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ABSTRACT
In Paper I [Chen et al., J. Chem. Phys. 150, 044102 (2019)], we introduced Ehrenfest+R dynamics for a two-level system and showed
how spontaneous emission can be heuristically included such that, after averaging over an ensemble of Ehrenfest+R trajectories,
one can recover both coherent and incoherent electromagnetic fields. In the present paper, we now show that Ehrenfest+R
dynamics can also correctly describe Raman scattering, whose features are completely absent from standard Ehrenfest dynamics.
Ehrenfest+R dynamics appear to be quantitatively accurate both for resonant and off-resonant Raman signals, as compared with
Kramers–Heisenberg–Dirac theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5057366

I. INTRODUCTION

Recently there has been an explosion of interest in Raman
scattering, especially surface- and tip-enhanced Raman scat-
tering,1–6 as a probe to investigate plasmonic excitations of
molecules near a metal surface7–10 and chemical reactions at
catalytic surfaces.11 In general, the Raman technique offers
an experimentalist detailed information about how molecu-
lar vibrations couple to charges through electronic polariza-
tion,12,13 and the Raman technique is very relevant for mod-
ern experiments with metallic nanoclusters.14 Raman spec-
troscopy can also often provide clean signals for characteriz-
ing biological materials in an aqueous medium (with otherwise
complex IR absorption spectra).15

From a quantitative point of view, the current theory
of molecular Raman scattering is based on the Kramers–
Heisenberg–Dirac (KHD) formalism16,17 which can be reduced
to Placzek’s classical theory of polarizability for off reso-
nance cases,18,19 as well as Albrecht’s vibronic theory for
resonant Raman scattering.20–22 Over the years, efficient
semiclassical tools have been developed to evaluate Raman

spectra approximately within the KHD formalism using an
excited-state gradient approximation to propagate short time
dynamics.19,23–26 More recently, chemists have also incor-
porated electronic structure theories into the semiclassical
description of Raman spectroscopy27–30 based on the time-
dependent picture developed by Heller et al.24,25 In general,
because it relies on a sum over all states (nuclear and elec-
tronic), the KHD formalism can be difficult to implement in
practice.

One long term goal for our research effort is to study
plasmonic systems under strong light–matter coupling con-
ditions where Raman scattering is a very sensitive probe of
the collective behavior of electronic dynamics.31,32 For such
systems, a direct implementation of KHD theory is not fea-
sible (because of the large number of states required) and is
also likely not relevant (because strong coupling conditions
should invalidate perturbation theory). Thus, in order for us
to model such systems, and to take into account strong light–
matter couplings, the most natural approach is to consider
the quantum subsystems and classical electromagnetic (EM)
fields on an equal footing. This approach stands in contrast
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to most existing semiclassical approaches for spectroscopy,
which treat the incoming field as a fixed external perturba-
tion and extrapolate the behavior of quantum subsystems to
predict light emission.23,24,33,34

Now, obviously, any computational approach to spec-
troscopy that promises “equal footing” for light and matter
will necessarily require drastic approximations; in particu-
lar, we expect that a quantum treatment of the EM field
will be prohibitively difficult, and one will necessarily need
to work with classical EM fields.35 The simplest example
of such a mixed quantum-classical approach is self-consistent
Ehrenfest dynamics. Unfortunately, Ehrenfest dynamics does
not fully recover spontaneous emission and thus is unlikely
to capture Raman scattering either.35,36 That being said, we
are unaware of a systematic study addressing this ques-
tion.

In Paper I, we proposed an improved so-called “Ehren-
fest+R” algorithm that builds in spontaneous emission on top
of Ehrenfest dynamics by enforcing additional relaxation for
two-level systems.37 In this paper, our goal is to general-
ize Ehrenfest+R to the case of a multi-level quantum sub-
system. We will show that such a generalization can cap-
ture both resonant and off-resonant Raman scattering (at
least for a three-level molecular system). Our results are in
quantitative agreement with KHD theory. The data presented
here strongly suggest that Ehrenfest+R dynamics (and other
spruced-up versions of mean-field dynamics) can be excel-
lent tools for exploring interesting light–matter interactions
far beyond simple linear absorption or Raman phenomena
(and also applicable to large subsystems, e.g., exciton–plasmon
systems).

This article is organized as follows. In Sec. II, we review
the KHD formalism and calculate the polarizability and Raman
scattering profile for a three-level system. In Sec. III, we for-
mulate an Ehrenfest+R approach for a three-level system. In
Sec. IV, we show Ehrenfest+R dynamics results for Raman
spectra and compare against the KHD formalism. In Sec. V, we
conclude with an outlook for the future. In this article, we use
a bold symbol to denote a space vector in the Cartesian coor-
dinate, such as E(r) = Ex(r)x̂ + Ey(r)ŷ + Ez(r)ẑ, and Ĥ denotes a
quantum operator. We work in SI units.

