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Abstract—Sneak paths in nanoscale memristor crossbars
have traditionally been viewed as a problem in the use of
memristor crossbars as non-volatile replacements of traditional
volatile RAM memories. We show that the sneak paths in a
memristor crossbar can be employed to perform computation
that exploits device-level parallelism. Our computation can be
performed in the memory and does not require data to be moved
between a processor and a memory unit — thereby, avoiding the
von Neumann bottleneck. We demonstrate the potential of our
approach by applying it to a basic problem in computer vision:
edge detection in an image. Our results show that the flow-based
computing approach on nanoscale memristor crossbars can be
used to obtain high-quality approximations of edge detection.
We have synthesized multiple 8 x 8 crossbar circuits for this
purpose — a single crossbar circuit for detecting edges between
all possible pixel pairs with ~85% accuracy, and another family
of input-aware crossbars with higher performance over real-
world images. The family of input-aware crossbars together
performs approximate edge detection for a subset of pixel
pairs obtained from analyzing the BSDS500 database, and the
resultant images are of a quality comparable to exact edge
detection.

Index Terms—Nanoscale, memristor, crossbar, flow-based
computing, edge detection, Al, input-aware computing, approx-
imate computing.

I. INTRODUCTION

HE rise of digital data acquisition such as digital cameras

has led to a deluge of high-volume high-velocity big
data whose subsequent processing requires both the ability
to process this high-velocity data quickly and the capability
to rapidly transfer this high-volume data from the memory to
the processor. In many intelligent applications such as smart
cameras, the computation being performed is fixed a priori
such as edge detection or face identification. Our proposed
approach enables the design of nanoscale memristor crossbars
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for implementing such a priori known computations using
naturally occurring sneak paths in two-dimensional arrays of
nanoscale memristors.

Artificial Intelligence (AI) applications often rely on high-
dimensional image data and there is an urgent need to elim-
inate or reduce the von Neumann bottleneck that requires
this data to be moved from memory to the processor and
back. Significant progress has been made towards reducing
the von Neumann bottleneck by creating high-performance
memories. The crossbar circuit topology is making its
way into mainstream technologies [1]-[4], because of its
design as a two-dimensional uniform array of devices and
the subsequent ease of fabrication. Significant efforts have
been made towards efficient fabrication of the crossbar
circuits [5]-[10]. A combination of the above developments
has led to the production of high-performance memory devices
on the crossbar fabric [11]-[14]. While these advancements
have definitely yielded performance and scalability improve-
ments, the separation between the processor and the memory
remains a bottleneck in both computing speed and energy
efficiency.

Our flow-based computing approach stores data on a
nanoscale memristor crossbar in such a pattern that the flow
of current through the naturally-occurring sneak paths in
the crossbar performs the desired Boolean computation. The
nanoscale memristor crossbar is used both for the storage of
the data and for performing the desired computation — thus,
eliminating the von Neumann bottleneck.

Flow-based computing designs involving only a few mem-
ristors can be obtained by implicitly or explicitly enumerating
the space of all possible designs [15]. However, flow-based
computing memristor crossbar designs for even simple Al
applications such as edge detection cannot be synthesized
using such direct enumeration approaches. An overview of
our proposed approach is illustrated in Figure 1. In this article,
we make the following contributions:

« We demonstrate how flow-based computing on nanoscale
memristor crossbars [16] coupled with a simulated
annealing search based on model counting [17] can be
used to design crossbars that approximately implement
edge detection in images. Our approach [17] is the first
to use model counting to search the space of possible
designs.

o We show that the results of a number of approximately
correct input-aware memristor crossbars can be com-
bined using elementary logical operations implemented
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Fig. 1. Automated input-aware synthesis of memristor crossbars using model
counting and simulated annealing. An approximately correct crossbar design
is obtained by searching the space of candidate designs using simulated
annealing. Each design is compared against the approximate Boolean formula
learned from a real-world data set using model counting.

on memristor crossbars to enable high-quality edge detec-
tion in real-world images.

