

Visual-biased frontal structures are preferentially connected to multisensory working memory regions.

Abigail Noyce; Ray W. Lefco; James A. Brissenden; Sean M. Tobeyne; Barbara G. Shinn-Cunningham; David C. Somers

— Author Affiliations & Notes

Abigail Noyce

Psychological and Brain Sciences, Boston University

Ray W. Lefco

Graduate Program in Neuroscience, Boston University

James A. Brissenden

Psychological and Brain Sciences, Boston University

Sean M. Tobeyne

Graduate Program in Neuroscience, Boston University

Barbara G. Shinn-Cunningham

Carnegie Mellon Neuroscience Institute, Carnegie Mellon University

David C. Somers

Psychological and Brain Sciences, Boston University

[\(anoyce@bu.edu\)](mailto:(anoyce@bu.edu))


Journal of Vision September 2019, Vol.19, 245c. doi:<https://doi.org/10.1167/19.10.245c>

Abstract

Lateral frontal cortex contains discrete regions that are recruited for working memory (WM) in sensory-specific ways. We collected block-design fMRI (TE=30 ms, TR = 2000 ms, 1 mm iso) while 15 subjects performed 2-back WM for visual (familiar photographs) and auditory (native language vocalizations) stimuli. Sensorimotor agreeing to our privacy policy. | Accept

control blocks were also collected. In addition, we collected 2–3 runs (180 TRs each) of eyes-open resting-state fMRI for each subject. Directly contrasting visual WM task activation with auditory WM revealed 6 bilateral sensory-biased structures along the precentral sulcus and inferior frontal sulcus of individual subjects. Visual-biased structures in the superior and inferior precentral sulcus (sPCS and iPCS) and mid inferior frontal sulcus (midIFS) are interleaved with auditory-biased structures in the transverse gyrus intersecting precentral sulcus (tgPCS), caudal inferior frontal sulcus (cIFS), and frontal operculum (FO). Each individual subject's visual- and auditory-biased frontal regions served as seeds in a seed-to-whole-brain resting-state functional connectivity analysis. After thresholding the resulting maps to remove negative correlations, we computed the difference in connectivity to the visual- and auditory-biased regions for each cortical vertex (Tobyne 2017). This differential connectivity analysis revealed subdivisions within areas we had previously identified as candidate multi-sensory WM regions (Noyce 2017). Anterior insula (AIC) contains a caudal portion with preferential connectivity to frontal auditory structures, and a more rostral portion with preferential connectivity to frontal visual structures. Similarly, pre-supplementary motor area (preSMA) contains a region with preferential visual connectivity, flanked above and below by regions with preferential auditory connectivity. Assessing task activation in these regions showed that the visual-connected portions of preSMA and AIC are significantly and equally recruited in both WM tasks, while the auditory-connected portions are not recruited in either task. These results provide further evidence that human cortical mechanisms for visual cognition participate flexibly in a wide range of tasks.

This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License](#).

This site uses cookies. By continuing to use our website, you are agreeing to [our privacy policy](#). | [Accept](#)

This site uses cookies. By continuing to use our website, you are agreeing to [our privacy policy](#). | [Accept](#)