II. QUANTUM THEORY OF RAMAN SCATTERING
Raman light scattering is an inelastic process whereby the

interaction between the incident photons and molecules can
lead to an energy shift in emission spectra for a small frac-
tion of the scattered photons. To qualitatively describe Raman
light scattering, consider a molecular system with interac-
tions between electronic states and nuclear vibrations. Inci-
dent photons excite the molecular system to an interme-
diate state (which could be a virtual state), and that inter-
mediate state is subsequently coupled both to the ground
state and to other vibronic states. Thus, the system can
emit photons with two different frequencies through sponta-
neous emission.38 On the one hand, a transition back to the
ground state yields scattered photons with the same energy

with the incident photons (which is known as Rayleigh scat-
tering). On the other hand, a transition to other vibronic
states will generate scattered photons with energies differ-
ent from the incident photons (which is known as Raman
scattering).

In this section, we review the KHD dispersion formula
which quantifies the Raman scattering cross section,16,17,20
assuming the knowledge of the polarizability and we evalu-
ate the KHD formalism for a three-level model system in 1D
space.

A. Kramers–Heisenberg–Dirac formalism
For a quantitative description of Raman scattering, the

KHD formula is the standard, frequency domain expression for
the scattering cross section19

σ3D
fi (ωS,ωI) =

8πωIω
3
S

9c4

∑
ρ,λ

����
[
αfi(ωI)

]νν′ ����
2
, (1)

where the polarizability is given by

[
αfi(ωI)

]νν′
= −

∑
k,n

*.
,

〈
ψf

���µ̂
ν ���ψk,n

〉〈
ψk,n

���µ̂
ν′ |ψi〉

εi + ~ωI − εkn + i~γ

+

〈
ψf

���µ̂
ν′ ���ψk,n

〉
〈ψn |µ̂

ν |ψi〉

εf − ~ωI − εkn + i~γ
+/
-
.

(2)

The frequency of the incident photons is ωI, and the fre-
quency of the scattered photons is ωS; these frequencies
satisfy energy conservation ~ωS = εi + ~ωI − εf . The KHD
formula is known as the “sum-over-states” formula since
the polarizability expression requires a summation over all
possible intermediate states ψk ,n, where the index k labels
electronic states and the index n labels vibrational states
corresponding to electronic states. µ̂ν denotes the transi-
tion dipole moment operator for ν =

{
x, y, z

}
. The linewidth

γ corresponds to the average lifetime of the intermediate
state.28,29

According to the scattering cross section given by Eq. (1),
Raman spectroscopy is a two-photon spectroscopy. Exper-
imentally, one typically fixes ωI and observes the emission
spectrum as a function of ωS. The frequency ωS = ωI corre-
sponds to the contribution of Rayleigh scattering, and other
emission peaks are attributed to Raman scattering. The KHD
formula is derived using second order perturbation theory for
a quantum subsystem in the presence of the incident pho-
tons,19 and the scattering cross section is extrapolated from
the change in electronic population.

B. Three-level system
To quantify the KHD Raman scattering formalism, we

consider a three-level system ( |0〉, |1〉, |2〉) with the energies
ε0 ≤ ε1 < ε2. We assume that the electric dipole interactions
couple the states 0↔ 2 and 1↔ 2 only (i.e., a Λ-type coupling
system). Thus, the electronic Hamiltonian is time-dependent
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and given by

Ĥel(t) =
*....
,

ε0 0 V02(t)

0 ε1 V12(t)

V∗02(t) V∗12(t) ε2

+////
-

, (3)

where the electric dipole coupling is

Vij(t) = −
∫

dxE(x, t) ·Pij(x). (4)

Here we are working in 1D.
For frequency domain measurements, consider a single-

mode incoming continuous wave (CW) electromagnetic field
with frequency ωI,

EI(x, t) =
AI
√
ε0

cos(kIx −ωIt)ẑ, (5)

BI(x, t) = −
√
µ0AI sin(kIx −ωIt)ŷ, (6)

where ωI = ckI and AI is the amplitude of the incoming field.
We assume that the spatial size of the polarization is small in
space, i.e., Pij(x) ≈ µijδ(x)ẑ, so that the electric dipole interac-
tions are approximated as ∫ dxE(x, t) ·Pij(x) ≈ µij

AI√
ε0

cos(ωIt).
For light scattering in a 1D space, the scattering cross sec-

tion is defined as the ratio between the number of photons
scattered per time divided by the number of incident photons
per time. With this definition, the KHD Raman cross section
becomes in 1D (see Appendix A)

σ1D
fi (ωS,ωI) =

ωIωS

2c2

����α
1D
fi (ωI)

����
2
. (7)

For a three-level system, the KHD expression for the polariz-
ability for i, f = 0, 1 is

α1D
10 (ωI) = −

(
µ02µ12

ε0 + ~ωI − ε2 + i~γ
+

µ02µ12

ε1 − ~ωI − ε2 + i~γ

)
. (8)

Analogous expression holds for α01; note that α10 , α01. Here
we take linewidth γ to be the lifetime for the electronic
transitions of the excited state

1
γ
=

1
2

(
1
κ02

+
1
κ12

)
, (9)

where the corresponding Fermi’s golden rule (FGR) rates are
given by

κfi =
εi − εf

~2ε0c
µ2

fi. (10)

In the case of resonant Raman scattering (where the inci-
dent photon lines up with the excited state, i.e., εi + ~ωI = ε2),
the first term in Eq. (8) dominates. Resonant Raman scattering
signals are composed of two signals: (i) When ~ωI = ε2 − ε0
and the scattered photon energy is ~ωS = ε2 − ε1, the polar-
izability term with i = 0 and f = 1 (α1D

10 (ωI)) leads to a Stokes
Raman peak (i.e.,ωS < ωI). (ii) When ~ωI = ε2 − ε1, the scattered
photon energy is ~ωS = ε2 − ε0, and the analogous polarizabil-
ity term with i = 1 and f = 0 (α1D

01 (ωI)) leads to an anti-Stokes
Raman peak (i.e., ωS > ωI). Obviously, anti-Stokes Raman

scattering can occur only if state |1〉 is occupied at steady
state.