Our results indicate that the flow-based computing approach
may be applicable to more interesting Al applications, such
as deep learning. The rest of the paper is organized as
follows: Section II discusses related work and presents it in the
context of the current manuscript. Section III presents the idea
of flow-based computing on nanoscale memristor crossbars.
Our approach for searching the space of possible nanoscale
memristor crossbar designs using model counting is presented
in Section IV. Section V presents the results of applying flow-
based computing to the problem of edge detection, and we
conclude with ideas for future work in Section VL.

II. RELATED WORK

The expected demise of Moore’s law has fueled active
research in the area of emerging computer architectures over
the last decade. This problem has been further exaggerated by
the rise of big data and the consequent narrowing of the von
Neumann bottleneck between the processor and the memory.
We briefly survey both these topics in Sections II-A and II-B.

Our proposed solution is based on the use of nanoscale
memristors as non-volatile switches storing the data values and
guiding the flows of current through the nanoscale memristor
crossbar to implement a desired computation. Section II-C
introduces memristors and their dynamics, and Section II-D
briefly describes other efforts that have used nanoscale mem-
ristor crossbars for implementing in-memory computing. Our
survey of related work is certainly neither exhaustive nor
representative; it is only an attempt at providing a general
perspective to the potential readers of this manuscript.

A. Moore’s Law and Its Limitations

Over the last five decades, Moore’s Law [18], [19] has
been a driving factor towards immense technological and
societal progress. Akin to how Moore’s Law paints a picture
for the future of chip design, Dennard scaling [20] examines

possibilities for the scaling of devices. Dennard scaling hit a
roadblock as CMOS transistors started replacing MOSFETs as
this has been marked by a shift from micrometer («m) scale
to nanometer (nm) scale devices.

Interesting breakthroughs have been made in the area
by using self-aligned double gate MOSFET structures
(FinFET) [21], which are projected to scale down to about
10nm or smaller. The chip density and the energy efficiency
of CMOS-based architectures have been increased by three
dimensional layering of active devices [22] and by intuitively
utilizing voltage scaling techniques [23], respectively. As the
device dimensions are reduced, the traditional challenges
posed by capacitance and resistance become more daunting,
dielectric properties of materials cause more interference, and
physical properties like orientation of silicon lattice structures,
wafer thickness and mechanical strain start having more effects
on the device behavior.

Our flow-based computing approach does not require the
repeated switching of devices to perform computation and
exploits the natural flow of current through devices storing data
to produce results. By not relying on repeated device switching
during a computation, our approach is less affected by Dennard
scaling and dark silicon. We believe that this property makes
our flow-based computing approach different from many other
memristor-based approaches that require repeated switching of
memristor devices [4], [24]-[26] for logical computations.

B. John Von Neumann Bottleneck and Beyond

John von Neumann’s “First Draft of a Report on the
EDVAC” [27] first circulated in 1945 defined a new computer
architecture that has thrived for the last 74 years. The stored-
program computer became the de facto computer and was
widely replicated for commercial use. The architecture can be
explained very simply by breaking it down into its modular
components — primarily the central processing unit and the
memory. The von Neumann computer can be interfaced with
input and output devices. The mathematical and engineer-
ing foundations for this architecture were subsequently laid
in [28].

A weakness in the von Neumann architecture is the
processor-memory bottleneck, as discussed in [29], [30]. The
bus connecting the processor and the memory will always have
a limited bandwidth, thereby throttling performance. Despite
the dynamic random access memory (DRAM) performance
improving exponentially, it has been shown [31] that the
processor-memory gap will also increase in an exponential
manner — ultimately hitting a memory wall.

An inelegant but useful solution to the von Neumann bottle-
neck was the use of on-chip cache memory as a component of
the existing memory hierarchy [32], which has since become
an industry standard for designing microprocessors. Alterna-
tive approaches towards the nullification of the von Neumann
bottleneck include the data-flow based programming para-
digm [33], the processor-in-memory (PIM) architecture [34],
in-memory computation of logic operations [35], and the end-
to-end computation-in-memory (CIM) model [36].

