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A within-human-host malaria parasite model, integrating key variables that influ-
ence parasite evolution-progression-advancement, under innate and adaptive immune
responses, is analyzed. The implicit role of immunity on the steady state parasite loads
and parasitemia reproduction number (R0), a threshold parameter measuring the para-
site’s annexing ability of healthy red blood cells (HRBCs), eventually rendering a human
infectious to mosquitoes, is investigated. The impact of the type of recruitment function
used to model HRBC growth is also investigated. The model steady states andR0,both
obtained as functions of immune system variables, are analyzed at snapshots of immune
sizes. Model results indicate that the more the immune cells, innate and adaptive, the
more efficient they are at inhibiting parasite development and progression; consequently,
the less severe the malaria disease in a patient. Our analysis also illustrates the exis-
tence of a Hopf bifurcation leading to a limit cycle, observable only for thenonlinear
recruitment functions, at reasonably largeR0.
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1. Introduction and Background

The WHO 2018 malaria report shows that the global malaria control progress

observed a few years back, seems to be stalling.1Past gains achieved in the reduction

of the number of global malaria cases were reversed with an estimated 219 million
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cases reported in 2017, an increase by anestimated 2 million cases when compared

to the year 2016.1The number of deaths between the two years were not that

different, with an estimated 435,000 reported deaths in 2017, a slight decrease

by about 16,000 from the reported 2016 estimate.1Of the 2017 malaria-related

deaths, 61% were of children under age five. We note, however, that when compared

to the 2010 statistics, the number of cases and deaths have reduced. With the

report that no significant progress was made in reducing the global malaria cases

between 2015 and 2017,1and knowing the impact that the malaria disease has on

individuals, rendering them sick, leaving children febrile and weakened with a higher

mortality rate among them and the impact on the economies of endemic regions,

malaria research and funding needs to be intensified. Moreover, control efforts and

studies aimed at understanding every facet of the disease must also intensify and

mathematics has a role in this.

The agents that cause malaria are thePlasmodiumparasites, the most deadly

beingPlasmodium falciparum, which was responsible for 99.7% of the 2017 malaria

cases.1Parasites interact synergistically with mosquitoes, with the femaleAnophe-

lesmosquitoes the transmitters of the parasites from one human to another. As

part of their success scheme, the parasites make use of the feeding and reproduc-

tive habits of the female mosquitoes, a process necessitating a successful interaction

with humans. The parasite’ssuccess and impact, especiallyP. falciparum,dates

as far back at 1324 BC2and likely beyond. It warrants that the parasite com-

plete a complex life-cycle with part residing in a human and the other part in the

mosquito.

The within-human part of the parasite’s life-cycle involves asexual reproduc-

tion associated with merozoite production. Some of the merozoites will continue

the merozoite production cycle, while a smaller percentage will continue the path

toward gametocytogenesis, leading to the production of parasite forms called game-

tocytes that may render the human infectious to mosquitoes.3–7A successful inges-

tion of mature gametocytes by a reproducing female mosquito commences the

within-mosquito parts ofthe complex life-cycle.3,4,8This involves sexual reproduc-

tion, where fertilization takes place between male and female gametes generated

from male and female gametocytes, respectively, with the possibility of gene recom-

bination in the mosquito vector.3,5,8–11Successful fertilization produces zygotes cul-

minating with sporozoite production that then migrate to the mosquito’s salivary

glands, waiting to be injected into a human during the next blood meal.

Several mathematical models aimed at understanding the various facets of the

malaria transmission problem have been suggested. Some of the models have focused

on the macroscopic aspects of transmission capturing the interaction between

humans and vectors, see Refs. 12–17 and the many references therein. Others

have focused on the mosquitoes, the agents responsible for the transmission of

the parasites between humans and mosquitoes, see, for examples, Refs. 18–20 and

the references therein. Yet again, others have focused on the parasite within the
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mosquito,9–11,21,22or within the human, see Refs. 23–29 and the references there in.

A recent aspect is in the coupling of the within-host dynamics to the transmission

dynamics where by a within-human parasite model is linked to a macroscopic trans-

mission model.30These models, a sample of the vast literature published, have

extended our knowledge on malaria.

In this paper, our focus is on the within-human stages of theP. falciparum

parasites. There are three main stages of the within-human part ofP. falciparum

life-cycle3,4: the exo-erythrocytic or pre-erythrocytic (this is the liver stage); the

erythrocytic asexual stage (this is the merozoite or blood stage) and the erythro-

cyte sexual stage (this is the gametocyte blood stage). The liver stage commences

when an infected blood feeding female anopheles mosquito succeeds in injecting

sporozoites into a human which are transported to the human’s liver by circulating

blood.5When the sporozoites reach the liver, they infect the liver cells, multiply

and develop into parasite forms called schizonts (hepatic schizonts), which upon

rupture will release loads of freely floating merozoites into the bloodstream. The

asexual blood stage then commences whenthese freely floating merozoites come

in contact withHealthy Red Blood Cells(acronymed HRBCs), infecting them and

rendering the HRBCsinfected red blood cells(acronymed IRBCs) upon a successful

interaction. The merozoites in the IRBCs undergo asexual replication with some of

them rupturing to continue the cyclical pattern in which merozoites infect HRBCs

and the IRBCs rupturing to produce more merozoites. This rupturing of infected

red blood cells contributes tomalaria related anaemia,31which imposes additional

risks and economic burden on the malaria patient. The IRBCs that do not continue

the cyclical path, instead continue toward the formation of gametocytes, the trans-

missible forms of the parasites to mosquitoes.32,33Within the human, the parasite’s

invasion of the RBCs and its interaction and dynamics with and within the RBCs,

breaking the RBCs down and rendering the human sick, invokes the humans’ nat-

ural defense mechanisms (the innate immune system). For humans who have lived

long in an endemic region and have been continuously re-exposed to the malaria

parasite, the process will also function in the presence of the adaptive immune

system,34–40acquired due to the sustained exposure to the malaria parasite.

Our primary objective in this paper is to analyze the within-human host model

for theP. falciparummalaria under implicit immune action, innate and adaptive.

The model was originally developed in Ref. 29, but analyzed in the absence of these

immune effectors. The model proposed in Ref. 29 accounted for gametocytes in their

early and late states, typically not considered in most models, a list which includes

the cited papers in the previous paragraph. However, the early state gametocytes

are the precursors of late state gametocytes, with the latter, the primary link to

mosquito transmission and hence vital to the continuous transmission dynamics

of the parasite from humans to mosquitoes. Here, we analyze the model originally

proposed in Ref. 29 under the implicit role of immune effectors. The analyses will

be carried out for different proposed HRBC production functions. HRBCs are vital
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to every human but also to the malaria parasite. In an infected human, gameto-

cytes are transmitted from humans to mosquitoes within an infected red blood cell.

If the parasites (in this case merozoites)cannot infect HRBCs then it is likely that

the parasite-cycle within the human canbe terminated. The fewer red blood cells

there are to infect, which in this case the human is highly anemic, the lower the

parasite load. Thus, the reduction in HRBC population in a human, especially an

immunologically naive human, is related to malaria intensity, and severity and the

relation is affected by the human’s adaptive immune response. Thus, it is impor-

tant to understand this relationship. It is, of course, important to understand how

HRBCs are formed and maintained in a healthy human or infected human. How-

ever, as a first step in this process, we will make some simplifying assumptions

and not focus on the generation from the stem cell. Hence, we will evoke different

linear and nonlinear types of recruitment functions for the HRBC population and

derive bounds for the different parasite and immune cell types studied as functions

of bounds of the recruitment functions. This, in some sense, generalizes past works

where either a constant or a linear recruitment function for HRBC production in

humans was used, for the purpose of mathematical tractability (see, for example,

Refs. 25, 30, 41 and 28). We believe that our model can provide some mathematical

insights into the relationship between parasite loads under immune protection for

various recruitment functions in humans and forP. falciparummalaria.

A second objective of this study is to ascertain how the presence of immunity

can mitigate the growth of the parasite within a human for the various HRBC

recruitment functions. To this effect, we view the immune presence as parameters

of the system variables and study how these immunity-based variables will affect the

size and intensity of the infection in the human body. We believe this is appropriate

since adaptive immunity to malaria is still not very well understood. Moreover,

the adaptive immune response dynamics is highly variable within each human,

especially across age groups. Our general motivation lies in the quest, through the

use of mathematics, to better understand malaria as a disease in human populations

and also to address the interesting mathematical aspects arising from the modeling

exercise.

The rest of the paper is organized as follows: in Sec. 2, we present the

model equations to be studied and discuss on the nature of recruitment func-

tions used. We invoke the basic mathematical properties of the model and present

the scaling/reparameterisation, situating the discussion on innate/adaptive immune

responses as used in this paper. In Sec. 3,we present the concept of parasitemia

reproduction number as used in this paper, and start the analysis of the mathe-

matical equation by discussing the existence and stability of steady state solutions

in Sec. 4. In that section, we prove results on local stability of the parasitized state

and on the global stability of the parasite free state. The mathematical analysis is

illustrated with some numerical simulations in Sec. 5 and we round up the paper

with a discussion and conclusion in Sec. 6.
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2. The Within-Human Host Mathematical Model

2.1.Model equations

In Ref. 29, we developed a mathematical model that captured the interactions of key

population components involved in a malaria positive patient. These populations

at any timet, measured in days, are described in Table 1.

The model equations governing the rate of change of the state variables,Rh,

Rp,M,Ge,Gl,EiandEa,withmodelschematicsshowninFig.1,aregivenin

Eqs. (2.1)–(2.7).

dRh
dt
=Rhψ(Rh)−μhRh−

β1RhM

1+ξ0Ea
, (2.1)

dRp
dt
=
β1RhM

1+ξ0Ea
−(γp+μp)Rp−(ρe+ρaEa)RpEi, (2.2)

Table 1. Description of state variables, measured in cells per unit volume (density) with volume
measured in micro-liter (μl).

Variable Description Quasi-dimension/Units

Rh(t) Density of healthy red blood cells (HRBCs) at
timet.

C=HRBCs×μl−1

Rp(t) Density of infected red blood cells (IRBCs) at time
t, also known as parasitized red blood cells.

C=IRBCs×μl−1

M(t) Density of free floating merozoites at timet.They
invade and infect HRBCs.

M = Merozoites×μl−1

Ge(t) Density of immature or early state gametocytes at
timet. These form are the precursors to the late
state gametocytes

G= Gametocytes×μl−1

Gl(t) Density of mature or late state gametocytes at
timet. These are the transmissible forms of the
malaria parasite to mosquitoes, linking the
within-human parasite life-cycle to the
within-mosquito parasite life cycle. A break in
this link would result in an incomplete parasite
life-cycle and thus plausible malaria control.

G= Gametocytes×μl−1

Ei(t) Density of innate immune system cells at timet.
These are the body’s natural immune cells that
respond to fight invading foreign pathogens.
Different cells make up the innate immune
system and function in different ways to reduce
parasitemia.

I= Immune cells×μl−1

Ea(t) Density of adaptive immune system cells at timet.
These are malaria parasite specific immune
response developed and sustained due to
repeated exposure to malaria infection. Different
cells make up the adaptive immune response
system and these cells function independently to
inhibit the parasitemia process or assist the
innate immune system in reducing parasitemia.

I= Immune cells×μl−1
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Fig. 1. Model schematics of the within-human host malaria parasite dynamics showing the gen-
eral complex interaction between the various parasite forms and the innate and adaptive immune
systems. Innate immune cells (Ei), can kill (or eliminate) sporozoites from human-skin, free-
floating circulating merozoites, IRBCs, immature and mature gametocytes, liver-stage parasites
either by direct contact or through phagocytosis. They also help the adaptive immune system
in recognizing and capturing antigens using the antigen presenting cells. Adaptive immune cells
(Ea), Inhibit/block free floating merozoite invasion of HRBC, maturation of gametocytes, growth
of merozoites inside IRBCs, development of liver-stage parasites hence inhibiting the release of
liver stage merozoites into blood stream. They also assist and enhance innate immune cells in
killing merozoites and also in clearing IRBCs and gametocytes.

dM

dt
=
rγp(1−σ)Rp
1+ξ1Ea

−μmM −
β2Rh
1+ξ0Ea

+
β3Rp
1+ξ0Ea

+(ρm+ρnEa)Ei M,

(2.3)

dGe
dt
=
sσγpRp
1+ξ1Ea

−(γl+μe)Ge−(ρg+ρqEa)EiGe, (2.4)

dGl
dt
=

γlGe
1+ξ2Ea

−μlGl−ρlEiGl, (2.5)

dEi
dt
=Hi(Ei)+Γ1(Rp,M,Ei), (2.6)

dEa
dt
=Γ2(Rp,M,Ea)−μaEa, (2.7)

together with the following specified initial conditions defined at some initial time,

t=t0,

Rh(t0)=R0h, Rp(t0)=0, M(t0)=M0, Ge(t0)=0,

Gl(t0)=0, Ei(t0)=E0i, Ea(t0)=0.
(2.8)
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In Eq. (2.8),R0h,M0> 0andE0i≥ 0. Changes to the immune variables,Ei
andEa, as shown in Eqs. (2.6)–(2.7), are modeled in terms of general functions

Γ1(Rp,M,Ei)andΓ2(Rp,M,Ea), designed to capture the interaction between

merozoites, IRBCs, and the innate and adaptive immune cells.

Equations (2.1)–(2.5) and (2.6)–(2.7) for the specific example were

Γ1(Rp,M,Ei)=ϑ1Rp+ϑ2M−(λ1Rp+λ2M)Eiand Γ2(Rp,M,Ea)=1Rp+ 2M−

(θ1Rp+θ2M)Ea, derived based on some simplifying assumptions, were developed

and described detail in Refs. 29 and 42. Since, we have made some updates, and

for ease of understanding the model system (2.1)–(2.7), we give a summary below.

The associated parameters to system (2.1)–(2.7) are described in Table 2.

The density of HRBCs,Rh, changes due to a net increase from the production

of mature HRBCs from precursor cells from the bone marrow, modeled via the

functionRhψ(Rh), elaborated upon in Sec. 2.2.The recruitment depends on the

current state of HRBCs in the human system. Decrease in density of HRBC is

either due to natural death at the per capita rateμh, or due to parasitization

by merozoites, modeled viaβ1RhM1+ξ0Ea
, a process inhibited by adaptive immune cells,

whereξ0≥0 quantifies the inhibitive efficiency of the adaptive immune cells’ action

on the parasitization process. Parasitization of HRBCs by free-floating merozoites

increases the parasitized red blood cell (IRBC) population,Rp. This population is

decreased due to either natural death at the per capita rateμpor as a result of a

change in the parasite course at rateγpper infected red blood cell. The time 1/γp
is the time IRBCs either rupture to releasefree-floating merozoites or continue the

path to gametocytogenesis. IRBC density is also decreased as a result of action via

contact with innate immune cells (ρeRpEi) or as a result of the combined interaction

with innate and adaptive immune cells (ρaEaRpEi).

Various cells make up the innate and adaptive immune cells, and their action on

parasite forms or IRBCs are different. In summary, innate immune cells kill sporo-

zoites on human skin, eliminate circulating free-floating merozoites as well as IRBCs

and early and late state gametocytes. They also limit the development of liver-stage

parasites thereby suppressing the infection development at this stage. They function

either through direct contact with parasite forms and IRBCs or through phagocyto-

sis whereby parasites are killed by recognition through the innate immune receptors

and/or in conjunction with adaptive immune cells. Innate immune cells also help

adaptive immune cells capture and process antigens using antigen presenting cells.

