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ABSTRACT
The dynamics of an electronic system interacting with an electromagnetic field is investigated within mixed quantum–classical
theory. Beyond the classical path approximation (where we ignore all feedback from the electronic system on the photon field),
we consider all electron–photon interactions explicitly according to Ehrenfest (i.e., mean-field) dynamics and a set of coupled
Maxwell–Liouville equations. Because Ehrenfest dynamics cannot capture certain quantum features of the photon field cor-
rectly, we propose a new Ehrenfest+R method that can recover (by construction) spontaneous emission while also distinguishing
between electromagnetic fluctuations and coherent emission.
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I. INTRODUCTION
Light–matter interactions are of pivotal importance to the

development of physics and chemistry. The optical response
of matter provides a useful tool for probing the structural and
dynamical properties of materials, with one possible long term
goal being the manipulation of light to control microscopic
degrees of freedom. Now, we usually describe light–matter
interactions through linear response theory; the electromag-
netic (EM) field is considered a perturbation to the matter
system, and the optical response is predicted by extrapolat-
ing the behavior of the system without illumination. Obviously,
this scheme does not account for the feedback of the matter
system on the EM field, and many recent experiments can-
not be modeled through this lens. For instance, in situations
involving strong light–matter coupling, such as molecules in
an optical cavity, spectroscopic observations of nonlinearity
have been reported as characteristic of quantum effects.1–5

As another example, for systems composed of many quantum

emitters, collective effects from light–matter interactions
lead to phenomena incompatible with linear response theory,
such as coupled exciton–plasma optics6–10 and superradiance
lasers.11–13

The phenomena above raise an exciting challenge to
existing theories; one needs to treat the matter and EM
fields within a consistent framework. Despite great progress
heretofore using simplified quantum models,14–16 semiclas-
sical simulations provide an important means for studying
subtle light–matter interactions in realistic systems.17 Most
semiclassical simulations are based on a mixed quantum–
classical separation treating the electronic/molecular system
with quantum mechanics and the bath degrees of freedom
with classical mechanics. While there are many semiclassical
approaches for coupled electronic–nuclear systems offering
intuitive interpretations and meaningful predictions,18–22 the
feasibility of analogous semiclassical techniques for coupled
electron–radiation dynamics remains an open question. With
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this in mind, recent semiclassical advances, including numeri-
cal implementations of the Maxwell–Liouville equations,23–26

symmetrical quantum–classical dynamics (SQC),27–29,81,82

mean-field Ehrenfest dynamics,28 and quantum electrody-
namical density functional theory (DFT),30,31 have now begun
exploring exciting collective effects, even when spontaneous
emission is included.

For electron–radiation dynamics, the most natural
approach is the Ehrenfest method, combining the quantum
Liouville equation with classical electrodynamics in a mean-
field manner; this approach should be reliable given the lack of
a time-scale separation between electronic and EM dynamics.
Nevertheless, Ehrenfest dynamics are known to suffer from
several drawbacks. First, it is well-known that, for electronic–
nuclear dynamics, Ehrenfest dynamics do not satisfy detailed
balance.32 This drawback will usually lead to incorrect elec-
tronic populations at long times. The failure to maintain
detailed balance results in anomalous energy flow (that can
even sometimes violate the second law of thermodynamics at
equilibrium33). For scattering of light from electronic mate-
rials, this problem may not be fatal since the absorption and
emission of a radiation field may be considered relatively fast
compared to electronic–nuclear dynamics and other relax-
ation processes.

Apart from any concerns about detailed balance, Ehren-
fest dynamics has a second deficiency related to spontaneous
and stimulated emission.28 Consider a situation where the
electronic system has zero average current initially and exists
within a vacuum environment without external fields; if the
electronic state is excited, one expects spontaneous emis-
sion to occur. However, according to Ehrenfest dynamics, the
electron–radiation coupling will remain zero always so that
Ehrenfest dynamics will not predict any spontaneous emis-
sion.34 In this paper, our goal is to investigate the origins
of this Ehrenfest failure by analyzing the underlying mixed
quantum–classical theory; even more importantly we will pro-
pose a new ad hoc algorithm for adding spontaneous emission
into an Ehrenfest framework.