Our approach completely nullifies the von Neumann bot-
tleneck by storing data in a specific pattern on the memristor
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crossbar and using only the flow of current through naturally
occurring sneak paths in the crossbar to perform the desired
computation. Our solution still uses von Neumann’s stored
program concept and relies on a classical von Neumann
computer to compile a program into the desired pattern once
such that the data should be loaded onto the crossbar using
such a pattern to implement the desired program [37].

C. Memristor — the Fourth Fundamental Electrical Element

In 1971, Leon Chua used symmetry arguments to hypoth-
esize that there exists a fourth fundamental electrical element
in addition to the known elements: resistors, capacitors and
inductors. This new element, which demonstrated a relation
between flux linkage and electrical charge, was termed as a
“memristor” [38] — an amalgamation of memory and resistor.
This name arose from the fact that a memristor’s resistance
varies with the net current flowing through it and the resistance
state can be maintained even if the device is disconnected from
a power source, thereby giving it the property of non-volatile
memory. Given the voltage v, the current 7, the charge ¢ and
the flux linkage ¢, one can define d¢(q) as the change in flux
linkage. The memristance M (q) of a memristor is defined as
follows:

de(
mig) = 0 (1)

q
The voltage across a memristor at time ¢ is characterized as:
(1) = M(q(0))i(r) (@)

The voltage drop across the memristor decreases and the cur-
rent across it increases as it transitions from a high resistance
state (HRS) to a low resistance state (LRS), when an external
positive voltage is applied across the memristor.

In contrast, the voltage drop across the memristor increases
and the current across it decreases while transitioning from a
low resistance state (LRS) to a high resistance state (HRS),
when an external negative voltage is applied across the
memristor. Hence, the memristor device can function as a
switch, and can transition from LRS to HRS (and vice versa).
A memristor in the LRS allows current to flow across it, akin
to a closed circuit or a turned-on switch. A memristor in the
HRS allows no current to flow, similar to a turned-off switch.

The dynamics of memristors were further investigated and
characterized using Lissajous figures by Chua and Kang [39].
A memristor’s transitional behavior is identified as a pinched
hysteresis loop, which underlies the special dynamics asso-
ciated with a memristor. This makes it possible to explore
the possibilities of using a memristor as an interesting non-
linear element for computation, even though our approach uses
memristor only as a digital switch and a non-volatile memory
element.

D. Applications of Memristors

Due to their non-volatile property, memristors and other
ReRAMs are primarily employed as memory elements
in novel memory architectures. A compelling design for
caches has been proposed [40] that leverages 3D stacked
ReRAMs. A framework for performing stateful logic using

memristor-based nanoscale crossbar circuits has been investi-
gated [41]. The crossbar fabric has also been shown to support
parallel computation [42]. It has been demonstrated in [43]
that Boolean logic operations can be reliably implemented
using a single memristor — the trick lies in applying the input
bits periodically in a sequential manner instead of applying
them all at once. One of the impressive displays of using
memristors at the core of parallel computation can be found
in [25]. In [44], a promising solution has been suggested
in order to unleash the potential of in-memory computation
with memristors for big data applications. A search-based
synthesis procedure has been used to design edge detection
crossbars [45]. However, these designs are about 3.5 times
larger than our designs, and no PSNR-based comparison of
the resultant images has been performed in the aforementioned
publication. Their approach directly uses our earlier work [37]
but does not leverage model counting.

There exists exciting contemporary research in neuromor-
phic computing, both in the design of neuromorphic systems
with non-volatile resistive components, as well as the devel-
opment of new devices targeted towards neuromorphic archi-
tectures [46], [47]. A well-known technique for neuromorphic
computation is the usage of spiking signals. A spiking based
neuromorphic design was proposed in [48] that lead to more
than 50% in energy savings with insignificant decrease in
recognition probability. A system based on similar operating
principles, in which both training and classification is per-
formed on the crossbar array was proposed in [49]. It well
known that neurons are dynamical systems; an alternative
computational paradigm which takes advantage of such behav-
ioral characteristics using Mott memristors was introduced
in [50].