In addition to their combined action with innate immune cells in merozoite killing

and enhanced clearance of IRBCs, adaptive immune cells also inhibit or block mero-

zoite invasion of HRBCs, bursting of red blood cells, as well as the maturation of

gametocytes, the development of parasites in an IRBC and the development and

release of liver-stage parasite. Thus, it is a complex process and the details have

been tabulated in Supplemental document A.

Afraction,(1−σ), of IRBCs will rupture releasing up torfree-floating

merozoites per bursting red blood cells and the process increases the density
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Table 2. Description of model parameters and their quasi-dimension as given in Ref. 29.

Parameter Description Quasi-dimension

β1 Mass action contact rate between free floating merozoites
and HRBCs, modeling the effective parasitization rate of
HRBCs by merozoites.

M−1T−1

β2 Adjusted mass action contact rate between free floating
merozoites and HRBCs, modeling effective absorption rate
of free merozoites by red blood cells as the merozoites
attempt to invade the cells. The merozoites are cleared
from the blood stream in the process.

C−1T−1

β3 Mass action contact rate between free floating merozoites
and IRBCs, modeling the effective absorption rate of free
merozoites by IRBCs as the merozoites attempt to invade
the cells. The merozoites are cleared from the blood stream
in the process.

C−1T−1

Θ Constant recruitment rate of HRBCs. CT−1

μh Per capita natural death rate of HRBCs. T−1

μ̃h Additional HRBCs density-dependent death rate due to
self-limiting processes for large densities.

C−1T−1

λh Growth rate of HRBCs due to per capita production of
HRBCs.

T−1

μp Per capita natural linear death rate of IRBCs. T−1

μe Per capita natural linear death rate of immature
gametocytes.

T−1

μl Per capita natural linear death rate of mature gametocytes. T−1

μm Per capita natural linear death rate of freely floating
merozoites.

T−1

μi Per capita natural death rate of innate immune cells. T−1

μa Per capita natural linear death rate of adaptive immune cells. T−1

δi Linear growth rate of innate immune system cells. T−1

Ki Carrying capacity of the environment for innate immune
system cells.

I

Mi Threshold innate immune system cell size below which the
innate immune system cells become ineffective. We expect
0< Mi<Ki.

I

ξ0 Efficiency of the adaptive immune effectors in inhibiting
merozoite contact with HRBCs and IRBCs via mass action
contact.

I−1

ξ1 Efficiency of the adaptive immune effectors in inhibiting
merozoite transformation in parasitized or infected red
blood cells.

I−1

ξ2 Efficiency of the adaptive immune effectors in inhibiting
maturation of early state gametocytes.

I−1

ρe Mass action contact rate between parasitized red blood cells
and innate immune system cells resulting in the
elimination of the parasitized cells.

I−1T−1

ρm Mass action contact rate between free floating merozoites
and innate immune system cells. This contact can result in
the elimination of the free floating merozoites.

I−1T−1

ρg Mass action contact rate between immature gametocytes and
innate immune system cells. This contact can result in the
elimination of the immature gametocytes.

I−1T−1

ρl Mass action contact rate between mature gametocytes and
innate immune system cells resulting in mature
gametocyte elimination.

I−1T−1
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Table 2. (Continued)

Parameter Description Quasi-dimension

ρa Mass action contact rate between IRBCs, innate immune
system cells and adaptive immune system cells accounting for
additional clearances due to the presence of adaptive
immunity.

I−2T−1

ρn Mass action contact rate between merozoites, innate immune
system cells and adaptive immune system cells, accounting
for additional clearances due to the presence of adaptive
immunity.

I−2T−1

ρq Mass action contact rate between immature gametocytes,
innate immune system cells and adaptive immune system
cells, accounting for additional clearances due to presence of
adaptive immunity.

I−2T−1

r Average number of merozoites released per bursting IRBC. MC−1

s Average number of early stage gametocytes arising from one
IRBC.

GC−1

σ A parameter in [0,1], it is the proportion of the IRBCs that
differentiate continuing towards the path to
gametocytogenesis.

1

γp rate of maturation per IRBC to a point where the IRBC either
bursts to release more free merozoites or continue towards
the gametocyte formation path called gametocytogenesis.

T−1

γl Transition rate of immature gametocytes mature within an
IRBC.

T−1

ϑ1 Rate at which innate immune effectors are
stimulated/generated due to the presence of IRBCs.

IC−1T−1

ϑ2 Rate at which innate immune effectors are
stimulated/generated due to the presence of free-floating
merozoites.

IM−1T−1

1 Rate which adaptive immune effectors are
stimulated/generated due to the presence of IRBCs.

IC−1T−1

2 Rate which adaptive immune effectors are stimulated/generated
due to the presence of free floating merozoites.

IM−1T−1

λ1 Mass action contact rate between IRBCs and innate immune
system cells accounting for the loss of innate immune cells
due to such contact.

C−1T−1

λ2 Mass action contact rate between free merozoites and innate
immune system cells accounting for the loss of innate
immune cells due to such contact.

M−1T−1

θ1 Mass action contact rate between IRBCs and adaptive immune
system cells accounting for the loss of the adaptive immune
cells due to such contact.

C−1T−1

θ2 Mass action contact rate between free-merozoites and adaptive
immune system cells accounting for adaptive immune cell
loss due to such contact.

M−1T−1

of free-floating merozoites. The remaining fraction,σ, that does not burst con-

tinue the path to gametocytogenesis, increasing in the early state gametocyte

density. Both processes, Inhibited by the adaptive immune cells, are modeled

via the terms
rγp(1−σ)Rp
1+ξ1Ea

and
sγpσRp
1+ξ1Ea

, whereξ1 ≥ 0 quantifies the inhibitive

efficiency of the adaptive immune cells’ action on IRBCs bursting or continuation to

gametocytogenesis. The densities of both merozoites and early state gametocytes
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are reduced due to natural death at the per capita rates ofμm andμe, respec-

tively, or as a result of contact with innate immune cells (modeled viaρmMEiand

ρgGeEi, respectively) or as a result of the combined interaction with innate and

adaptive immune cells (modeled viaρnEaMEiandρqEaGeEi, respectively). Addi-

tional losses occur in the merozoite population as a result of the merozoites infecting

or parasitizing red blood cells, resulting in them being absorbed (see Refs. 43 and 44

for details). We model these by the termsβ2RhM1+ξ0Ea
and

β3RpM
1+ξ0Ea

,whereξ0≥0measures

the efficiency of the adaptive immune cells’ action on inhibiting the parasitization

process. Early state gametocytes that successfully evade the inhibitive properties

of the adaptive immune cells serve as the precursors to the mature gametocyte

population, producing γlGe
1+ξ2Ea

late state gametocytes. Here,γlis the maturation

rate andξ2≥0 quantifies the maturation inhibitive efficiency. The population of

mature gametocytes diminishes due to natural death at rateμlor as a result of

innate immune action in fighting this foreign body, modeled byρlEiGi.

In model (2.1)–(2.7), the functionsψ, Hi:R
+→Rare needed to model the rate

of recruitment of new red blood cells and innate immune effector cells, respectively.

We motivate the nature and properties that a realistic recruitment function should

have in our context. The choices of the recruitment functions in (2.1)–(2.7) serve

as a generalizes of past works on the within-human malaria parasite dynamics (see

for example, Refs. 25, 28, 41, 43, 45 and 46).

2.2.The recruitment functions

In the absence of malaria infection in a human, the equation governing the HRBC

density is

dRh
dt
=Rhψ(Rh)−μhRh≡g̃(Rh), (2.9)

where it is assumed that erythrocytes are recruited from the stems of the bone

marrow at a density-dependent rateψ(Rh) per healthy red blood cell and have

a life expectancy of 1/μh.The termμhRh(t) therefore represents the net rate of

erythrocytes dying naturally in a healthy human body. Our objective in this sub-

section is to discuss conditions on the form ofψ:[0,∞)→ Rthat can serve as

a suitable red blood cell recruitment function for our model. We have deliberately

assumed for simplicity as in Refs. 47 and 48, that the recruitment function (even in

the presence of infection) depends only on the density of healthy erythrocytesRh
but not on the total density of healthy and infected erythrocytes, even though it

has been conjectured that the production oferythrocytes is accelerated in a small

way by the presence of infectederythrocytes in the system.25We assume that the

functionψ:[0,∞)→Rhas required properties that will guarantee the existence of

a healthy erythrocyte population so that the growth dynamics of healthy erythro-

cytes in the absence of malaria parasites is internally stable, from a mathematical

and physical stand point. We write down the following definition for HRBC recruit-

ment functions.
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Definition 1 (Recruitment functions). For the sake of mathematical and bio-

logical realism, a functionψ:[0,∞)→Ris considered to be a suitable recruitment

rate function if it is smooth and in addition should satisfy the following conditions:

(1)ψ(0+)>0,ψ(Rh)≥0,∀Rh≥0,whereψ(0+) = limRh→0+ ψ(Rh).

(2)ψ(Rh) exists for allRh≥0andψ(Rh)<0,∀Rh≥0.

(3) limRh→+∞ ψ(Rh)≤μh<limRh→0+ ψ(Rh),∀Rh>0.

(4) The functionRhψ(Rh) is non-negative, continuously differentiable, bounded

and unimodal so that there existsRmh > 0 such that for 0< Rh < R
m
h,

Rhψ(Rh) is strictly monotone increasing and forRh>R
m
h,Rhψ(Rh) is strictly

monotone decreasing.

Condition (1) ensures non-negativity ofψandRhψ(Rh), withRhψ(Rh)repre-

senting the net rate of production of newRhper time. Condition (2) ensures thatψ

is a monotone decreasing function of its argument, meanwhile condition (3) ensures

that Eq. (2.9), which models the dynamics of HRBCs in the absence of infection,

has a nonzero stationary solutionR∗hsuch thatR
∗
h=ψ

−1(μh), which is stable to

small perturbations. Additionally, it ensures that a carrying capacity, denoted by

C, exists such that forRh<C,Rhis increasing with time (sinceRh>0), and for

Rh>C,Rh<0 implying thatRhis decreasing with timet. Condition (4) ensures

thatRhψ(Rh) has a positive maximum value given byR̂hψ(̂Rh), whereR̂h∈[0,∞)

satisfies the equationψ(̂Rh)+R̂hψ(̂Rh) = 0, and allowable shapes for the graph

ofRhψ(Rh) are shown in Fig. 2. Examples of recruitment functions in population

dynamics that satisfy (1)–(4) may be found in Refs. 13 and 49. Some of these are

mentioned below in the context this work:

(a)The linear recruitment function:Here, we considerψ(Rh)=
Θ
Rh
,where

Θ>0 is a constant, so that in the absence of infection, the HRBCs equation,

namely,Rh(t)=g̃(Rh(t)) = Θ−μhRh(t) is the constant recruitment linear

death growth model in biology.

(b)The logistic recruitment function:For this case, we consider the function

ψ(Rh)=λh−μ̃hRh,whereλh>μhis the per capita constant rate of recruit-

ment of HRBCs from bone marrow and ̃μhis additional death rate per HRBCs.

The assumption is that a self limiting process kicks in for large densities, induc-

ing additional HRBC deaths. In this case, the HRBC dynamics in the absence

of infection is modeled byRh(t) =g̃(Rh) =(λh−μh)Rh(1−
μ̃h

(λh−μh)
Rh),

which is effectively the logistic growth model in biology,aoriginally proposed

aThe action of HRBC production from the precursors (see Ref. 50) is masked in the present
formulation. The chosen form should be understood as follows: In the absence of malaria dis-
ease and under steady state,λh =μh and ̃μh = 0. If there is a decline in the HRBC density,
thenλh >μh, where the processes and feedback loops leading to the increased production of
HRBCs from the precursors have not been explicitly modeled. Likewise, if the HRBC density
is too large, thenλh <μh, in addition to ̃μh > 0, with its size dependent on the density of
HRBCs.
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(a) (b)

Fig. 2. Figure showing the allowable shape and behavior of the dynamics for any choice ofψ
leading to the net recruitment functionRhψ(Rh) in the equation for the time rate of change of
HRBCs in the absence of infection (2.9). The functionψ:[0,∞)→ Ris to be chosen so that the
Rhψ(Rh) is a unimodal function graph (a), and the dynamic described by the function ̃g(Rh)=
Rhψ(Rh)−μhRhcrosses theRhaxis at exactly one point as shown in (b) implying the existence
of a unique stable steady state solution for the equationRh(t)=̃g(Rh(t)),Rh(0) =R

0
h∈(0,∞).

by Verhulst51and used by Pearl.52It is worth noting, however, that this form

ofψdoes not satisfy the positivity condition prescribed by condition (1) of

Definition 1 whenRh>
λh
μ̃h
, but we assume that, in this case,λhμ̃h is sufficiently

large.

(c)The Ricker recruitment function: In the third instance, we consider

ψ(Rh) =λhe
− 1
Kh
Rh whereλh andKh are positive constants.Kh may be

associated with the environmental carrying capacity, whileλh can be seen

as the limiting HRBC production rate when the HRBC count is very low.

We demand that λh >μhso that in the absence of infection, the dynamic

of the HRBC population is modeled by the Ricker growth model53 where

Rh(t)=g̃(Rh)=Rh(λhe
− 1
Kh
Rh −μh). The Ricker growth function has also

been used by Nisbet and Gurney54to model laboratory fly populations.

(d)The Maynard–Smith–Slatkin recruitment function: In the fourth

instance, we considerψ(Rh)=λh 1+
Rh
Kh

n −1
where this form of the recruit-

ment function forn= 1 is known as the Maynard–Smith–Slatkin birth rate

function,55and forn= 1 is the Beverton–Holt recruitment function.56With

this type of recruitment function,nis a measure of the degree of nonlinear-

ity in the recruitment function so that larger values ofnprovide stronger

nonlinear response functions. We note that to stay within the limitations

set by the requirements on the recruitment function as specified by Defini-

tion 1 and illustrated in Fig. 2, we must impose the restrictionn >1. In

the absence of the disease,Rh(t)=g̃(Rh)=λhRh 1+
Rh
Kh

n −1
−μhRh.

λh has the same interpretation as in the Ricker case and we again assume

thatλh>μhso that when cell numbers are small, deaths do not predomi-

nate births. The Maynard–Smith–Slatkin growth rate function has also been

used by Ngonghalaet al.13and Ngwaet al.18in modeling mosquito population

dynamics.
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We clarify the notion of linearity and nonlinearity as used in the study presented

in this paper with the following definition.

Definition 2 (Linear versus nonlinear recruitment functions). In light of

the different functionsψ:[0,∞)→Rdefined above and satisfying Definition 1, we

refer to the function ̃g:[0,∞)→ Rdefined by ̃g(Rh)=Rhψ(Rh)−μhRhas (i) a

linear recruitment function if ̃g(Rh) is at most a polynomial of degree one inRh,

and (ii) a nonlinear recruitment function if ̃g(Rh) is either a polynomial of degree at

least two inRhor a combination of rational/irrational and transcendental functions

ofRh. Furthermore, we shall refer to ̃g(Rh) as a more (or strongly) nonlinear recruit-

ment function if any attempt to write ̃g(Rh) as a complete and convergent power

series will always result in an infinite power series representation in powers ofRh.

In the context of Definition 2, combinations of exponential and polynomial func-

tions that admit infinite power series expansions with the desired properties delim-

ited by Definition 1 are admissible recruitment functions.

