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A within-human-host malaria parasite model, integrating key variables that influ-
ence parasite evolution-progression-advancement, under innate and adaptive immune
responses, is analyzed. The implicit role of immunity on the steady state parasite loads
and parasitemia reproduction number (%), a threshold parameter measuring the para-
site’s annexing ability of healthy red blood cells (HRBCs), eventually rendering a human
infectious to mosquitoes, is investigated. The impact of the type of recruitment function
used to model HRBC growth is also investigated. The model steady states and %y, both
obtained as functions of immune system variables, are analyzed at snapshots of immune
sizes. Model results indicate that the more the immune cells, innate and adaptive, the
more efficient they are at inhibiting parasite development and progression; consequently,
the less severe the malaria disease in a patient. Our analysis also illustrates the exis-
tence of a Hopf bifurcation leading to a limit cycle, observable only for the nonlinear
recruitment functions, at reasonably large Zg.
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1. Introduction and Background

The WHO 2018 malaria report shows that the global malaria control progress
observed a few years back, seems to be stalling.! Past gains achieved in the reduction
of the number of global malaria cases were reversed with an estimated 219 million
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cases reported in 2017, an increase by an estimated 2 million cases when compared
to the year 2016.! The number of deaths between the two years were not that
different, with an estimated 435,000 reported deaths in 2017, a slight decrease
by about 16,000 from the reported 2016 estimate.! Of the 2017 malaria-related
deaths, 61% were of children under age five. We note, however, that when compared
to the 2010 statistics, the number of cases and deaths have reduced. With the
report that no significant progress was made in reducing the global malaria cases
between 2015 and 2017,! and knowing the impact that the malaria disease has on
individuals, rendering them sick, leaving children febrile and weakened with a higher
mortality rate among them and the impact on the economies of endemic regions,
malaria research and funding needs to be intensified. Moreover, control efforts and
studies aimed at understanding every facet of the disease must also intensify and
mathematics has a role in this.

The agents that cause malaria are the Plasmodium parasites, the most deadly
being Plasmodium falciparum, which was responsible for 99.7% of the 2017 malaria
cases.! Parasites interact synergistically with mosquitoes, with the female Anophe-
les mosquitoes the transmitters of the parasites from one human to another. As
part of their success scheme, the parasites make use of the feeding and reproduc-
tive habits of the female mosquitoes, a process necessitating a successful interaction
with humans. The parasite’s success and impact, especially P. falciparum, dates
as far back at 1324 BC? and likely beyond. It warrants that the parasite com-
plete a complex life-cycle with part residing in a human and the other part in the
mosquito.

The within-human part of the parasite’s life-cycle involves asexual reproduc-
tion associated with merozoite production. Some of the merozoites will continue
the merozoite production cycle, while a smaller percentage will continue the path
toward gametocytogenesis, leading to the production of parasite forms called game-
tocytes that may render the human infectious to mosquitoes.®” A successful inges-
tion of mature gametocytes by a reproducing female mosquito commences the
within-mosquito parts of the complex life-cycle.3%® This involves sexual reproduc-
tion, where fertilization takes place between male and female gametes generated
from male and female gametocytes, respectively, with the possibility of gene recom-
bination in the mosquito vector.3:%811 Successful fertilization produces zygotes cul-
minating with sporozoite production that then migrate to the mosquito’s salivary
glands, waiting to be injected into a human during the next blood meal.

Several mathematical models aimed at understanding the various facets of the
malaria transmission problem have been suggested. Some of the models have focused
on the macroscopic aspects of transmission capturing the interaction between
humans and vectors, see Refs. 12-17 and the many references therein. Others
have focused on the mosquitoes, the agents responsible for the transmission of
the parasites between humans and mosquitoes, see, for examples, Refs. 18-20 and
the references therein. Yet again, others have focused on the parasite within the
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mosquito,? 112122 or within the human, see Refs. 23-29 and the references there in.
A recent aspect is in the coupling of the within-host dynamics to the transmission
dynamics where by a within-human parasite model is linked to a macroscopic trans-
mission model.3° These models, a sample of the vast literature published, have
extended our knowledge on malaria.

In this paper, our focus is on the within-human stages of the P. falciparum
parasites. There are three main stages of the within-human part of P. falciparum
life-cycle®?: the exo-erythrocytic or pre-erythrocytic (this is the liver stage); the
erythrocytic asexual stage (this is the merozoite or blood stage) and the erythro-
cyte sexual stage (this is the gametocyte blood stage). The liver stage commences
when an infected blood feeding female anopheles mosquito succeeds in injecting
sporozoites into a human which are transported to the human’s liver by circulating
blood.> When the sporozoites reach the liver, they infect the liver cells, multiply
and develop into parasite forms called schizonts (hepatic schizonts), which upon
rupture will release loads of freely floating merozoites into the bloodstream. The
asexual blood stage then commences when these freely floating merozoites come
in contact with Healthy Red Blood Cells (acronymed HRBCs), infecting them and
rendering the HRBCs infected red blood cells (acronymed IRBCs) upon a successful
interaction. The merozoites in the IRBCs undergo asexual replication with some of
them rupturing to continue the cyclical pattern in which merozoites infect HRBCs
and the IRBCs rupturing to produce more merozoites. This rupturing of infected
red blood cells contributes to malaria related anaemia,*! which imposes additional
risks and economic burden on the malaria patient. The IRBCs that do not continue
the cyclical path, instead continue toward the formation of gametocytes, the trans-
missible forms of the parasites to mosquitoes.>32 Within the human, the parasite’s
invasion of the RBCs and its interaction and dynamics with and within the RBCs,
breaking the RBCs down and rendering the human sick, invokes the humans’ nat-
ural defense mechanisms (the innate immune system). For humans who have lived
long in an endemic region and have been continuously re-exposed to the malaria
parasite, the process will also function in the presence of the adaptive immune

3440 zequired due to the sustained exposure to the malaria parasite.

system,

Our primary objective in this paper is to analyze the within-human host model
for the P. falciparum malaria under implicit immune action, innate and adaptive.
The model was originally developed in Ref. 29, but analyzed in the absence of these
immune effectors. The model proposed in Ref. 29 accounted for gametocytes in their
early and late states, typically not considered in most models, a list which includes
the cited papers in the previous paragraph. However, the early state gametocytes
are the precursors of late state gametocytes, with the latter, the primary link to
mosquito transmission and hence vital to the continuous transmission dynamics
of the parasite from humans to mosquitoes. Here, we analyze the model originally
proposed in Ref. 29 under the implicit role of immune effectors. The analyses will
be carried out for different proposed HRBC production functions. HRBCs are vital
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to every human but also to the malaria parasite. In an infected human, gameto-
cytes are transmitted from humans to mosquitoes within an infected red blood cell.
If the parasites (in this case merozoites) cannot infect HRBCs then it is likely that
the parasite-cycle within the human can be terminated. The fewer red blood cells
there are to infect, which in this case the human is highly anemic, the lower the
parasite load. Thus, the reduction in HRBC population in a human, especially an
immunologically naive human, is related to malaria intensity, and severity and the
relation is affected by the human’s adaptive immune response. Thus, it is impor-
tant to understand this relationship. It is, of course, important to understand how
HRBCs are formed and maintained in a healthy human or infected human. How-
ever, as a first step in this process, we will make some simplifying assumptions
and not focus on the generation from the stem cell. Hence, we will evoke different
linear and nonlinear types of recruitment functions for the HRBC population and
derive bounds for the different parasite and immune cell types studied as functions
of bounds of the recruitment functions. This, in some sense, generalizes past works
where either a constant or a linear recruitment function for HRBC production in
humans was used, for the purpose of mathematical tractability (see, for example,
Refs. 25, 30, 41 and 28). We believe that our model can provide some mathematical
insights into the relationship between parasite loads under immune protection for
various recruitment functions in humans and for P. falciparum malaria.

A second objective of this study is to ascertain how the presence of immunity
can mitigate the growth of the parasite within a human for the various HRBC
recruitment functions. To this effect, we view the immune presence as parameters
of the system variables and study how these immunity-based variables will affect the
size and intensity of the infection in the human body. We believe this is appropriate
since adaptive immunity to malaria is still not very well understood. Moreover,
the adaptive immune response dynamics is highly variable within each human,
especially across age groups. Our general motivation lies in the quest, through the
use of mathematics, to better understand malaria as a disease in human populations
and also to address the interesting mathematical aspects arising from the modeling
exercise.

The rest of the paper is organized as follows: in Sec. 2, we present the
model equations to be studied and discuss on the nature of recruitment func-
tions used. We invoke the basic mathematical properties of the model and present
the scaling/reparameterisation, situating the discussion on innate/adaptive immune
responses as used in this paper. In Sec. 3, we present the concept of parasitemia
reproduction number as used in this paper, and start the analysis of the mathe-
matical equation by discussing the existence and stability of steady state solutions
in Sec. 4. In that section, we prove results on local stability of the parasitized state
and on the global stability of the parasite free state. The mathematical analysis is
illustrated with some numerical simulations in Sec. 5 and we round up the paper
with a discussion and conclusion in Sec. 6.
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2. The Within-Human Host Mathematical Model
2.1. Model equations

In Ref. 29, we developed a mathematical model that captured the interactions of key
population components involved in a malaria positive patient. These populations
at any time ¢, measured in days, are described in Table 1.

The model equations governing the rate of change of the state variables, R,
R,, M, G., Gi, E; and E,, with model schematics shown in Fig. 1, are given in
Egs. (2.1)—(2.7).

dRy B Ry M

ek Ru(Rp) — pnRn — 1165, (2.1)
dR,  BiRWM

& 1+ E&E, (vp + pp)Rp — (pe + paEa) RpEs, (2:2)

Table 1. Description of state variables, measured in cells per unit volume (density) with volume
measured in micro-liter (pul).

Variable  Description Quasi-dimension/Units
Ry (t) Density of healthy red blood cells (HRBCs) at C = HRBCs x pl~!
time t.
Ry(t) Density of infected red blood cells (IRBCs) at time C = IRBCs x ul—!
t, also known as parasitized red blood cells.
M(t) Density of free floating merozoites at time t. They M = Merozoites x pul~1!
invade and infect HRBCs.
Ge(t) Density of immature or early state gametocytes at G = Gametocytes x pl—1

time t. These form are the precursors to the late
state gametocytes
Gi(t) Density of mature or late state gametocytes at G = Gametocytes x pl—1
time t. These are the transmissible forms of the
malaria parasite to mosquitoes, linking the
within-human parasite life-cycle to the
within-mosquito parasite life cycle. A break in
this link would result in an incomplete parasite
life-cycle and thus plausible malaria control.
E;(t) Density of innate immune system cells at time t. I = Immune cells x pl—1
These are the body’s natural immune cells that
respond to fight invading foreign pathogens.
Different cells make up the innate immune
system and function in different ways to reduce
parasitemia.
Ea(t) Density of adaptive immune system cells at time t. I = Immune cells x pl—!
These are malaria parasite specific immune
response developed and sustained due to
repeated exposure to malaria infection. Different
cells make up the adaptive immune response
system and these cells function independently to
inhibit the parasitemia process or assist the
innate immune system in reducing parasitemia.
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Fig. 1. Model schematics of the within-human host malaria parasite dynamics showing the gen-
eral complex interaction between the various parasite forms and the innate and adaptive immune
systems. Innate immune cells (E;), can kill (or eliminate) sporozoites from human-skin, free-
floating circulating merozoites, IRBCs, immature and mature gametocytes, liver-stage parasites
either by direct contact or through phagocytosis. They also help the adaptive immune system
in recognizing and capturing antigens using the antigen presenting cells. Adaptive immune cells
(Ea), Inhibit/block free floating merozoite invasion of HRBC, maturation of gametocytes, growth
of merozoites inside IRBCs, development of liver-stage parasites hence inhibiting the release of
liver stage merozoites into blood stream. They also assist and enhance innate immune cells in
killing merozoites and also in clearing IRBCs and gametocytes.

dM (1l o)R, ( B,R, BsR, )
Y T . - = mM - m nEﬂ. Ei MJ
&t~ 1+&E, T+ 6B, | 1+, T Pt pnba)
(2.3)
dG. soyp Ry
= Sl )G — E,)EG., 9.4
7 1T 6,E, (11 + pe) (Pg + PaEa) (2.4)
dG; 7Ge
& 11 6B, mGr — pEiG, (2.5)
dE;
Fra Hi(E;) + 1 (Rp, M, E;), (2.6)
e o Lo(Ry M,Ea) ~ paF, 2.7

together with the following specified initial conditions defined at some initial time,
t = tp,

Ra(to) = Ron, Rp(to) =0, M(ty) =Mo, Ge(to) =0, .
Gi(to) =0, Ei(to) = Eoi, Ea(to) =0. '
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In Eq. (2.8), Ron,Mp > 0 and Ep; > 0. Changes to the immune variables, E;
and F,, as shown in Egs. (2.6)—(2.7), are modeled in terms of general functions
I'1(Rp,M,E;) and T'a(R,, M,E,), designed to capture the interaction between
merozoites, IRBCs, and the innate and adaptive immune cells.

Equations (2.1)—(2.5) and (2.6)—(2.7) for the specific example were
T'1(Rp, M, E;) = 01 Rp+92M — (M Rp+AoM)E; and To(Rp, M, E,) = p1 Rp+02M —
(61Rp + 02 M)E,, derived based on some simplifying assumptions, were developed
and described detail in Refs. 29 and 42. Since, we have made some updates, and
for ease of understanding the model system (2.1)—(2.7), we give a summary below.
The associated parameters to system (2.1)—(2.7) are described in Table 2.

The density of HRBCs, R}, changes due to a net increase from the production
of mature HRBCs from precursor cells from the bone marrow, modeled via the
function Rp¥(Ry), elaborated upon in Sec. 2.2. The recruitment depends on the
current state of HRBCs in the human system. Decrease in density of HRBC is
either due to natural death at the per capita rate pup, or due to parasitization
by merozoites, modeled via ‘flT?:g—i, a process inhibited by adaptive immune cells,
where £y > 0 quantifies the inhibitive efficiency of the adaptive immune cells’ action
on the parasitization process. Parasitization of HRBCs by free-floating merozoites
increases the parasitized red blood cell (IRBC) population, R,. This population is
decreased due to either natural death at the per capita rate pp or as a result of a
change in the parasite course at rate 7, per infected red blood cell. The time 1/,
is the time IRBCs either rupture to release free-floating merozoites or continue the
path to gametocytogenesis. IRBC density is also decreased as a result of action via
contact with innate immune cells (p. RpE;) or as a result of the combined interaction
with innate and adaptive immune cells (pg Eqa RpE;).