In the case that the incident photon does not line up
with any excited state, the excitation is detuned far off res-
onance (known as off-resonance Raman scattering). In this
off-resonant case, the intermediate state of the light scat-
tering process is a virtual state, i.e., εk = εi + ~ωI, and the
two terms in Eq. (8) both contribute meaningfully to the
Raman cross section. Of course, for a weak field, scattered
photons are always dominated by Rayleigh scattering (i.e.,
ωS = ωI). Note that, in the absence of pure dephasing, there
should not be any fluorescence observed in the scattered
field.38

III. EHRENFEST+R APPROACH FOR RAMAN
SCATTERING

Given that Raman scattering is based on spontaneous
emission,38 Ehrenfest+R dynamics should provide a proper
tool for a mixed quantum-classical simulation since the algo-
rithm was designed to recover spontaneous emission. One
can generalize the Ehrenfest+R method to the case of more
than a two-level system as follows: we add distinct +R cor-
rections for electronic transitions between individual pairs
of states, i.e., 2 → 0 and 2 → 1. (And this approach can
clearly be applied to treat even more quantum states as well.)
Furthermore, to reach the steady state, we allow a phe-
nomenological, non-radiative dissipation between |0〉 and |1〉.
In this section, we start by formulating such a generalized
Ehrenfest+R approach in the context of a three-level system;
thereafter, we compare Ehrenfest+R results against the KHD
formula.

A. Generalized Ehrenfest+R method
For the Hamiltonian given by Eq. (3), there are two elec-

tronic transitions that are mediated by electric dipole cou-
plings V02 and V12 corresponding to spontaneous emission
rates κ02 and κ12 given by Eq. (10). Here, based on Ref. 37,
we will add two pairwise +R corrections on top of Ehrenfest
dynamics in order to recover the individual spontaneous emis-
sion rates (κfi) from |i〉 to �� f

〉
while keeping the other state

populations fixed.

1. System propagator
To implement a pairwise treatment for Ehrenfest+R

dynamics, the Liouville equation (together with additional
relaxations) can be written as

∂ρ̂

∂t
= −

i
~

[
Ĥel, ρ̂

]
+ ̂̂L

2→0

R ρ̂ + ̂̂L
2→1

R ρ̂. (11)

Here, the diagonal elements of the ̂̂L
i→f

R super-operators are
defined by

[
̂̂L

i→f

R ρ̂

]

ii
= −

[
̂̂L

i→f

R ρ̂

]

ff
= −kfi

Rρii, (12)

and the off diagonal element of [LRρ̂]ij is chosen to be
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[
̂̂L

i→f

R ρ̂

]

if
=

[
̂̂L

i→f

R ρ̂

]∗

fi
= −γ

fi
Rρif . (13)

The +R relaxation rate kfi
R for the transition i→ f is given by

kfi
R ≡ 2κfi

(
1 − ρff

)
Im

[
ρfi

|ρfi |
eiφ

]2

. (14)

Here, the κfi is the FGR in Eq (10). φ ∈ (0, 2π) is a phase chosen
randomly for each Ehrenfest+R trajectory. The +R dephasing
rate γfi

R in Eq. (13) is chosen to be

γ
fi
R ≡

κfi

2

(
1 − ρff + ρii

)
. (15)

In practice, we use a pure state representation for the
density matrix ρ̂ = |ψ〉〈ψ |, with wavefunction ��ψ(t)

〉
= c0(t) |0〉

+ c1(t) |1〉 + c2(t) |2〉. The additional relaxation embodied by ̂̂L
i→f

R
is defined by a transition operator37

T̂
[
kfi

R

]

*................
,

...

ci

...

cf

...

+////////////////
-

=

*..................
,

...

ci
|ci |

√
|ci |

2 − kfi
R |ci |

2dt

...

cf
���cf

���

√
���cf

���
2

+ kfi
R

���cf
���
2
dt

...

+//////////////////
-

, (16)

with a fixed relative phase between ci and cf , plus a stochastic
random phase operator

e
iΦ̂

[
γ

fi
R

]

*................
,

...

ci

...

cf

...

+////////////////
-

=

*................
,

...

eiΦi ci

...

eiΦf cf

...

+////////////////
-

if RN < γ
fi
R dt. (17)

Here RN ∈ [0, 1] is a random number, and we choose Φi = 0,
Φf ∈ (0, 2π) as random phases. In other words, we choose to
assign a random phase only to the final state (f) which has a
lower energy than the initial state (i). This choice is crucial for
ensuring that, e.g., spontaneous emission from 2 → 1 does not
affect the coherence between states 2 and 0.