Similar functional forms can be selected and used for the recruitment of innate

immune effector cells (see (2.6)) modeled via the functionHi:[0,∞)→ R.Three

example cases are: (i) linear model:Hi=Θi−μiEi,withΘiconstantrecruit-

ment andμithe per capita death rate; (ii) Verhulst–Pearl logistic model,Hi(Ei)=

δiEi1−
Ei
Ki
,whereδiis the net linear per capita growth rate of innate immune sys-

tem cells andKi>0 is the carrying capacity of the environment for innate immune

system cells and (iii) model with allee effect:Hi(Ei)=δiEi1−
Ei
Ki

Ei
Mi
−1,

withδiandKias given in (ii). This example accounts for allee effects, withMi
the allee threshold density marking the immune system cell density switch point

below which the innate immune density is no longer effective. For a meaningful and

effective switch, 0<Mi<Ki. A systematic consideration of the different possible

combinations of the different types of recruitment functions for the HRBCs and

innate immune effector cells represented in this paper will result in consideration of

several different models for the within human host dynamics of the malaria parasite

in the presence of immunity. The fact that different forms of recruitment functions

that fall within the expected realities in modeling can be formulated, leads us to

the possibility of considering a large class of models of the type studied herein.

In the presence of malaria infection, a human’s innate as well as adaptive, for

mature-immune humans, immune systems are boosted by the presence of the infec-

tion. This boosts results in interactions between the immune cells, IRBCs and

some parasite forms. In particular, during infection and in the presence of immu-

nity, IRBCs (Rp), free-floating merozoites (M) and the early state gametocytes

(Ge), interact and are affected by both the innate and adaptive immune systems

while the late state gametocytes, (Gl), is affected by the innate immune system.

The interaction also yields losses to the immune cell densities (since elimination

is assumed to be done by phagocytosis when the immune cells come in con-

tact with the free-floating merozoites and IRBCs). In Eqs. (2.6) and (2.7), we

model the interactions by general functions Γ1(Rp,M,Ei)andΓ2(Rp,M,Ea)which
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would be chosen to capture such a loss and such that in the absence of infec-

tion wherebyRp=M =0,∀t>0, Γ1=Γ2= 0. That is, based on Eq. (2.7),

the adaptive immune system cells will wane at the constant per capita rate of

μa. This makes sense biologically, since the dynamics of the adaptive immune

response is maintained by continued presence of infection in the human body.

Thus, from (2.7), in the absence of the malaria infection,Ea will decay expo-

nential decay to zero according to the relationEa∝exp(−μat). As earlier noted,

the simple forms in which Γ1(Rp,M,Ei)=ϑ1Rp+ϑ2M −(λ1Rp+λ2M)Eiand

Γ2(Rp,M,Ea)=1Rp+ 2M−(θ1Rp+θ2M)Ea,wereusedinRefs.29and42,to

model the interactions between innate and adaptive immune cells and IRBCs and

parasite forms, with the added assumption that 1≤ 2,θ1≤θ2,ϑ1≤ϑ2and

λ1≤λ2, so as to account for the reduced elimination of IRBCs by immune cells

EiandEa, compared to their effect on free-floating merozoites.
46For the adaptive

immune example, the form of Γ2(Rp,M,Ea) neglects the delay associated with the

time adaptive immune system takes to develop within an individual.

Here, we will not explicitly model the dynamics of both the adaptive and innate

immune system cells, but consider their effects on the model system (2.1)–(2.7)

at fixed time points where by the model steady states and parasitemia threshold,

denoted byR0, are obtained as functions of immune variables and analyzed at

snapshots of immune sizes. In the absence of information for the true form of the

recruitment function, we maintain that the results of this analysis will give an

insight into the nature of the within human host dynamics of the malaria parasite. In

what follows, even though we have written down two equations, what we now refer

to as prototype equations for the immune response, we shall regard the presence of

the activity of immune response in the system as parametric variables and derive

all formulae in terms of these parametric variables.

The basic properties of invariance, positivity, boundedness and uniqueness of

solutions to system (2.1)–(2.7) with initial conditions in (2.8) and under the con-

ditions given forψ(Rh)andHi(Ei) as stated in this section, were established in

Refs. 22 and 29, when the HRBCs, in the absence of parasitemia, are modeled by

the linear and logistic models. The results are easily extendable to the Ricker and

Maynard–Smith–Slatkin recruitment functions and are not presented here.

2.3.Reparameterisation, scaling and nondimensionalization

Following the idea in Ref. 29, expanded to incorporate all four recruitment functions

discussed in Sec. 2.2, we nondimensionalize as follows: We begin by letting

rh=
Rh
R0h
, rp=

Rp
R0p
, τ=(μp+γp)t, m=

β2M

rγp
, ge=

(μe+γl)Ge
sγpR0p

,

gl=
μl(μe+γl)Gl
γl(sγpR0p)

, ei=
Ei
E0i
, ea=

(μp+γp)Ea

1R0p
,

(2.10)
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whereR00,R
0
pandE

0
iare given as

R0h=R
0
p=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

μh
ifψ(Rh)=

Θ

Rh
,

λh−μh
μ̃h

ifψ(Rh)=λh−μ̃hRh,

−Khln(μ) ifψ(Rh)=λhe
− 1
Kh
Rh,

Kh
1

μ
−1

1
n

ifψ(Rh)=λh 1+
Rh
Kh

n −1

,

E0i=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θi
μi

ifH(Ei)=Θi−μiEi,

Ki ifH(Ei)=δiEi 1−
Ei
Ki

or

H(Ei)=δiEi 1−
Ei
Ki

Ei
Mi
−1 ,

(2.11)

and the dimensionless parameter groupings are

K=
Mi
Ki
, μ=

μh
λh
,

a0=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μh
μp+γp

ifψ(Rh)=
Θ

Rh
,

λh−μh
μp+γp

ifψ(Rh)=λh−μ̃hRh,

λh
μp+γp

ifψ(Rh)=λhe
− 1
Kh
Rh orψ(Rh)=λh 1+

Rh
Kh

n −1

,

a1=
rγpβ1

β2(μp+γp)
, a2=

β2R
0
h

μp+γp
, a3=

μm
μp+γp

,

a4=
μe+γl
μp+γp

, a5=
μl

μp+γp
, a6=

μa
μp+γp

,

ρ1=
ρeE

0
i

μp+γp
, ρ2=

ρa 1R
0
p

ρe(μp+γp)
, ρ3=

ρmE
0
i

μp+γp
,

ρ4=
ρn 1R

0
p

ρm(μp+γp)
, ρ5=

ρgE
0
i

μp+γp
, ρ6=

ρq 1R
0
p

ρg(μp+γp)
,

ρ7=
ρlE

0
i

μp+γp
, p0=

ξ0 1R
0
p

μp+γp
, p1=

ξ1 1R
0
p

μp+γp
, p2=

ξ2 1R
0
p

μp+γp
, β=

β3
β2
,
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b1=
ϑ1R

0
p

E0i(μp+γp)
, b2=

ϑ2rγp
ϑ1β2R0p

, b3=
2rγp

1β2R0p
,

c1=
λ1R

0
p

μp+γp
, c2=

λ2rγp
λ1β2R0p

, c3=
θ1R

0
p

μp+γp
,

c4=
θ2rγp
θ1β2R0p

,

δ=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μi
μp+γp

ifH(Ei)=Θi−μiEi,

δi
μp+γp

ifH(Ei)=δiEi 1−
Ei
Ki

or

H(Ei)=δiEi 1−
Ei
Ki

Ei
Mi
−1.

(2.12)

We note that μas defined in Eq. (2.12) satisfies 0<μ ≤ 1. Substituting

Eqs. (2.10)–(2.12) into Eqs. (2.1)–(2.7), we obtain the scaled system

drh
dτ
=a0g(rh)−

a1mrh
1+p0ea

, (2.13)

drp
dτ
=
a1mrh
1+p0ea

−rp−ρ1(1 +ρ2ea)rpei, (2.14)

dm

dτ
=a2

(1−σ)rp
1+p1ea

−m
rh

1+p0ea
+

βrp
1+p0ea

−a3m−ρ3(1 +ρ4ea)eim, (2.15)

dge
dτ
=a4

σrp
1+p1ea

−ge −ρ5(1 +ρ6ea)eige, (2.16)

dgl
dτ
=a5

ge
1+p2ea

−gl −ρ7eigl, (2.17)

dei
dτ
=h(ei)+Γ1(ei,rp,m), (2.18)

dea
dτ
=Γ2(ei,rp,m)−a6ea, (2.19)

together with the equations

g(rh)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1−rh ifψ(Rh)=
Θ

Rh
,

rh(1−rh) ifψ(Rh)=λh−μ̃hRh,

rhe
rhln(μ)−μrh ifψ(Rh)=λhRhe

− 1
Kh
Rh,

rh

1+(1μ−1)r
n
h

−μrh ifψ(Rh)=λh 1+
Rh
Kh

n −1

,

(2.20)
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h(ei)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δ(1−ei) ifH(ei)=Θi−μiEi,

δei(1−ei) ifHi(Ei)=δiEi 1−
Ei
Ki

,

δei(1−ei)
ei
K
−1 ifHi(Ei)=δiEi 1−

Ei
Ki

Ei
Mi
−1.

(2.21)

As noted in Table 2, 0 < Mi < Ki ⇒ 0< K < 1. Thus, in the third

case of Eq. (2.21),K represents the innate immunity threshold below which the

innate immune response becomes less effective. Using the prototype examples ear-

lier discussed and modeled in Refs. 29 and 42, the nondimensional forms ofΓ1
andΓ2areΓ1(ei,rp,m) =b1(rp+b2m)−c1(rp+c2m)eiandΓ2(ei,rp,m) =

rp+b3m−c3(rp+c4m)ea. A complete discussion including relative sizes of the scaled

parameters of system (2.13)–(2.17), together with a subcase of (2.20) and (2.21),

under immune suppression, was presented in Ref. 29. In particular, 0≤σ≤1,

0<β≤1,a0∈(0,1)forthelinearcasewhereg(rh)=1−rhanda0>0 for all

other forms ofg(rh),a1≥0,a2>0,a3>1and0<a4,a5<a3.

2.4.The innate and adaptive immune responses

In a generalized setting, we will analyze system (2.13)–(2.19) and in the process

attempt to quantify the level of immune presence in the system, which we know

is quite variable in different individuals. Here, we do not pursue this approach.

Rather, we work with the general assumption that the net effect of the action of

the immune system is to slow down, if not arrest, the process of invasion by the

pathogen of the human biological system. This “slowing down effect” has been

captured in the model above through the inclusion of the terms of the form 1
1+pkea

and−ρi(1 +ρi+1ea)ei,k=0,1,2andi=1,...,7 in the model equations (2.13)–

(2.17) whereeiis the dimensionless density of innate immune effector cells whileea
is that of adaptive immune effector cells. It is understood that the innate immunity

is the front-line active immune effectorcells that are produced and are always

present in the system at all times. In the context of the scaling done above, we

assume thateiis scaled with its maximum possible size so that 0≤ei≤1.ei=0

is the lack of natural immune effector cells characteristic of two scenarios: one where

the immune system has been totally compromized by infection, malaria parasite or

other, and the other arising where the individual has never been exposed to malaria

infection but other factors compromises the system. On the other hand adaptive

immunity kicks in and is sustained by continuing exposure to malaria, but also

wanes away when the exposure is stopped over a long period of time. That is, the

effectiveness of the adaptive immune response increases with duration of infectivity

and frequency of exposure to the infection. However, since this increase cannot

be indefinite, we assume thatea,withea ≥ 0, is also bounded, with a bound
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determined by the size and frequency of exposure to malaria infection as well as

the length of sustained infectivity state. The caseea= 0 commensurate with the

scenario where an individual has had no exposure to malaria over a long period

of time. Without diving into the specifics of actually computing the size of the

immune states of the individual in a full and complete mathematical analysis of

the coupled system (2.13)–(2.19), we regardei∈[0,1] andea∈R+ as parametric

coordinates. Note that the explicit expressions forΓ1andΓ2, are not necessary,

except thatΓ1=0=Γ2, in the absence of infection. We then study the system

with these parametric variables by simply writingqiwhere in fact,qi=qi(ea)for

i∈{1,3,6},qi=qi(ea,ei)fori∈{2,4,5}andq7=q7(ei), with

q1(ea)=
1

1+p0ea
, q2(ea,ei)=ρ1(1 +ρ2ea)ei,

q3(ea)=
1

1+p1ea
, q4(ea,ei)=ρ3(1 +ρ4ea)ei,

q5(ea,ei)=ρ5(1 +ρ6ea)ei, q6(ea)=
1

1+p2ea
,

q7(ei)=ρ7ei.

(2.22)

Each of the functionsqi,whereqi:R
2
+ → R+ fori∈{1,3,6}andqi:R+ → R+

fori∈{2,4}, are positive monotone functions that measure the effect of adaptive

and innate immunity in the different aspects of the within human host dynamics

of the malaria parasite as explained in the derivation of the model in Refs. 22

and 29. In this rendition, we see immediately thatq1,q3andq6are monotone

decreasing functions of the adaptive immunity functionea(t) whileq2,q4,q5andq7
are monotone increasing functions of the adaptive and innate immunity functions

ea(t)andei(t). We have the following bounds on the different functions:

q1(ea),q3(ea)andq6(ea): The adaptive immune responseeais zero in the absence

of infection and kicks in when infection is present, and thereafter wanes away to

zero when the infection is removed or cleared. Thus,ea(t)≥0,∀t≥0. We expect

infea{q1(ea)}>0, since the adaptive immune response cannot continue to increase

indefinitely. Therefore, we have 0<q1,q3,q6≤1 for allt≥0.

q2(ea,ei),q4(ea,ei),q5(ea,ei)andq7(ei): In the context of the scaling done in

this paper, the innate immunity responseei(t) can vary fromei(t)=0,complete

immune depletion and deficiency, to maximum operabilityei(t) = 1. Thus, com-

bined with the fact thateaincreases from zero, we have the bounds 0<q2<

ρ1(1 +ρ2supeaea), 0<q4<ρ3(1 +ρ4supeaea), 0<q5<ρ5(1 +ρ6supeaea)

and 0<q7<ρ7.Sinceea= 0 in the absence of infection and kick-starts in the

presence of infection, the least upper bounds forq2,q4,q5andq7are, respectively,

ρ1,ρ3,ρ5andρ7occurring whenea=0.



August 8, 2020 11:29 WSPC/S0218-3390 129-JBS 2040006

A Mathematical Study of the Implicit Role of Innate and Adaptive Immune Responses 395

With these parameter groupings for the system explicitly studied, system (2.13)–

(2.17) then takes the form

drh
dτ
=a0g(rh)−a1q1mrh, (2.23)

drp
dτ
=a1q1mrh−(1 +q2)rp, (2.24)

dm

dτ
=a2[q3(1−σ)rp−q1(rh+βrp)m]−(a3+q4)m, (2.25)

dge
dτ
=a4[q3σrp−ge]−q5ge, (2.26)

dgl
dτ
=a5[q6ge−gl]−q7gl. (2.27)

Next, for givenrpandmvalues, all we need do is establish that Eqs. (2.18) and

(2.19) have bounded solutions, if we desire to obtain an immune state for the human

individual in question. From (2.18) and (2.19), it is clear that in the absence of

infection,deidτ =h(ei)⇒ ei(t)=ei(0) +
t

0h(ei(s)ds, for the forms ofhin (2.21),

anddeadτ =−c6ea⇒ea(t)=ea(0)e
−c6t.

In what follows next, we examine system (2.23)–(2.27) whereeaandeiare

parametric coordinates and the rest of the parameters are as stated. Note that the

explicit forms of the system that modeleiandeaas defined by Eqs. (2.18) and

(2.19) are not necessary for our analysis, henceforth. To begin, we start by deriving

the parasitemia reproduction number.