Various cells make up the innate and adaptive immune cells, and their action on
parasite forms or IRBCs are different. In summary, innate immune cells kill sporo-
zoites on human skin, eliminate circulating free-floating merozoites as well as IRBCs
and early and late state gametocytes. They also limit the development of liver-stage
parasites thereby suppressing the infection development at this stage. They function
either through direct contact with parasite forms and IRBCs or through phagocyto-
sis whereby parasites are killed by recognition through the innate immune receptors
and/or in conjunction with adaptive immune cells. Innate immune cells also help
adaptive immune cells capture and process antigens using antigen presenting cells.
In addition to their combined action with innate immune cells in merozoite killing
and enhanced clearance of IRBCs, adaptive immune cells also inhibit or block mero-
zoite invasion of HRBCs, bursting of red blood cells, as well as the maturation of
gametocytes, the development of parasites in an IRBC and the development and
release of liver-stage parasite. Thus, it is a complex process and the details have
been tabulated in Supplemental document A.

A fraction, (1 — o), of IRBCs will rupture releasing up to r free-floating
merozoites per bursting red blood cells and the process increases the density
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Table 2. Description of model parameters and their quasi-dimension as given in Ref. 29.
Parameter  Description Quasi-dimension
B Mass action contact rate between free floating merozoites M-1T-1

and HRBCs, modeling the effective parasitization rate of
HRBCs by merozoites.
G2 Adjusted mass action contact rate between free floating c-ir-1
merozoites and HRBCs, modeling effective absorption rate
of free merozoites by red blood cells as the merozoites
attempt to invade the cells. The merozoites are cleared
from the blood stream in the process.
B3 Mass action contact rate between free floating merozoites c-ir-1
and IRBCs, modeling the effective absorption rate of free
merozoites by IRBCs as the merozoites attempt to invade
the cells. The merozoites are cleared from the blood stream
in the process.
S} Constant recruitment rate of HRBCs. cT-!
KR Per capita natural death rate of HRBCs. T-1
fin Additional HRBCs density-dependent death rate due to c-ir-1
self-limiting processes for large densities.
A Growth rate of HRBCs due to per capita production of T-1
HRBCs.
Hp Per capita natural linear death rate of IRBCs. T-1
e Per capita natural linear death rate of immature T-1
gametocytes.
by Per capita natural linear death rate of mature gametocytes. T-1
m Per capita natural linear death rate of freely floating T-1
merozoites.
i Per capita natural death rate of innate immune cells. T-1
Ha Per capita natural linear death rate of adaptive immune cells. T-1
i Linear growth rate of innate immune system cells. T-1
K; Carrying capacity of the environment for innate immune I
system cells.
M; Threshold innate immune system cell size below which the I
innate immune system cells become ineffective. We expect
0< M; <K;.
&o Efficiency of the adaptive immune effectors in inhibiting 1
merozoite contact with HRBCs and IRBCs via mass action
contact.
&1 Efficiency of the adaptive immune effectors in inhibiting 1
merozoite transformation in parasitized or infected red
blood cells.
&2 Efficiency of the adaptive immune effectors in inhibiting 1
maturation of early state gametocytes.
Pe Mass action contact rate between parasitized red blood cells I-ir-t
and innate immune system cells resulting in the
elimination of the parasitized cells.
Pm Mass action contact rate between free floating merozoites I-ir-t
and innate immune system cells. This contact can result in
the elimination of the free floating merozoites.
Pg Mass action contact rate between immature gametocytes and I-ir-t
innate immune system cells. This contact can result in the
elimination of the immature gametocytes.
Pl Mass action contact rate between mature gametocytes and I-ir-t

innate immune system cells resulting in mature
gametocyte elimination.
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Table 2. (Continued)

Parameter

Description

Quasi-dimension

Pa

Pq

T

T
LS

2

21

Az

01

2

Mass action contact rate between IRBCs, innate immune
system cells and adaptive immune system cells accounting for
additional clearances due to the presence of adaptive
immunity.

Mass action contact rate between merozoites, innate immune
system cells and adaptive immune system cells, accounting
for additional clearances due to the presence of adaptive
immunity.

Mass action contact rate between immature gametocytes,
innate immune system cells and adaptive immune system
cells, accounting for additional clearances due to presence of
adaptive immunity.

Average number of merozoites released per bursting IRBC.

Average number of early stage gametocytes arising from one
IRBC.

A parameter in [0, 1], it is the proportion of the IRBCs that
differentiate continuing towards the path to
gametocytogenesis.

rate of maturation per IRBC to a point where the IRBC either
bursts to release more free merozoites or continue towards
the gametocyte formation path called gametocytogenesis.

Transition rate of immature gametocytes mature within an
IRBC.

Rate at which innate immune effectors are
stimulated/generated due to the presence of IRBCs.

Rate at which innate immune effectors are
stimulated/generated due to the presence of free-floating
merozoites.

Rate which adaptive immune effectors are
stimulated/generated due to the presence of IRBCs.

Rate which adaptive immune effectors are stimulated /generated
due to the presence of free floating merozoites.

Mass action contact rate between IRBCs and innate immune
system cells accounting for the loss of innate immune cells
due to such contact.

Mass action contact rate between free merozoites and innate
immune system cells accounting for the loss of innate
immune cells due to such contact.

Mass action contact rate between IRBCs and adaptive immune
system cells accounting for the loss of the adaptive immune
cells due to such contact.

Mass action contact rate between free-merozoites and adaptive
immune system cells accounting for adaptive immune cell
loss due to such contact.

—2r-t

—2r-t

—2r-t

T—l
1c-1ir-1

IM—iT-1

rc-ir-t
IM—iT-1

c-ir-t

M-1T-1

c-ir-t

M-iT-t

of free-floating merozoites. The remaining fraction, o, that does not burst con-
tinue the path to gametocytogenesis, increasing in the early state gametocyte
density. Both processes, Inhibited by the adaptive immune cells, are modeled
rp(-0)Rp ,nd 26282 where & > 0 quantifies the inhibitive

. 1+6 Ea 1+61 B, X i K
efficiency of the adaptive immune cells’ action on IRBCs bursting or continuation to

via the terms

gametocytogenesis. The densities of both merozoites and early state gametocytes
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are reduced due to natural death at the per capita rates of p,, and pe, respec-
tively, or as a result of contact with innate immune cells (modeled via p,, M E; and
pgGeE;, respectively) or as a result of the combined interaction with innate and
adaptive immune cells (modeled via p, E, M E; and pgE,GcE;, respectively). Addi-
tional losses occur in the merozoite population as a result of the merozoites infecting
or parasitizing red blood cells, resulting in them being absorbed (see Refs. 43 and 44
for details). We model these by the terms BaBnM o q BBeM here &0 > 0 measures

1+&oFq 1+&oEq?
the efficiency of the adaptive immune cells’ action on inhibiting the parasitization

process. Early state gametocytes that successfully evade the inhibitive properties
of the adaptive immune cells serve as the precursors to the mature gametocyte
population, producing #ﬁgﬂ late state gametocytes. Here, «; is the maturation
rate and £ > 0 quantifies the maturation inhibitive efficiency. The population of
mature gametocytes diminishes due to natural death at rate p; or as a result of
innate immune action in fighting this foreign body, modeled by p E;G;.

In model (2.1)—(2.7), the functions ¥, H; : R™ — R are needed to model the rate
of recruitment of new red blood cells and innate immune effector cells, respectively.
We motivate the nature and properties that a realistic recruitment function should
have in our context. The choices of the recruitment functions in (2.1)-(2.7) serve
as a generalizes of past works on the within-human malaria parasite dynamics (see
for example, Refs. 25, 28, 41, 43, 45 and 46).

2.2. The recruitment functions

In the absence of malaria infection in a human, the equation governing the HRBC
density is
dRy,

— = RypY(Ry) — pnBRy = g(Ra), (2.9)

where it is assumed that erythrocytes are recruited from the stems of the bone
marrow at a density-dependent rate ¢(Rp) per healthy red blood cell and have
a life expectancy of 1/up. The term ppRp(t) therefore represents the net rate of
erythrocytes dying naturally in a healthy human body. Our objective in this sub-
section is to discuss conditions on the form of ¢ : [0,00) — R that can serve as
a suitable red blood cell recruitment function for our model. We have deliberately
assumed for simplicity as in Refs. 47 and 48, that the recruitment function (even in
the presence of infection) depends only on the density of healthy erythrocytes Ry,
but not on the total density of healthy and infected erythrocytes, even though it
has been conjectured that the production of erythrocytes is accelerated in a small
way by the presence of infected erythrocytes in the system.?®> We assume that the
function v : [0, 0c) — R has required properties that will guarantee the existence of
a healthy erythrocyte population so that the growth dynamics of healthy erythro-
cytes in the absence of malaria parasites is internally stable, from a mathematical
and physical stand point. We write down the following definition for HRBC recruit-
ment functions.
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Definition 1 (Recruitment functions). For the sake of mathematical and bio-
logical realism, a function 7 : [0,00) — R is considered to be a suitable recruitment
rate function if it is smooth and in addition should satisfy the following conditions:

(1) ¥(04) > 0, ¥(Rp) > 0, YRy = 0, where ¥(04) =limp, o+ ¥(Rn).

(2) ¥'(Rp,) exists for all Ry > 0 and ¢'(Ry) < 0, YR, > 0.

(3) limpy,— 400 V(Rp) < pp < limp, o+ ¥(Rp), YRy > 0.

(4) The function Rpy(Ry) is non-negative, continuously differentiable, bounded
and unimodal so that there exists R}' > 0 such that for 0 < R, < R},
Rp1p(Ry) is strictly monotone increasing and for Ry, > R}, Rp(Ry) is strictly
monotone decreasing.

Condition (1) ensures non-negativity of ¥ and Rp(Rp), with Ry(Rp) repre-
senting the net rate of production of new R}, per time. Condition (2) ensures that ¢
is a monotone decreasing function of its argument, meanwhile condition (3) ensures
that Eq. (2.9), which models the dynamics of HRBCs in the absence of infection,
has a nonzero stationary solution R}, such that R; = ¢~!(u), which is stable to
small perturbations. Additionally, it ensures that a carrying capacity, denoted by
C, exists such that for R, < C, Ry, is increasing with time (since R} > 0), and for
Ry > C, R} <0 implying that R}, is decreasing with time ¢. Condition (4) ensures
that Ry (Rp) has a positive maximum value given by Rn i})(}?h), where R}, € [0, o0)
satisfies the equation Q,D(f{h) + I%mff(}?h) = 0, and allowable shapes for the graph
of Rpi(Rp) are shown in Fig. 2. Examples of recruitment functions in population
dynamics that satisfy (1)—(4) may be found in Refs. 13 and 49. Some of these are
mentioned below in the context this work:

(a) The linear recruitment function: Here, we consider ¢¥/(Ry) = 1%, where
© > 0 is a constant, so that in the absence of infection, the HRBCs equation,
namely, R} (t) = g(Rn(t)) = © — ppRn(t) is the constant recruitment linear
death growth model in biology.

(b) The logistic recruitment function: For this case, we consider the function
©Y(Rp) = An — finRp, where Ap > pp is the per capita constant rate of recruit-
ment of HRBCs from bone marrow and iy, is additional death rate per HRBCs.
The assumption is that a self limiting process kicks in for large densities, induc-
ing additional HRBC deaths. In this case, the HRBC dynamics in the absence
of infection is modeled by R} (t) = G(Rn) = (An — pn)Ra(1 — =2—Rp),

(An—ph)
which is effectively the logistic growth model in biology,® originally proposed

#The action of HRBC production from the precursors (see Ref. 50) is masked in the present
formulation. The chosen form should be understood as follows: In the absence of malaria dis-
ease and under steady state, A\, = pp and fip = 0. If there is a decline in the HRBC density,
then A, > pp, where the processes and feedback loops leading to the increased production of
HRBCs from the precursors have not been explicitly modeled. Likewise, if the HRBC density
is too large, then A < pp, in addition to fp > 0, with its size dependent on the density of
HRBCs.
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Fig. 2. Figure showing the allowable shape and behavior of the dynamics for any choice of

leading to the net recruitment function Rj1(Rp) in the equation for the time rate of change of
HRBCs in the absence of infection (2.9). The function v : [0,00) — R is to be chosen so that the
Rp¥(Rpy) is a unimodal function graph (a), and the dynamic described by the function §(Rp) =
Rpv(Rp) — pp Ry, crosses the Ry, axis at exactly one point as shown in (b) implying the existence
of a unique stable steady state solution for the equation R} (t) = §(Rp(t)), Rp(0) = Rg € (0, 00).

(c)

(d)

by Verhulst®! and used by Pearl.52 It is worth noting, however, that this form
of 7 does not satisfy the positivity condition preseribed by condition (1) of
Definition 1 when R} > %f:, but we assume that, in this case, %f: is sufficiently
large.

The Ricker recruitment function: In the third instance, we consider
P(Rp) = /\he_ﬁ?R" where A\, and Kj are positive constants. K may be
associated with the environmental carrying capacity, while A, can be seen
as the limiting HRBC production rate when the HRBC count is very low.
We demand that Ap > pp so that in the absence of infection, the dynamic
of the HRBC population is modeled by the Ricker growth model®® where
R} (t) = g(Rp) = Rh()\he_?l:‘q" — pn). The Ricker growth function has also
been used by Nisbet and Gurney®* to model laboratory fly populations.

The Maynard—Smith—Slatkin recruitment function: In the fourth
instance, we consider ¥(Rp) = An(1+ (%)n)_l where this form of the recruit-
ment function for n # 1 is known as the Maynard—Smith—Slatkin birth rate
function,®® and for n = 1 is the Beverton—Holt recruitment function.’® With
this type of recruitment function, n is a measure of the degree of nonlinear-
ity in the recruitment function so that larger values of n provide stronger
nonlinear response functions. We note that to stay within the limitations
set by the requirements on the recruitment function as specified by Defini-
tion 1 and illustrated in Fig. 2, we must impose the restriction n > 1. In
the absence of the disease, R},(t) = §(Rn) = AnRn(1 + (%‘:)n)_l — pnRp.
Ap has the same interpretation as in the Ricker case and we again assume
that Ay, > pp so that when cell numbers are small, deaths do not predomi-
nate births. The Maynard—Smith—Slatkin growth rate function has also been
used by Ngonghala et al.!3 and Ngwa et al.'® in modeling mosquito population
dynamics.
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We clarify the notion of linearity and nonlinearity as used in the study presented
in this paper with the following definition.

Definition 2 (Linear versus nonlinear recruitment functions). In light of
the different functions v : [0, 00) — R defined above and satisfying Definition 1, we
refer to the function g : [0,00) — R defined by g(Rp) = Rp(Rp) — ppRp as (i) a
linear recruitment function if §(Rp) is at most a polynomial of degree one in Rp,
and (ii) a nonlinear recruitment function if §(Rp,) is either a polynomial of degree at
least two in Ry or a combination of rational/irrational and transcendental functions
of Ry. Furthermore, we shall refer to g(Ry) as a more (or strongly) nonlinear recruit-
ment function if any attempt to write g(Rj) as a complete and convergent power
series will always result in an infinite power series representation in powers of Rj.