Thus in practice, the time evolution of the subsystem
wavefunction is carried out as

��ψ(t + dt)
〉
= eiΦ̂[γ12

R ]T̂
[
k12

R

]
× eiΦ̂[γ02

R ]T̂
[
k02

R

]
e−iĤeldt/~��ψ(t)

〉
, (18)

where e−iĤeldt/~ is responsible for propagating according to the
first term of Eq. (11). Note that eiΦ̂[γ12

R ]T̂
[
k12

R

]
and eiΦ̂[γ02

R ]T̂
[
k02

R

]

commute as long as dt is sufficiently small.

2. EM field propagator
We write the total EM field in the form of E = EI + ES and

B = BI + BS, where ES and BS are the scattered EM fields. For
a CW field given by Eqs. (5) and (6), EI and BI satisfy source-
less Maxwell’s equations, so we can treat the CW field as a
standalone external field. Therefore, for the underlying Ehren-
fest dynamics, the scattered fields ES and BS satisfy Maxwell’s
equations

∂

∂t
BS = −∇ × ES, (19)

∂

∂t
ES = c2

∇ × BS −
1
ε0

J, (20)

where the average current is

J(x, t) =
∑
i=2

∑
f=0,1

2
(
εf − εi

)
Im

[
ρfi(t)

]
Pfi(x). (21)

Given the pairwise transitions of the subsystem, the clas-
sical EM field must be rescaled. We denote the rescaling
operator for the EM fields by

R
[
δUfi

R

]
: *

,

ES

BS

+
-
→

*.
,

ES + ηfiδEfi
R

BS + ξfiδBfi
R

+/
-
, (22)

where the rescaling coefficients are chosen to be

ηfi =

√√√√√√√cdt
Λfi

δUfi
R

ε0 ∫ dv
����δE

fi
R

����
2
× sgn

(
Im

[
ρfieiφ

] )
, (23)

ξfi =

√√√√√√√cdt
Λfi

µ0δUfi
R

∫ dv
����δB

fi
R

����
2
× sgn

(
Im

[
ρfieiφ

] )
. (24)

Here Λfi is the self-interference length (see Ref. 37). For a
Gaussian polarization profile [as in Eq. (33)], Λfi = 2.363/

√
2a.

The energy change for each pairwise relaxation i→ f is

δUfi
R =

(
εi − εf

)
kfi

Rρiidt. (25)

According to Eq. (18), we need to apply two rescaling operators
(R

[
δU12

R

]
and R

[
δU02

R

]
) corresponding to the two relaxation

pathways (2→ 0 and 2→ 1).
For the results below, we assume that the transition

dipole moments are the same for both the 2 → 1 and 2 → 0
transitions, i.e., P02 = P12 = P, so that the rescaling fields can
be chosen to be δEfi

R = δER and δBfi
R = δBR. For a 1D system,

the rescaling fields take the form

δER = ∇ × ∇ ×P − gP, (26)

δBR = −∇ ×P − h(∇×)3P. (27)

As demonstrated in Ref. 37, for the Gaussian polarization
defined in Eq. (33), we choose g = 2a and h = 1/6a. With this
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assumption, we can combine the two rescaling operators as
R

[
δU12

R + δU02
R

]
.

In the end, each Ehrenfest+R trajectory for classical EM
fields is propagated by

*
,

ES(t + dt)

BS(t + dt)
+
-
= R

[
δU12

R + δU02
R

]
M [dt]*

,

ES(t)

BS(t)
+
-
. (28)

Here M[dt] denotes the linear propagator of Maxwell’s equa-
tions [Eqs. (19) and (20)] for time step dt.

3. Non-radiative dissipation
Without any non-radiative dissipation, the three-level

system in Eq. (3) eventually reaches the asymptotic state
��ψ(t→ ∞)

〉
= |1〉 in the presence of the CW field. By contrast, to

reach the correct steady state, we must take into account non-
radiative relaxation. Thus, we also introduce a phenomeno-
logical, non-radiative relaxation from |1〉 to |0〉 by a transition
operator

��ψ(t + dt)
〉
→ T̂

[
k01

nr

] ��ψ(t + dt)
〉
, (29)

where the operation of the transition operator T is defined
in Eq. (16). The classical EM field is not rescaled for this non-
radiative transition, and the non-radiative decay rate k01

nr is an
empirical parameter which will be specified later. Note that
we exclude thermal transitions from |0〉 to |1〉 since we assume
that the system is at a very low temperature.

In the end, Ehrenfest+R dynamics are specified by
Eqs. (18), (28), and (29).

4. Coherent and incoherent emission
Our primary interest is in the scattering EM field when

the system reaches the steady state (t → tss) in the presence
of an external CW field. Let

{
E`S(x, tss); ` ∈ Ntraj

}
be the set of

scattering electric fields at a steady state for an ensemble of
Ehrenfest+R trajectories (labeled by `). The average electric
field

〈
ES(x, tss)

〉
represents coherent emission, and the Fourier

transform of the average electric field yields the scattering
spectrum for coherent emission,

〈
ES(ωS)

〉
=

∫
dxeiωSx/c 1

Ntraj

Ntraj∑
`

E`S(x, tss). (30)

We expect that, in Eq. (30), all incoherent contributions with
random phases will vanish when we take ensemble average.
We denote the magnitude of the coherent emission intensity
at scattering frequency ωS as ��

〈
ES(ωS)

〉��2.
We now turn to the incoherent emission. The expectation

value of the intensity distribution
〈��ES(x, tss)��2

〉
corresponds to

the energy distribution of the scattering EM field. We can
obtain the total emission power spectrum by averaging over
the intensity in Fourier space,