III. FLOW-BASED COMPUTING WITH CROSSBARS

The key challenge in our flow-based computing
approach [51] is to design the pattern in which data
should be loaded onto a two-dimensional array of nanoscale
memristors such that the flow of current through the crossbar
can perform a desired computation. Figure 2 illustrates the
flow-based computing approach using the simple Boolean
formula “a AND b”. All the memristors in the crossbar
are first turned off; then, the data corresponding to the
values of Boolean variables are loaded onto the memristors
labeled “a” and “b” respectively. Finally, a flow of current
introduced in one (say, rightmost) nanowire reaches another
(say, leftmost) nanowire if and only if the formula “a AND b”
is true.

In general, a Boolean formula is mapped onto a crossbar
design with the following properties [51], [52]:

o Each memristor in the crossbar is mapped to a literal in
the Boolean formula or the logical constants True and
False.

o The memristors are switched ON or OFF depending on
the patterns in which data is to be loaded for a specific
computation and the specific input instance.

o A current flow is introduced in an a priori specified input
nanowire.
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(b) Flow transition from row to col-
umn through ON memristor.

(a) Current flow introduced in the
bottom row.

(c) Output flow observed at top row.

Fig. 2. Flow-based computing with crossbar circuits.

(c) A=0, B=1, C=0

Fig. 3. Crossbar implementing =A A =B A —C with two input instances.

o If the Boolean formula evaluates to TRUE for a given
input instance, then a current flow is observable at a
predefined output nanowire. On the other hand, if the
Boolean formula evaluates to FALSE for a given input
instance, then a current flow is not observable at a
predefined nanowire.

An example of a crossbar implementing the Boolean for-
mula =AA—=BA—C is shown in Figure 3. The blue circles rep-
resent memristors which assume the value of literals, the green
circles represent memristors in the ON state and the grey
circles represent memristors in the OFF state. In Figure 3(b)
and 3(c), the red arrows represent current flow and the crosses
represent a lack of current flow.

As an illustration, Figure 4(a) shows the design of a 1-bit
full adder that computes both the sum and the carry-out bits.
A grey circle indicates a memristor that is always turned off;
a blue circle is labeled with the literal whose value decides
whether the corresponding memristor is turned on or off.

(c) A=1, B=l, C;,,=1

Fig. 4. Design of a memristor crossbar implementing a full adder with two
input instances.

A memristor that is always turned on is indicated by a green
circle.

Figure 4(b) shows the operation of the flow-based comput-
ing approach for the inputs A =0, B =0, and C;;, = 0. The
black circles indicate memristors that are turned off while the
green memristors indicate memristors that are turned on.
The red arrows and the black crosses indicate that there is
no path that allows the current to flow from the input to the
output — thereby, yielding a sum of 0 and a carry-out of 0.

Figure 4(c) shows the memristor crossbar when the data
corresponding the inputs A = 1, B = 1, and C;,;, = 1 have
been loaded into the nanoscale memristor crossbar. Again,
the turned-on memristors are indicated by green circles and
the turned-off memristors are shown by black circles. The red
arrows show how the current can flow from the input to the
outputs — thereby, yielding both a sum and a carry-out of 1.

In order to synthesize crossbar designs successfully, it is
inefficient and cumbersome to stick to electrical models of
crossbar circuits. Hence, we encapsulate crossbar circuits in
a digital abstraction that can be easily manipulated using
Boolean algebra to aid in the synthesis procedure:

Definition 1 (CROSSBAR): A memristor-based crossbar is
a 3-tuple C = (M, W,, W,) where
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miy miz - Mip

e M = is a two-dimensional array

mpy mp - My
of memristors with | rows and n columns, where m;; €
{0, 1} denotes the state of the memristor (ON or OFF)
connecting row i with column j.

o W, ={r1, -, r} is the set of horizontal nanowires such
that the wire r; provides the same input voltage to every
memristor in row i.

o W, = {c1,---,c1} is the set of vertical nanowires such
that the wire c; provides the same input voltage to every
memristor in column j.

The memristor m;; = 0 is said to be in the high-resistance
state or OFF state and m;; = 1 denotes a memristor in the
low-resistance state or ON state.