3. The Parasitemia Reproduction Number in Immune Presence

In this section, we briefly examine how the presence of an immune response can

affect the intensity of propagation of merozoite transmission within the healthy

red blood cell population by calculating and studying the effect of the immunity-

based variables on the size of the parasitemia reproduction number for our full

system. For within-human host malaria parasite dynamics, we treat the HRBCs

as the susceptible population and the IRBCs as the infected population, with the

merozoite population the infecting agent. Through this compartmentalization (see

Fig. 1), we can then defineparasitemia reproduction number, and use it as a measure

of the strength or intensity of the force with which merozoites invade and destroy

the healthy red blood cell population within the human at the onset of parasitemia.

This measurable index points to whether or not parasitemia (systematic destruction

of healthy red blood cells) will persists. Typically, ifR0<1,each infected red blood

cell eventually leads to the production, on average, less than one new infected

red blood cell, indicating the possibility of controlling parasitemia at some point.

However, ifR0>1,then there is persistence of parasitemia.
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Following our work in Ref. 29, it can be shown that

R0= (FV−1)=
a1a2q1q3(1−σ)

(q2+1)(a2q1+a3+q4)
, (3.1)

where (F)ij=
∂Fi
∂xj
is the matrix of newly parasitized RBCs and (V)ij=

∂Vi
∂xj
are

transfer terms, with

F(x)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

a1mq1rh

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V(x)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1mq1rh−a0g(rh)

(q2+1)rp

m(a3+q4)−a2(q3rp(1−σ)−mq1(rh+βrp))

geq5−a4(q3rpσ−ge)

glq7−a5(geq6−gl)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the matrices evaluated at the disease-free equilibrium,x∗f=(1,0,0,0,0)
T. Here,

(FV−1) is the spectral radius of the next generation matrixFV−1(see Ref. 57).

Remark 1 (On the Parasitemia Reproduction Number in Immune Pres-

ence).The expression forR0as defined by equation (3.1) is exactly the same

expression associated with the conditions for the existence of a positive merozoite

steady state, whereby forR0≤1 there is no positive merozoite steady state pop-

ulation, and the only steady state is the parasite-free steady state. Details of this

derivation can be found in Ref. 22. Additionally, the expression forR0remains

unchanged if we constructed the next generation matrix by considering only the

disease terms.

A quick examination of the formula (3.1) as a function ofei∈[0,1] andea∈R+
and noting the behaviors of the quantitiesqias monotone functions ofeiandea,

shows that the effect of the action of immunity on the system is to reduce the size of

parasitemia reproduction number. In fact, from the form ofR0,giventhatq1and

q3are monotone decreasing functions ofeawhileq2andq4are monotone increasing

functions ofeaandei, the combined increased action of immune responses, will

lead to a reduction overall size ofR0.Inparticular,wehave

R0=
a1a2q1q3(1−σ)

(q2+1)(a2q1+a3+q4)

activeea>0andei∈(0,1)

≤
a1a2(1−σ)

(1 +ρ1)(a2+a3+ρ3)

ea=0,ei=1

≤
a1a2(1−σ)

(a2+a3)

ea=0,ei=0

. (3.2)
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The inequality given by formula (3.2) simply expresses the fact thatR0increases

with decreasing effectiveness of the immune response and attains a maximum value.

It also captures the expectation that as the adaptive immunity kicks into action

following repeated parasitemia, the actual value of the parasitemia reproduction

number will continue to reduce in size. These two observations highlight the com-

bined effects of these immunity-based responses in reducing the value ofR0,thereby

reducing the strength of parasitization of the red blood cells. The results also indi-

cate that even in the absence of immune response, the parasitemia reproduction

number can be bounded, which assures us that malaria parasitemia control is possi-

ble, even thoughR0can continue to increase with increasinga1. We shall investigate

these further below as we continue to view the introduction of immunity into the

system as a parameter into the system defined by Eqs. (2.13)–(2.19). The parame-

terized parameterR0so identified can be used to study the behavior of the system

in the presence of immunity.

4. Existence and Stability of Equilibrium Solutions

4.1.Existence of equilibrium solutions

To appreciate the effect of immunity on the system especially, on the eventual

size of the steady state solutions and on the reproduction number, we now pro-

ceed to characterize the steady state solution on the above system in paramet-

ric form, that is in terms of two parametersei ∈ [0,1] andea ∈ R
+.Let

Er∗
h
=(r∗h,r

∗
p(r
∗
h),m

∗(r∗h),g
∗
e(r
∗
h),g

∗
l(r
∗
h)) be a steady state solution, then as usual,

setting the time derivatives to zero in (2.23)–(2.27) we find that

r∗p(r
∗
h)=

a0g(r
∗
h)

q2+1
, (4.1)

m∗(r∗h)=
a0(q2+1)R0(a2q1+a3+q4)g(r

∗
h)

a1q1(a2q1(a0βg(r∗h)+q2r
∗
h+r

∗
h)+a3(q2+1)+q4(q2+1))

, (4.2)

g∗e(r
∗
h)=

σq3a4
a4+q5

r∗p(r
∗
h)=

a0a4q3σg(r
∗
h)

(q2+1)(a4+q5)
, (4.3)

g∗l(r
∗
h)=

q6a5
a5+q7

g∗e(r
∗
h)=

a0a4a5q3q6σg(r
∗
h)

(q2+1)(a4+q5)(a5+q7)
, (4.4)

whereg(rh) satisfies the equationa0g(r
∗
h)−a1q1m

∗(r∗h)r
∗
h = 0 leading to two

solutions

(a)g(r∗h)=0or(b)g(r
∗
h)

=
(q2+1)(a2q1(R0−1)r

∗
h+(a3+q4)(R0r

∗
h−1))

a0a2βq1
=A1r

∗
h−A0,

(4.5)
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where

A1=
(q2+1)(a2q1(R0−1) +R0(a3+q4))

a0a2βq1
,

A0=
(q2+1)(a3+q4)

a0a2βq1
,

(4.6)

andR0=R0(e
∗
a,e
∗
i) is given by (3.1). Note thatA0andA1satisfy the following

properties: (i)A0>0 always, (ii) 0<A0≤A1wheneverR0>1 and (iii) more

generally,A1>0forR0>
a2q1

a2q1+a3+q4
, a value less than 1. From the definition of

R0in (3.1), the inequality in (iii) is true when (1−σ)a1q3>1+q2.

The two equations forg(r∗h) given by (a) and (b) in (4.5) provide a pathway

to obtaining all the steady state values,r∗h, for the different types of recruitment

functions as follows: By construction,g:[0,∞)→ Ris either a strictly monotone

decreasing function ofrhwithg(1) = 0 or a unimodal (one hump) continuously

differentiable function ofrhwithg(0) =g(1) = 0, so that by Rolle’s theorem there

existrmh ∈(0,1) such thatg(r
m
h)=0.Thusg(rh)≤g(r

m
h) for allrh.Thatis

the equationg(rh) = 0 has at most two solutions for all forms ofg(rh) allowed by

Definition 1. We deduce thatg(rh) is monotone decreasing for all values ofrh>r
m
h

and monotone increasing for 0≤rh<r
m
h. So the equationg(rh)=A1rh−A0can

have exactly one solution that will occur at the point where the strictly monotone

increasing functiony(rh)=A1rh−A0meets the functiony(rh)=g(rh), forrh>r
m
h

orrh∈[0,r
m
h), the two intervals wheregis strictly monotone. Whether or not the

solution identified from here is realistic in the sense of the scaling done in this paper

will be determined by the parameters of the system. Notice that asR0increases

from 0,A1also increases and so the two curves defined byg(rh)andA1rh−A0
must meet at some point in the right-half plane whererh≥0, and there exists

parameter values for which the curves meet forrh∈[0,1]. So not all solutions of

the equationg(rh)=A1rh−A0are admissible solutions. We have the following

definition.

Definition 3. Asolutionr∗h∈Rof the equationg(r
∗
h)=0org(r

∗
h)=A1r

∗
h−A0

is said to be realistic, thatis acceptable within the delimitations set by the scaling

in this paper, if it is non-negative and bounded and 0≤r∗h≤1.

In Fig. 3(a), whenR0< 1, the intersection point ofg(rh)andA1rh−A0,

occurs at negative values of the growth functions and the value ofrh at which

the intersection occurs is greater than 1. No parasitized steady state exists for this

case; only the parasite-free (or merozoite-free) steady state, in addition to the trivial

steady state for the more nonlinear birth rate functions. In Fig. 3(b), withR0=1,

only the parasite-free steady state in addition to the trivial steady state for the

nonlinear functions exist. AsR0increases further from unity, we now have two

steady states for the linear recruitment function, the parasite-free and a parasitized

steady state, and three for the nonlinearg(rh) functions, the two mentioned and

the trivial steady state. Additionally,r∗h→ 0asR0→ ∞ as illustrated in figures



August 8, 2020 11:29 WSPC/S0218-3390 129-JBS 2040006

A Mathematical Study of the Implicit Role of Innate and Adaptive Immune Responses 399

(a)R0=0.5 (b)R0=1.0

(c)R0=1.5 (d)R0=3.5

Fig. 3. Figure showing the existence of steady states asR0increases through unity in relation
to all forms of recruitment functions. The solid red increasing graph represents the curve for
A1rh−A0, meanwhile the remaining curves representg(rh) for the four types of recruitment
functions studied. The solid black decreasing curve represents the linear recruitment function;
the black dashed curve the logistic; the blue dot-dashed curve the Ricker and the solid dark red
curve the Maynard–Smith–Slatkin recruitment function as described in Sec. 2.2 and shown in
non-dimensional forms in Eq. (2.20). In (a),R0<1 and the red increasing curve intersectg(rh)
for values ofrh>1 where the growth functions are negative, and there is no parasitized steady
state. In (b),R0= 1 and the intersection is atrh= 1, giving the parasite-free steady state and
no parasitized steady state. ForR0>1, the intersection is forrhvalues between 0 and 1; graphs
(c) and (d). AsR0further increases from unity, the intersection point shifts progressing toward
smaller values ofrh; (c) and (d). In general,r

∗
h→ 0asR0→ ∞ as explained in the text.

indicates that the size of the parasitized steady states is decreasing for increasing

R0. This makes sense as largeR0values are associated with heavy parasitemia.

The mathematical details associated with existence of steady states are explained

in the text below.

Restricting ourselves to solutions that satisfy Definition 3, we consider existence

of steady state solutions case by case, as each case is determined by the type of

recruitment function being considered.

Case 1:g(rh)=1−rh, this is the case of linear recruitment linear death model.

We have the following:

(a)g(r∗h)=0⇒ r
∗
h = 1 is the unique steady state solution. When this steady

state solution forr∗his substituted into (4.2)–(4.4), it leads to the steady state

solutionEr∗h=1=(1,0,0,0,0). This is the disease-free,or merozoite-free steady

state solution which we denote byxf.

(b) In the second instance, we haveg(r∗h)=A1r
∗
h−A0, and so to get the steady

solution we must solve the equation 1−r∗h=A1r
∗
h−A0, giving the solution

r∗h=
1+A0
1+A1

.Since0<A0≤A1wheneverR0≥1,r
∗
h∈(0,1].r

∗
hso obtained
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is the only realistic parasitized steady state solution. To see this, we use the

expressions forA1andA0defined by (4.6) and observe that the expression

A1rh−A0may be rearranged in the form

A1rh−A0=
(1 +q2)(a2q1+a3+q4)(R0−1)

a0a2βq1
+A0 rh−A0,

=
(1 +q2)(a2q1+a3+q4)(R0−1)

a0a2βq1
rh+A0(rh−1).

Thus, whenR0<1,A1rh−A0<0 wheneverrh<1 indicating that there are

no positive values ofrh∈(0,1) such that 1−rh=A1rh−A0for this range of

values ofR0. WhenR0=1,A1=A0and we have the solutionr
∗
h= 1 leading

back to the merozoite free steady state solutionx∗f.IfR0>1,r
∗
h∈(0,1) and

when this value ofr∗his substituted into (4.2)–(4.4), it leads to the parasitized

steady state solution. In this second case, the parametric equations for the

steady state may be explicitly written. That is, for the parametersei∈[0,1]

andea∈[0,∞), we have

r∗h(e
∗
a,e
∗
i)=

a0a2βq
∗
1+(a3+q

∗
4)(q

∗
2+1)

a2q∗1(a0β+(q
∗
2+1)(R0−1)) + (q

∗
2+1)R0(a3+q

∗
4)
,

r∗p(e
∗
a,e
∗
i)=

a0(a2q
∗
1+a3+q

∗
4)(R0−1)

a2q∗1(a0β+(q
∗
2+1)(R0−1)) + (q

∗
2+1)R0(a3+q

∗
4)
,

m∗(e∗a,e
∗
i)=

a0(q
∗
2+1)(a2q

∗
1+a3+q

∗
4)(R0−1)

a1q∗1(a0a2βq
∗
1+a3(q

∗
2+1)+(q

∗
2+1)q

∗
4)
,

g∗e(e
∗
a,e
∗
i)=

a0a4q
∗
3σ(a2q

∗
1+a3+q

∗
4)(R0−1)

(a4+q∗5)(a2q
∗
1(a0β+(q

∗
2+1)(R0−1)) + (q

∗
2+1)R0(a3+q

∗
4))
,

g∗l(e
∗
a,e
∗
i)=

a0a4a5q
∗
3q
∗
6σ(a2q

∗
1+a3+q

∗
4)(R0−1)

(a4+q
∗
5)(a5+q

∗
7)(a2q

∗
1(a0β+(q

∗
2+1)(R0−1))

+(q∗2+1)R0(a3+q
∗
4))

,

whereq∗i=qi(e
∗
a,e

∗
i) are the immune functions defined by (2.22).

Case 2:g(rh)=rh(1−rh). This is the case of the logistic recruitment growth

model.

(a)g(r∗h)=0⇒ r
∗
h(1−r

∗
h) = 0. We now have two solutions:r

∗
h=0orr

∗
h=1.

The steady state solutionr∗h = 0 leads to the trivial steady state solution

Er∗
h
=0=(0,0,0,0,0) while the steady state solutionr

∗
h= 1 again produces the

merozoite-free steady state solutionEr∗
h
=1=(1,0,0,0,0).

(b)g(r∗h)=A1r
∗
h−A0⇒ r

∗
h(1−r

∗
h)=A1r

∗
h−A0, which upon solving the quadratic

equation and noting thatA0>0always,withA1>0andA0≤A1whenever

R0≥1, yield the solutionsr
∗
h=

1
2((1−A1)± (1−A1)2+4A0), and we retain
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the positive solution forr∗h, whose existence in the interval (0,1) is illustrated

by Fig. 3. It is however easy to verify that sinceA0≤A1wheneverR0≥1,

0<r∗h =
1
2((1−A1)+ (1−A1)2+4A0)<1. When this solution forr

∗
h

is substituted into (4.2)–(4.4), it yields the corresponding parasitized state for

the logistic recruitment function, in parametric form where the parameter here

are the variablesei∈[0,1] andea∈[0,∞) as earlier explained, and the exact

steady state is given by

r∗h=
1

2
((1−A1)+ (1−A1)2+4A0)

=
2A0

A1−1+ (1−A1)2+4A0
,

rp(r
∗
h)=

a2q1(R0−1)r
∗
h+(a3+q4)(R0r

∗
h−1)

a2βq1
,

m∗(r∗h)=
(q2+1)(a2q1(R0−1)r

∗
h+(a3+q4)(R0r

∗
h−1))

a1a2βq21r
∗
h

=
(1 +q2)r

∗
p(r
∗
h)

a1q1r∗h
,

g∗e(r
∗
h)=

σa4q3
(a4+q5)

r∗p(r
∗
h), g∗l(r

∗
h)=

a5q6
a5+q7

σa4q3
(a4+q5)

r∗p(r
∗
h)

(4.7)

and the steady states are completely computed for this birth rate function.