〈��ES(ωS)��2
〉
=

1
Ntraj

Ntraj∑
`

�����

∫
dxeiωSx/cE`S(x, tss)

�����

2

. (31)

Note that the total intensity in Eq. (31) includes the contri-
butions of both coherent and incoherent scattering signals.
Thus,

〈��ES(ωS)��2
〉

can be considered as the energy distribution
of scattering photons with mode ωS. Finally we can extract
a scattering cross section from Ehrenfest+R dynamics by the
formula

σ1D
10 (ωS,ωI) =

〈��ES(ωS)��2
〉
/ωS

A2
I /ωI

, (32)

according to the definition of the 1D scattering cross section
and the Einstein relation [see Eq. (A5)].

Before concluding this section, let us once more empha-
size the conclusion of Ref. 37. Within Ehrenfest+R dynamics,
standard Ehrenfest dynamics yields only coherent emission;
at the same time, however, the +R relaxation pathway is able
to produce incoherent emission.

IV. RESULTS
As far as simulating Raman scattering by the Ehrenfest+R

approach, we consider a three-level system with ε0 = 0,
ε1 = 4.115 eV, and ε2 = 16.46 eV so that we can define the fre-
quencies of the system: ~Ω20 = ε2 − ε0 and ~Ω21 = ε2 − ε1. In
all that follows, we will normalize all frequencies in units of
Ω ≡ Ω20 = 16.46 eV. For instance, Ω21 = 12.345 eV = 3

4Ω. Note
that, for demonstration purposes only, we have chosen the
energy scale ratio to be Ω20:Ω21 = 1:3/4 so that we can easily
observe a clear separation between the Raman peak and the
Rayleigh peak in a reasonably short time. Thus, the present
model is for electronic Raman scattering, rather than vibra-
tional Raman scattering. That being said, the performance of
the proposed Ehrenfest+R dynamics for Raman scattering will
not depend on the particular energy difference of the three
level model system and our results will be applicable to a
broader regime of parameters (vibrational or electronic).

We assume that the initial state of the system is the
ground state, ��ψ(t = 0)

〉
= |0〉, and we turn on the incident CW

field at t = 0. The transition dipole moment takes the form of a
Gaussian distribution

P02(x) = P12(x) = µ
√

a
π

e−ax2
ẑ, (33)

where µ = 11 282 C/(nm/mol) and a = 1/2σ2 with σ = 3.0 nm.
With this polarization, the rescaling fields are (from Ref. 37)

δER(x) = −µ
√

a
π

4a2x2e−ax2
ẑ, (34)

δBR(x) = µ
√

a
π

4
3

a2x3e−ax2
ŷ. (35)

The average lifetime is 1/γ ≈ 40 fs. We run dynamics for
tss = 200 fs to reach a steady state, averaging over Ntraj = 400
trajectories. For the non-radiative dissipation, we choose a
non-radiative decay rate to be k01

nr/γ = 37.33. Note that, as long
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as k01
nr � γ is large enough, our results do not depend on the

choice of k01
nr.

A. Resonance and off resonance scattering
We first focus on Raman scattering in the frequency-

domain spectrum. In Fig. 1, we plot the spectrum of coher-
ent emission and total scattering at the steady state as
a function of ωS for various incident frequencies ωI. In
Fig. 1(a), we plot results from Ehrenfest dynamics, and in
Fig. 1(b), we plot results from Ehrenfest+R dynamics. When the

incident field is far from resonance, we find that the
scattered EM field is dominated by Rayleigh scattering
(ωS = ωI), as expected from the KHD formula. Qualitatively,
both standard Ehrenfest dynamics and Ehrenfest+R dynam-
ics predict Rayleigh scattering peaks at the correct frequency
and show a linear shift with respect to the incident frequency.
When the incident photon is at resonance (i.e., the inci-
dent frequency ωI lines up with electronic excitation), Ehren-
fest+R dynamics captures Raman scattering peaks at (ωI,ωS)
= (Ω20,Ω21). Note that anti-Stokes Raman scattering is rela-
tively weak here.

FIG. 1. Raman scattering spectra as a function of ωS/Ω when varying the incident CW field frequency ωI /Ω. We plot the total intensity spectrum
〈��ES(ωS)��2

〉1/2

= ��
〈
ES(ωS)

〉�� obtained by standard Ehrenfest dynamics in (a). For Ehrenfest+R dynamics, we plot both the coherent emission spectrum ��
〈
ES(ωS)

〉�� (colored cyan) and

the total intensity spectrum
〈��ES(ωS)��2

〉1/2
(colored blue). The incoming field amplitude is AI/

√
~Ω = 6 × 10−3. For all CW frequencies, Rayleigh scattering peaks are

observed at ωS = ωI . Stokes Raman scattering is always observed at ωS = ωI −
1
4Ω. In the case of resonant Raman, when ωI /Ω = 1, a strong Stokes signal occurs at

ωS/Ω =
3
4 ; there is also a small anti-Stokes signal occurring at ωS/Ω = 1 when ωI/Ω =