This paper is organized as follows. In Sec. II, we review
the quantum electrodynamics (QED) theory of spontaneous
emission. In Sec. III, we review Ehrenfest dynamics as an
ansatz for semiclassical QED and quantify the failure of the
Ehrenfest method to recover spontaneous emission. In Sec. IV,
we propose a new Ehrenfest+R approach to correct some
of the deficiencies of the standard Ehrenfest approach. In
Sec. V, we present Ehrenfest+R results for spontaneous emis-
sion emanating from a two-level system in 1D and 3D space.
In Sec. VI, we discuss extensions of the proposed Ehren-
fest+R approach, including applications to energy transfer and
Raman spectroscopy.

Regarding notation, we use a bold symbol to denote a
space vector r = xx̂ + yŷ + zẑ in Cartesian coordinates. Vec-
tor functions are denoted as A(r) = Ax(r)x̂ + Ay(r)ŷ + Az(r)ẑ, and
Â denotes the corresponding quantum operator. We use ∫ dv
= ∫ dxdydz for integration over 3D space. We work in SI units.

II. REVIEW OF QUANTUM THEORY
FOR SPONTANEOUS EMISSION

Spontaneous emission is an irreversible process whereby
a quantum system makes a transition from the excited state to
the ground state, while simultaneously emitting a photon into
the vacuum. The general consensus is that spontaneous emis-
sion cannot be fully described by any classical electromagnetic
theory; almost by definition, a complete description of spon-
taneous emission requires quantization of the photon field. In
this section, we review the Weisskopf–Wigner theory35,36 of
spontaneous emission, evaluating both the expectation value
of the electric field and the emission intensity.

Before proceeding, we emphasize that, for a single
molecule in free space, spontaneous emission is a weak cou-
pling process in the sense that the relevant light-matter cou-
pling is much smaller than the energy spacing of the molecular
states and much larger than the inverse density of single pho-
ton states involved in the process, which are the conditions
for the Fermi’s golden rule (FGR) rate expression to hold. This
is true even in the presence of a strong incident continuous
wave EM field, where spontaneous emission (emitting into the
continuum of previously unoccupied radiation field modes)
is essentially independent of other processes induced by the
incident light.37

A. Power–Zienau–Woolley Hamiltonian
Before studying spontaneous emission in detail, one must

choose a Hamiltonian and a gauge for QED calculations. We
will work with the Power–Zienau–Woolley (PZW) Hamilto-
nian38–40 in the Coulomb gauge (so that A‖ = 0 and A = A⊥)
because we believe that this combination naturally offers
a semiclassical interpretation.40 Here, the total Hamiltonian
is

ĤPZW = ĤP + ĤR + ĤI, (1)
where the particle Hamiltonian is

ĤP = Ĥs +
1

2ε0

∫
dv���P̂⊥(r)���

2
, (2)

the transverse radiation field Hamiltonian is

ĤR =

∫
dv

{
1

2ε0
D̂⊥(r)2 +

1
2µ0

(
∇ × Â(r)

)2
}

, (3)

and the light-matter interaction is

ĤI = −
1
ε0

∫
dvD̂⊥(r) · P̂⊥(r). (4)

Here Â(r) is the vector potential of the EM field and D̂⊥(r) is
the transverse field displacement. Note that the displacement
D̂⊥(r) is the momentum conjugate to the vector potential Â(r),
satisfying the canonical commutation relation, [D̂⊥(r), Â(r′)]
= i~δ⊥(r − r′). We denote the polarization operator of the sub-
system as P̂ and use the Helmholtz decomposition expression
(P̂ = P̂⊥ + P̂‖ ) to separate the transverse polarization (satis-
fying ∇ · P̂⊥ = 0) and the longitudinal polarization (satisfying
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∇ × P̂‖ = 0). Ĥs is the Hamiltonian of the matter system and
will be specified below. Note that the PZW Hamiltonian is
rigorously equivalent to the more standard Coulomb (P̂ · Â)
representation of QED, but the matter field is now conve-
niently decomposed into a multipolar form. That being said,
in Eq. (1), we have ignored all magnetic couplings and an infi-
nite Coulomb self energy; we also assume that we may ignore
any relativistic dynamics of the matter field.