Case 3:g(rh)=rhe
ln(μ)rh−μrh. This is the case for the Ricker recruitment model.

(a)g(r∗h) = 0: That isr
∗
he
ln(μ)r∗h −μr∗h= 0. This leads to the solutionr

∗
h=0or

r∗h= 1. As before, the solutionr
∗
h= 0 leads to the trivial steady state solution

Er∗
h
=0 =(0,0,0,0,0) and the steady stater

∗
h= 1 leads to the merozoite-free

steady statexf=(1,0,0,0,0).

(b) Wheng(r∗h)=A1r
∗
h−A0, we have to find a solution for the nonlinear equation

r∗he
ln(μ)r∗h −μr∗h=A1r

∗
h−A0. At this point, we immediately hit a snag seeing

that the solution procedure is no longer straight forward. However, we note that

when a realistic solution exists, it occurs at the point where the straight line

defined by the equationy(r∗h)=A1r
∗
h−A0and the curvey(r

∗
h)=r

∗
he
ln(μ)r∗h −

μr∗hmeet, as illustrated in Fig. 3. Such a solutionr
∗
h≤1 exists only whenR0>

1. To see this analytically, defineS(r∗h)=r
∗
he
ln(μ)r∗h −μr∗h−A1r

∗
h+A0.Then

clearlyS:[0,∞)→Ris a continuous function ofr∗hwithS(r
∗
h)<0 whenever

r∗h≥0andS(0) = 1−μ−A1≤0 wheneverR0>1. Note thatS(
A0
A1
)>0

andS(1)<0. Thus, we can use the intermediate value theorem to say with

certainty that there existr∗h,with
A0
A1
<r∗h<1 such thatg(rh∗)=A1x

∗−A0.

The solutionr∗hso bracketed is uniquely determined.
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Case 4:g(rh)=rh1+
1
μ−1r

n
h

−1
−μrh. This is the Maynard–Smith–Slatkin

growth rate model reducible to the Beverton–Holt whenn=1.Twocasesjustas

above are treatable:

(a)g(r∗h) = 0: That isrh 1+
1
μ−1r

n
h

−1
−μrh= 0. This leads to the solution

r∗h=0orr
∗
h= 1. As before, the solutionr

∗
h= 0 leads to the trivial steady

state solutionEr∗h=0 =(0,0,0,0,0). Second, the steady stater
∗
h=1leadsto

the merozoite free steady state solutionxf=(1,0,0,0,0).

(b) Wheng(r∗h)=A1r
∗
h−A0,wehavetoobtainr

∗
hthrough the nonlinear equation

r∗h 1+
1
μ−1r

∗
h
n −1−μr∗h=A1r

∗
h−A0. Again, we hit a snag with a solution

procedure that is no longer straight forward. However we notice that when a

solution exists, it occurs at the point where the straight line defined by the

equationy(r∗h)=A1r
∗
h−A0and the nonlinear curvey(r

∗
h)=r

∗
h 1+

1
μ−

1r∗h
n −1−μr∗hmeet. Such a solution 0<r

∗
h<1 exists only when whenever

R0>1 as illustrated in Fig. 3. To see this analytically, define the nonlinear

functionS(rh)byS(rh)=rh 1+
1
μ−1r

n
h

−1
−μrh−A1rh+A0.Then

clearlyS:[0,∞)→ Ris a continuous function ofrhwithS(rh)=−A1+
1−(n−1) 1

µ−1r
n
h

1+ 1
µ−1r

n
h

2 −μ. Observe that whenR0>1,n>1 and considering the

range of values ofr∗hin the feasible region, namely 0≤r
∗
h≤1,S(r

∗
h)<0, so

thatS:R+ → Ris monotone decreasing, indicating that when a solutionr∗h
forS(r∗h) = 0 exist, it is uniquely determined. From the sizes of the parameter

groupings and the definition ofS, we find thatS(A0A1)>0andS(1)<0. Thus,

we can use the intermediate value theorem to say with certainty that there

existr∗h,with
A0
A1
<r∗h<1 such thatg(rh∗)=A1x

∗−A0.Thesolutionr
∗
hso

bracketed is uniquely determined wheneverR0>1.

ClearlyR0as defined by (3.1) uniquely determines the existence and size of

the parasitized state defined by the equationg(r∗h)=A1r
∗
h−A0in that a solution

r∗h∈(0,1) exists only whenR0>1. Closer examination of the expression forR0
and noting that 0<q1,q3<1∀ea>0, we find that

R0(e
∗
a,e
∗
i)=

a1a2(1−σ)

(1 +ρ1e∗a)(1 +q
∗
2)(a2+(1+p0e

∗
a)(a3+q

∗
4))

<a1(1−σ)≤a1. (4.8)

Thus, we can regard an increase ina1as an increase in the upper bound of the par-

asitemia reproduction numberR0. From the forgoing we have proved the following

result.

Theorem 1 (On the existence of the steady state solutions). Letei∈[0,1]

andea∈R
+ be parametric coordinates. Let functionsqi:[0,1]×R

+ → R+ be as

defined in(2.22).Thensystem(2.23)–(2.27)has at least one realistic steady state

solution for every suitable form of the recruitment functiong(rh).Inparticular,
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the parasite-free steady state(1,0,0,0,0)always exists for all forms of the recruit-

ment functiongconsidered and a realistic parasitized steady state solution also exist

whenever a uniquely determined threshold parameterR0>1. In this case,the value

of the parasitized steady state can be uniquely determined in terms of the immunity

variables as parametric coordinates.

4.2.Some properties of the equilibrium solutions

Thesizeoftheparasitizedstatepredicted by Theorem 1 is completely determined

by the parameters of the system in the sense that asR0increases from 0 the only

non-trivial steady state solution is the merozoite free steady state. However, asR0
increases further through the value unity, the destruction of the healthy red blood

cells through parasitization begins and the size of the steady state solution for the

red blood cells begin to decrease as the size of the steady state for the merozoite

population starts increasing from zero. However, as more and more red blood cells

get parasitized, there will come a time when there is a depleted red blood cell

density, and so, then, we expect the merozoite population steady state to start

decreasing for further increases inR0. We state the following result.

Lemma 1.Letg:[0,∞)−→Rbe a recruitment function for system(2.13)–

(2.17).LetR0>0be defined by(3.1)with respect to the scaled immunity-based

state variableseaandei.Letr
∗
h ∈(0,1)be a realistic steady state solution for

system(2.13)–(2.17),that satisfies the equationg(r∗h)=A1r
∗
h−A0,whereA1and

A0are defined by(4.6).ThenlimR0→∞ r
∗
h(R0)=0wheneverA1>g(rh).

Proof.By construction ofg,g(1) = 0 andg(rh)<0forr
m
h <rh≤1. Also from

the definition ofA1andA0we haveg(r
∗
h)=A1r

∗
h−A0withA1>0 whenever

R0>1. Therefore implicit differentiation yields

dr∗h
dR0

=−
r∗h

A1−g(r∗h)

dA1
dR0

<0 whenverA1>g(r
∗
h).

Thusr∗h is ever decreasing as a function ofR0and as such, in the limit asA1
becomes very large for large values ofR0,r

∗
h→0, as required.

Lemma 2.Letg:[0,∞)→Rbe a recruitment function for system(2.13)–(2.17).

LetR0> 0be defined by(3.1)with respect to the scaled immunity-based state

variableseaandei.Letr
∗
h∈(0,1)be a realistic steady state solution for system

(2.13)–(2.17),that satisfies the equationg(r∗h) =A1r
∗
h−A0,whereA1andA0

are defined by(4.6). Then the corresponding steady state values form∗(r∗h)and

r∗p(r
∗
h)as defined by(4.1)and(4.2)are bounded and their bounds are completely

determined by the form the functiong:[0,∞)→R.

Proof.For a given functiong:[0,∞)→ Rsatisfying Definition 1, the steady

state densityr∗p(r
∗
h) is given by (4.1). Now, from the definition ofg,wehavethat
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eitherg(0) = 1 andg(1) = 0 in the case of the linear recruitment function, or

g(0) =g(1) = 0 in the case of the other recruitment functions. In the case of

the linear recruitment function, 0≤g(rh)≤1 for allrh∈[0,1]. For the other

recruitment functions, from the continuity, differentiability and continuity ofgon

[0,1], by Rolle’s theorem, there existsrmh ∈(0,1) such thatg(r
m
h)=0andg(rh)≤

g(rmh),∀rh∈[0,1]. So ifgm =maxrh∈[0,1]g(rh), then we have

r∗p(r
∗
h)=

a0
1+q2

g(r∗h)≤
a0
1+q2

gm <a0gm since
1

1+q2
<1, (4.9)

where forrmh ∈[0,1] satisfying the equationg(r
m
h)=0,

gm =
1 ifg(rh)=1−rh,

g(rmh) forg(rh)otherwise.
(4.10)

The steady state valuem∗(r∗h) is given by (4.2), which we write in the form

m∗(r∗h)=
m1g(r

∗
h)

m2g(r∗h)+m3r
∗
h+m4

, (4.11)

where

m1=a0(q2+1)R0(a2q1+a3+q4), m2=βa0a1a2q
2
1,

m3=a1a2q
2
1(1 +q2), m4=a1q1(a3+q4)(1 +q2).

For the linear recruitment model,g(rh)=1−rhis decreasing and we havem
∗(r∗h)≤

m∗(0). For the other types of recruitment functions satisfying Definition 1, we have

thatm∗(0) =m∗(1) = 0 and so from positivity, differentiability and continuity of

m,thereexistsrsh∈(0,1) such thatm(r
s
h) = 0. That ism

∗(rh) attains a maximum

value forrhin the interval [0,1]. We easily establish that at such a maximum point

any admissible functiong:[0,∞)→ Rshould satisfy the first-order ordinary

differential equationg(rh)−
m3

m3rh+m4
g(rh) = 0. Solving this differential equation

forg(rh), leads to the solutiong(rh)=κ(m3rh+m4), for some arbitrary constant

κ≥0. This then leads to the maximum possible value ofm∗given by

m∗(r∗h)≤

⎧
⎪⎨

⎪⎩

m1
m2+m4

ifg(rh)=1−rh,

m1κ

m2κ+1
forg(rh)otherwise,

(4.12)

where the constantκ, though arbitrary, must be chosen as the largest positiveκsuch

that the equationg(rh)=κ(m3rh+m4) has real a positive solutionrh∈[0,1]. For

example, for the logistic growth model whereg(rh)=rh(1−rh), we need to find the

maximum point by solving the equationrh(1−rh)−κ(m3rh+m4)=0forrh∈(0,1)

and largestκ>0. For this, it is sufficient to setκ=minκ{(1−κm3)
2−4m4κ=

0}=
m3+2m4−2

√
m4(m3+m4)

m23
. Similar values forκfor the other growth functions

can be found. However, it is easy to actually see from the definition ofm∗from

(4.11) thatm∗<m1
m2
=(1−σ)q3

βq1
, for all forms of recruitment functions.
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Remark 2. The inequality (4.9) shows that theultimate sizeof the density of

parasitized red blood cells at equilibrium is determined by the quantity of the

red blood cell population in the first place (that is by maximum possible rate

of recruitment of healthy red blood cells from the bone marrow), and not strongly

dependent on the action of immunity. However, the presence of innate and adaptive

immunity can reduce this maximum possible size by a quantifiable scale factor of
1
1+q2
. This result points to the assertion that knowing the efficiency of the rate of

recruitment of healthy red blood cells into the system is an important parameter in

understanding the health status of the individual in case of management of anaemia.

Having obtained bounds forr∗pandm
∗, the bounds forg∗eandg

∗
lbecome evident

since from (4.3) and (4.4) these are defined simply in terms ofgandg≤gm.Now

the bounds for the steady state variablesr∗p,m
∗,g∗eandg

∗
laredefinedintermsof

immunity parameterseiandea.Fromthescalingdoneinthispaper,wehavethat

0≤ei≤1, whereei= 1 is the optimum operational level for the innate immune

response andei= 0 is the minimum or immune suppressed state as studied in

Refs. 22 and 29. In this paper, we have allowed for the possibility of adaptive

immunity to start acting once there is an infection in the system, and it is also

stimulated by the action of the innate immune response. As adaptive immunity

increases with sustained parasitemia it’s ultimate equilibrium size is also bounded

as we now demonstrate in the following result.

Lemma 3.Assume that at equilibrium the immune effector cells as parameter-

ized byeaand byeisatisfy(2.18)and(2.19)when the time derivatives are set to

zero. Then at equilibrium,the immune variablese∗aande
∗
iare also bounded and

their bounds are completely determined for every admissible form of the recruitment

functiong.

Proof.By construction, 0≤ei≤1soe
∗
iis always bounded. We therefore only

need to show that within the limitations of the model derived in this paper,e∗ais

also bounded. From (2.19), at equilibrium we have

e∗a(rh)=
r∗p(rh)+b3m

∗(rh)

a6+c3(r∗p(rh)+c4m
∗(rh))

≡E(rh), (4.13)

where we are only interested in those values ofrh∈[0,1] wherein a feasible steady

state solution lies. From the values ofr∗p(rh)andm
∗(rh) given in (4.1) and (4.2)

and from the construction ofg,ifg(rh) is the linear recruitment function, then

0≤e∗a(rh)≤E(0). Ifg(rh) is any of the nonlinear recruitment functions, then we

have,E(0) =E(1) = 0, and from continuity and differentiability ofg,thereexist

reah ∈(0,1) such thatE(r
ea
h) = 0 and at which point we have 0≤e

∗
a(rh)≤E(r

ea
h).

That isE(rh) attains a global maximum at the point whererh=r
ea
h ∈(0,1). Thus,

the actual bound fore∗acan be computed by solving the inequality 0≤e
∗
a≤E(0)

for the linear recruitment function or the inequality 0≤e∗a≤E(r
ea
h) for the other

recruitment functions, to obtain the exact estimates for the bounds of the adaptive
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immune variable at equilibrium, namely,e∗a. However, a largerestimate for the

bound can be constructed by inserting the bounds forr∗pandm
∗given by (4.9)

and (4.12) in (4.13) to have

E(rh)=
r∗p(rh)+b3m

∗(rh)

a6+c3(r∗p(rh)+c4m
∗(rh))

≤
r∗p(rh)+b3m

∗(rh)

a6
<
a0gm +

m1
m2

a6
.

On substituting the values ofm1andm2from (4.12), and rearranging, we find that

an upper bound fore∗a,e
∞
a, say, will satisfy the inequality

e∞a <
a0gm +b3

1−σ
β
1+p0e

∞
a

1+p1e∞a

a6
⇒0≤e∗a<e

∞
a ≤

−e1+ e21+4e0e2
2e2

, (4.14)

wheregm is given by (4.10) and

e2=a6βp1, e1=a6β−(a0βp1gm +b3p0(1−σ)), e0=b3(1−σ)+a0βgm.

This establishes the fact thate∗ais bounded.

Remark 3. The inequality (4.14) indicates that the bound for the adaptive

immune response depends ongm, the maximum size of the growth function, and

that the bound becomes adjusted upwards wheneverσ<1. Thus the phenomenon

of commitment of infected red blood cells, in the life cycle of the malaria bug,

toward the gametocytogenesis path has a substantial effect on the strength of an

adaptive immune response in a malaria positive patient.