3
4 . Obviously, the anti-Stokes resonant Raman signal is always much smaller

than the Stokes Raman signal, on or off resonance. (c) A semi-log plot of the scattering spectrum for ωI/Ω =
3
4 . With this log scale, one can clearly see that Ehrenfest+R

dynamics recovers both Stokes and anti-Stokes Raman scattering peaks (whereas standard Ehrenfest dynamics produces only Rayleigh scattering). Note also that only
Rayleigh scattering comes in the form of a coherent emission field; Raman scattering are both incoherent emission fields.
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In contrast to Ehrenfest+R dynamics, we also plot the
spectra obtained from standard Ehrenfest calculations in
Fig. 1(a). From Fig. 1, we must emphasize that Ehrenfest dynam-
ics capture only Rayleigh scattering peaks, but not Raman
scattering peaks. To rationalize this behavior, we recall that
the Ehrenfest decay rate for spontaneous emission depends
linearly on the lower state population.37 For the initial state
c0 = 1 and c1 = c2 = 0, the system is excited to state
|2〉 by the incident field, but will never populate state |1〉.
Therefore, effectively we always have c1 = 0 within Ehren-
fest dynamics and the spontaneous emission via electronic
transition 2 → 1 never occurs. As a general rule of thumb,
because standard Ehrenfest dynamics are effectively classi-
cal dynamics, whereas there is only a single frequency ωI
in the EM field and the EM field strength is weak, Ehren-
fest dynamics will predict all responses to be at the same
frequency ωI.

B. Coherent emission and total intensity
Several words are now appropriate regarding the char-

acter of the outgoing fields: are they coherent (with |〈ES〉 |
2

=
〈
|ES |

2
〉
), are they partially coherent, or are they totally inco-

herent? In Fig. 1(b), we observe that Rayleigh scattering is made
up of completely coherent emission according to Ehrenfest+R
dynamics. For an elastic scattering process (ωS = ωI) such as
Rayleigh scattering, the outgoing field retains the phase of the
incoming field so that the signal is not canceled out in the
average electric field

〈
ES(ωS)

〉
.

By contrast, Raman scattering peaks are dominated by
incoherent signals. For these signals, the coherent emission
is much smaller than total scattering intensity, i.e., ��

〈
ES(ωS)

〉��2

�
〈��ES(ωS)��2

〉
. To understand this, we show in Appendix B that,

for a simplified model within the rotating wave approximation
(RWA), the average electric field does not include a contribu-
tion at frequency ωS = Ω21. Instead, the signal is entirely inco-
herent. Note that, within Ehrenfest+R dynamics, this incoher-
ence is introduced by applying the stochastic random phase
operators in Eq. (17).

C. Resonant Raman cross section
We now turn our attention to the near-resonant regime,

i.e., ωI ≈ Ω20, and focus on Raman scattering. To compare
against the KHD formula, we extract the scattering cross
section from Ehrenfest+R dynamics by Eq. (32). In Fig. 2(a),
we compare Ehrenfest+R dynamics with the KHD formula
[Eq. (7)]. We demonstrate that Ehrenfest+R dynamics can
quantitatively recover the enhancement of the Raman scat-
tering cross section in the nearly resonant regime, while the
standard Ehrenfest dynamics does not predict any enhance-
ment. Furthermore, the linewidth obtained by the Ehren-
fest+R approach agrees with the average lifetime for the
KHD formula [Eq. (9)]. In Fig. 2(b), the difference between
standard Ehrenfest and Ehrenfest+R results is plotted in
logarithmic scale. The +R correction is necessary in order
for semiclassical simulations to recover resonance Raman
scattering.

FIG. 2. The Raman scattering cross section as a function of incident frequency
near resonance (ωI /Ω ≈ 1). Standard Ehrenfest dynamics are colored red, and
Ehrenfest+R dynamics are colored blue. The KHD formula is plotted in dashed
lines. The incoming field amplitude is AI/

√
~Ω = 6 × 10−3. (a) is a linear plot,

and (b) is a semi-log plot. Note that Ehrenfest+R dynamics match the KHD Raman
signal, whereas Ehrenfest dynamics alone do not.

D. Field strength
Finally we focus on the intensity of resonance Raman

scattering (i.e., ωI = Ω20) in response to various incident field
amplitudes. Indeed, one might question whether or not the
Raman signals as predicted by Ehrefenst+R dynamics scale
correctly with respect to the EM field strength; indeed a devil’s
advocate might argue that these “Raman-like” features emerg-
ing from semiclassical dynamics are really non-linear features
that arise from strong EM fields incident in the molecule. And
yet, it is crucial to emphasize that Raman is a linear spec-
troscopy. From the KHD formula, the resonant scattering sig-
nal intensity in the weak field regime scales as |ES | ∼ AI for all
scattered frequencies ωS,

〈��ES(ωS)��2
〉
= A2

I

ω2
S

2~2c2

µ4

γ2
. (36)

Here γ is given in Eq. (9). Furthermore, we note that, from
Eq. (36), one can derive a simple relation for the ratio between
the intensity of the Raman scattering (~ωS = Ω21) and the
intensity of the Rayleigh scattering (~ωS = Ω20) given by〈��ES(ωS = Ω21)��2

〉
〈��ES(ωS = Ω20)��2

〉 = (
Ω21

Ω20

)2

. (37)

Do Ehrenfest+R dynamics capture these scaling relationships?
To answer these questions, in Fig. 3, we plot the Raman
and Rayleigh scattering intensity signals as obtained from
Ehrenfest+R dynamics as a function of AI. We show conclu-
sively that the Ehrenfest+R signals are linear with respect
to AI, in agreement with the KHD formula. This also shows
that the ratio of the Raman and Rayleigh signals agrees with
Eq. (37).