For QED in the Coulomb gauge, we choose the vec-
tor potential and the displacement following the standard
canonical quantization approach40

Â(r) = i
∑

i

Ei
ωi

si
(
âieiki ·r + â†i e

−iki ·r
)
, (5)

D̂⊥(r) = iε0

∑
i

Eisi
(
âieiki ·r − â†i e

−iki ·r
)
. (6)

Here, the matrix element Ei =

√
~ωi

2ε0Ln
is associated with the

frequency ωi = c��ki�� and Ln is the volume of the n-dimensional
space. si is a unit vector of transverse polarization associ-
ated with the wave vector ki. âi and â†i are the destruction
and creation operators of the photon field, where the index
i designates the set

{
ki, si

}
, and satisfy the commutation rela-

tions
[
âi, â

†

i′
]
= δ(si − si′ )δ(ki − ki′ ). In terms of âi and â†i , the

transverse Hamiltonian of the EM field can be represented
equivalently as

ĤR =
∑
~ωi

(
â†i âi +

1
2

)
. (7)

Note that Â and D̂⊥ are pure EM field operators in the PZW
representation.

Finally, within the Coulomb gauge, the electric and mag-
netic fields can be obtained from the vector potential

B̂(r) = ∇ × Â(r), (8)

Ê⊥(r) = −
∂

∂t
Â(r) = −

i
~

[
ĤR + ĤI, Â(r)

]
, (9)

recalling that ∇ ·Â(r) = 0 in the Coulomb gauge. The transverse
electric field is related to the displacement and the polariza-
tion by ε0Ê⊥(r) = D̂⊥(r)−P̂⊥(r). Thus, these physical observables
can also be expressed in terms of âi and â†i ,

B̂(r) = i
∑

i

Eiki × si
(
âieiki ·r − â†i e

−iki ·r
)
, (10)

Ê⊥(r) = i
∑

i

Eisi
(
âieiki ·r − â†i e

−iki ·r
)
−

1
ε0

P̂⊥(r). (11)

Here, we note that Ê⊥ is not a pure EM field operator in
the PZW representation. Instead, D̂⊥(r) is the pure EM field
operator, satisfying Eq. (6), as well as

D̂⊥(r) = −ε0
∂

∂t
Â(r) + P̂⊥(r). (12)

Before proceeding, for readers more familiar with QED
using the normal coupling by P̂ · Â Hamiltonian, a few more
words are appropriate regarding Eqs. (6), (9), (11), and (12).
Here, one may recall that, within the P̂ · Â Hamiltonian, the
operator on the right hand side of Eq. (6) is associated with
the transverse electric field ε0Ê⊥ (rather than D̂⊥).40 With this
apparent difference in mind, we stress that, when gaining
intuition for the PZW approach, one must never forget that
the assignment of mathematical operators for physical quan-
tities can depend strongly on the choice of representation and
Hamiltonian. Fortunately for us, in many cases one need not
always distinguish between Ê⊥ and D̂⊥ because the transverse
displacement and the electric field are the same up to a fac-
tor of ε0 (ε0Ê⊥ = D̂⊥) in regions of space far away from the
polarization of the subsystem [where P̂⊥(r) = 0].

B. Electric dipole Hamiltonian
In practice, for atomic problems, we often consider an

electronic system with a spatial distribution on the order
of a Bohr radius interacting with an EM field which has
a wavelength much larger than the size of the system. In
this case, we can exploit the long-wavelength approximation
and recover the standard electric dipole Hamiltonian (i.e., a
Göppert-Mayer transformation40)

ĤI ≈ −i
∑

i

Eid̂ · si
(
âi − â

†

i

)
. (13)

In this representation, the coupling between the atom and the
photon field is simple: one multiplies the dipole moment oper-
ator, d̂ =

∑
α qα r̂α , by the electric field evaluated at the origin

(where the atom is positioned). This bi-linear electric dipole
Hamiltonian is the usual starting point for studying quantum
optical effects, such as spontaneous emission.