4.3.Stability of equilibrium solutions

In this section, we discuss the stability of the computed equilibria or steady states

starting with their linear stability properties. The linear stability of steady state

solutions can be determined by calculating the eigenvalues of the Jacobian matrix at

the respective steady states. We continue to use the parametric form of the system

where the parametric coordinates are the innate and adaptive immune response

variables.
Letx=(rh,rp,m,ge,gl) be a vector of the parameterized state variables. Let

J(x) be the Jacobian matrix of the system at the pointx.Then

J(x)=

0

B
B
B
B
B
B
B
B
B
@

a0g(rh)−ma1q1 0 −rha1q1 0 0

ma1q1 −q2−1 rha1q1 0 0

−ma2q1 B1−mβa2q1 −a3−B2−q4 0 0

0 a4

„

q3−
B1

a2

«

0 −a4−q5 0

0 0 0 a5q6 −a5−q7

1

C
C
C
C
C
C
C
C
C
A

(4.15)

where

B1=
(q2+1)(a3+a2q1+q4)R0

a1q1
, B2=(rh+rpβ)a2q1.
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Now, letλbe an eigenvalue ofJ.Thenλis the solution of the equationP5(λ,x
∗)=0

wherex∗is a steady state solution of the system and

P5(λ,x
∗)=|λI−J(x∗)|=(λ+a5+q7)(λ+a4+q5)P3(λ,x

∗). (4.16)

Here,Iis the identity matrix of order five and

P3(λ,x
∗)=λ3+P(x∗)λ2+Q(x∗)λ+R(x∗), (4.17)

where

P(x∗)=−a0g(r
∗
h)+q1(a1m

∗+a2(r
∗
h+βr

∗
p)) +a3+q2+q4+1,

Q(x∗)=a3(−a0g(r
∗
h)+a1m

∗q1−(q2+1)(R0r
∗
h−1))

−a0g(r
∗
h)(a2q1(r

∗
h+βr

∗
p)+q2+q4+1)

+a1m
∗q1(a2βq1(r

∗
h+r

∗
p)+q2+q4+1)

+(q2+1)(a2q1(−R0r
∗
h+r

∗
h+βr

∗
p)+q4(1−R0r

∗
h)),

R(x∗)=a1m
∗q1((q2+1)(a2βq1r

∗
p+a3+q4)−a0a2βq1r

∗
hg(r

∗
h))

+a0(q2+1)g(r
∗
h)(R0r

∗
h(a2q1+a3+q4)

−a2q1(r
∗
h+βr

∗
p)−a3−q4).

We note that g(rh) appears in expressions forP,QandRbut notg(rh). We now

consider the local stability of the steady statex∗and note that such a steady state

will be stable to small perturbations if, by the Routh Hurwitz stability criteria,

P>0,Q >0,R >0andPQ−R>0. We consider each of the solution types in

turn.

Theorem 2 (On the local instability of the trivial equilibrium solution).

Letg:[0,∞)→Rbe the scaled rate of recruitment of the population of healthy red

blood cell as found in system(2.23)–(2.27).Ifr∗h=0exists as an equilibrium solu-

tion arising from the solution of the equationg(r∗h)=0,then the trivial equilibrium

solution(r∗h,r
∗
p,m

∗,g∗e,g
∗
l) =(0,0,0,0,0)also exists as an unstable equilibrium

solution of system(2.23)–(2.27)forallparameterregimes.

Proof.The existence of a solutionr∗h= 0, as a steady state solution of the system

(2.23)–(2.27) in the absence of infection is possible for the cases whereg(rh)is

constructed from the logistic, Ricker or Maynard–Smith–Slatikin recruitment func-

tions as demonstrated above, or any recruitment functiongwith the property that

g(0) = 0. We then have the following: wheng(rh) is constructed from the logistic

function,g(0) = 1>0andwheng(rh) is from either the Ricker or Maynard–Smith–

Slatkin birth recruitment functions,g(0) = 1−μ>0(sinceμ<1). In each of these

cases,P3(λ,0) factorizes completely into the factors (λ−a0)(λ+1+q2)(λ+a3+q4)

for the logistic case and into factors (λ−a0(1−μ))(λ+1+q2)(λ+a3+q4)for

the other two cases. In each instance, there is the presence of a growing solution
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with positive exponent being a multiplicative factor ofa0. That is the trivial steady

state is always unstable to small perturbations whenever it exists.

Theorem 3 (On the local stability of the merozoite-free equilibrium

solution).Letg:[0,∞)→ Rbe the scaled rate of recruitment of the popula-

tion of healthy red blood cell as found in system(2.23)–(2.27). The solutionr∗h=1

always exist as an equilibrium solution arising from the solution of the equation

g(r∗h)=0,for all forms of the recruitment functiong,and therefore,the merozoite-

free(parasite-free)equilibrium solutionx∗f=(r
∗
h,r

∗
p,m

∗,g∗e,g
∗
l)=(1,0,0,0,0)also

always exists as an equilibrium solution of system(2.23)–(2.27)and its stability

properties are uniquely determined by the size of the threshold parameterR0given

by(3.1)in the sense that whenR0>1,the steady statex
∗
fis locally unstable to

small perturbations and stable otherwise.

Proof.From the construction ofg, the equationg(r∗h) = 0 always has the non-

trivial solutionr∗h= 1, as a steady state solution in the absence of infection, and

will have the same valuer∗h= 1 for all forms ofg(rh) considered, so thatx
∗
f=

(1,0,0,0,0) always exists as a steady state of the system as explained above. Given

the subtle differences in each case, we treat each at a time.

(i)The casesg(rh)=1−rh andg(rh)=rh(1−rh): For these two cases, we

both haveg(1) =−1. In both case again the polynomialP3(λ,(1,0,0,0,0))

factorizes toP3=(λ+a0)(λ
2+s1λ+s0)wheres1=a2q1+a3+q2+q4+1, and

s0=−(q2+1)(R0−1)(a2q1+a3+q4). Here,R0is given by (3.1). Clearly,s1,

s0>0ands
2
1−4s0>0 are all positive whenR0<1 so that all zeroes of the

polynomialP3will have negative real parts wheneverR0<1. ForR0=1,λ=0

is one of the eigenvalues accompanied by two negative eigenvalues. On the other

hand, asR0increases through the valueR0=1,s1>0ands0<0forR0>1

signifying the presence of growing perturbations with positive exponent. That

is the steady state solution (1,0,0,0,0) loses stability asR0increases through

unity, and is always stable whenR0≤1 for the logistic and linear cases.

(ii)The casesg(rh)=rhe
ln(μ)rh −μrhandg(rh)=rh(1 + (

1
μ−1)r

n
h)
−1−μrh.

In these cases again the polynomialP3(λ,(1,0,0,0,0)) factorizes toP3=(λ+

s̃a0)(λ
2+s1λ+s0) where for the Ricker growth model, ̃s=−μln(μ), for the

Maynard–Smith–Slatkin growth model ̃s=−nμ(μ−1) ands1,s0retain the

same forms as in the linear and logistic cases. Again, recalling that 0<μ≤1

in both cases, ̃s>0 and the conclusion is thus the same: there are growing

perturbations with positive exponent asR0increases from 1 and the steady

state solution (1,0,0,0,0) loses stability asR0increases through unity for the

these types of birth function as well.

In fact, it is easy to deduce that for any growth rate function for whichg(1) = 0

andg(1)<0 as required by Definition 1, the dynamics will cause the steady state
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x∗f=(1,0,0,0,0) to lose stability asR0increases through unity and to retain local

stability forR0≤1. An important question to answer, which we shall examine

later, is whether this merozoite-free steady state which always exists for all forms

of realistic growth rate functions and is locally and asymptotically stable for values

ofR0≤1 can have a global stability character for these range of values ofR0.

Next, we examine the local stability properties for the parasitized steady state.

Theorem 4 (On the local stability of the parasitized state). Letg:[0,∞)→

Rbe a real valued function modeling the dynamics of the red blood cell population

in the absence of infection as derived above. LetR0>1be the threshold parame-

ter defined by(3.1).Letr∗hbe the unique nonzero parasitized steady state solution

satisfying,forr∗h∈(0,1),the equationg(r
∗
h)=A1r

∗
h−A0whereA1andA0are

given by(4.5)withA0 ≤ A1∀R0 ≥ 1.Then,for each of the type of growth

models satisfying Definition1as considered here,a realistic steady state solution

r∗h∈(0,1)satisfying the equationg(r
∗
h)=A1r

∗
h−A0can exists only if

A0
A1
<r∗h<1.

Moreover,the steady state solution so bracketed,when it exists,its value is uniquely

determined and it is locally and asymptotically stable to small perturbations for a

range of values ofR0>1.

Proof.The existence of the nonzero steady state solution has been established

and summarized in the analysis leading up to the statement of Theorem 1. That

the solution exist and lies between the bounds indicated is deduced by noting that

the straight lineA1r
∗
h−A0intercepts the vertical axis at−A0wherer

∗
h=0and

intercepts ther∗haxis atr
∗
h=

A0
A1
whereA1r

∗
h−A0=0.

A0
A1
<1 wheneverR0>1.

g(r∗h) is a unimodal or one hump function that attains a maximum at the point

r∗h=r
m
h,whereg(r

m
h)=0withg(r

∗
h)<0 wheneverr

∗
h>r

m
h,g(r

∗
h)>0 whenever

r∗h<r
m
h andg(r

∗
h)≤0 for allr

∗
h≥1. Thusg(r

∗
h) is decreasing from positive values

forrmh <r
∗
h≤1andA1r

∗
h−A0is increasing from zero for

A0
A1
≤r∗h<r

m
h <1.

Since both functions are continuous, there existr∗hwithr
m
h ≤

A0
A1
<r∗h<1such

thatg(r∗h)=A1r
∗
h−A0as illustrated in Fig. 3(c). On the other hand, ifg(rh)>0

andR0>1, thenrh<r
m
h <1and0<

A0
A1
<r∗h<r

m
h; a smaller steady state

value as illustrated in Fig. 3(d). WhenR0<1, the two curves do not intersect for

r∗h∈[0,1] and a realistic nonzero solution does not exist as illustrated in Fig. 3(a).

The solutionr∗hso bracketed is unique because of monotonicity. The local stability

of the parasitized steady state solution is then determined by the eigenvalues of the

Jacobian matrix at the steady state. We can establish that, for a range of values of

R0>1, when the steady state solution is such thatr
m
h <r

∗
h<1, theng(r

∗
h)<0

and from the coefficients of the characteristic polynomial (4.17), We deduce that

P >0,Q>0andR>0andPQ−R>0 wheneverR0>1, and so there are

no zeros of the characteristic polynomial with positive real parts which will signify

growing perturbations in the linear regime. However, when the steady state solution

is such that 0<r∗h<r
m
h <1, then for this value ofr

∗
h,g(r

∗
h)>0andthesign

ofPQ−Rcan change from positive to negative signifying the presence of growing
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solutions for those values ofR0>1forwhichPQ−R= 0. Hence the parasitized

steady state, when it exists, is locally and asymptotically stable only for a range of

values ofR0>1.

The exact character of the stability results so postulated by Theorem 4 will

be determined by the nature of the recruitment function used in the analysis. We

demonstrate some of these below through more specific results:

Corollary 1. Let the conditions of Theorem4continue to apply. LetR0> 1

and the functiong:[0,∞)→ Rbe defined byg(rh) =1−rh.Letx
∗be the

steady state of system(2.13)–(2.17)for whichr∗hobtained by solving the equation

g(r∗h)=A1r
∗
h−A0,R0>1,so that the remaining steady state solutions are given

by(4.1)–(4.4).Then,for all values ofλ,the eigenvalues of the linearized system

defined by the polynomial(4.17)evaluated atx∗have negative real parts. That is,

wheng(rh)=1−rhandR0>1,then the corresponding steady state is locally and

asymptotically stable wheneverR0>1.

Proof.We show that when g(rh)=1−rh, then, atx=x
∗,P >0,Q>0,

R>0andPQ−R>0 wheneverR0>1 and the deduce from the Routh–Hurwitz

stability criteria that the computed steady is locally and asymptotically stable. To

do this, we need explicit expressions forP,QandRat these steady states. Now,

when 1−r∗h=A1r
∗
h−A0,thenr

∗
h=

1+A0
1+A1

,whereA0andA1are given in (4.6).

Substituting this value forr∗hin (4.1)–(4.4) and then inP, QandRof (4.17), we

have

P(x∗)=
P2(R0−1)

2+P1(R0−1) +P0
P3(R0−1) +P4

,

Q(x∗)=
Q2(R0−1)

2+Q1(R0−1) +Q0
Q3(R0−1) +Q4

, (4.18)

R(x∗)=R0(R0−1), (4.19)

where

P2=a0(q2+1)
2(a2q1+a3+q4)

2, p̃1=a0a2βq1+(a3+q4)(q2+1),

P1=p̃1(a2q1+a3+q4)(a0a2βq1+(q2+ 1)(2a0+a3+q2+q4+1)),

P0=(a2q1+a0+a3+q2+q4+1)̃p
2
1,

P3=(q2+1)(a2q1+a3+q4)̃p1, P4=p̃
2
1,

Q2=a0(q2+1)(a2q1+a3+q4)
2(a0a2βq1+(q2+1)(a3+q2+q4+1)),

Q1=a0̃p1(a2q1+a3+q4)(a2βq1(a0+q2+1)+2(q2+1)(a3+q2+q4+1)),

Q0=a0(a2q1+a3+q2+q4+1)̃p
2
1,

Q3=P3, Q4=P4, R0=a0(q2+1)(a2q1+a3+q4).
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We immediately observe that both P(x∗)>0andQ(x∗)>0 are larger than

R(x∗)≥0 independently wheneverR0≥1. SoP(x
∗)Q(x∗)−R(x∗)>0. Therefore,

the Routh–Hurwitz stability criteria assure us that the computed steady state is

locally and asymptotically stable to small perturbations wheneverR0>1.

The result of Corollary 1 assures us that when the recruitment function is linear

as prescribed, the parasitized steady state is locally asymptotically stable, for all

values ofR0>1. However, the next result shows that when the recruitment function

is sufficiently nonlinear, then the parasitized state is stable for a range of values of

R0>1 but also can be driven to instability via a Hopf bifurcation for sufficiently

large values ofR0.

Corollary 2. Let the conditions of Theorem4continue to apply. LetR0>1and

the functiong:[0,∞)→Rbe defined byg(rh)=rh(1−rh).Letx
∗be the positive

steady state of system(2.13)–(2.17)for whichr∗his obtained by solving the equation

g(r∗h)=A1r
∗
h−A0,R0>1,so that the remaining steady state solutions are given by

(4.1)–(4.4).Then,all values ofλ,the eigenvalues of the linearized system defined by

the polynomial(4.17)evaluated atx∗have negative real parts for1<R0<R
c
0,and

atR0=R
h
0the steady state loses stability to periodic solutions with fixed amplitude

and period. That is,wheng(rh)=rh(1−rh)andR0>1,then the corresponding

steady state is locally and asymptotically stable only for a range of values ofR0>1.