To contrast the coherent emission with the total scat-
tering intensity, we also plot the coherent emission intensity
(��
〈
ES(ωS)

〉��2) at the Raman and Rayleigh frequencies as a func-
tion of AI. As we discussed above, the coherent emission of
Raman scattering is approximately zero for all AI. By contrast,
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FIG. 3. The resonant scattering intensity as a function of incident CW amplitude
AI . The incident frequency is ωI = Ω20. The upper panel is the Rayleigh signal
(ωS = Ω), and the lower panel is the Raman signal (ωS = Ω21). For Ehren-
fest+R dynamics, the blue circles represent the total intensity (

〈��ES(ωS)��2
〉
) and

the cyan squares represent the coherent emission intensity (��
〈
ES(ωS)

〉��2). The
black dashed line is the total intensity given by the KHD formula [Eq. (36)]. The
value of the KHD intensity in the lower panel is exactly (Ω21/Ω20)2 = (3/4)2 of
the upper panel. Note that both KHD and Ehrenfest+R correctly capture the Raman
and Rayleigh signals that are linear with respect to the incoming filed. Note also
that the Raman signal is incoherent, whereas the Rayleigh signal is almost entirely
coherent.

the signal at frequency ωS = ωI = Ω20 is almost exclusively a
coherent Rayleigh scattering signal.

V. DISCUSSION AND CONCLUSIONS
In this work, we have generalized the Ehrenfest+R

approach to treat a multi-level (more than two-level) sys-
tem and we have demonstrated that such an approach
recapitulates Raman scattering. In the context of a three-
level system model, the proposed prescription of +R cor-
rections can overcome the qualitative deficiencies of Ehren-
fest dynamics and recover both resonant and off-resonant
Raman scattering. In addition, a comparison with the quantum
mechanical KHD formalism shows that Ehrenfest+R dynam-
ics agrees quantitatively with resonant Raman scattering cross
sections.

Given the promising results in this work, there are
many further questions that need to be addressed. First, the
proposed prescription is based on pairwise +R transitions with
stochastic random phases for decoherence. If we take into
account pure dephasing of the system, can this prescription of
Ehrenfest+R dynamics produce the correct (and fully incoher-
ent) fluorescence signals? More generally, have we found the
optimal semiclassical approach for quantum electrodynamics
with more than two electronic states? It will be very inter-
esting to compare the present Ehrenfest+R approach with
more standard nonadiabatic approaches, including partially
linearized density matrix dynamics (PLDM),39 Poisson-bracket

mapping equation (PBME),40 and symmetrical quantum-
classical dynamics (SQC)36,41,42 (which has shown great
promise for spin-boson Hamiltonians). Second, the data in this
work were generated for a three level system in one dimen-
sion only, assuming that the polarization density has a sim-
ple Gaussian profile. Does our prescription work for a system
with arbitrary polarization density in three dimensions? Third,
a three level system is usually not a proper model for off-
resonant Raman scattering processes of molecular systems.
Can the Ehrenfest+R approach be generalized to more than
three level systems, ideally ab initio systems? Finally, the cur-
rent setup includes one quantum subsystem only. How can we
to treat the collective behavior of a set of molecular subsys-
tems with strong electronic coupling? These questions will be
investigated in the future.
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APPENDIX A: SCATTERING CROSS SECTION
IN A 1D SPACE

Here we derive the scattering cross section for a 1D sys-
tem within the KHD formalism. Following Tannor’s approach
in Ref. 19, we make the rotating wave approximation (RWA)
such that the electric dipole coupling can be written as
µ̂EIe−iωIt/2 for an incoming photon with amplitude EI and fre-
quency ωI and µ̂ESeiωSt/2 for an outgoing photon with ampli-
tude ES and frequency ωS. (The amplitude ES will be deter-
mined below.) Here µ̂ is the dipole operator of the electronic
system. According to second order perturbation theory within
the Schrödinger picture, the expression for the second order
wavefunction is

���ψ
(2)(t)

〉
= −

1
4~2

∫ t

−∞

dt2

∫ t2

−∞

dt1e−
i
~ Ĥ0(t−t2)

(
µ̂ESeiωSt2

)
× e−

i
~ Ĥ0(t2−t1)

(
µ̂EIe−iωIt1

)
e−

i
~ Ĥ0t1 |ψi〉, (A1)

where the initial state of the system is |ψi〉. Here Ĥ0 is the
unperturbed Hamiltonian of the electronic system and µ̂ is the
transition dipole operator.43

Now we would like to express the number of outgoing
photons scattered per unit time in terms of the change in
the second order wavefunction. To do so, we evaluate the
time derivative of the second-order wavefunction and insert
a complete set of final states ���ψf

〉
to obtain
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d
dt




ψ
(2)(t)




2
=

2πE2
SE2

I

16~2

∑
f

���αfi(ωI)
���
2
δ(ωS − ∆ω), (A2)

where the frequency-dependent polarizability is defined by

αfi(ωI) =
i
~

∫ ∞
0

dτ
〈
ψf

���µ̂e−
i
~ Ĥ0τ µ̂ei(ωI+ωi)τ |ψi〉. (A3)