C. Quantum theory of spontaneous emission
For a quantum electrodynamics description of sponta-

neous emission, we may consider a simple two-level system

Ĥs = ε0 |0〉〈0 | + ε1 |1〉〈1 |, (14)

which is coupled to the photon field. We assume ε0 < ε1 and
ε1 − ε0 = ~Ω. The electronic dipole moment operator takes the
form of

d̂ = µ01( |0〉〈1 | + |1〉〈0 |), (15)

where µ01 = 〈0 |
∑
α qα r̂α |1〉 is the transition dipole moment of

the two states. Using Eq. (13), with a dipolar approximation, the
coupling between the two level system and the photon field
can be expressed as

ĤI =
∑

i

Vi
(
âi − â

†

i

)
( |0〉〈1 | + |1〉〈0 |), (16)

where the matrix element is given by Vi = iEiµ01 · si. Let us
assume that the initial wavefunction for the two-level system
is ��ψ(0)

〉
= C0 |0〉+C1 |1〉 and the reduced density matrix element

is ρij(0) = CiC∗j .
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Based on the generalization of Weisskopf–Wigner the-
ory (see Appendix A), we can write down the excited state
population as

ρ11(t) = ρ11(0)e−κt, (17)

assuming that κ � Ω/2π. The coherence of the reduced
density matrix satisfies

��ρ01(t)�� = ��ρ01(0)��e−
κ
2 t, (18)

and the “impurity” of the reduced density matrix is

1 − η(t) = Trs
{
ρ̂(t) − ρ̂2(t)

}
= 2��ρ11(0)��2

(
e−κt − e−2κt

)
. (19)

Equation (19) gives a measure of how much the matter sys-
tem appears mixed as a result of interacting with the EM
environment.

The decay rate for a three-dimensional system is given by
the FGR rate41

κ3D =
��µ01

��2Ω3

3π~ε0c3
. (20)

Similarly, for an effectively one-dimensional system, we imag-
ine a uniform charge distribution in the yz plane and a delta
function in the x direction. The effective dipole moment in
1D is defined as µ2

01 =
��µ01

��2/LyLz. The decay rate for this
effectively 1D case is

κ1D =
µ2

01Ω

~ε0c
. (21)

Equations (20) and (21) are proven in Ref. 28, as well as in
Appendix A. Below, we will use κ to represent the FGR rate
for either κ3D or κ1D depending on context. Note that, in gen-
eral, Fermi’s golden rule is valid in the weak coupling limit
(κ � Ω), which is also called the FGR regime.

We assume that the initial condition of the photon field is
a vacuum, i.e., there are no photons at t = 0. For a given initial
state of the matter, ��ψ(0)

〉
= C0 |0〉+C1 |1〉, the expectation value

of the observed electric field for an effectively 1D system is
given by 〈

E⊥(x, t)
〉
= |C0 | |C1 | × R(x, t) sinΩ(t − |x |/c), (22)

where

R(x, t) =
Ωµ01

cε0
e−

κ
2 (t− |x|c ) × θ(ct − |x |). (23)

Note that R(x, t) contains an event horizon ( |x | < ct) for the
emitting radiation. The observed electric field represents the
coherent emission at the frequency Ω. In a coarse-grained

sense, since sin2
Ωt ≈ 1

2 , the coherent emission has a mag-
nitude given by

〈
E⊥(x, t)

〉2
= |C0 |

2
|C1 |

2
×
R(x, t)2

2
. (24)

We note that the coherent emission depends on the initial
population of the ground state |C0 |

2.

The expectation value of the intensity distribution can be
obtained as

〈
E2
⊥(x, t)

〉
= |C1 |

2
×
R(x, t)2

2
, (25)

which conserves the energy of the total system. Note that the

variance of the observed electric field (i.e., the fact that
〈
E2
⊥

〉
, 〈E⊥〉2) reflects a quantum mechanical feature of spontaneous
emission. For proofs of Eqs. (22)–(25), see Appendix A.