Definition 2 (CROSSBAR DESIGN): A crossbar design
D(M) maps each memristor m;; in the crossbar M to one
of the following: an input Boolean variable vy, --- , vy,
its negations —wi,--- , —w, or the logical constants True or
False.

For a crossbar with [ rows, n columns and v different input
variables, each memristor can be mapped to 20 + 2 different
values. Hence the number of possible crossbar designs is as
large as (20 +2)"*!. As an illustration, the edge detection
example in this manuscript has 16 Boolean variables on a
8 x 8 crossbar; this corresponds to a search space involving
1.158e+77 designs. The number of designs is comparable to
the number of atoms in the known universe.

IV. SYNTHESIS USING MODEL COUNTING

In order to search the exponentially growing space of
possible crossbar designs, our synthesis procedure exploits a
symbolic representation of Boolean functions and employs
model counting [53] to guide a simulated annealing based
search procedure. Our approach for synthesizing flow-based
computing crossbar circuits relies on approximating the dis-
tance between a given crossbar design and the target Boolean
function using model counting.

The Boolean satisfiability problem is regarded as one of the
foundational problems in computer science. A propositional
formula is deemed to be satisfiable if there exists an assign-
ment of values to its variables for which the formula evaluates
to true. By extension, model counting is the problem of com-
puting the number of models for a given propositional formula,
or finding the number of distinct input variable assignments
for which the propositional formula evaluates to true. For a
given crossbar design, we would want the output flow states
to match the corresponding evaluations of the Boolean formula
¢, for all possible input assignments. Hence, our objective is
to count the number of models which satisfy the equivalence
of the Boolean formula with the candidate crossbar design.
This problem is readily solved using existing model counting
algorithms. Extended discussions about approaches to model
counting have been presented in a handbook [53].

Algorithm 1 summarizes our methodology. In line 1, we first
pick a random crossbar design of size / rows and n columns.
Each memristor in the design is mapped to either True, False,

Algorithm 1: Crossbar Synthesis Algorithm

Input Target Boolean Formula ¢ over variables
{o1,02...0}
Size of crossbar C: [ rows and n columns
Initial temperature for simulated annealing 7
Cooling rate ¢
Output Crossbar  Design  D(M) mapping each
memristor  m;; € M to the set
{True, False, vy, ...,0r, 001, ..., 0k}
1 D1 < PickRandomCrossbarDesign(/, n, vy, . .. 0g)
B(D;) <« BooleanFlow(D;)
A1 < ModelCount(B(Dy) @ ¢)
while A; > 0 do
2 | Djy1 < PerturbCrossbarDesign(D;, ¢)
B(Dj+1) < BooleanFlow(D;)
Ai+1 < ModelCount(B(Dj+1) ® ¢)
if rand(0,1) < ¢~ Ai+1=8D/T then
A
4 | end
5 T < cxT
6 end
7 Return crossbar design D;
one of the variables vy, ..., or one of the negated variables

-1, ..., "Wk, as sampled from a uniform random distribution.

For each crossbar design D, we assume that a flow of
current is injected into the top horizontal nanowire. Then,
we compute the number of assignments to the Boolean vari-
ables which cause the flow of current to reach the lowermost
horizontal nanowire of the crossbar design D.

In order to evaluate the model, we must first compute the
Boolean formula realized by the crossbar. Let ri(’) denote the
flow value of row i at time ¢, and c(.t) denote the flow value
of column j at time 7. At t = 0, only the first row has flow,
ie., rl(o) = True and all other rows and columns are set to
False. For all t+ > 0, we define the following transitions for
each nanowire based on the ability of turned-on memristors to
create a path between their horizontal and vertical nanowires.
In this way, we symbolically compute the Boolean formula
representing the values of the memristors for which a flow
reaches the topmost nanowire of the crossbar and denote it by
BooleanFlow(Dy) in line 2 of the algorithm.

Vie2,...,n), " — (v \/ (mij /\cy)))
1<j=n

— (Cy) \4 \/ (m,-j /\}”i(t)))

1<i<l

\Zi e{l,...,m},cyﬂ)

The above transitions of the rows and columns in the
crossbar have been represented using Boolean functions
and can be described succinctly using Boolean Decision
Diagrams (BDDs), And-Inverter-Graphs (AIGs) or other
representations.