In the context of Definition 2, combinations of exponential and polynomial func-
tions that admit infinite power series expansions with the desired properties delim-
ited by Definition 1 are admissible recruitment functions.

Similar functional forms can be selected and used for the recruitment of innate
immune effector cells (see (2.6)) modeled via the function H; : [0,00) — R. Three
example cases are: (i) linear model: H; = ©; — p; F;, with ©; constant recruit-
ment and p; the per capita death rate; (ii) Verhulst—Pearl logistic model, H;(E;) =
6; E; (1 — I‘?—:), where §; is the net linear per capita growth rate of innate immune sys-
tem cells and K; > 0 is the carrying capacity of the environment for innate immune
system cells and (iii) model with allee effect: H;(E;) = &:E;(1 — }‘3—:) (f—;‘ - 1),
with §; and K; as given in (ii). This example accounts for allee effects, with M;
the allee threshold density marking the immune system cell density switch point
below which the innate immune density is no longer effective. For a meaningful and
effective switch, 0 < M; < K;. A systematic consideration of the different possible
combinations of the different types of recruitment functions for the HRBCs and
innate immune effector cells represented in this paper will result in consideration of
several different models for the within human host dynamics of the malaria parasite
in the presence of immunity. The fact that different forms of recruitment functions
that fall within the expected realities in modeling can be formulated, leads us to
the possibility of considering a large class of models of the type studied herein.

In the presence of malaria infection, a human’s innate as well as adaptive, for
mature-immune humans, immune systems are boosted by the presence of the infec-
tion. This boosts results in interactions between the immune cells, IRBCs and
some parasite forms. In particular, during infection and in the presence of immu-
nity, IRBCs (R;), free-floating merozoites (M) and the early state gametocytes
(Ge), interact and are affected by both the innate and adaptive immune systems
while the late state gametocytes, (G), is affected by the innate immune system.
The interaction also yields losses to the immune cell densities (since elimination
is assumed to be done by phagocytosis when the immune cells come in con-
tact with the free-floating merozoites and IRBCs). In Eqgs. (2.6) and (2.7), we
model the interactions by general functions I'y (R,, M, E;) and I'y(Rp, M, E,) which



390 Ngwa, Woldegebriel & Teboh-Ewungkem

would be chosen to capture such a loss and such that in the absence of infec-
tion whereby R, = M = 0,%t > 0, 'y = I's = 0. That is, based on Eq. (2.7),
the adaptive immune system cells will wane at the constant per capita rate of
fta. This makes sense biologically, since the dynamics of the adaptive immune
response is maintained by continued presence of infection in the human body.
Thus, from (2.7), in the absence of the malaria infection, E, will decay expo-
nential decay to zero according to the relation E; o< exp(—pqt). As earlier noted,
the simple forms in which T'1(Rp, M, E;) = 91 Rp + ¥2M — (MRp + AoM)E; and
Ta(Rp, M, E,) = p1Rp + 0o M — (61 Ry, + 62M ) E,, were used in Refs. 29 and 42, to
model the interactions between innate and adaptive immune cells and IRBCs and
parasite forms, with the added assumption that p; < g, 67 < 5, ¥ < 15 and
A1 < Ag, so as to account for the reduced elimination of IRBCs by immune cells
E; and E,, compared to their effect on free-floating merozoites.*® For the adaptive
immune example, the form of I's(Ry, M, E,) neglects the delay associated with the
time adaptive immune system takes to develop within an individual.

Here, we will not explicitly model the dynamics of both the adaptive and innate
immune system cells, but consider their effects on the model system (2.1)—(2.7)
at fixed time points where by the model steady states and parasitemia threshold,
denoted by %, are obtained as functions of immune variables and analyzed at
snapshots of immune sizes. In the absence of information for the true form of the
recruitment function, we maintain that the results of this analysis will give an
insight into the nature of the within human host dynamics of the malaria parasite. In
what follows, even though we have written down two equations, what we now refer
to as prototype equations for the immune response, we shall regard the presence of
the activity of immune response in the system as parametric variables and derive
all formulae in terms of these parametric variables.

The basic properties of invariance, positivity, boundedness and uniqueness of
solutions to system (2.1)—(2.7) with initial conditions in (2.8) and under the con-
ditions given for ¢/(Rp) and H;(E;) as stated in this section, were established in
Refs. 22 and 29, when the HRBCs, in the absence of parasitemia, are modeled by
the linear and logistic models. The results are easily extendable to the Ricker and
Maynard—Smith—Slatkin recruitment functions and are not presented here.

2.3. Reparameterisation, scaling and nondimensionalization

Following the idea in Ref. 29, expanded to incorporate all four recruitment functions
discussed in Sec. 2.2, we nondimensionalize as follows: We begin by letting

Ry R, B M (e + )G
Th = =, Tp = ——, T = + t, m=—, p = —————,
"R PR (kp + ) vy Y 7o R .10
_ (pe + )G _E; . — (1p +7p) Ea '

? €i = ?
(s Rp) Ry T 01RY



A Mathematical Study of the Implicit Role of Innate and Adaptive Immune Responses 391

0 0 :
where R, R, and E} are given as

s S
=2 if (Rp) = —,
. if Y(Rn) 7
Ah — P

_ if Y(Rn) = An — jinRn,
R)=R,={ " 1
P —KnIn(p) if y(Rp) = Ane Fr ',

i (3)" s (2))

. 9‘5
Hi
E°=! K, ifH(E;)=6E; (1 — %) or

if H(El) = 9,; - ’U.gEg.,

E:\ ([ Ei
H(Eﬁ) - 6§E§ (1 - K) (_ﬂ;__fl - 1) 5

and the dimensionless parameter groupings are

M; Hh
K = —_— = —_—
ng ] H )\h’
h . o
if Y(Rp) = =,
Hp +7p ( ) Ry
Ah— Hn . N
ap = ——— i Y(Rn) = An — finRn,
Hp +7p
A _ ny —1
A if p(Rp) = Ane Fr B or (Rp) = An (1 + (f—in) ) ,
Hp + Vp h
RO
o= —Twh o BBy o Bm
Ba(pp +p) Hp +Vp Hp +Vp
gp= Hetm oM Ha
Hp +p Hp +Vp Hp +Vp
P peEY? o pa01 Rp s = pmE?
1 - —1 - —) 3 - 2
tp +p pe(pp + 7p) tp +
o4 = Pngle s = ng? . pqgle
4 = . 5 EE— 6 — ——
pm(tp + Vp) Hp + Vp pg(kp + Vp)
_ pE} _ boiRy _ &ioiR) _ LoiRy B3

Pr = 3 Po = » = » p2 = » = 5
Hp + Vp Hp + Vp Mp +Yp Hp +Vp B2
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b 't?]Rg 192'.-""}(? 02Tp
1 - —'l = ? 3 = 1
E?(F‘p +7p) ﬂlﬁzRB 91,823’%
/\1Rg Aaryp gle
c1 = 1 C2 = N 2o c3 = ’
Hp +Vp A1 RY Hp +Yp
o= B2
4 9],82Rg1
Hi .
——— ifH Eg‘ = 91 — iEi:
. (E:) p i
5= ! if H(E; zagEg(——“') or
Hp +Yp (B) K;

H(E;) = 6;E; (1 - %) (% - 1).

(2.12)

We note that p as defined in Eq. (2.12) satisfies 0 < p < 1. Substituting

Egs. (2.10)—(2.12) into Egs. (2.1)—(2.7), we obtain the scaled system

drn () aimrh

dr 209Uk 1+ poea’

dr a1 mm

d_: “Trpe, P p1(1 + paeqa)rpes,

N (L P SN |

dr | 1+ preq 1+ poea 14 poeq

—asm — p3(1 + paeq)eim,
dge [ orp
= — _ 1 .

r aq _1+Plea e PS( +Pﬁea)eage.a

@ = _L — g — e.g

d'r 5 hl—l—pzea 1 P’? i41,

de; ~

d_'; = h’(ei) + Fl(ei: Tp, m)a

d —_

% = FZ(eiu Tp, m) — Qg€aq,

together with the equations

¢ (S}

1—rp if P(Rn) = -,

Ry
'."h,(l — 'l"h) lf ’l,f)(Rh,) = )\h — ,&th,
9(n) = e ) — pry, i Y(Rn) = AyRe Fr
Th i R ny —1

e o =n s (8))
Tr gy = (i

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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r(s(]. - ei) lf H(ei) = ei — .u'E'Ei-,
. Ej
h(ei) = 4 561(1 - ei) ].f HE(EI) = 6‘§Ei _ f ,
G 1 Eﬁ Eﬁ
e —e) (%-1) i H(B) = 6iF (1 _ K) (Mg - 1) '

(2.21)

As noted in Table 2, 0 < M; < K; = 0 < K < 1. Thus, in the third
case of Eq. (2.21), K represents the innate immunity threshold below which the
innate immune response becomes less effective. Using the prototype examples ear-
lier discussed and modeled in Refs. 29 and 42, the nondimensional forms of I
and fg are fl(eg,'rp,m) = bi(rp + bam) — ci(rp + cam)e; and fg(eg,rp,m) =
Tp+bsm—ec3(rp+-cam)eq. A complete discussion including relative sizes of the scaled
parameters of system (2.13)—(2.17), together with a subcase of (2.20) and (2.21),
under immune suppression, was presented in Ref. 29. In particular, 0 < ¢ < 1,
0< <1, a9 € (0,1) for the linear case where g(rp) =1 — r, and ag > 0 for all
other forms of g(rs), a1 > 0, a2 > 0, azg > 1 and 0 < a4,a5 < as.

2.4. The innate and adaptive immune responses

In a generalized setting, we will analyze system (2.13)—(2.19) and in the process
attempt to quantify the level of immune presence in the system, which we know
is quite variable in different individuals. Here, we do not pursue this approach.
Rather, we work with the general assumption that the net effect of the action of
the immune system is to slow down, if not arrest, the process of invasion by the
pathogen of the human biological system. This “slowing down effect” has been
captured in the model above through the inclusion of the terms of the form m
and —p;(1+ piri€q)ei, k =0,1,2 and i = 1,...,7 in the model equations (2.13)-
(2.17) where e; is the dimensionless density of innate immune effector cells while e,
is that of adaptive immune effector cells. It is understood that the innate immunity
is the front-line active immune effector cells that are produced and are always
present in the system at all times. In the context of the scaling done above, we
assume that e; is scaled with its maximum possible size so that 0 <e; <1.e; =0
is the lack of natural immune effector cells characteristic of two scenarios: one where
the immune system has been totally compromized by infection, malaria parasite or
other, and the other arising where the individual has never been exposed to malaria
infection but other factors compromises the system. On the other hand adaptive
immunity kicks in and is sustained by continuing exposure to malaria, but also
wanes away when the exposure is stopped over a long period of time. That is, the
effectiveness of the adaptive immune response increases with duration of infectivity
and frequency of exposure to the infection. However, since this increase cannot
be indefinite, we assume that e,, with e, > 0, is also bounded, with a bound
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determined by the size and frequency of exposure to malaria infection as well as
the length of sustained infectivity state. The case e, = 0 commensurate with the
scenario where an individual has had no exposure to malaria over a long period
of time. Without diving into the specifics of actually computing the size of the
immune states of the individual in a full and complete mathematical analysis of
the coupled system (2.13)—(2.19), we regard e; € [0,1] and e, € R as parametric
coordinates. Note that the explicit expressions for I'; and fg, are not necessary,
except that I=0= fg, in the absence of infection. We then study the system
with these parametric variables by simply writing g; where in fact, ¢; = gi(eqy) for
1€1{1,3,6}, ¢; = qi(eaq,€;) for i € {2,4,5} and g7 = gr(e;), with

1

T eeee—— Iy e 1 P

q1(€a) 1+ poca’ q2(ea, €i) = p1(1 + p2eq)e;,
(€a) - (€a, €:) (1+ ps€q)

€ = —, €q,Ei) = €g )€i,

B = preg 1 @) = PR T Paca)C (2.22)
1

€a,€i) = ps(1 + peeq)ei, €q) = —,
QS( a 1) P5( Pe G'-) i qﬁ( !1) 1+ poea

Q‘.?(ei) = P7€i.

Each of the functions g;, where g; : R_Z,_ — Ry forie{1,3,6} and q; : R, — R,
for i € {2,4}, are positive monotone functions that measure the effect of adaptive
and innate immunity in the different aspects of the within human host dynamics
of the malaria parasite as explained in the derivation of the model in Refs. 22
and 29. In this rendition, we see immediately that ¢;, g3 and gg are monotone
decreasing functions of the adaptive immunity function e, (¢) while ¢2, g4, g5 and gy
are monotone increasing functions of the adaptive and innate immunity functions
ea(t) and e;(t). We have the following bounds on the different functions:

qi(ea), ga(eq) and gg(eq): The adaptive immune response e, is zero in the absence
of infection and kicks in when infection is present, and thereafter wanes away to
zero when the infection is removed or cleared. Thus, e,(t) = 0, ¥t = 0. We expect
infe, {g1(eq)} > 0, since the adaptive immune response cannot continue to increase
indefinitely. Therefore, we have 0 < g1,q3,q6 < 1 for all ¢t > 0.

g2(€a, €:), qa(ea,€i), gs(ea,€i) and gy(e;): In the context of the scaling done in
this paper, the innate immunity response e;(¢) can vary from e;(¢) = 0, complete
immune depletion and deficiency, to maximum operability e;(t) = 1. Thus, com-
bined with the fact that e, increases from zero, we have the bounds 0 < ¢y <
p1(1 + pasup,, €a), 0 < g1 < p3(1 + pasup,, €a), 0 < g5 < ps(1 + pe sup,, €a)
and 0 < g7 < py. Since e, = 0 in the absence of infection and kick-starts in the
presence of infection, the least upper bounds for g3, g4, g5 and g7 are, respectively,
p1, P3, ps and pr occurring when e, = 0.
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With these parameter groupings for the system explicitly studied, system (2.13)-
(2.17) then takes the form

d

% = aog(Th) — arqimry, (2.23)
-

dry

= = aamr — (1 + g2)rp, (2.24)
-

dm

o =% lg3(1 — a)rp — qi(rn + Brp)m] — (az + q4)m, (2.25)

dge

dg = a4 [Q'BC’Tp - ge] — g59e, (2.26)
-

d

d_S: = as[g6g9e — 9] — q7q1- (2.27)

Next, for given 1, and m values, all we need do is establish that Eqgs. (2.18) and
(2.19) have bounded solutions, if we desire to obtain an immune state for the human
individual in question. From (2.18) and (2.19), it is clear that in the absence of
infection, 2& = h(e;) = e;i(t) = €;(0) + f;’ h(e;i(s)ds, for the forms of h in (2.21),
and £a = —cge, = €q(t) = eq(0)e %6t

In what follows next, we examine system (2.23)—(2.27) where e, and e; are
parametric coordinates and the rest of the parameters are as stated. Note that the
explicit forms of the system that model e; and e, as defined by Egs. (2.18) and
(2.19) are not necessary for our analysis, henceforth. To begin, we start by deriving
the parasitemia reproduction number.