Proof.The stability of the steady state is determined by the sign of the eigenvalues

given by the solutions of the polynomial (4.17). We show that there exist a value of

Rc0>1 such thatPQ=Rat which pointλ, a solution on (4.17) is purely imaginary,

and that asR0increases further fromR
c
0>1,λ, a root of (4.17) has a positive real

part. For this we consider the functionP(R0)Q(R0)−R(R0) at the steady state

x∗,wherer∗h(R0) is given by (4.7), and note that atR0=1,x
∗=(1,0,0,0,0)

and that by Lemma 1, we have thatr∗h→ 0asR0→ ∞. Wethushavethat,on

the one hand, asR0→ 1
+,P(R0)Q(R0)−R(R0)→ a0(a2q1+a3+q2+q4+

1)(a2q1+a0+a3+q2+q4+1)>0 while asR0→ ∞,P(R0)Q(R0)−R(R0)→

(a0−q2−1)(a3+q2+q4+1)<0 whenever either 1 +q2<a0<a3+q4or

a3+q4<a0<1+q2. Only one of these inequalities is possible whenever the target

limit is negative. Thus, from the continuity ofP(R0)Q(R0)−R(R0) as a function of

R0∈[1,∞), there existR
c
0∈(1,∞) such thatP(R

c
0)Q(R

c
0)−R(R

c
0)=0.Atthis

point, the polynomial (4.17) then satisfies the equationλ3+Pλ2+Qλ+PQ=0

soλ(Rc0)=Porλ(R
c
0)=±i

√
Q. WhenR0further increases fromR

c
0,oneof

the solutions forλnow has a positive real part and we have growing oscillatory

solutions in the linear regime. To determine the initial amplitude and phase of the

oscillations asR0increases further throughR
c
0, we introduce the parameterξ=

R
PQ

so thatR=ξPQand forR0<R
c
0,ξ<1, atR0=R

c
0,ξ= 1 and forR0>R

c
0,

ξ>1, and view an increase inR0as an increase inξso that atξ=ξc=1,wehave

R0=R
c
0.Setξ=ξc+ε

2ν,whereν=±1. We have here a perturbation near the
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pointξ=ξcwhereε 1, but otherwise arbitrary. Then by Taylor’s expansion we

haveλ(ξc+ε
2ν)=λ(ξc)+λ(ξc)ε

2ν+O(ε4), so that neglecting the terms of order

ε4in the calculation, we have the approximation

λ(ξc)≈
P(Rc0)(Q(R

c
0)±P(R

c
0) Q(R

c
0)i)

2(Q(Rc0)+P(R
c
0)
2)

.

Thus after the perturbation,

λ(ξc+ε
2ν)=±i Q(Rc0)

+
P(Rc0)(Q(R

c
0)±P(R

c
0) Q(R

c
0)i)

2(Q(Rc0)+P(R
c
0)
2)

ε2ν+O(ε4). (4.20)

Thus the initial period and amplitude of the oscillations are

Amplitude = exp
PQ

2(P2+Q)
ε2νt, Period =

2π
√
Q+ P2

√
Q

2(P2+Q)ε
2ν
, (4.21)

whereε 1 but otherwise arbitrary.

Observe that ifν>0 then, we have growing perturbations in the linear regime

which we expect that these growing perturbations will be bounded by nonlinearities

in the nonlinear regime leading to limit cycles with small amplitude. We emphasize

that the perturbations will be small because at this stage the steady state values

are very small. A result similar to that of Corollary 2 can be stated and proved

for any of the more nonlinear growth rate function with the desired properties as

postulated by Definition 1. Though the procedures become more intricate as the

nonlinearity in the functiongis increased. We shall later illustrate some of these

results graphically via numerical simulations.

The results of Theorems 2–4 are local and do not apply to the whole nonlinear

system. We next demonstrate that with an appropriate restriction of the parameter

values of the system, we can discuss a global stability property for the system at the

level of the parasite free steady state solution. We start by noting that Theorem 3

assures us that wheneverR0<1, the parasite free steady state which always exists,

is locally and asymptotically stable to small perturbations. WhenR0=1,wehave

a zero eigenvalue in the linear regime and then we cannot pronounce, with certainty,

on the stability property of the parasite-free steady state solution. The next results

shows that we can indeed achieve global stability of the parasite-free state provided

we maintainR0≤1. A global stability result of this nature is important as it

shows that with appropriate intervention and conditioning of the biological system,

we can achieve global results for the entire system so that the parasite-free state is

always attainable by controlling the properties of the system, such as by ensuring

thatR0≤1.
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Theorem 5 (On the Global stability of the merozoite-free steady state).

Let the real valued functiong:[0,∞)→ Rbe a recruitment function satisfy-

ing the required conditions. Then the merozoite-free equilibrium solution define by

Er∗
h
=0 =(r

∗
h,0,0,0,0),which always exist for all parameter values,is locally and

asymptotically stable wheneverR0≤ 1. Moreover,the particular merozoite-free

(parasite-free)steady state solution wherer∗h=1which can be constructed for all

forms of the recruitment function is globally and asymptomatically stable whenever

R0≤1.

Proof.We start by observing that in the absence of infection, the scaled equation

for the red blood cell population satisfies the equationdrhdt =a0g(rh)whereg:

[0,∞)→ Ris a unimodal or one hump function which attains a maximum at

some pointrmh ∈[0,1]. Thusg(rh)+μhrhalso attains a maximum at some point

r̃mh ∈[0,1] whenever 0≤μ<1. Leta0(g(̃r
m
h)+μ̃r

m
h)=̃g

m. Then, we can construct

the inequalitydrhdt+a0μrh≤g̃
m. Thus integrating this via integrating factor method

we haverh(t)≤rh(0)e
−a0μt+ g̃m

a0μ
(1−e−a0μt). Thus limt→∞(suptrh(t))<∞ and

rh(t) is bounded as expected. In fact, we expect 0<rh(t)≤1 when we stay within

the limitations of the scaling done in this paper. Thus for any >0, we define the

closed set

D={(rh,rp,m,ge,gl)∈R
5:ε≤rh≤1,0≤rp≤r

∞
p,

0≤m≤m∞,0≤ge≤g
∞
e,0≤gl≤g

∞
l},

where 0<ε 1andr∞p,m
∞,g∞e,g

∞
l are the respective standardized upper bounds

of the associated variables obtainable from the upper boundsR∞p,M
∞,G∞e,G

∞
l,

and the functionV:D→Rby

V(rh,rp,m,ge,gl)=̃b0(rh−1−ln(rh)+̃b1rp+b̃2m+b̃3ge+b̃4gl,

where

b̃0=
(̃b2−1)(a3+q4)

a1q1
, b̃1=

(a2q1+a3+q4)((̃b2−1) +R0)

a1q1
,

b̃3=
(̃b2−1)(q2+1)(a2q1+a3+q4)(1−R0)

a1a4q1q3σ
,

b̃4=
(̃b2−1)(q2+1)(a2q1+a3+q4)(a4+q5)(1−R0)

a1a4a5q1q3q6σ
.

Clearly whenR0≤1andb̃2>1, thenb̃i,i=0,1,2,3,4 are all non-negative.

FurthermoreV(rh,rp,m,ge,gl)> 0 for all (rh,rp,m,ge,gl)∈D\{(1,0,0,0,0)}

andV(1,0,0,0,0) = 0. ThusVis positive definite and can serve as a Lyapunov
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function. Along the solution trajectories of the system, we have

dV

dt
=∇V·

drh
dt
,
drp
dt
,
dm

dt
,
dge
dt
,
dgl
dt

=b̃0 1−
1

rh
(a0g(rh)−a1q1mrh)+̃b1(a1q1mrh−(1 +q2)rp)

+b̃2(a2[q3(1−σ)rp−q1(rh+βrp)m]−(a3+q4)m)

+b̃3(a4[q3σrp−ge]−q5ge)+̃b4(a5[q6ge−gl]−q7gl)

=b̃0 1−
1

rh
a0g(rh)−(a3+q4)m−b̃2a2q1βrpm−b̃4(a5+q7)gl

+((a2q1+a3+q4)R0−a2q1)mrh.

Given that 0≤rh≤1, we deduce that 0≥−(a3+q4)mrh≥−(a3+q4)mleading to

dV

dt
≤b̃0 1−

1

rh
a0g(rh)−b̃2a2q1βrpm

−b̃4(a5+q7)gl−(a2q1+a3+q4)(1−R0)mrh.

We then note that 1− 1
rh
g(rh)≤0 whenever 0<rh≤1since

1−
1

rh
g(rh)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(1−rh)

2

rh
ifg(rh)=1−rh,

−(1−rh)
2 ifg(rh)=rh(1−rh),

−(1−rh)(e
ln(μ)rh −μ) ifg(rh)=rh(e

ln(μ)rh−μ),

−(1−rh)

⎛

⎝ 1

1+ 1
μ−1r

n
h

−μ

⎞

⎠ ifg(rh)=rh

⎛

⎝ 1

1+ 1
μ−1r

n
h

−μ

⎞

⎠.

It is then evident thatV(t)≤0 wheneverR0≤1. In all we have the following: (i)

V <0ifR0≤1, for alltand∀x∈D\{(1,0,0,0,0)}; (ii)V(x)=0atx=xfand

(iii)V(x)>0,∀x∈Dwithx=xf.Thus,Vis a positive definite function and{xf}

is the largest invariant compact subset in{(0,1]×R4+|V(t)=0}containing only the

equilibriumxfwhenR0≤1, then by LaSalle’s invariance principle, the parasite-

free steady state solutionxf =(1,0,0,0,0) of system (2.23)–(2.27) is globally

asymptotically stable wheneverR0≤1.

5. Illustrations and Numerical Simulations

In this section, we illustrate the linear analysis presented through a numerical exam-

ple. We then run some numerical simulations to showcase the richness of the results
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studied in this paper. The baseline parameters used in the example are as explained

in Ref. 22 (also see Supplementary Section B). We do not return to the original

parameters of the system here, but rather use only the scaled parameter values to

illustrate our work. A more biological interpretation based on the original param-

eters of the model shall be presented elsewhere. We use the fact that an increase

in the scaled parameter valuea1will lead to an increase inR0throughout this

section. We use the following base example.

Example 1 (An illustrative example parameter set). Consider the baseline

parameters, whose provenance and form has been explained in Ref. 29, and with

possible ranges shown in Supplemental Document B.

a2=50, a3=95, a4=
85

100
, a5=

6

10
, a0=

5

10
,

ρ1=
613

104
, ρ2= 585×10

2, ρ3=
57

103
,

ρ4= 676×10
2, ρ5=

613

104
, ρ6= 235×10

2, ρ7=
33

105

p0=
17

100
, p1=

24

100
, p2=

12

100
, β=

75

100
, σ=

6

1000
,

ei=
9

10
, ea=5×10

−5, q1≈0.999, q2≈1.48,

q3≈0.9998, q4≈1.59, q5≈0.625, q6≈0.9999, q7≈0.0003.

(5.1)

Here, the innate immune response is operating at 90% performance (contextually,

it is operating at 90% of its maximal steady state size in the absence of infection),

but the adaptive immunity is operational but very small. Extreme values for differ-

ent snapshots of the immunity-based variables were used with similar qualitative

results.

5.1.Illustration: Boundedness of the parasitized steady state

solution

Lemma 1 assures us that the size of the steady state red blood cell population

r∗hdecreases to zero asR0increases from unity. We understand this phenomenon

by noting that as the infection and systematic parasitization and destruction of

healthy red blood cells starts, we expect that the scaled red blood cell population

density will start dropping while the density of the parasitized and free merozoite

populations will increase. However, as more and more red blood cells get destroyed,

the density of parasitized red blood cells will then start dropping asR0further

increases from unity. Using the expressions for the steady state values as well as

the parameters shown in Example 1, we numerically computed the steady states for

different values of the parametera1. As shown in Fig. 4, the nonzero steady states
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(a) (b)

(c) (d)

Fig. 4. Figure showing the size of the steady states asR0increases when all other parameters
are fixed as in Example 1. Here,a1increases from 0 to 100, which corresponds toR0increasing
from 0 to 35. We see clearly that asR0increases from zero, the size ofr∗h, the scaled red blood
cell steady state density wheng(rh)=rh(1−rh) continues to drop as predicted by Lemma 1.
However,intheinitialphaseoftheinfectionprocess,thesizeofthesteadystatefortheparasitized
red blood cells and merozoite populations initially increase with increasingR0before dropping as
less and less red blood cells are available for parasitization. Graph (c) shows that the merozoite
steady state population is always bounded above bya0

a1
as reported in Ref. 29.

which exist only for values ofR0>1 (corresponding toa1≥7.3 for this particular

set of parameter values), are all bounded and approach zero for large values ofR0.

We note that the size of the parasitized steady state approaches zero asymp-

totically but is never zero. This small state is, at all times, different from the zero

state which only exists when there are no red blood cells in the system. It is caused

by severe destruction of red blood cells because of the action of the parasite. In

agreement with the results reported in Ref. 29, the merozoite density always satis-

fies the inequalitym∗<a0
a1
and so approach small values asa1increases for fixed

a0. The parametera0is linked with the linear rate of recruitment of healthy red

blood cells whilea1is linked to the number of merozoite released by each bursting

red blood cell. It is therefore clear that when parasitization is severe,a1will also

get large when the regulated linear rate of production of healthy red blood cells

will be approximately constant.

5.2.Illustration: Occurrence of the hopf bifurcation

To numerically ascertain the stability of the steady state solution asR0increases

from unity as well as verify the results of Corollary 2, we numerically computed

the eigenvalues of the linearized system asestablished by the polynomial (4.16) for

different values ofR0. Figure 5 shows a plot of the size of the maximum of the
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(a) (b)

Fig. 5. Figure showing the sign of the maximum real part of the eigenvaluesλcomputed by
solving equation (4.16) based on Example 1 parameters and for different values ofR0.R0was
increased by varyinga1when all other parameters of the system and the recruitment function
are fixed. For the graph on the left,g(rh) =rh(1−rh)anda1increases from 0 to over 350,
which corresponds toR0increasing from 0 to 100. The maximum eigenvalue becomes positive at
a1≈170, corresponding to the valueR0≈47.8. For the graph on the right,g(rh) is the Maynard–
Smith–Slatkin growth function anda1increases from 0 to over 100, which corresponds toR0
increasing from 0 to 30. The maximum eigenvalue becomes positive ata1≈12, corresponding to
the valueR0≈3.38. We see clearly in each case that asR0increases further away from unity,
the maximum real part of the eigenvalues is increasing from negative values and becomes zero at
that point which corresponds to a critical value ofR0=Rc0as predicted by Corollary 2.

real parts of the eigenvalues of the linearized system. Clearly, asR0increases from

unity, the maximum real part of the eigenvalues is negative signifying stability of

the parasitized steady state. AsR0further increases from unity, as predicted by

Corollary 2, a point is reached where the maximum real part of the eigenvalues

changes from positive to negative signifying the onset of exponentially growing

solutions with a growing solutions in the linear regime. We noted, as shown in

Fig. 5 that the different recruitment functions offer different quantitative results,

though the qualitative results are the same. For example, for the logistic growth

model, we require larger values ofR0for the system to lose stability, to oscillatory

solutions than for the Maynard–Smith–Slatkin growth model, while as established

here and earlier reported in Ref. 29, the linear growth model does not admit a

parameter regime whereby the parasitized state loses stability for any value ofR0.

5.3.Illustration: The different solution types

ForR0values in ranges for which the maximum real part of the eigenvalues of the

linearized system is negative, we expect thesystemtoconvergetotheparasitized

steady state long term, as shown in Figs. 6 and 7. AsR0further increases there is

a point in the parameter space, as postulated by Corollary 2, where the maximum

real part changes from negative to positive signifying the emergence of growing

oscillatory solutions, and we expect that the growing oscillations will be bounded by

nonlinearity and we can observe limit cycle or fixed amplitude oscillating solutions

as shown in Figs. 9 and 8. The limit cycle solution for these plots are shown in

Figs. 10 and 11, illustrating phase plane plots forrhversusrpandrhversusm.
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(a) (b)

(c) (d)

Fig. 6. Long-term solution dynamics for values ofR0intherangewherewehavestableendemic
non-periodic solutions with fixed amplitude.R0 =1.95. The rest of the parameters are as in
Example 1 andg(rh) is the logistic growth function.

(a) (b)

(c) (d)

Fig. 7. Long-term solution dynamics for values ofR0intherangewherewehavestableendemic
non-periodic solutions with fixed amplitude.R0=1.95. The rest of the parameters are as given
in Example 1 andg(rh) is the Maynard–Smith–Slatkin recruitment function withμ=

3
10
,n=4.