Here ∆ω = ωI + ωi − ωf , and ~ωi and ~ωf are the energy levels
of the initial and final states of the system. If we now invoke the
1D density of states for photons (ρ(ωS) = L

πc ), we can eliminate
the delta function in Eq. (A2) and write

d
dt




ψ
(2)(t)




2
=

L
8~2c

E2
SE2

I
���αfi(ωI)

���
2
. (A4)

Finally, in order to express the scattering cross section
in terms of photon frequencies, we must calculate the ampli-
tude of the scattered EM field in Eq. (A4) in terms of other
physical observables. To do so, we note the simple and gen-
eral relationship between the electric field amplitude E and
the number of photons N in a volume L,

ε0E2

2
= ~ω

N
L

. (A5)

Here N
L is the photon density for a 1D system. Note that Eq. (A5)

is valid for both incoming and scattered photons. For incoming
photons, the incident field intensity satisfies

E2
I = NI

2~ωI

ε0L
. (A6)

For scattered photons, assuming spontaneous emission, we
must have NS = 1 such that

E2
S =

2~ωS

ε0L
. (A7)

With these relations, we rewrite Eq. (A4) as

d
dt




ψ
(2)(t)




2
=
ωIωS

2cε2
0

NI

L
���αfi(ωI)

���
2
. (A8)

Finally, we divide Eq. (A8) by the incident photon flux ( NIc
L )

and obtain the Raman scattering cross section for a 1D system

σ1D
fi (ωS,ωI) =

ωIωS

2c2ε2
0

���αfi(ωI)
���
2
. (A9)

APPENDIX B: COHERENT EMISSION INTENSITY
OF RAMAN SCATTERING

Here, we derive the coherent emission intensity of a
three-level system within the rotating wave approximation
(RWA). We let |1ω 〉 be a state of the EM field with one photon
of mode ω and denote the vacuum state as | {0}〉. The dressed
state representation of the total wavefunction can be written
as

��ψ(t)
〉
=

∑
j=0,1,2

Cj,0(t)��j; {0}
〉

+
∑

j=0,1,2

Cj,ω (t)��j;ω
〉
. (B1)

Here the basis consists of ��j; {0}
〉
= ��j

〉
| {0}〉 and ��j;ω

〉
= ��j

〉
|1ω 〉

including up to a single photon per mode. For the incoming
photon of mode ωI, we choose the initial state to be

��ψ(0)
〉
= C0,0 |0; {0}〉 + C0,ωI |1;ωI〉, (B2)

with ���C0,0
���
2

+ ���C0,ωI
���
2
= 0. Here, we are approximating a weak

coherent state as the sum of zero and one photon states only.
Now we assume that the incoming field is at resonance

with states |0〉 and |2〉, i.e., ~ωI = ε2 − ε0. The Raman scat-
tering frequency is ~ωR = ε2 − ε1, and the Rayleigh scatter-
ing frequency is ~ωI. Within the RWA, we consider the res-
onant states |0;ωI〉, |1;ωR〉, and |2; {0}〉 and write the RWA
Hamiltonian as

HRWA =
*...
,

ε0 + ~ωI 0 V02

0 ε1 + ~ωR V12

V∗02 V∗12 ε2

+///
-

, (B3)

where V02 = −µ02AI
/√

2ε0 and V12 = −µ12AI
/√

2ε0. In addition to
the resonant states, the excited state |2〉 is coupled to the con-
tinuous manifolds, { |0;ω〉, |1;ω〉}. Therefore, the steady state
solution can be expressed in terms of the resonant states and
the initial vacuum state

���ψRWA
〉
= C0,0 |0; {0}〉 + C0,ωI |0;ωI〉 + C1,ωR |1;ωR〉 + C2,0 |2; {0}〉

+
∑
ω,ωI

C0,ω |0;ω〉 +
∑
ω,ωI

C1,ω |1;ω〉. (B4)

Note that the vacuum state |0; {0}〉 is not coupled to the
resonant states.

Finally, we can evaluate the coherent emission inten-
sity using the expectation value of the electric field. For a 1D
system, the electric field operator is given by

Ê(x) = i
∑

k

Ek

(
âkeikx − â†ke−ikx

)
, (B5)

with Ek =

√
~ωk
2ε0L in a space of volume L. Using the form of

the steady state wavefunction, we can obtain the lowest order
approximation of the expectation value of the electric field〈

Ê(x)
〉
= −2EkIm

(
C0,0

∗
C0,ωI e

iωIx/c
)
. (B6)

We note that there is not any contribution to the electric
field at frequency ωR since

〈
1; {0}���ψRWA

〉
= 0. Thus, the

Fourier transform of the electric field vanishes at the Raman
frequency,

��
〈
E(ωR)

〉�� = 0. (B7)

In other words, within the RWA, resonant Raman scattering
does not yield coherent emission.

Therefore, we must conclude that, for a more general sit-
uation not far from RWA, all Raman scattering signals must be
dominated by incoherent emission. As a sidenote, the argu-
ments above also show that the Rayleigh peak should be
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coherent: the electric field in Eq. (B6) does not vanish at
frequency ωS = ωI.
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