3. The Parasitemia Reproduction Number in Immune Presence

In this section, we briefly examine how the presence of an immune response can
affect the intensity of propagation of merozoite transmission within the healthy
red blood cell population by calculating and studying the effect of the immunity-
based variables on the size of the parasitemia reproduction number for our full
system. For within-human host malaria parasite dynamics, we treat the HRBCs
as the susceptible population and the IRBCs as the infected population, with the
merozoite population the infecting agent. Through this compartmentalization (see
Fig. 1), we can then define parasitemia reproduction number, and use it as a measure
of the strength or intensity of the force with which merozoites invade and destroy
the healthy red blood cell population within the human at the onset of parasitemia.
This measurable index points to whether or not parasitemia (systematic destruction
of healthy red blood cells) will persists. Typically, if Z, < 1, each infected red blood
cell eventually leads to the production, on average, less than one new infected
red blood cell, indicating the possibility of controlling parasitemia at some point.
However, if %y > 1, then there is persistence of parasitemia.
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Following our work in Ref. 29, it can be shown that

ajazq1q3(1 — o)
(g2 +1)(azq1 + a3 +q4)’

o= o(FV™") = (3.1)

where (F)i; = %:—_: is the matrix of newly parasitized RBCs and (V');; = gl)—_: are
transfer terms, with

0
a1mygiTh
F(x) = 0 ;
0
0

aymqirh — aog(rn)
(@2 + rp
V(x) = | m(as + qa) — az(garp(1 — o) — mai(rh + Bryp)) |,
9eqs — aa(gsTpo — ge)
9197 — as(geqs — g1)

the matrices evaluated at the disease-free equilibrium, x} = (1,0,0,0,0)T. Here,
o(FV 1) is the spectral radius of the next generation matrix F'V~! (see Ref. 57).

Remark 1 (On the Parasitemia Reproduction Number in Immune Pres-
ence). The expression for %, as defined by equation (3.1) is exactly the same
expression associated with the conditions for the existence of a positive merozoite
steady state, whereby for %y < 1 there is no positive merozoite steady state pop-
ulation, and the only steady state is the parasite-free steady state. Details of this
derivation can be found in Ref. 22. Additionally, the expression for %, remains
unchanged if we constructed the next generation matrix by considering only the
disease terms.

A quick examination of the formula (3.1) as a function of e; € [0,1] and ¢, € R
and noting the behaviors of the quantities ¢; as monotone functions of e; and e,
shows that the effect of the action of immunity on the system is to reduce the size of
parasitemia reproduction number. In fact, from the form of %, given that ¢; and
g3 are monotone decreasing functions of e, while ¢g; and g4 are monotone increasing
functions of e, and e;, the combined increased action of immune responses, will
lead to a reduction overall size of %y. In particular, we have

= ajazqigs(l — o) - ajaz(l — o) - aijaz(1 — o)
(@2 +1)(a2q1+as+q1) ~ (1+p1)(a2+as+ps) = (az+as)

(3.2)

active e, >0 and e;e(0,1) ea=0,e;=1 ea=0,e;=0
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The inequality given by formula (3.2) simply expresses the fact that %, increases
with decreasing effectiveness of the immune response and attains a maximum value.
It also captures the expectation that as the adaptive immunity kicks into action
following repeated parasitemia, the actual value of the parasitemia reproduction
number will continue to reduce in size. These two observations highlight the com-
bined effects of these immunity-based responses in reducing the value of %, thereby
reducing the strength of parasitization of the red blood cells. The results also indi-
cate that even in the absence of immune response, the parasitemia reproduction
number can be bounded, which assures us that malaria parasitemia control is possi-
ble, even though % can continue to increase with increasing a;. We shall investigate
these further below as we continue to view the introduction of immunity into the
system as a parameter into the system defined by Egs. (2.13)—(2.19). The parame-
terized parameter % so identified can be used to study the behavior of the system
in the presence of immunity.

4. Existence and Stability of Equilibrium Solutions
4.1. Ewxistence of equilibrium solutions

To appreciate the effect of immunity on the system especially, on the eventual
size of the steady state solutions and on the reproduction number, we now pro-
ceed to characterize the steady state solution on the above system in paramet-
ric form, that is in terms of two parameters ¢; € [0,1] and e, € R*. Let
E;; = (ry,mp(ry),m*(r3), 92 (13,), 97 (r7,)) be a steady state solution, then as usual,
setting the time derivatives to zero in (2.23)—(2.27) we find that

w0 % G.Og('r*)
rp(rh) = qg——khi’ (4.1)
m* () = ao(q2 + 1)%o(a2q1 + a3 + ¢4)9(r}) (4.2)
" a1q1(a2q1(aoBg(r}) + qar +73) +as(ge + 1) + aa(gz + 1))
[ % og3aa . . GDG‘;Q'SUQ(T;)
) = ri(ry) = 3 4.3
" 4605 4. a0a4a5939609(77,)
L) = L) = , 4.4
g!( h.) as +q7ge( h.) (qZ T 1)(&4 +Q‘5)(G5 _|_q7) ( )
where g(rp) satisfies the equation aog(ry,) — argum*(ry,)ry = 0 leading to two
solutions
(a) g(ry) =0 or (b) g(r3)
_ (e + V)(a2q1(%o — V), + (a3 + q4)(%orj, — 1)) _ ,
= = A1Tp — AU:

apazfBq:
(4.5)



398  Ngwa, Woldegebriel & Teboh-Ewungkem

where
A = (g2 + 1)(a2q1 (%o — 1) + Zo(as + q4))
aoazBq: (4.6)
o _ (@t (et
0=
aoazBq:
and %o = %o(e},e}) is given by (3.1). Note that Ap and A; satisfy the following

properties: (i) Ap > 0 always, (ii) 0 < Ag < A; whenever %, > 1 and (iil) more
generally, A; > 0 for Zy > m_:igzlﬁ-_!h’ a value less than 1. From the definition of
Py in (3.1), the inequality in (iii) is true when (1 — o)ai1gs > 1 + go.

The two equations for g(r};) given by (a) and (b) in (4.5) provide a pathway
to obtaining all the steady state values, 77, for the different types of recruitment
functions as follows: By construction, g : [0,00) — R is either a strictly monotone
decreasing function of r, with g(1) = 0 or a unimodal (one hump) continuously
differentiable function of r, with g(0) = ¢(1) = 0, so that by Rolle’s theorem there
exist 7' € (0,1) such that ¢'(r}*) = 0. Thus g(rs) < g(r}*) for all ry. That is
the equation g(ry) = 0 has at most two solutions for all forms of g(ry) allowed by
Definition 1. We deduce that g(r) is monotone decreasing for all values of 5, > 7}
and monotone increasing for 0 < 1 < 7}, So the equation g(r) = A1 — Ag can
have exactly one solution that will occur at the point where the strictly monotone
increasing function y(rp) = A1 — A meets the function y(rn) = g(r4), for rp > 77
or 4 € [0,7]"), the two intervals where g is strictly monotone. Whether or not the
solution identified from here is realistic in the sense of the scaling done in this paper
will be determined by the parameters of the system. Notice that as 9y increases
from 0, A; also increases and so the two curves defined by g(ry) and Ay, — Ag
must meet at some point in the right-half plane where r;, > 0, and there exists
parameter values for which the curves meet for r, € [0,1]. So not all solutions of
the equation g(rn) = Airp — Ag are admissible solutions. We have the following
definition.

Definition 3. A solution r; € R of the equation g(ry,) =0 or g(r},) = Airy, — Ao
is said to be realistic, that is acceptable within the delimitations set by the scaling
in this paper, if it is non-negative and bounded and 0 <} < 1.

In Fig. 3(a), when % < 1, the intersection point of g(ry) and Airy — Ao,
occurs at negative values of the growth functions and the value of r, at which
the intersection occurs is greater than 1. No parasitized steady state exists for this
case; only the parasite-free (or merozoite-free) steady state, in addition to the trivial
steady state for the more nonlinear birth rate functions. In Fig. 3(b), with %, =1,
only the parasite-free steady state in addition to the trivial steady state for the
nonlinear functions exist. As %, increases further from unity, we now have two
steady states for the linear recruitment function, the parasite-free and a parasitized
steady state, and three for the nonlinear g(r) functions, the two mentioned and
the trivial steady state. Additionally, 7, — 0 as %y — oo as illustrated in figures
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a(ra), Arp=Ag a(ra), A1ry=Ag

opoepopoo
bwhaDaw

(¢) Ro=15 (d) Ro =35

Fig. 3. Figure showing the existence of steady states as %y increases through unity in relation
to all forms of recruitment functions. The solid red increasing graph represents the curve for
Airp — Ap, meanwhile the remaining curves represent g(rp) for the four types of recruitment
functions studied. The solid black decreasing curve represents the linear recruitment function;
the black dashed curve the logistic; the blue dot-dashed curve the Ricker and the solid dark red
curve the Maynard—Smith—Slatkin recruitment function as described in Sec. 2.2 and shown in
non-dimensional forms in Eq. (2.20). In (a), %; < 1 and the red increasing curve intersect g(rp)
for values of rp, > 1 where the growth functions are negative, and there is no parasitized steady
state. In (b), %o = 1 and the intersection is at rj = 1, giving the parasite-free steady state and
no parasitized steady state. For %p > 1, the intersection is for ry values between 0 and 1; graphs
(¢) and (d). As %y further increases from unity, the intersection point shifts progressing toward
smaller values of ry; (c) and (d). In general, r; — 0 as %y — co as explained in the text.

indicates that the size of the parasitized steady states is decreasing for increasing
2. This makes sense as large %, values are associated with heavy parasitemia.
The mathematical details associated with existence of steady states are explained
in the text below.

Restricting ourselves to solutions that satisfy Definition 3, we consider existence
of steady state solutions case by case, as each case is determined by the type of
recruitment function being considered.

Case 1: g(ry) = 1 — 7, this is the case of linear recruitment linear death model.
We have the following:

(a) g(r;,) = 0 = r;, = 1 is the unique steady state solution. When this steady
state solution for 7}, is substituted into (4.2)—(4.4), it leads to the steady state
solution Er-—1 = (1,0,0,0,0). This is the disease-free, or merozoite-free steady
state solution which we denote by ;.

(b) In the second instance, we have g(r},) = Air;, — Ap, and so to get the steady
solution we must solve the equation 1 — 1, = Ayr}, — Ap, giving the solution

T = H’%E—. Since 0 < Ap < Ay whenever %, > 1, r}, € (0,1]. r}, so obtained
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is the only realistic parasitized steady state solution. To see this, we use the
expressions for A; and Ay defined by (4.6) and observe that the expression
Aqrp — Ag may be rearranged in the form

Ayrn — A — ((1 +q2)(a2q1 + a3 + q1)(%o — 1) + Ao) rh — Ao,
apazBq
_ ((1 +q2)(az2q1 + a3 + q1) (%o — 1)) rh + Ao(rh — 1).
apazBq

Thus, when %y < 1, Ayrp, — Ag < 0 whenever 1, < 1 indicating that there are
no positive values of r, € (0,1) such that 1 — r, = Ayrp — Ap for this range of
values of Zy. When %, =1, A1 = Ap and we have the solution 7}, =1 leading
back to the merozoite free steady state solution z%. If %o > 1, r; € (0,1) and
when this value of 7}, is substituted into (4.2)—(4.4), it leads to the parasitized
steady state solution. In this second case, the parametric equations for the
steady state may be explicitly written. That is, for the parameters €; € [0, 1]
and e, € [0, 00), we have

agazfq; + (a3 +q3)(g5 + 1)
azqi(aof + (g3 + 1)(%o — 1)) + (g5 + 1)%o(as + q3)’

rh(ea, ) =

aplazqf + az + qi)(%o — 1)
azqi(aof + (3 +1)(%o — 1)) + (g5 + 1)%o(az + q;)

p(€a, €) =

ao(gs + 1)(a2q; + a3 + q;)(%o — 1)

'_i"."'!,,t e* *: 1
(o) = G i (a0a2Bas +as(@ 1 D) + (@ + D))

ﬂ’el

apasqso(azq) + as +qi) (%o — 1)
(as + ¢&)(az2q{ (a0 + (g3 +1)(%o — 1)) + (g3 + 1)%o(as + qf))’

9e(€ar€) =
0040593959 (a2qi + a3 +q1)(Ho — 1)

(as +¢¢)(as + a5)(azdi (aof + (g5 + 1)(%0 — 1))
+ (g2 +1)%o(as +41))

where g; = ¢i(e}, e}) are the immune functions defined by (2.22).

a?

agi (eq.€i) =

Case 2: g(rp) = (1 — ). This is the case of the logistic recruitment growth
model.

(a) g(r,) = 0 = r;(1 —rp) = 0. We now have two solutions: r; = O or rj, = 1.
The steady state solution r;, = 0 leads to the trivial steady state solution
E.r; —o = (0,0,0,0,0) while the steady state solution 7} = 1 again produces the
merozoite-free steady state solution Er;:l =(1,0,0,0,0).

(b) g(r}) = Avry, — Ao = 1, (1 —71}) = Arrj, — Ao, which upon solving the quadratic
equation and noting that Ay > 0 always, with A; > 0 and Ag < A; whenever
o > 1, yield the solutions r}, = %((1 —A;1)+,/(1—A1)2 +4Ap), and we retain
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the positive solution for 77, whose existence in the interval (0,1) is illustrated
by Fig. 3. It is however easy to verify that since Ay < A; whenever %, > 1,
0 <ry=2((1-A1)++(1—A1)?+44;) < 1. When this solution for r},
is substituted into (4.2)—(4.4), it yields the corresponding parasitized state for
the logistic recruitment function, in parametric form where the parameter here
are the variables e; € [0,1] and e, € [0, 00) as earlier explained, and the exact
steady state is given by

re = %((1 —A) + /A=A T i4y)
24,
T 1+ /A2t dA,
a2q1 (%o — 1)1}, + (a3 + q4)(%ory, — 1)

p(Th) = 2B
(4.7)
() — (82 D(a201(o — L + (a3 + 90)(or, ~ 1)
" 01612;3'?1?':1
_ (+a)r(r7)
arqiry,
H KN 0'{14@‘3 * (% o o as54qe aaqqs * 0k
9. (r3) = (a %) p( n)s 9 (mh) @ + 77 (a4+q5)rp( n)

and the steady states are completely computed for this birth rate function.