The behavior that we are seeing is consistent with the assumptions of the model

derived. We believe that the oscillations we are seeing for large values ofR0to be

indicative of the system compensating through massive cell death and reparasiti-

zation. The nature of the oscillations depend on the type of recruitment function

used and is indicative of richness of the model studied in this paper. In the absence
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(a) (b)

(c) (d)

Fig. 8. Long-term solution dynamics forR0=58.23 using Example 1 parameters, withg(rh)the
logistic recruitment function. Only ranges where there are periodic solutions with fixed amplitude
are shown. All plots start at (0,0).

(a) (b)

(c) (d)

Fig. 9. Long-term solution dynamics forR0=3.95 using Example 1 parameters, withg(rh)
the Maynard–Smith–Slatkin recruitment function whereμ= 3

10
,n= 4. Only ranges where there

are periodic solutions with fixed amplitude are shown. For all four plots,tstarts at 300, while
rh,rp,mandglstart at 0.085,0,0.004 and 0.00008, respectively.
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of real data to describe the true nature of the recruitment functions as modeled via

a single function, we can only say that the restriction of previous studies to using

the linear or constant recruitment term has hitherto hidden the richness of results

possible for the within-human host dynamics of theP. falciparumparasite.

We remark, here, that the total red blood cell density in a malaria patient

exhibiting the dynamics as illustrated in Figs. 6–11 can be computed by either

summing the steady state densities forrhandrp, or the corresponding maximal

and minimal bounds, in the scenarios where there are limit cycles. From Figs. 6,

7(a) and 7(b), the sum, which is given in nondimensional form, is about 0.55 when

using the logistic growth model, which is similar in size to the value when using

the Maynard–Smith–Slakin recruitment function for the specified parameters. In

the original variables, we can compute these values by using the scaled variables

described in Eqs. (2.10) and (2.11). That is,Rh=rhR
0
handRp=rpR

0
pwhere

we had chosen in Eq. (2.11),R0h=R
0
p=

λh−μh
μ̃h

for the logistic model andR0h=

R0p=Kh
1
μ−1

1
n for the Maynard–Smith model.Kh, is the maximal red blood cell

(a) (b)

Fig. 10. Figure showing the existence of the limit cycle for the logistic recruitment function.
R0=58.23. The rest of the parameters are as given Example 1 andg(rh) is the logistic growth
model.

(a) (b)

Fig. 11. Figure showing the existence of the limit cycle for the Maynard–Smith–Slatkin recruit-
ment function withμ= 3

10
,n=4.R0=3.95. The rest of the parameters are as given Example

1andg(rh) is the Maynard–Smith–Slatkin recruitment function withμ=
3
10
,n=4.
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count, which serves as the carrying capacity for the Maynard–Smith model. This

value lies in the range 106–107cells perμL, meanwhile, the equivalent term for the

logistic model isK=λh−μh
μ̃h

where in Ref. 22, we obtained an estimate for ̃μhto be

in the range 3.6×10−9–5.0×10−7. Holding all parameters fixed and for the choices

ofμandnas illustrated in Figs. 7, 9 and 11, we can choose feasible values forλh,

β1(henceβ2andβ3) and the other parameters, withKhand ̃μhin the given ranges

such thata0>0,a2>0,a3>1and0<a4,a5<a3and the example parameters

in (5.1) are satisfied. We begin computing these estimates for the examples for

whichR0=1.95, that is Figs. 6 and 7. First, from Fig. 6, the logistic case, and

the nondimensional expression fora2, we can estimate that whenrh+rp=0.6,

corresponding estimates forRhlies in the range 1.53×10
6and higher depending

on choices of other parameters. This is within observable ranges in various studies

(see for example observed red blood cell densities in a study on patients diagnosed

with malaria in Thailand58and also the study in Ref. 59). Similar calculations can

be carried out for the Maynard–Smith example. Thus, our scaled values correspond

to non-scaled values that have been observed in nature. However, the small values

associated torh+rpare for heavily parasitized patients, which can be used as a

proxy to indicate the degree of anemia in these patients.

6. Discussion and Conclusion

6.1.Discussion

Our goal in this paper was to understand the implicit role immunity plays in the

within-human-host dynamics of theP. falciparumparasite for different recruitment

functions for the HRBCs. The model studied was originally developed in Refs. 22

and 29 in its entirety, but was only analyzed under the assumption of immunity

suppression and for two types of healthy red blood cells recruitment functions —

linear and logistic. The model developed took into consideration the human adap-

tive immune response developed due to continuous exposure to the malaria disease

as well as the innate adaptive immune responses, the body’s natural fighting mech-

anism against foreign pathogens. It captured the interaction between the two types

of immune cells, innate and adaptive, implicitly illustrating their role in inhibiting

the processes leading to a successful parasite persistence within a human infected

with the malaria parasite, as well as their individual impacts. The results under

immunity suppression indicated that a more nonlinear recruitment function should

be used to model HRBCs recruitment, as the linear model produced an increasing

merozoite size, regardless of the diminishing effect of the HRBC population. Thus

the logistic function was a better choice model over a linear function for modeling

HRBC recruitment.

Here, we have extended the work in Ref. 29, incorporating other types of recruit-

ment functions, specifically the Ricker and Maynard–Smith–Slatkin recruitment

functions. We then used these functions to investigate the role of immunity on
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the malaria dynamics process, especially the role of theacquired (adaptive) immu-

nity. In our model, our general assumption was that the net effect of the action

of the immune system is to slow down, if not arrest, the process of invasion by

the malaria parasite. The “slowing down effects” via inhibition of parasitemia,

formation of gametocytes, key biological feasible processes mentioned in the lit-

erature, were captured through the scaled functions ofeaand/oreithrough the

expressions 1
1+pkea

and−ρi(1 +ρi+1ea)ei,k=0,1,2andi=1,...,7 in the model,

which allowed us to view the scale variableseaandei, simply as parameters with

sizes, respectively, in the intervals [0,∞)and[0,1].

Our model results indicate that the parasitemia threshold function,R0, the func-

tion that determines whether the parasite succeeds to invade the human’s HRBCs

and eventually render the human infectious to mosquito, was much smaller than

the threshold for the model in which the adaptive immune response was set to zero,

and this threshold was even much smaller for the case under complete immunity

suppression obtained in Ref. 29. That is, we had

R0=
a1a2q1q3(1−σ)

(q2+1)(a2q1+a3+q4)

activeea>0andei∈(0,1)

≤
a1a2(1−σ)

(1 +ρ1)(a2+a3+ρ3)

ea=0,ei=1

≤
a1a2(1−σ)

(a2+a3)

ea=0,ei=0

.

This inequality illustrates the following: (i) expresses the fact thatR0will increase

with decreasing effectiveness of the adaptive immune response and both immune

responses, (ii) indicates thatR0attains its maximum value when both the innate

and adaptive immune responses are zero (iii) captures the expectation that as adap-

tive immunity kicks into action following repeated parasitemia, the value and size

of the parasitemia reproduction number will continue to reduce in size. We believe

that the above three results are important for malaria parasitemia control as results

(i) and (ii) assure us that even in the absence of the immune response, the par-

asitemia reproduction number can be bounded; even thoughR0can continue to

increase with increasinga1. Result (iii) indicates that the value ofR0and hence the

strength of parasitization of the red blood cells is reduced when the combined effect

of these immunity-based responses are operating at maximal levels. The parame-

terized parameterR0so identified can thus be used to study the behavior of the

system in the presence of immunity. This is evident as shown in Fig. 4, where if we

view a reduction inR0as a reduction in the size of the immunity parameters, anR0
value close to 1 but bigger than 1 (strong immunity effects on parasitemia), shows

that the steady state size of the HRBCs is closer to 1, its maximal value, compared

to whenR0is large (weak immunity effects on parasitemia) showing that the steady

state size of the HRBCs reduces, approaching zero for increasingly largerR0.

Another question of interest is how the choice of the recruitment or growth func-

tion that models HRBC population in the absence of infection, impacts the overall

model dynamics. Four types of growth functions were considered: linear, logistic,
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Ricker and the Maynard–Smith–Slatkin growth functions. We showed that the triv-

ial steady state, which only existed for the more nonlinear recruitment functions —

logistic, Ricker and Maynard–Smith–Slatkin functions, is always unstable. On the

other hand, the parasite-free steady state,the desirable steadystate, which exists

for all four types of growth functions is globally asymptotically stable when the

parasitemia reproduction numberR0is less than unity. Additionally, a unique par-

asitized steady state exists for all four types of recruitment functions. The behavior

of the parasitized steady state dependson whether the HRBC recruitment function

is linear or nonlinear. For the linear case as is prescribed in Sec. 2.2, we showed

that the parasitized steady state is locally asymptotically stable, for all values of

R0>1, with the size ofrhdiminishing down toward zero with increasingR0val-

ues, meanwhile the size of the merozoite population grows to a large value. On

the other hand, for a sufficiently nonlinear recruitment function such as the logis-

tic, Ricker, and Maynard–Smith–Slatkin functions, the parasitized state is stable

for a range of values ofR0>1 but also can be driven to instability via a Hopf

bifurcation for sufficiently large values ofR0>1, leading to a limit cycle as shown

in Figs. 8–11. The instability, leading to limit cycles does not occur for the linear

model.

In particular, as a function of the steady state HRBC population,r∗h,themero-

zoite steady state size,m∗, attains a maximum at some point given by Eq. (4.12).

The increase in the size of the steady state merozoite population up to its maximum

is associated with a decrease in the size of the steady state HRBC population. How-

ever, as the parasite threshold parameterR0increases further, which could be as a

result of higher contacts, inefficient immune response, etc. more and more HRBCs

are parasitized. As more and more HRBCs are parasitized, the steady state size of

the HRBC population continues to decrease. For the nonlinear growth functions,

there comes a time when the steady state parasite populations, merozoites and para-

sitized red blood cells, start to decline as there is not a large pool of HRBCs to infect.

We conjecture that eventually, the recruitment rate of the HRBCs balances out their

destruction effect through parasitemia, leading to sustained bounded oscillations of

the steady states of HRBC populations, as well as the merozoite, IRBC and game-

tocyte steady state populations. Hence the observed limit cycle. We note that the

limit cycles for a more nonlinear function, like the Maynard–Smith–Slatkin birth

rate function commences at anR0threshold value that is not quite large (shown

forR0=4.15 but can occur forR0smaller than that), compared to the case for the

Logistic recruitment function which was observed for much larger threshold values.

Our belief is that this is the effect of the stronger nonlinearity in the Maynard–

Smith–Slatkin function. Moreover, as indicated in Fig. 4, for largerR0values, the

size of the steady state HRBC population is much larger for the logistic model com-

pared to the Ricker model followed by the more nonlinear Maynard–Smith–Slatkin

function. Thus, a stronger parasitemia effect and henceR0value is required to reach

the balance recruitment–destruction point at which the Hopf bifurcation emerges.
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We note that the observed limit cycles were not obtained for the linear growth

function.

It is worth noting that for all forms of the recruitment functions, there is a max-

imal steady state merozoite size. The largest possible such steady state merozoite

size is(1−σ)(1+p0ea)β(1+p1ea)
, which is independent of the choice of birth rate function used.

Note that the term (1−σ)
1+p1ea

, is a recruitment factor into the merozoite differential

equation (2.15), for fixedea, indicating that the larger this factor, the larger the

merozoite population. Additionally, the size of the bound depends onσ,βand the

innate immune cell size. Importantly, whenea= 0, this bound is
(1−σ)
β , whose size

is larger for smallerσ(which we recall is the proportion of the infected red blood

cells that differentiate toward the path to gametocytogenesis) and smallerβ(where

βis the ratio of the contact rates betweenIRBCs and merozoites and that between

HRBCs and merozoites with a value of at most 1). Note that there is nothing excit-

ing aboutσbeing small sinceσimplies that more merozoites will be available to

infect HRBCs meanwhile a largerσimplies that more IRBCs will follow the path

toward gametocytogenesis and once successful in producing male and female game-

tocytes, will render the human infectious to mosquitoes. Nonetheless, the largest

reportedσsize is 0.01% as discussed in Ref. 29. Forβ, a value close to 0, means

that the contacts between merozoites and HRBC is dominant and less merozoites

are lost via absorption by IRBC.

Our model was analyzed in terms of the innate and adaptive immune variables

eiandea. By, construction and nondimensionalizationeiis bounded between 0 and

1 meanwhile we hadea>0. However, we observed that the steady state size of

the innate immune cells given by Eq. (4.13) is bounded above. That is, there is a

maximal functional operating steady state size for the innate immune cells and this

bound is illustrated in (4.14). With data within a specific human, this size can be

analyzed in a malaria patient and the specific immune responses simulated. This is

currently under investigation.

Further extensions of our work, under investigation, include the incorporation

of a multi-strain infection within a human host and questions of how the immune

response acts when more than one strain infects a human. The issue of immune

response being parasite specific, needs to be investigated, in addition to the full

study on the activation and function of the adaptive immune response. Furthermore,

the incorporation of control via anti-malarial drugs are also aspects of this project

under further investigation.

6.2.Conclusion

To conclude, our model analyses produced limit cycles observed for all forms of the

nonlinear recruitment HRBC functions at reasonable threshold parameter values

which was not observed when the choice of the recruitment function was linear.

We believe this is a novel result and may have several biological implications. We
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therefore believe that our work sets the stage to be used to quantify maximal

adaptive immune responses in humans and children living in endemic regions. We

note that this will require that data be collected from individuals from various age

groups and endemic regions since acquired (adaptive) immunity is a function of

frequency of exposure to the malaria parasite.

Second, the inclusion of the adaptive immune response, its implicit individual

effect captured separately and in conjunction with the innate immune response in

inhibiting parasite development has allowed us, perhaps for the first time taking

into consideration available published literature, to investigate the effect of the

adaptive immune response, which is acquired as a result of repeated exposure to

the malaria parasite, on the parasite and hence malaria disease dynamics within

a human. We showed that the larger the innate immune size and the better it’s

efficiency at inhibiting parasite development and progression as discussed in this

paper, the less severe the malaria disease is in a malaria patient. A way this was

manifested is that the larger the adaptive immune size, the smaller the merozoite

and infected red blood cell load which translated to less available free floating

merozoites that can infect HRBCs and lessIRBCs that can continue the merozoite

cyclical path or the path to gametocytogenesis. All these are desirable for reducing

the severity and intensity of the malaria infection, as well as the potential size and

likely infectiousness and transmissibility of the gametocytes to the mosquitoes. This

illustrates, what has been documented, that children who have a poorly developed

acquired immunity and visitors to malaria endemic areas with no acquired immunity

tend to have a more severe malaria episode than adults living in those endemic areas

who have been exposed longer.

Moreover, we believe our model results may shed some light on anecdotal

reports/observations that when an individual moves to a new region, he/she typ-

ically will have a severe malaria attack. We believe that our model provides a

possible answer to this. By our result that shows a negative correlation between

innate immune cell size and parasite load and with the suggestion that immune

response is parasite specific, when an individual moves to a new region and gets

infected, he or she is likely infected witha new parasite strain indigenous to the

new region. Since the individual is new to the area, their adaptive immune response

to the parasite strain they are newly infected by will be less well defined. Thus, the

severity of the malaria attack is probably due to this new strain’s impact and effect

on destroying the HRBCs, unchecked by adaptive immune response which at this

point is not well developed for this specific parasite strain. This requires further

investigation but opens up a host of potential questions for biologists and mathe-

maticians alike. One such question is: How is the interaction between a multistage

parasite infection and the adaptive immune responses generated due to the presence

of the parasite infection(s) with time? With the presence of a well defined adaptive

immune response on one parasite, does it enhance the development of the adaptive

immune response for the other, if any?
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