Line 3 of the algorithm computes the number of sat-
isfiable instances Aj, which corresponds to the symmetric
difference between the target Boolean formula ¢ and the
formula corresponding to the computation performed by the
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TABLE I

COMPUTATION DELAY (PICOSECONDS) TO COMPUTE THE MSB OF
n-BIT ADDITION FOR AREA-OPTIMIZED CROSSBARS

#bits/ BDD MIG MIG Model Speedup
input -IMP -MAJ  counting
[16] [54] [54]
2 425 3400 1020 340 125%
3 765 5100 1530 340 225%
4 1020 6800 2040 425 240%
TABLE II

POWER (IN u W) REQUIRED TO COMPUTE THE MSB OF BINARY
ADDITION FOR AREA-OPTIMIZED CROSSBARS

#bits/ BDD MIG MIG Model Improvement
input -IMP -MAJ  counting
[16] [54] [54]
2 240 1200 360 300 80%
3 420 1800 540 390 107.7%
4 600 2400 720 720 83.3%

crossbar design Dj. Several competitive implementations of
approximate model counting algorithms are available and our
approach is agnostic to the choice of the model counting
strategy as long as the algorithm produces the count of 0
feasible models only for unsatisfiable formula [53].

The loop in line 4 through line 12 continues to modify the
current crossbar design, evaluate the function computed by this
perturbed design, and count the number of satisfiable instances
to the Boolean formula corresponding to the symmetric differ-
ence of the target Boolean formula and the formula computed
by the current crossbar design. Lines 8 through 10 show
the probabilistic acceptance step of the simulated annealing
algorithm. New crossbar designs are always accepted if they
are better than the existing crossbar design. New crossbar
designs that are worse than the existing crossbar design are
accepted with a probability that is a function of both the quality
of the designs and the current temperature of the simulated
annealing algorithm.

At every iteration of the loop, the temperature of the
simulated annealing algorithm is slightly lowered. When the
number of satisfiable instances for the symmetric difference
becomes zero (or falls below an assigned threshold), our
algorithm stops and reports the synthesized crossbar design.

The compact crossbar designs for a 4-bit addition and a
4-bit comparator obtained from model counting are shown
in Figure 5. Both the crossbars compute the most significant bit
of n-bit binary computations. The correctness of the designs
has also been verified using ngSPICE-26 simulations [55].
Table I compares the crossbar designed using model counting
with those designed using other competing approaches. The
last column in Table I represents the speedup achieved through
model counting with respect to the prior best method.

Similarly, Table II presents a comparison between the power
required by crossbars designed using our model counting
approach and compares it to memristor-based designs obtained
using other approaches. The last column in Table II represents
the power consumption ratio of crossbars produced through
model counting with respect to the prior best method.

(b) MSB computation for 4-bit binary addition.

Fig. 5. Compact crossbars synthesized using model counting.

V. EDGE DETECTION WITH FLOW-BASED
INPUT-AWARE CROSSBAR COMPUTING

Applied problems in domains such as image processing
and vision require reasonably accurate but not necessarily
exact computations. Such soft applications naturally provide
an opportunity for the exploration of approximate input-aware
computing with a focus on correctness over the likely inputs
as opposed to all possible inputs.

One of the fundamental procedures in image processing
is edge detection, that is, the demarcation of boundaries
between the different objects in a given image. While there
exist numerous algorithms to perform efficient and highly
sophisticated edge detection in images [56], we can say that an
“edge” exists if the difference between the gray-scale values
of two pixels exceeds a predefined threshold value. Since a
pixel can have any value between 0 and 255, the simplest edge
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Fig. 6. Crossbar design based on all possible inputs, median PSNR = 2.4dB.

detection operation involves computing the difference between
two 8-bit binary numbers followed by a comparison of the
difference with a constant 8-bit binary number representing
the threshold at which an edge is said to exist.

