
bined with an image similarity score that can capture the
perception of a human observer to find the final disagree-
ment. In our method, we have used the inverse of the
perceptual difference (PerceptualDiff) score to obtain the total
disagreement D.
Obtaining the crossbar output C(x, y) to calculate the dis-

agreement between the ternary function and the crossbar
output in simulation can be time-consuming and can lead to
long search time. Evaluating the truth table entries from a
crossbar naively has a time complexity of O(2bRC), where R
and C are the numbers of rows and columns respectively in
the crossbar, and b is the size of the input. To quickly cal-
culate the output of crossbars circuits, we model the circuit
as a directed acyclic graph (DAG) and then only compute
incremental changes in the total disagreement D as the design
evolves during our search process.
Modelling crossbar circuit as a DAG: For a crossbar of

size R × C with R rows and C columns, a Directed Acyclic
Graph (DAG) G can be constructed to emulate the dynam-
ics of the crossbar. The DAG G is divided into components
Gk arranged temporally, where each component emulates the
dynamics happening within the time it takes for current to
cross one memristor in the crossbar. Each component Gk con-
sists of nodes r(k)i and c(k)j , which represent ith row and jth

column wires respectively, and directed edges e(r(k)i , c(k)j ) that
can capture the flow of current through a memristor from wire
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Fig. 6. The input and output nodes of the DAG are represented by r(1)1 and c(2)2 respectively. (left) Evidence E = {a7, a6,¬a5} of true in the truth table.
Knowing the values of three variables tells us that output of the crossbar is true. (right) Evidence E′ = {¬a7} of false in the truth table. Knowing the value
of one variable tells us that the output of the crossbar is false.

ri to cj at time step k. The components Gk−1 and Gk are con-
nected by directed edges e(c(k−1)

i , r(k)j ) which capture the flow
of current through a memristor from wire ci to rj at time step
k-1. An edge between two wires exists if memristor connecting
the wires is a programmable turned-on memristor or a non-
programmable memristor that is always turned-on. The total
number of components K in the graph depends upon the size
of the crossbar and is equal to RC. The input pulse is applied
to the bottom row and is denoted by the node r(1)1 in the DAG.
The output node is denoted by c(K)C .
Given a pair of input pixel, an edge exists between the pixels

if there is a flow from the input node to the output node.
Such a path is called evidence E for a true truth table entry
for the input. We avoid the explicit calculation of flow from
the input to the output for a given crossbar by utilizing a
special case of the max-flow min-cut problem, where the flow
of each edge is equal to unity, and the source and sink nodes
are the input and output nodes respectively. The set of edges
that form the min-cut of DAG is the evidence E′ for a false
entry of the truth table. There exists a set of evidences E =
{E1,E2..,Et} and E ′ = {E′

1,E
′
2..,E

′
t′} which account for all

the output of the crossbar. Knowing the input value of only a
few variables that satisfy an evidence can allow us to know
the output of the whole crossbar and removes the need for
expensive calculations. An example of this approach is shown
in Figure 6. For an 8-bit input, observing a false value of input
a7 allows us to know that the output of the whole crossbar is
false irrespective of other values of the input.

IV. RESULTS

We synthesized memristor crossbar designs of sizes 5 × 5,
6 × 6, 7 × 7 and 8 × 8 using our approach. Our approach of
using a ternary function with a don’t-care condition allowed
us to skip 54% of the input pixel pairs while searching
for crossbar designs. The crossbar designs are presented in
Figures 3, 4 and 5. We tested our design on the BSDS500
dataset and show that the edges computed by our design have
lower power to signal noise ratio (PSNR) and higher per-
ceptual difference (PerceptualDiff) score when compared to
earlier results [4]. We use the memristor programming circuits

TABLE II
OUTPUTS ON AN 8 × 8 1T1R DEVICE USING RANDOMLY SELECTED

PIXEL PAIRS. LOGICAL 0 CORRESPONDS TO ABOUT 3.5V
AND LOGICAL 1 CORRESPONDS TO 1.5V – 1.7V

provided in [18] and [5] to compare the performance of the
fabricated devices and designs. We compare the speed of edge
detection by our crossbar-based memristive computing design
to the swarm-based approach presented in [18], and show
that our memristor crossbar design takes less time to compute
edges than the swarm-based approach.
In Table I, we observe that the best PSNR and

PerceptualDiff score between the ground truth and the com-
puted edge are 14.6 and 5359 respectively, whereas the PSNR
value of the input-aware method is lower at 8.9, while the
PercetualDiff score is higher at 20458. A higher PSNR and
a lower perceptual difference (PerceptualDiff) score denote
higher conformance of the ground truth with the computed
edge. Similarly, we observe in Figure 7 that the edges com-
puted by our method have less noise and are closer to the
ground truth when compared to the input-aware crossbar
design. Our 5× 5 design is 2.5 times smaller than the designs
produced by the input-aware method, and requires 0.418mW
of power, which is 3.3 times less than the power required by
the input-aware crossbar design.
The synthesized designs have been verified experimentally

on an 8× 8 1T1R device array fabricated on a 300mm wafer.
We chose input pixel pairs, programmed them on the ReRAM
device, applied a current of 2µA to the input, and observed
the output voltages difference across the input and the output.
A high resistance state (HRS), leading to an observed high
voltage implies no edge, while a low resistance state (LRS)
leading to a low voltage implies the existence of an edge. The
result of the experiments is presented in Table II. We observe
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Fig. 7. (a) Original image, (b) Human annotated ground truth, (c) Edges generated using input-aware crossbar design [4], (d), (e) and (f) Edges generated
using our 5x5, 6x6 and 8x8 crossbar designs respectively. The number of pixels contributing to noise in (c) is greater when compared to our designs. For
example, in (c), there is a lot of noise on the roof of the house; our designs generate edges that are similar to the ground truth.

a voltage difference of 1.9V between high and low resistance
states. These results experimentally verify the correctness of
the first flow-based edge detection design implemented on a
ReRAM device.

V. CONCLUSION AND FUTURE RESEARCH

We present the design and fabrication of an edge detection
circuit using flow-based computing in nanoscale memristor
crossbars. Our work is the first to experimentally fabricate
a flow-based computing for a practical application and pro-
duces designs that are 2.78x better in the perceptual difference
score, 2.5x smaller and 3.3x more energy-efficient that the
state-of-the-art [4].
Crossbar design for a broader distribution of images is an

important direction we are going to pursue in the immediate
future. We will focus on crossbar synthesis for other rele-
vant applications like convolution, clustering, regression and
pattern-matching.
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