Case 3: g(r,) = rpe™®™ — .. This is the case for the Ricker recruitment model.

(a) g(r}) = 0: That is r} ™™ — ur¥ = 0. This leads to the solution 7} = 0 or

(b)

T, = 1. As before, the solution r} = 0 leads to the trivial steady state solution
Ey;:—=0 = (0,0,0,0,0) and the steady state r;, = 1 leads to the merozoite-free
steady state z; = (1,0,0,0,0).

When g(r},) = A1}, — Ao, we have to find a solution for the nonlinear equation
'r_,:el“('”)'"1"‘l — pry, = Aqry, — Ap. At this point, we immediately hit a snag seeing
that the solution procedure is no longer straight forward. However, we note that
when a realistic solution exists, it occurs at the point where the straight line
defined by the equation y(r}) = Ay} — Ag and the curve y(r}) = rfe™Hm —
pry, meet, as illustrated in Fig. 3. Such a solution r}, < 1 exists only when % >
1. To see this analytically, define S(r5) = rie™W™ — uri — Ayl + Ag. Then
clearly S : [0,00) — R is a continuous function of r} with S’(r};) < 0 whenever
ri > 0 and S’(0) =1 — p— Ay < 0 whenever % > 1. Note that S(%‘ll) >0
and S(1) < 0. Thus, we can use the intermediate value theorem to say with
certainty that there exist r}, with %‘11 < 1} < 1 such that g(rp+) = Ajz* — Aop.
The solution 7}, so bracketed is uniquely determined.
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Case 4: g(rp) = n(1+ (% - 1)?‘2)_1 — prp. This is the Maynard—Smith—Slatkin
growth rate model reducible to the Beverton—Holt when n = 1. Two cases just as

above are treatable:

(a) g(r}) = 0: That is 7, (1 + (& — 1)7‘2’)_1 — prp, = 0. This leads to the solution
rh, = 0 or r; = 1. As before, the solution r; = 0 leads to the trivial steady
state solution Erx—o = (0,0,0,0,0). Second, the steady state r;, = 1 leads to
the merozoite free steady state solution xz; = (1,0,0,0,0).

(b) When g(ry) = A, — Ap, we have to obtain r, through the nonlinear equation
i (1+ (& = 1)1‘_;"‘)_1 —pry, = Airf, — Ap. Again, we hit a snag with a solution
procedure that is no longer straight forward. However we notice that when a
solution exists, it occurs at the point where the straight line defined by the
equation y(rj) = Airj — Ao and the nonlinear curve y(r}) = rj(1 + (% —
l)r};"‘)_l — pry, meet. Such a solution 0 < 7} < 1 exists only when whenever
Py > 1 as illustrated in Fig. 3. To see this analytically, define the nonlinear
function S(ry) by S(ry) = 'rh(l + (% — 1)7‘2)_1 — prp — Agrp + Ap. Then
clearly S : [0,00) — R is a continuous function of r, with S'(rp) = —A4; +
1—(n—1)(1-1)rf

range of values of r} in the feasible region, namely 0 < r} < 1, S’(r}) < 0, so

— pt. Observe that when %y > 1, n > 1 and considering the

that S : R* — R is monotone decreasing, indicating that when a solution r};

for S(r},) = 0 exist, it is uniquely determined. From the sizes of the parameter

groupings and the definition of S, we find that S(ﬁ—i’) > 0 and S(1) < 0. Thus,

we can use the intermediate value theorem to say with certainty that there
Ag

exist 7y, with T < T, < 1 such that g(rp*) = Aiz* — Ag. The solution 7}, so

bracketed is uniquely determined whenever %, > 1.

Clearly %, as defined by (3.1) uniquely determines the existence and size of
the parasitized state defined by the equation g(r},) = A7}, — Ao in that a solution
5 € (0,1) exists only when %y > 1. Closer examination of the expression for %
and noting that 0 < ¢1,q3 <1V eq > 0, we find that

aijaz(l — o)
(1+p1ez)(1 +g3)(az + (1 + poeg)(as + )
<ai(l—o) <a;. (4.8)

Ko(eq: €7) =

Thus, we can regard an increase in a; as an increase in the upper bound of the par-
asitemia reproduction number %;. From the forgoing we have proved the following
result.

Theorem 1 (On the existence of the steady state solutions). Lete; € [0,1]
and eg € RT be parametric coordinates. Let functions g; : [0,1] x Rt — Rt be as
defined in (2.22). Then system (2.23)—2.27) has at least one realistic steady state
solution for every suitable form of the recruitment function g(ry). In particular,
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the parasite-free steady state (1,0,0,0,0) always exists for all forms of the recruit-
ment function g considered and a realistic parasitized steady state solution also exist
whenever a uniquely determined threshold parameter %y > 1. In this case, the value
of the parasitized steady state can be uniquely determined in terms of the immunity
variables as parametric coordinates.

4.2, Some properties of the equilibrium solutions

The size of the parasitized state predicted by Theorem 1 is completely determined
by the parameters of the system in the sense that as %, increases from 0 the only
non-trivial steady state solution is the merozoite free steady state. However, as %
increases further through the value unity, the destruction of the healthy red blood
cells through parasitization begins and the size of the steady state solution for the
red blood cells begin to decrease as the size of the steady state for the merozoite
population starts increasing from zero. However, as more and more red blood cells
get parasitized, there will come a time when there is a depleted red blood cell
density, and so, then, we expect the merozoite population steady state to start
decreasing for further increases in %y. We state the following result.

Lemma 1. Let g : [0,00) — R be a recruitment function for system (2.13)-
(2.17). Let %y > 0 be defined by (3.1) with respect to the scaled immunity-based
state variables e, and e;. Let r} € (0,1) be a realistic steady state solution for
system (2.13)—(2.17), that satisfies the equation g(r}) = Ayr;, — Ao, where Ay and
Ay are defined by (4.6). Then limg, .o 7, (%0) = 0 whenever A; > ¢'(rp).

Proof. By construction of g, g(1) = 0 and ¢'(rx) < 0 for 7 < 7, < 1. Also from
the definition of A; and Ay we have g(r;) = Ajrf, — Ag with A; > 0 whenever

Zo > 1. Therefore implicit differentiation yields
dry, T dAq
=— <0 whenver A; > ¢/'(r}).
A% A1 —g(r}) d%o 1>9(rn)

Thus 7, is ever decreasing as a function of %y and as such, in the limit as A;

becomes very large for large values of %y, v, — 0, as required. O

Lemma 2. Let g: [0,00) — R be a recruitment function for system (2.13)—(2.17).
Let %y > 0 be defined by (3.1) with respect to the scaled immunity-based state
variables e, and e;. Let 75, € (0,1) be a realistic steady state solution for system
(2.13)+(2.17), that satisfies the equation g(r;) = Airj, — Ao, where Ay and Ap
are defined by (4.6). Then the corresponding steady state values for m*(r}) and
rp(ry,) as defined by (4.1) and (4.2) are bounded and their bounds are completely
determined by the form the function g : [0,00) — R.

Proof. For a given function g : [0,00) — R satisfying Definition 1, the steady
state density T (r3) is given by (4.1). Now, from the definition of g, we have that
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either g(0) = 1 and g(1) = 0 in the case of the linear recruitment function, or
g(0) = g(1) = 0 in the case of the other recruitment functions. In the case of
the linear recruitment function, 0 < g(rp) < 1 for all r, € [0,1]. For the other
recruitment functions, from the continuity, differentiability and continuity of g on
[0,1], by Rolle’s theorem, there exists r}* € (0, 1) such that ¢’(r}') = 0 and g(rs) <
g(ri), ¥rn € [0,1]. So if gm = max,, cjo,1) 9(rn), then we have

1

* * . 1 4'9
'rp(?‘h) 1_|_ —g(r h) = 1+ —gm < apgm Slnce s <1, (4.9)
where for rJl' € [0, 1] satisfying the equation ¢'(r}') =0,
1 if g(rp) =1 — 4,
=1 . . (4.10)
g(rit)  for g(ry) otherwise.

The steady state value m*(r};) is given by (4.2), which we write in the form

m*(r}) = *mlg(“"h)* : (4.11)
mag(r}) + mary, + my
where

my = ap(g2 + 1)%o(azq1 + a3 + q1), ma2 = Bagaiazq?,

mg = alaztﬁ(l +q2), m4=aiqi(az + qq)(1+g2).

For the linear recruitment model, g(r,) = 1—7 is decreasing and we have m*(r},) <
m*(0). For the other types of recruitment functions satisfying Definition 1, we have
that m*(0) = m*(1) = 0 and so from positivity, differentiability and continuity of
m, there exists 7} € (0, 1) such that m/(rj) = 0. That is m*(ry) attains a maximum
value for 3, in the interval [0, 1]. We easily establish that at such a maximum point
any admissible function g : [0,00) — R should satisfy the first-order ordinary
differential equation ¢'(rp) — mg(rh) = 0. Solving this differential equation
for g(rn), leads to the solution g(rp) = k(marp + my4), for some arbitrary constant
k = 0. This then leads to the maximum possible value of m* given by

= if g(rn) =1 —ra,
or % mg +m
m*(ry) < K (4.12)
p—— for g(rp) otherwise,

where the constant k, though arbitrary, must be chosen as the largest positive x such
that the equation g(ry,) = x(mary + my) has real a positive solution r € [0, 1]. For
example, for the logistic growth model where g(rp) = m1(1—73), we need to find the
maximum point by solving the equation (1 —r)—k(msrp+my4) = 0forrp, € (0,1)
and largest k > 0. For this, it is sufficient to set kK = min,{(1 — km3)? — dmyk =

0} _ m3+‘2m4—‘2\; mA(m3+m4

can be found. However it is easy to actually see from the definition of m* from
(4.11) that m* < I = %, for all forms of recruitment functions. O

. Similar values for k for the other growth functions
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Remark 2. The inequality (4.9) shows that the ultimate size of the density of
parasitized red blood cells at equilibrium is determined by the quantity of the
red blood cell population in the first place (that is by maximum possible rate
of recruitment of healthy red blood cells from the bone marrow), and not strongly
dependent on the action of immunity. However, the presence of innate and adaptive
immunity can reduce this maximum possible size by a quantifiable scale factor of
quz. This result points to the assertion that knowing the efficiency of the rate of
recruitment of healthy red blood cells into the system is an important parameter in
understanding the health status of the individual in case of management of anaemia.

Having obtained bounds for r}, and m*, the bounds for g; and g become evident
since from (4.3) and (4.4) these are defined simply in terms of g and g < gp,. Now
the bounds for the steady state variables 5, m*, g7 and g/ are defined in terms of
immunity parameters e; and e,. From the scaling done in this paper, we have that
0 < e; < 1, where ¢; = 1 is the optimum operational level for the innate immune
response and e; = 0 is the minimum or immune suppressed state as studied in
Refs. 22 and 29. In this paper, we have allowed for the possibility of adaptive
immunity to start acting once there is an infection in the system, and it is also
stimulated by the action of the innate immune response. As adaptive immunity
increases with sustained parasitemia it’s ultimate equilibrium size is also bounded
as we now demonstrate in the following result.

Lemma 3. Assume that at equilibrium the immune effector cells as parameter-
ized by e, and by e; satisfy (2.18) and (2.19) when the time derivatives are set to
zero. Then at equilibrium, the immune variables € and e} are also bounded and
their bounds are completely determined for every admissible form of the recruitment

function g.

Proof. By construction, 0 < ¢; < 1 so e is always bounded. We therefore only
need to show that within the limitations of the model derived in this paper, €}, is
also bounded. From (2.19), at equilibrium we have
T;(Th) + bgm*(rp)

ag + c3(ry(ra) + cam*(rn))

en(rn) = = E(rp), (4.13)
where we are only interested in those values of 1, € [0, 1] wherein a feasible steady
state solution lies. From the values of r;(r4) and m™(rp) given in (4.1) and (4.2)
and from the construction of g, if g(rg) is the linear recruitment function, then
0 < ei(rn) < E(0). If g(ry) is any of the nonlinear recruitment functions, then we
have, E(0) = E(1) = 0, and from continuity and differentiability of g, there exist
¢ € (0,1) such that E’(r;*) = 0 and at which point we have 0 < €} (rs) < E(r;*).
That is E(r) attains a global maximum at the point where 4, = 7* € (0,1). Thus,
the actual bound for e can be computed by solving the inequality 0 < e} < E(0)
for the linear recruitment function or the inequality 0 < e} < E(r}*) for the other
recruitment functions, to obtain the exact estimates for the bounds of the adaptive
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immune variable at equilibrium, namely, e;. However, a larger estimate for the
bound can be constructed by inserting the bounds for r, and m™ given by (4.9)
and (4.12) in (4.13) to have

rp(Tn) + b3m™(rs) Tp(Tn) + bam™(rs) - aogm + o=

E =
(ra) ag + c3(rp(rn) + cam*(rn)) — ag ag

On substituting the values of m; and ms from (4.12), and rearranging, we find that
an upper bound for €}, e, say, will satisfy the inequality

1—o 14+ poes”®

aogm + bg—=F ——= —e v/ e2 + dege

B 1+pied S0<el << 1+ 1+ 02’ (4.14)
ag 2es

eg <
where g, is given by (4.10) and

ez = agfp1, e1 =agf — (aofBpigm + bapo(l — o)), eo="0b3(1— o)+ apfgm.
This establishes the fact that e is bounded. O

Remark 3. The inequality (4.14) indicates that the bound for the adaptive
immune response depends on g, the maximum size of the growth function, and
that the bound becomes adjusted upwards whenever o < 1. Thus the phenomenon
of commitment of infected red blood cells, in the life cycle of the malaria bug,
toward the gametocytogenesis path has a substantial effect on the strength of an
adaptive immune response in a malaria positive patient.