We employ the model counting approach explained in the
previous section to synthesize crossbars for approximate com-
putation of Boolean formulas. In this setting of approximate
computation, we minimize the symmetric difference between
the threshold-based exact edge detection and the Boolean
function computed by the synthesized crossbar circuit. The
approximate detection of edges is sufficient for practical
purposes, and we do not require the number of satisfiable
instances for the symmetric difference to reach zero — a fairly
low value close to zero is acceptable.

Since computation is performed on two 8-bit pixels
for threshold-based edge detection, the truth table consists
of 65536 entries. Employing our model counting approach,
we are able to obtain a crossbar design which has an accuracy
of ~85% over all possible input values.

Figure 6 illustrates the approximate crossbar design. In the
crossbar image, the dark circles represent permanently O F F
memristors, the green unlabeled circles represent permanently
ON memristors, and the light blue circles represent
memristors whose values correspond to the literals. The

variables Ag, Ay,..., A7 and By, Bj, ..., B7 represent the
bits of the two pixels, and the variables —Agp, —A1, ..., —Ay
and —Bg,—Bj,...,—B7 represent their respective
negations.

We employ the BSD500 database [57] for testing the
performance of the obtained crossbar. The peak signal to noise
ratio (PSNR) metric is commonly used for quality assessment
between two perceptually equivalent images [58]. The PSNR
between the edge images produced by exact computation
and those produced by the approximate crossbar provides an
estimate of the quality of edge detection performed by the
crossbar circuit. The synthesized crossbar design is provided

(b) XBARg, median PSNR = 5.388 dB.

Fig. 7. Crossbars for edge detection on input-aware pixel pairs.
in Figure 6 and the histogram of the PSNR for all images in
BSDS500 are presented in Figure 9.

The PSNR histogram in Figure 6 shows that a single
approximate computing crossbar over all the truth table entries
does not really perform well in the case of edge detection
since not all pixel pairs occur with the same frequency. Hence,
we identify a subset of all possible pixel pairs that occur with
high frequency. A given pixel pair belongs in this subset if it
occurs more than three times in each image, on an average,
over all the images in BSD500. We then design approximate
input-aware edge-detection crossbars with a focus on these
likely inputs. A few crossbar designs obtained using this
approach are illustrated in Figures 7 and 8.
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(b) XBARp, median PSNR = 6 dB.

Fig. 8. Crossbars for edge detection on input-aware pixel pairs.

The downsized truth table involves only the chosen subset of
pixel pairs and contains 16,658 entries. This input-aware truth-
table enables the synthesized crossbar designs to perform well
on the relevant inputs even though they have relatively lower
accuracy over all possible truth table inputs. The subset of
pixel pairs is utilized to build a model for the model counting
approach, in order to synthesize a family of crossbar circuits
for input-aware approximate edge detection.

Since the standalone designs are not accurate, it is intuitive
that they may not agree on the same mistakes. Given a
family of crossbar designs approximately computing the same
function, their outputs should be combined by using a majority
operation. In order to test this hypothesis, we have synthesized
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(a) Histogram of PSNR values for outputs produced by the crossbar
design synthesized on all possible inputs, median PSNR = 2.4dB
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(b) Histogram of PSNR values for outputs produced by a single
input-aware crossbar design, median PSNR = 5.38dB
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(c) Histogram of PSNR values for outputs produced by
majority-based combination of five input-aware crossbar designs,
median PSNR = 7.02dB.
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Fig. 9. Histogram of PSNR values corresponding to output images produced
by majority-based combination of crossbars. A combination of crossbars
produce a better (i.e. shifted to the right) PSNR distribution that a single
input-aware crossbar.
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The input gray-scale image, the computed edge image and the
output edge image obtained via majority-based combination of approximately
correct input-aware crossbar outputs, respectively.

Fig. 10.

a number of different crossbar designs with varying degrees
of accuracy. The PSNR values between the computed edge
images and the output images obtained by majority-based

Fig. 11.
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The input grayscale image, the computed edge image and the edge
image based on combining approximately correct input-aware crossbar outputs
using a majority function.

combination are presented in Figure 9. The input-aware cross-
bar is better i.e. it has a higher PSNR than a crossbar designed
using all possible inputs. Similarly, a family of 5 crossbars
produces better PSNR values than any crossbar in the family.
While the best crossbar has a performance of about 6.275dB,
combining it with crossbars of even less performance produces
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Fig. 12. The input grayscale image, the computed edge image and the edge
image based on combining approximately correct input-aware crossbar outputs
using a majority function.

an overall design with a PSNR of 7.02dB. This shows the
importance of using a (small) family of approximate designs
as opposed to the best approximate design.