4.3. Stability of equilibrium solutions

In this section, we discuss the stability of the computed equilibria or steady states
starting with their linear stability properties. The linear stability of steady state
solutions can be determined by calculating the eigenvalues of the Jacobian matrix at
the respective steady states. We continue to use the parametric form of the system
where the parametric coordinates are the innate and adaptive immune response

variables.
Let @ = (rn,7p, M, ge, g1) be a vector of the parameterized state variables. Let
J(x) be the Jacobian matrix of the system at the point &. Then

apg’(rp) — maiqy 0 —rpaiq 0 0
maiqi —gq2—1 rpa1g1 0
- B — —as — By — 0
J(@) = mazqi 1 — mBazq1 as 2 — g4 (4.15)
By
0 ay (Qs - —) 0 —a4 — gy 0
ag
0 0 0 asqge —as — gr.
where

_ (g2 + 1)(as + azq1 + q4)%0
ar1q1 '

By

B; = (74 + 1pf)azq:.
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Now, let A be an eigenvalue of J. Then A is the solution of the equation P5(A, z*) =0
where x* is a steady state solution of the system and

Ps(A\ ") =M — J(z)| = (A+as + q7) (A + as + gs) Ps(A\, %), (4.16)
Here, I is the identity matrix of order five and
Ps(\, x*) = A% 4+ P(xz*)\? + Q(z*)\ + R(z*), (4.17)
where
P(z*) = —aod'(r};) + g1 (axm™ + az(ry, + Bry)) + a3 + g2 + qa + 1,
Q(z") = as(—aog'(r},) + a1m™q1 — (g2 + 1)(Zory, — 1))
—aog'(r})(a2q1(r}, + Bry) + g2 +qa + 1)
+aim*qi(az2Bqi(rh +75) + g2 + g1+ 1)
+ (g2 + 1)(a2q1 (—Zor}, + 14, + Br},) + qa(1 — Zor})),
R(z") =aim™qi((g2 + 1)(6239‘11"; + a3 + q1) — apazBqirg'(1},))
+ao(g2 +1)g'(r}) (%or}, (a2q1 + a3 + q4)

—azqi(ry, + Bry) — a3 — qa).

We note that ¢'(ry) appears in expressions for P, @ and R but not g(r;). We now
consider the local stability of the steady state #* and note that such a steady state
will be stable to small perturbations if, by the Routh Hurwitz stability criteria,
P>0,Q>0,R>0and PQ— R > 0. We consider each of the solution types in
turn.

Theorem 2 (On the local instability of the trivial equilibrium solution).
Let g : [0,00) — R be the scaled rate of recruitment of the population of healthy red
blood cell as found in system (2.23)—(2.27). If rj, = 0 ezists as an equilibrium solu-
tion arising from the solution of the equation g(r},) = 0, then the trivial equilibrium
solution (13,15, m",g;,97) = (0,0,0,0,0) also erists as an unstable equilibrium
solution of system (2.23)—(2.27) for all parameter regimes.

Proof. The existence of a solution r; = 0, as a steady state solution of the system
(2.23)—(2.27) in the absence of infection is possible for the cases where g(rp) is
constructed from the logistic, Ricker or Maynard—Smith—Slatikin recruitment func-
tions as demonstrated above, or any recruitment function g with the property that
g(0) = 0. We then have the following: when g(r}) is constructed from the logistic
function, ¢’(0) = 1 > 0 and when g(r) is from either the Ricker or Maynard—Smith—
Slatkin birth recruitment functions, ¢’(0) = 1—p > 0 (since g < 1). In each of these
cases, P5(A, 0) factorizes completely into the factors (A—ap)(A+14¢2)(A+as+q4)
for the logistic case and into factors (A — ap(1 — p))(A + 1+ g2)(A + a3 + q4) for
the other two cases. In each instance, there is the presence of a growing solution
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with positive exponent being a multiplicative factor of ag. That is the trivial steady
state is always unstable to small perturbations whenever it exists. O

Theorem 3 (On the local stability of the merozoite-free equilibrium
solution). Let g : [0,00) — R be the scaled rate of recruitment of the popula-
tion of healthy red blood cell as found in system (2.23)—(2.27). The solution v}, =1
always erist as an equilibrium solution arising from the solution of the equation
g(ry) =0, for all forms of the recruitment function g, and therefore, the merozoite-
free (parasite-free) equilibrium solution x} = (rhsmpm*, 92,97) = (1,0,0,0,0) also
always ezists as an equilibrium solution of system (2.23)—(2.27) and its stability
properties are uniquely determined by the size of the threshold parameter %y given
by (3.1) in the sense that when %y > 1, the steady state T} is locally unstable to
small perturbations and stable otherwise.

Proof. From the construction of g, the equation g(r;) = 0 always has the non-
trivial solution r; = 1, as a steady state solution in the absence of infection, and
will have the same value r;, = 1 for all forms of g(r) considered, so that @} =
(1,0,0,0,0) always exists as a steady state of the system as explained above. Given
the subtle differences in each case, we treat each at a time.

(i) The cases g(rp) = 1 — 7, and g(rn) = ra(1 — ra): For these two cases, we
both have ¢g’(1) = —1. In both case again the polynomial P5(A,(1,0,0,0,0))
factorizes to Py = (A+ag)(A\%+s1 A+ s0) where 51 = axq +as+q2+q4+1, and
so = —(g2 +1)(%o — 1)(a2¢q1 + as + q4). Here, %, is given by (3.1). Clearly, s1,
sp > 0 and s? — 4s9 > 0 are all positive when %y < 1 so that all zeroes of the
polynomial P; will have negative real parts whenever %y < 1. For %, = 1,A =0
is one of the eigenvalues accompanied by two negative eigenvalues. On the other
hand, as % increases through the value %, = 1, s; > 0 and sy < 0 for %, > 1
signifying the presence of growing perturbations with positive exponent. That
is the steady state solution (1,0,0,0,0) loses stability as %, increases through
unity, and is always stable when %y < 1 for the logistic and linear cases.

(ii) The cases g(ry) = rpe™®™ — pry and g(ry) = (1 + (ﬁ —1)r1)~t — prp.
In these cases again the polynomial P;(A,(1,0,0,0,0)) factorizes to P3 = (A +
5ap)(A% + 51\ + sp) where for the Ricker growth model, § = —puIn(u), for the
Maynard—Smith—Slatkin growth model § = —npu(p — 1) and s1, sp retain the
same forms as in the linear and logistic cases. Again, recalling that 0 < g <1
in both cases, § > 0 and the conclusion is thus the same: there are growing
perturbations with positive exponent as 2, increases from 1 and the steady
state solution (1,0,0,0,0) loses stability as % increases through unity for the
these types of birth function as well. O

In fact, it is easy to deduce that for any growth rate function for which g(1) = 0
and ¢'(1) < 0 as required by Definition 1, the dynamics will cause the steady state
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:I:} =(1,0,0,0,0) to lose stability as %, increases through unity and to retain local
stability for %y < 1. An important question to answer, which we shall examine
later, is whether this merozoite-free steady state which always exists for all forms
of realistic growth rate functions and is locally and asymptotically stable for values
of %y < 1 can have a global stability character for these range of values of %.
Next, we examine the local stability properties for the parasitized steady state.

Theorem 4 (On the local stability of the parasitized state). Letg:[0,0c) —
R be a real valued function modeling the dynamics of the red blood cell population
in the absence of infection as derived above. Let %y > 1 be the threshold parame-
ter defined by (3.1). Let 1}, be the unique nonzero parasitized steady state solution
satisfying, for v}, € (0,1), the equation g(r},) = Air; — Ao where Ay and Ap are
giwen by (4.5) with Ag < A1 ¥V %y = 1. Then, for each of the type of growth
models satisfying Definition 1 as considered here, a realistic steady state solution
Ty € (0, 1) satisfying the equation g(ry,) = A1}, — Ao can exists only éf%‘ll <7, <1
Moreover, the steady state solution so bracketed, when it erists, its value is uniquely
determined and it 1s locally and asymptotically stable to small perturbations for a
range of values of %y > 1.

Proof. The existence of the nonzero steady state solution has been established
and summarized in the analysis leading up to the statement of Theorem 1. That
the solution exist and lies between the bounds indicated is deduced by noting that
the straight line A;r; — Ap intercepts the vertical axis at —Ap where 77, = 0 and
intercepts the r} axis at 1}, = ﬁ—'l’ where Ajr}, — Ag = 0. ﬁ—'l’ < 1 whenever %; > 1.
g(ry) is a unimodal or one hump function that attains a maximum at the point
rj, =1y, where ¢/'(r') = 0 with ¢'(r},) < 0 whenever r}, > 7, ¢’(r},) > 0 whenever
Ty <7y and g(ry,) < 0 for all r; > 1. Thus g(r}) is decreasing from positive values
for i < rp < 1 and Ayr} — Ap is increasing from zero for ﬁ—i’ <rp <t < L
Since both functions are continuous, there exist r; with r]' < %‘1’- < 1, < 1such
that g(r}) = Aqr;, — Ap as illustrated in Fig. 3(c). On the other hand, if ¢'(rp) > 0
and %y > 1, then 7, < 1" < 1and 0 < %% < 1y < 17'; a smaller steady state
value as illustrated in Fig. 3(d). When %, < 1, the two curves do not intersect for
r}, € [0,1] and a realistic nonzero solution does not exist as illustrated in Fig. 3(a).
The solution 7}, so bracketed is unique because of monotonicity. The local stability
of the parasitized steady state solution is then determined by the eigenvalues of the
Jacobian matrix at the steady state. We can establish that, for a range of values of
%y > 1, when the steady state solution is such that r]' < rj < 1, then ¢'(r}) < 0
and from the coefficients of the characteristic polynomial (4.17), We deduce that
P>0,Q>0and R > 0 and PQ — R > 0 whenever %, > 1, and so there are
no zeros of the characteristic polynomial with positive real parts which will signify
growing perturbations in the linear regime. However, when the steady state solution
is such that 0 < r} < rJ* < 1, then for this value of 7}, ¢’(r};) > 0 and the sign
of PQ) — R can change from positive to negative signifying the presence of growing
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solutions for those values of %y > 1 for which PQ — R = 0. Hence the parasitized
steady state, when it exists, is locally and asymptotically stable only for a range of
values of %, > 1. O

The exact character of the stability results so postulated by Theorem 4 will
be determined by the nature of the recruitment function used in the analysis. We
demonstrate some of these below through more specific results:

Corollary 1. Let the conditions of Theorem 4 continue to apply. Let %y > 1
and the function g : [0,00) — R be defined by g(rp) = 1 — r,. Let x* be the
steady state of system (2.13)~(2.17) for which r}, obtained by solving the equation
g(ry) = Airy, — Ao, %o > 1, so that the remaining steady state solutions are given
by (4.1)<(4.4). Then, for all values of A, the eigenvalues of the linearized system
defined by the polynomial (4.17) evaluated at x* have negative real parts. That is,
when g(rp) =1 — 1 and %y > 1, then the corresponding steady state is locally and
asymptotically stable whenever %y > 1.

Proof. We show that when g(rp) = 1 — 3, then, at = o*, P > 0, Q > 0,
R > 0 and PQ — R > 0 whenever %; > 1 and the deduce from the Routh—Hurwitz
stability criteria that the computed steady is locally and asymptotically stable. To
do this, we need explicit expressions for P, ) and R at these steady states. Now,
when 1 — 7} = Air} — Ap, then 7} = ﬁ%‘ll, where Ay and A; are given in (4.6).
Substituting this value for 77 in (4.1)—(4.4) and then in P,Q and R of (4.17), we
have

Py(%o—1)2+Pi(% — 1)+ Py

Pa®) = Ps(% 1)+ P, ’

o _ Q(Zo—1)> +Q:1(%—1) + Qo
Q@) = Q3(%o — 1) +Qq ' (4.18)
R(z*) = %o(%o — 1), (4.19)

where
Py = ag(g2 + 1)*(a2q1 + a3+ q1)®,  P1 = aoaafar + (a3 + q4)(g2 + 1),
Py = p1(a2q1 + as + q4)(aoazfq + (g2 +1)(2a0 + a3 + g2 + g1 + 1)),
Py = (azq1 + a0 + a3 + g2 + a1 + 1)1,
Ps = (g2 +1)(az2q1 + az + qa)p1, P1r=p7,
Q2 = ao(g2 + 1)(a2q1 + as + g1)*(a0azBq + (g2 + 1)(as + g2 + g4 + 1)),
Q1 = aopi(a2q1 + a3 + qa)(a2Bq1(ao + g2 + 1) + 2(g2 + 1) (a3 + g2 + g2 + 1)),
Qo = ao(a2q1 + as + g2 + g1 + 1)p3,
Qs =P, Qi=PFPy, %o=ao(qz+1)(azq1 +as+ q).
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We immediately observe that both P(z*) > 0 and Q(xz*) > 0 are larger than
R(z*) = 0 independently whenever %y > 1. So P(x*)Q(x*)—R(x*) > 0. Therefore,
the Routh—Hurwitz stability criteria assure us that the computed steady state is
locally and asymptotically stable to small perturbations whenever %, > 1. O

The result of Corollary 1 assures us that when the recruitment function is linear
as prescribed, the parasitized steady state is locally asymptotically stable, for all
values of Zy > 1. However, the next result shows that when the recruitment function
is sufficiently nonlinear, then the parasitized state is stable for a range of values of
o > 1 but also can be driven to instability via a Hopf bifurcation for sufficiently
large values of %,.

Corollary 2. Let the conditions of Theorem 4 continue to apply. Let %y > 1 and
the function g : [0,00) — R be defined by g(rp) = rn(1 — ). Let «* be the positive
steady state of system (2.13)~(2.17) for which r}, is obtained by solving the equation
g(r}) = Arr},— Ao, %o > 1, so that the remaining steady state solutions are given by
(4.1)~(4.4). Then, all values of A, the eigenvalues of the linearized system defined by
the polynomial (4.17) evaluated at * have negative real parts for 1 < %o < Z§, and
at Ho = ZL the steady state loses stability to periodic solutions with fired amplitude
and period. That is, when g(ry) = ra(1 — ) and %o > 1, then the corresponding
steady state is locally and asymptotically stable only for a range of values of %y > 1.

Proof. The stability of the steady state is determined by the sign of the eigenvalues
given by the solutions of the polynomial (4.17). We show that there exist a value of
Z§ > 1 such that PQ = R at which point A, a solution on (4.17) is purely imaginary,
and that as % increases further from Z%§ > 1, A, a root of (4.17) has a positive real
part. For this we consider the function P(%,)Q(%0) — R(%,) at the steady state
x*, where 1}, (%o) is given by (4.7), and note that at %o = 1, =* = (1,0,0,0,0)
and that by Lemma 1, we have that 7, — 0 as %y — oco. We thus have that, on
the one hand, as %y — 17, P(%)Q(%0) — R(%o) — aolazq: + a3 + g2 + q4 +
1)(a2q1 +ao + a3+ g2+ qa + 1) > 0 while as %y — oo, P(%)Q (%) — R(%v) —
(ap — g2 — 1)(az + g2 + g1 + 1) < 0 whenever either 1 + g2 < ap < a3 + g4 or
az+qq4 < ag < 14 g2. Only one of these inequalities is possible whenever the target
limit is negative. Thus, from the continuity of P(%)Q (%) — R(%) as a function of
Xy € [1, ), there exist Z§ € (1, 0o) such that P(%5)Q(%5) — R(%§) = 0. At this
point, the polynomial (4.17) then satisfies the equation A3 + PA2 + QA+ PQ =0
so M%) = P or MN(Z%E) = +i\/Q. When %, further increases from %5, one of
the solutions for A now has a positive real part and we have growing oscillatory
solutions in the linear regime. To determine the initial amplitude and phase of the

oscillations as %y increases further through Z§, we introduce the parameter £ = Pi

so that R = £PQ and for %o < %5, £ < 1, at %o = %5, £ = 1 and for %o > %,
£ > 1, and view an increase in %, as an increase in £ so that at £ = £, = 1, we have
Ho = XE. Set £ = £, + €?v, where v = £1. We have here a perturbation near the
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point £ = £, where € < 1, but otherwise arbitrary. Then by Taylor’s expansion we

have A(& +€2v) = M&.) + N (€.)e?v + O(e?), so that neglecting the terms of order

% in the calculation, we have the approximation

N(E) ~ P(%;)(Q(%s) + P(%5) v/ Q(#5)1)
‘ 2(Q(#5) + P(#6)%) '

Thus after the perturbation,

A +€%v) = iy /Q(Z5)

L [ PE)QF) + PF) v Q(%s)i)
2(Q(#5) + P(#5)%)

) v +0(e*). (4.20)

Thus the initial period and amplitude of the oscillations are

. PQ 9 . 2T
Amplitude = exp (—E Vt) , Period = 5 , 4.21
2P+ Q) Qg
where £ < 1 but otherwise arbitrary. O

Observe that if v > 0 then, we have growing perturbations in the linear regime
which we expect that these growing perturbations will be bounded by nonlinearities
in the nonlinear regime leading to limit cycles with small amplitude. We emphasize
that the perturbations will be small because at this stage the steady state values
are very small. A result similar to that of Corollary 2 can be stated and proved
for any of the more nonlinear growth rate function with the desired properties as
postulated by Definition 1. Though the procedures become more intricate as the
nonlinearity in the function g is increased. We shall later illustrate some of these
results graphically via numerical simulations.

The results of Theorems 2—4 are local and do not apply to the whole nonlinear
system. We next demonstrate that with an appropriate restriction of the parameter
values of the system, we can discuss a global stability property for the system at the
level of the parasite free steady state solution. We start by noting that Theorem 3
assures us that whenever % < 1, the parasite free steady state which always exists,
is locally and asymptotically stable to small perturbations. When %, = 1, we have
a zero eigenvalue in the linear regime and then we cannot pronounce, with certainty,
on the stability property of the parasite-free steady state solution. The next results
shows that we can indeed achieve global stability of the parasite-free state provided
we maintain %y < 1. A global stability result of this nature is important as it
shows that with appropriate intervention and conditioning of the biological system,
we can achieve global results for the entire system so that the parasite-free state is
always attainable by controlling the properties of the system, such as by ensuring
that %y < 1.
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Theorem 5 (On the Global stability of the merozoite-free steady state).
Let the real valued function g : [0,00) — R be a recruitment function satisfy-
ing the required conditions. Then the merozoite-free equilibrium solution define by
Ers 20 = (13,,0,0,0,0), which always erist for all parameter values, is locally and
asymptotically stable whenever %, < 1. Moreover, the particular merozoite-free
(parasite-free) steady state solution where 1, = 1 which can be constructed for all
forms of the recruitment function is globally and asymptomatically stable whenever

Py < 1.

Proof. We start by observing that in the absence of infection, the scaled equation
for the red blood cell population satisfies the equation % = apg(ry) where g :
[0,00c) — R is a unimodal or one hump function which attains a maximum at
some point " € [0,1]. Thus g(rn) + pars also attains a maximum at some point
7 € [0, 1] whenever 0 < p < 1. Let ao(g(7)*) +p7*) = g™. Then, we can construct
the inequality d—gf +agpry < §m.‘zhus integrating this via integrating factor method
we have 1, (t) < 74(0)e%Ht + -f;(l — e %K) Thus lim;_, o (sup, 74 (¢)) < oo and
Th(t) is bounded as expected. In fact, we expect 0 < r(f) < 1 when we stay within
the limitations of the scaling done in this paper. Thus for any € > 0, we define the
closed set

9: {(Th,rp,m,ge,g;) € R5 i€ S Th S ]-aOS Tp S T;o;

0<m<m™,0<g.<g7,0<aq<g”},
where 0 < & < 1and rp°, m™, g¢°, g/ are the respective standardized upper bounds
of the associated variables obtainable from the upper bounds Rp°, M, G2°, G}°,
and the function V : ¥ — R by

V(rn,mp,m, ge, g1) = BD(Th —1—In(rp) + l'fm?ﬂ"p + bam + 5399 + 5493:

where
By = (b — 1)(az + q4) b = (a2q1 + az + q1)((ba — 1) + %)
a1qq ' a1qy ’
By = (ba — 1)(g2 + 1)(a2q1 + a3 + q4)(1 — Zo)
a1a441930 ’
by = (b2 — 1)(g2 + 1)(a2g1 + as + qa) (a4 + ¢s)(1 — %)
(1a405q143960 ’

Clearly when %y < 1 and by > 1, then b;,i = 0,1,2,3,4 are all non-negative.
Furthermore V (rn,rp,m, ge, i) > 0 for all (ra4,rp,m,g., 1) € 2\{(1,0,0,0,0)}
and V(1,0,0,0,0) = 0. Thus V is positive definite and can serve as a Lyapunov



414  Ngwa, Woldegebriel & Teboh-Ewungkem

function. Along the solution trajectories of the system, we have

v vy . (d’rh drp dm dge dg;)

dt dtdtdt dt ) dt

- 1 -
=by (1 — 'r_) (aog(rn) — arqumrn) + bi(argimry, — (1 + g2)1p)
h
+ba(azlgs(1 — o)rp — g (ra + Bryp)m] — (as + qs)m)
+bs(as[gzorpy — ge] — gs5ge) + ba(as|gege — 1] — arar)
- 1 ~ .
= by (1 - a) aog(rn) — (as + qa)m — baazq: Brpm — by(as + q7)gi

+ ((a2q1 + a3 + q4)%o — azqr)mrh.
Given that 0 < rp < 1, we deduce that 0 > —(as+q4)mry, = —(az+q4)m leading to
dv - 1 -
> < bo (1 - a) aog(rn) — baazq frpm
— 34@15 +a7)g1 — (a2q1 + a3 + qa)(1 — Zo)mry.
We then note that (1 — L) g(rn) < 0 whenever 0 < 7 < 1 since

Th

)2
(1—rn) if g(rp) =1 — 1,
Th

_(l_rh)z if g('rh) = 'l"h(l —rh),

=)= ) i g(ra) = (e — ),
1 . 1
(=) | —7——=— | ifglmm)=r|—F——— K|
1+ (i -1)m 1+ (E-1)p

It is then evident that V’(t) < 0 whenever %y < 1. In all we have the following: (i)
V'<0if % < 1, for all t and Y& € 2\ {(1,0,0,0,0)}; (ii) V(x) = 0 at © = x; and
(i) V(x) > 0,Vx € 2 with © # ;. Thus, V is a positive definite function and {x;}
is the largest invariant compact subset in {(0, 1] x R4 [V’(¢) = 0} containing only the
equilibrium x; when % < 1, then by LaSalle’s invariance principle, the parasite-
free steady state solution x; = (1,0,0,0,0) of system (2.23)—(2.27) is globally
asymptotically stable whenever %, < 1. O

5. Illustrations and Numerical Simulations

In this section, we illustrate the linear analysis presented through a numerical exam-
ple. We then run some numerical simulations to showcase the richness of the results
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studied in this paper. The baseline parameters used in the example are as explained
in Ref. 22 (also see Supplementary Section B). We do not return to the original
parameters of the system here, but rather use only the scaled parameter values to
illustrate our work. A more biological interpretation based on the original param-
eters of the model shall be presented elsewhere. We use the fact that an increase
in the scaled parameter value a; will lead to an increase in %, throughout this
section. We use the following base example.

Example 1 (An illustrative example parameter set). Consider the baseline
parameters, whose provenance and form has been explained in Ref. 29, and with
possible ranges shown in Supplemental Document B.

85 6 5
=50 =95 = — =— = —
a’2 ? a’3 b a4 100) a5 10! a"o 101
613 57
pr=1gr P2=585x10% py= o,
613 33
= 676 x 102 = = 235 x 102 ==
P4 x s P5 104° Pe x s PT 105 (51)
17 24 12 8 75 6
T — T e— T — T e— 0’ T e—
PP=700" " T000 P27 100 100’ 1000’
9
ei=15 €a=5x 1075, g1 ~0.999, ¢y~ 1.48,

g3 ~0.9998, g4~ 159, g5~ 0.625 g~ 0.9999, g~ 0.0003.

Here, the innate immune response is operating at 90% performance (contextually,
it is operating at 90% of its maximal steady state size in the absence of infection),
but the adaptive immunity is operational but very small. Extreme values for differ-
ent snapshots of the immunity-based variables were used with similar qualitative
results.

5.1. Illustration: Boundedness of the parasitized steady state
solution

Lemma 1 assures us that the size of the steady state red blood cell population
1, decreases to zero as %y increases from unity. We understand this phenomenon
by noting that as the infection and systematic parasitization and destruction of
healthy red blood cells starts, we expect that the scaled red blood cell population
density will start dropping while the density of the parasitized and free merozoite
populations will increase. However, as more and more red blood cells get destroyed,
the density of parasitized red blood cells will then start dropping as %, further
increases from unity. Using the expressions for the steady state values as well as
the parameters shown in Example 1, we numerically computed the steady states for
different values of the parameter a;. As shown in Fig. 4, the nonzero steady states
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Fig. 4. Figure showing the size of the steady states as %, increases when all other parameters
are fixed as in Example 1. Here, a1 increases from 0 to 100, which corresponds to % increasing
from 0 to 35. We see clearly that as %y increases from zero, the size of r}, the scaled red blood
cell steady state density when g(rp) = rx(1 — ry) continues to drop as predicted by Lemma 1.
However, in the initial phase of the infection process, the size of the steady state for the parasitized
red blood cells and merozoite populations initially increase with increasing %o before dropping as
less and less red blood cells are available for parasitization. Graph (c) shows that the merozoite
steady state population is always bounded above by %fll as reported in Ref. 29.

which exist only for values of %y > 1 (corresponding to a; > 7.3 for this particular
set of parameter values), are all bounded and approach zero for large values of %.

We note that the size of the parasitized steady state approaches zero asymp-
totically but is never zero. This small state is, at all times, different from the zero
state which only exists when there are no red blood cells in the system. It is caused
by severe destruction of red blood cells because of the action of the parasite. In
agreement with the results reported in Ref. 29, the merozoite density always satis-
fies the inequality m* < %‘11 and so approach small values as a; increases for fixed
ap. The parameter ag is linked with the linear rate of recruitment of healthy red
blood cells while a; is linked to the number of merozoite released by each bursting
red blood cell. It is therefore clear that when parasitization is severe, a; will also
get large when the regulated linear rate of production of healthy red blood cells
will be approximately constant.

5.2. Illustration: Occurrence of the hopf bifurcation

To numerically ascertain the stability of the steady state solution as %, increases
from unity as well as verify the results of Corollary 2, we numerically computed
the eigenvalues of the linearized system as established by the polynomial (4.16) for
different values of %y. Figure 5 shows a plot of the size of the maximum of the
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Fig. 5. Figure showing the sign of the maximum real part of the eigenvalues A computed by
solving equation (4.16) based on Example 1 parameters and for different values of %o. %o was
increased by varying a; when all other parameters of the system and the recruitment function
are fixed. For the graph on the left, g(ry) = rnp(1 — rp) and a1 increases from 0 to over 350,
which corresponds to %g increasing from 0 to 100. The maximum eigenvalue becomes positive at
aq == 170, corresponding to the value %y = 47.8. For the graph on the right, g(r) is the Maynard-
Smith—Slatkin growth function and a; increases from 0 to over 100, which corresponds to %
increasing from 0 to 30. The maximum eigenvalue becomes positive at a; =~ 12, corresponding to
the value %p = 3.38. We see clearly in each case that as %y increases further away from unity,
the maximum real part of the eigenvalues is increasing from negative values and becomes zero at
that point which corresponds to a critical value of %y = % as predicted by Corollary 2.

real parts of the eigenvalues of the linearized system. Clearly, as %, increases from
unity, the maximum real part of the eigenvalues is negative signifying stability of
the parasitized steady state. As %, further increases from unity, as predicted by
Corollary 2, a point is reached where the maximum real part of the eigenvalues
changes from positive to negative signifying the onset of exponentially growing
solutions with a growing solutions in the linear regime. We noted, as shown in
Fig. 5 that the different recruitment functions offer different quantitative results,
though the qualitative results are the same. For example, for the logistic growth
model, we require larger values of %, for the system to lose stability, to oscillatory
solutions than for the Maynard—Smith—Slatkin growth model, while as established
here and earlier reported in Ref. 29, the linear growth model does not admit a
parameter regime whereby the parasitized state loses stability for any value of %.

5.3. Illustration: The different solution types

For % values in ranges for which the maximum real part of the eigenvalues of the
linearized system is negative, we expect the system to converge to the parasitized
steady state long term, as shown in Figs. 6 and 7. As %, further increases there is
a point in the parameter space, as postulated by Corollary 2, where the maximum
real part changes from negative to positive signifying the emergence of growing
oscillatory solutions, and we expect that the growing oscillations will be bounded by
nonlinearity and we can observe limit cycle or fixed amplitude oscillating solutions
as shown in Figs. 9 and 8. The limit cycle solution for these plots are shown in
Figs. 10 and 11, illustrating phase plane plots for r versus r, and r, versus m.
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Fig. 6. Long-term solution dynamics for values of % in the range where we have stable endemic

non-periodic solutions with fixed amplitude. %y = 1.95. The rest of the parameters are as in
Example 1 and g(ry) is the logistic growth function.
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Fig. 7. Long-term solution dynamics for values of % in the range where we have stable endemic
non-periodic solutions with fixed amplitude. %y = 1.95. The rest of the parameters are as given
in Example 1 and g(ry) is the Maynard—Smith—Slatkin recruitment function with pu = %, n=4.

The behavior that we are seeing is consistent with the assumptions of the model
derived. We believe that the oscillations we are seeing for large values of %; to be
indicative of the system compensating through massive cell death and reparasiti-
zation. The nature of the oscillations depend on the type of recruitment function
used and is indicative of richness of the model studied in this paper. In the absence
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Long-term solution dynamics for %y = 58.23 using Example 1 parameters, with g(ry ) the

logistic recruitment function. Only ranges where there are periodic solutions with fixed amplitude
are shown. All plots start at (0,0).
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= 3.95 using Example 1 parameters, with g(ry)

the Maynard—Smith—Slatkin recruitment function where p = Tsﬁ, n = 4. Only ranges where there
are periodic solutions with fixed amplitude are shown. For all four plots, ¢ starts at 300, while
rh,Tp, m and g; start at 0.085, 0, 0.004 and 0.00008, respectively.
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of real data to describe the true nature of the recruitment functions as modeled via
a single function, we can only say that the restriction of previous studies to using
the linear or constant recruitment term has hitherto hidden the richness of results
possible for the within-human host dynamics of the P. falciparum parasite.