The edge images produced by the combination of
approximately-correct crossbars are better than the edge
images produced by a single crossbar with higher accuracy

over all possible inputs. The input gray-scale images, the com-
puted edge images and the output edge images produced by
combining the outputs from a family of five approximate
input-aware crossbars are presented in Figures 10, 11 and 12.

VI. CONCLUSION AND FUTURE WORK

We have explored the design of input-aware approximately-
correct flow-based crossbar circuits for basic computer vision
applications, like edge detection. Our proposed approach is
driven by model counting to explore the design space of
crossbar circuits. The synthesized designs are compact, and
approximately compute the necessary functions for the desired
applications. We have produced an assortment of 8 x 8 crossbar
designs belonging to two different operational groups. One
of the groups can perform threshold-based edge detection
with high accuracy on all possible pixel pairs and the other
group performs approximate edge detection on an application-
specific subset of input values. In case of the second set
of crossbar designs, the outputs from individual crossbars
are combined using the majority function to yield the final
output image. We have tested the performance of our method
on the well-known BSD500 database. We utilize the peak-
signal-to-noise-ratio (PSNR) metric to evaluate the quality of
the output images. The results obtained from the input-aware
approximate computation are observably better than those
produced by the more accurate general-purpose crossbars.

Our work has focused on the design of crossbar arrays for
approximate computations and has not explored the impact
of peripheral circuitry. Our approach only requires standard
peripheral circuitry required to read and write data on the
memristor crossbar but does not need any additional periph-
eral circuitry to control the flows. Our design automation
approach is based on the native use of memristor crossbars
as a computational fabric without trying to control the flow
of information through the crossbar using external peripheral
circuitry. In fact, our design permits all possible flows to occur
and the memristor crossbar is designed in a manner where
all possible flows put together enable a desired computation.
In previous experimental studies [59] we have shown that a
1-bit adder can be implemented in practice on a hardware
memristor crossbar and the current theoretical investigation
extends the same approach without requiring any additional
changes in peripheral circuitry. It should be noted that the
efficiency and correctness of the peripheral circuitry will have
an impact on the overall performance of our approach, and
these important impacts need to be investigated.

The design of approximate input-aware application-specific
solutions using flow-based computing is an area that is
ripe with exciting opportunities. Future work related to the
approach presented in this manuscript includes, but is not
limited to, the following possibilities:

1. A natural question to investigate is the dependency of the
crossbar design on the data set used to train our input-
aware approach. Figure 13 illustrates the BSD500 and
CIFAR [60] datasets. The axes in the color map represent
the intensity of the pixels in the pair and the color bar
represents the natural logarithm of the frequency with
which the pixel pairs occur in the respective datasets.
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Fig. 13.
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Pixel pair distributions in BSD500 and CIFAR.

Because of the remarkable visual similarity of these
distributions, one can conjecture that the crossbar design
is not sensitive to the choice of a specific data set.
Future work is needed to investigate this dependence
more thoroughly.

The exploration of the design space of crossbars can ben-
efit by leveraging the massively parallel multi-core com-
puting capabilities of general purpose graphics processing
units (GPGPUs). In particular, deep learning approaches
may be helpful in accelerating the evaluation of a
candidate crossbar design.

. A number of higher level artificial intelligence appli-

cations depend on fundamental operations like convo-
lutions, clustering and classification. Embedding such
operations on compact crossbar circuits may have a
significant impact on designing hardware accelerators for
machine learning and artificial intelligence.

Our current approach has only employed memristors as
binary switches. Memristors and other resistive memory
devices exhibit a multitude of discrete memory states in
the interval between the on and off states. This interesting
property can unlock a novel pathway for doing ternary
and other n-ary logic computations on the memristor
crossbar fabric.
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