We remark, here, that the total red blood cell density in a malaria patient
exhibiting the dynamics as illustrated in Figs. 6-11 can be computed by either
summing the steady state densities for 7, and rp, or the corresponding maximal
and minimal bounds, in the scenarios where there are limit cycles. From Figs. 6,
7(a) and 7(b), the sum, which is given in nondimensional form, is about 0.55 when
using the logistic growth model, which is similar in size to the value when using
the Maynard—Smith—Slakin recruitment function for the specified parameters. In
the original variables, we can compute these values by using the scaled variables
described in Egs. (2.10) and (2.11). That is, R, = 7R} and R, = 'rpRg where
we had chosen in Eq. (2.11), R} = R} = %{‘—" for the logistic model and R? =

Rg =K (% — 1) = for the Maynard—Smith model. K}, is the maximal red blood cell

p
0.06¢
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0.03
0.02
0.01
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rn . ¥ rn
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
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Fig. 10. Figure showing the existence of the limit cycle for the logistic recruitment function.
o = 58.23. The rest of the parameters are as given Example 1 and g(ry) is the logistic growth
model.

n : ' Th
02 04 06 08 10 02 04 06 08 1.0

(a) (b)

Fig. 11. Figure showing the existence of the limit cycle for the Maynard—Smith—Slatkin recruit-
ment function with g = %, n = 4. %y = 3.95. The rest of the parameters are as given Example
1 and g(ry) is the Maynard—Smith—Slatkin recruitment function with p = -1%, n=4.
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count, which serves as the carrying capacity for the Maynard—Smith model. This
value lies in the range 109-107 cells per uL, meanwhile, the equivalent term for the
logistic model is K = 25=£k where in Ref. 22, we obtained an estimate for [in to be
in the range 3.6 x 107°-5.0 x 10~7. Holding all parameters fixed and for the choices
of p and n as illustrated in Figs. 7, 9 and 11, we can choose feasible values for Ap,
(31 (hence 32 and 33) and the other parameters, with K}, and fij, in the given ranges
such that ap > 0, az > 0, az > 1 and 0 < a4, as < a3 and the example parameters
in (5.1) are satisfied. We begin computing these estimates for the examples for
which %, = 1.95, that is Figs. 6 and 7. First, from Fig. 6, the logistic case, and
the nondimensional expression for as, we can estimate that when 74 + 1, = 0.6,
corresponding estimates for Ry, lies in the range 1.53 x 108 and higher depending
on choices of other parameters. This is within observable ranges in various studies
(see for example observed red blood cell densities in a study on patients diagnosed
with malaria in Thailand®® and also the study in Ref. 59). Similar calculations can
be carried out for the Maynard—Smith example. Thus, our scaled values correspond
to non-scaled values that have been observed in nature. However, the small values
associated to r, + 7 are for heavily parasitized patients, which can be used as a
proxy to indicate the degree of anemia in these patients.

6. Discussion and Conclusion
6.1. Discussion

Our goal in this paper was to understand the implicit role immunity plays in the
within-human-host dynamics of the P. falciparum parasite for different recruitment
functions for the HRBCs. The model studied was originally developed in Refs. 22
and 29 in its entirety, but was only analyzed under the assumption of immunity
suppression and for two types of healthy red blood cells recruitment functions —
linear and logistic. The model developed took into consideration the human adap-
tive immune response developed due to continuous exposure to the malaria disease
as well as the innate adaptive immune responses, the body’s natural fighting mech-
anism against foreign pathogens. It captured the interaction between the two types
of immune cells, innate and adaptive, implicitly illustrating their role in inhibiting
the processes leading to a successful parasite persistence within a human infected
with the malaria parasite, as well as their individual impacts. The results under
immunity suppression indicated that a more nonlinear recruitment function should
be used to model HRBCs recruitment, as the linear model produced an increasing
merozoite size, regardless of the diminishing effect of the HRBC population. Thus
the logistic function was a better choice model over a linear function for modeling
HRBC recruitment.

Here, we have extended the work in Ref. 29, incorporating other types of recruit-
ment functions, specifically the Ricker and Maynard—Smith—Slatkin recruitment
functions. We then used these functions to investigate the role of immunity on
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the malaria dynamics process, especially the role of the acquired (adaptive) immu-
nity. In our model, our general assumption was that the net effect of the action
of the immune system is to slow down, if not arrest, the process of invasion by
the malaria parasite. The “slowing down effects” via inhibition of parasitemia,
formation of gametocytes, key biological feasible processes mentioned in the lit-
erature, were captured through the scaled functions of e, and/or e; through the

expressions 1+1;kea and —p;(1+ piv1€a)ei, k=0,1,2and ¢ =1,...,7 in the model,
which allowed us to view the scale variables e, and e;, simply as parameters with
sizes, respectively, in the intervals [0, oc) and [0, 1].

Our model results indicate that the parasitemia threshold function, %g, the func-
tion that determines whether the parasite succeeds to invade the human’s HRBCs
and eventually render the human infectious to mosquito, was much smaller than
the threshold for the model in which the adaptive immune response was set to zero,
and this threshold was even much smaller for the case under complete immunity

suppression obtained in Ref. 29. That is, we had

_ a1azq1q3(l — o) ajaz(l — o) ajaz(l — o)
(2 +1)(a2q1 +as+q) = (1+p1)(az+as+ps) = (az+as)

Zo

active e,>0 and e;€(0,1) e.=0,e;=1 €a=0,e;=0

This inequality illustrates the following: (i) expresses the fact that %, will increase
with decreasing effectiveness of the adaptive immune response and both immune
responses, (ii) indicates that %, attains its maximum value when both the innate
and adaptive immune responses are zero (iii) captures the expectation that as adap-
tive immunity kicks into action following repeated parasitemia, the value and size
of the parasitemia reproduction number will continue to reduce in size. We believe
that the above three results are important for malaria parasitemia control as results
(i) and (ii) assure us that even in the absence of the immune response, the par-
asitemia reproduction number can be bounded; even though %, can continue to
increase with increasing aq. Result (iii) indicates that the value of %, and hence the
strength of parasitization of the red blood cells is reduced when the combined effect
of these immunity-based responses are operating at maximal levels. The parame-
terized parameter %, so identified can thus be used to study the behavior of the
system in the presence of immunity. This is evident as shown in Fig. 4, where if we
view a reduction in %, as a reduction in the size of the immunity parameters, an %
value close to 1 but bigger than 1 (strong immunity effects on parasitemia), shows
that the steady state size of the HRBCs is closer to 1, its maximal value, compared
to when %, is large (weak immunity effects on parasitemia) showing that the steady
state size of the HRBCs reduces, approaching zero for increasingly larger %,.
Another question of interest is how the choice of the recruitment or growth func-
tion that models HRBC population in the absence of infection, impacts the overall
model dynamics. Four types of growth functions were considered: linear, logistic,
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Ricker and the Maynard—Smith—Slatkin growth functions. We showed that the triv-
ial steady state, which only existed for the more nonlinear recruitment functions —
logistic, Ricker and Maynard—Smith—Slatkin functions, is always unstable. On the
other hand, the parasite-free steady state, the desirable steady state, which exists
for all four types of growth functions is globally asymptotically stable when the
parasitemia reproduction number % is less than unity. Additionally, a unique par-
asitized steady state exists for all four types of recruitment functions. The behavior
of the parasitized steady state depends on whether the HRBC recruitment function
is linear or nonlinear. For the linear case as is prescribed in Sec. 2.2, we showed
that the parasitized steady state is locally asymptotically stable, for all values of
o > 1, with the size of 7, diminishing down toward zero with increasing %, val-
ues, meanwhile the size of the merozoite population grows to a large value. On
the other hand, for a sufficiently nonlinear recruitment function such as the logis-
tic, Ricker, and Maynard—Smith—Slatkin functions, the parasitized state is stable
for a range of values of %y > 1 but also can be driven to instability via a Hopf
bifurcation for sufficiently large values of %y > 1, leading to a limit cycle as shown
in Figs. 8-11. The instability, leading to limit cycles does not occur for the linear
model.

In particular, as a function of the steady state HRBC population, 7}, the mero-
zoite steady state size, m*, attains a maximum at some point given by Eq. (4.12).
The increase in the size of the steady state merozoite population up to its maximum
is associated with a decrease in the size of the steady state HRBC population. How-
ever, as the parasite threshold parameter %, increases further, which could be as a
result of higher contacts, ineflicient immune response, etc. more and more HRBCs
are parasitized. As more and more HRBCs are parasitized, the steady state size of
the HRBC population continues to decrease. For the nonlinear growth functions,
there comes a time when the steady state parasite populations, merozoites and para-
sitized red blood cells, start to decline as there is not a large pool of HRBC:s to infect.
We conjecture that eventually, the recruitment rate of the HRBCs balances out their
destruction effect through parasitemia, leading to sustained bounded oscillations of
the steady states of HRBC populations, as well as the merozoite, IRBC and game-
tocyte steady state populations. Hence the observed limit cycle. We note that the
limit cycles for a more nonlinear function, like the Maynard—Smith—Slatkin birth
rate function commences at an %, threshold value that is not quite large (shown
for Zy = 4.15 but can occur for % smaller than that), compared to the case for the
Logistic recruitment function which was observed for much larger threshold values.
Our belief is that this is the effect of the stronger nonlinearity in the Maynard—
Smith—Slatkin function. Moreover, as indicated in Fig. 4, for larger %, values, the
size of the steady state HRBC population is much larger for the logistic model com-
pared to the Ricker model followed by the more nonlinear Maynard—Smith—Slatkin
function. Thus, a stronger parasitemia effect and hence %, value is required to reach
the balance recruitment—destruction point at which the Hopf bifurcation emerges.
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We note that the observed limit cycles were not obtained for the linear growth
function.

It is worth noting that for all forms of the recruitment functions, there is a max-
imal steady state merozoite size. The largest possible such steady state merozoite
size is %’m&%}, which is independent of the choice of birth rate function used.

B(1+piea
Note that the term ﬂﬁ%, is a recruitment factor into the merozoite differential

equation (2.15), for fixed e,, indicating that the larger this factor, the larger the
merozoite population. Additionally, the size of the bound depends on o, 3 and the
innate immune cell size. Importantly, when e, = 0, this bound is M, whose size
is larger for smaller o (which we recall is the proportion of the infected red blood
cells that differentiate toward the path to gametocytogenesis) and smaller 3 (where
3 is the ratio of the contact rates between IRBCs and merozoites and that between
HRBCs and merozoites with a value of at most 1). Note that there is nothing excit-
ing about o being small since o implies that more merozoites will be available to
infect HRBCs meanwhile a larger o implies that more IRBCs will follow the path
toward gametocytogenesis and once successful in producing male and female game-
tocytes, will render the human infectious to mosquitoes. Nonetheless, the largest
reported o size is 0.01% as discussed in Ref. 29. For 3, a value close to 0, means
that the contacts between merozoites and HRBC is dominant and less merozoites
are lost via absorption by IRBC.

Our model was analyzed in terms of the innate and adaptive immune variables
e; and e,. By, construction and nondimensionalization e; is bounded between 0 and
1 meanwhile we had e, > 0. However, we observed that the steady state size of
the innate immune cells given by Eq. (4.13) is bounded above. That is, there is a
maximal functional operating steady state size for the innate immune cells and this
bound is illustrated in (4.14). With data within a specific human, this size can be
analyzed in a malaria patient and the specific immune responses simulated. This is
currently under investigation.

Further extensions of our work, under investigation, include the incorporation
of a multi-strain infection within a human host and questions of how the immune
response acts when more than one strain infects a human. The issue of immune
response being parasite specific, needs to be investigated, in addition to the full
study on the activation and function of the adaptive immune response. Furthermore,
the incorporation of control via anti-malarial drugs are also aspects of this project
under further investigation.

6.2. Conclusion

To conclude, our model analyses produced limit cycles observed for all forms of the
nonlinear recruitment HRBC functions at reasonable threshold parameter values
which was not observed when the choice of the recruitment function was linear.
We believe this is a novel result and may have several biological implications. We
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therefore believe that our work sets the stage to be used to quantify maximal
adaptive immune responses in humans and children living in endemic regions. We
note that this will require that data be collected from individuals from various age
groups and endemic regions since acquired (adaptive) immunity is a function of
frequency of exposure to the malaria parasite.

Second, the inclusion of the adaptive immune response, its implicit individual
effect captured separately and in conjunction with the innate immune response in
inhibiting parasite development has allowed us, perhaps for the first time taking
into consideration available published literature, to investigate the effect of the
adaptive immune response, which is acquired as a result of repeated exposure to
the malaria parasite, on the parasite and hence malaria disease dynamics within
a human. We showed that the larger the innate immune size and the better it’s
efficiency at inhibiting parasite development and progression as discussed in this
paper, the less severe the malaria disease is in a malaria patient. A way this was
manifested is that the larger the adaptive immune size, the smaller the merozoite
and infected red blood cell load which translated to less available free floating
merozoites that can infect HRBCs and less IRBCs that can continue the merozoite
cyclical path or the path to gametocytogenesis. All these are desirable for reducing
the severity and intensity of the malaria infection, as well as the potential size and
likely infectiousness and transmissibility of the gametocytes to the mosquitoes. This
illustrates, what has been documented, that children who have a poorly developed
acquired immunity and visitors to malaria endemic areas with no acquired immunity
tend to have a more severe malaria episode than adults living in those endemic areas
who have been exposed longer.

Moreover, we believe our model results may shed some light on anecdotal
reports/observations that when an individual moves to a new region, he/she typ-
ically will have a severe malaria attack. We believe that our model provides a
possible answer to this. By our result that shows a negative correlation between
innate immune cell size and parasite load and with the suggestion that immune
response is parasite specific, when an individual moves to a new region and gets
infected, he or she is likely infected with a new parasite strain indigenous to the
new region. Since the individual is new to the area, their adaptive immune response
to the parasite strain they are newly infected by will be less well defined. Thus, the
severity of the malaria attack is probably due to this new strain’s impact and effect
on destroying the HRBCs, unchecked by adaptive immune response which at this
point is not well developed for this specific parasite strain. This requires further
investigation but opens up a host of potential questions for biologists and mathe-
maticians alike. One such question is: How is the interaction between a multistage
parasite infection and the adaptive immune responses generated due to the presence
of the parasite infection(s) with time? With the presence of a well defined adaptive
immune response on one parasite, does it enhance the development of the adaptive
immune response for the other, if any?
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