III. EHRENFEST DYNAMICS AS ANSATZ
FOR QUANTUM ELECTRODYNAMICS

Ehrenfest dynamics provides a semiclassical ansatz for
modeling QED based on a mean-field approximation together
with a classical EM field and a quantum matter field.28 In gen-
eral, a mean-field approximation should be valid when there
are no strong correlations among different subsystems. In this
section, we review the Ehrenfest approach for treating cou-
pled electron–radiation dynamics, specifically spontaneous
emission.

Within Ehrenfest dynamics, the electronic system is
described by the electronic reduced density matrix ρ̂(t), while
the EM fields, E(r, t) and B(r, t), are classical. As far as dynamics
are concerned, the electronic density matrix evolves accord-
ing to the Liouville equation,

∂

∂t
ρ̂(t) = −

i
~

[
Ĥel, ρ̂(t)

]
, (26)

where Ĥel = Ĥel(E,B) is a semiclassical Hamiltonian for the
quantum subsystem which depends only parametrically on
the EM fields. This semiclassical electronic Hamiltonian Ĥel in
Eq. (26) must approximate ĤP + ĤI in Eq. (1), and according to
Ehrenfest dynamics, we choose42

Ĥel = Ĥs −

∫
dvE⊥(r, t) · P̂(r). (27)

A. Ehrenfest dynamics
For the EM fields, dynamics are governed by Maxwell’s

equations
∂

∂t
B(r, t) = −∇ × E(r, t), (28)

∂

∂t
E(r, t) = c2

∇ × B(r, t) −
1
ε0

J(r, t), (29)

where the average current is generated by the average polar-
ization of the electronic system

J(r, t) =
∂

∂t
Trs

{
ρ̂(t)P̂(r)

}
≡
∂

∂t
P(r, t). (30)

Here we define the average polarization (without hat) P(r, t)
= Trs

{
ρ̂(t)P̂(r)

}
. Note that Eq. (29) suggests that the longitudi-

nal component of the classical electric field is

E‖ (r, t) = −
1
ε0

P‖ (r, t), (31)

and the transverse component satisfies

J. Chem. Phys. 150, 044102 (2019); doi: 10.1063/1.5057365 150, 044102-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

∂

∂t
E⊥(r, t) = c2

∇ × B(r, t) −
1
ε0

J⊥(r, t) (32)

with J⊥(r, t) = ∂
∂tP⊥(r, t).

The total energy of the electronic system and the classical
EM field is

Utot(ρ̂,E,B) = Trs
(
ρ̂(t)Ĥs

)
+
∫

dv
(
ε0

2
E⊥(r, t)2 +

1
2µ0

B(r, t)2
)
.

(33)

In Eq. (33), we have replaced all quantum mechanical opera-
tors for the EM field by their classical expectation values, i.e.,
∇× Â→ B and D̂→ D⊥ = ε0E⊥ +P⊥, where P⊥ = Trs

{
ρ̂ P̂⊥

}
. One

of the most important strengths of Ehrenfest dynamics is that
the total energy (Utot) is conserved (as can be shown easily).
Altogether, Ehrenfest dynamics is a self-consistent, computa-
tionally inexpensive approach for propagating the electronic
states and EM field dynamics simultaneously.

As a sidenote, we mention that, in Eqs. (1)–(4), we have
neglected a formally infinite self-interaction energy. If we
include such a term, we can argue that, for a single charge cen-
ter, one can write a slightly different electronic Hamiltonian
[instead of Eq. (27)], namely,26,43

Ĥel = Ĥs −

∫
dvE(r, t) · P̂(r). (34)

All numerical results presented below are nearly identi-
cal using either Eq. (27) or Eq. (34) for a semiclassical
Hamiltonian.

B. Drawbacks of Ehrenfest dynamics:
Spontaneous emission

For the purposes of this paper, it will now be fruitful to
discuss spontaneous emission in more detail within the con-
text of Ehrenfest dynamics. In the FGR regime, if we approxi-
mate the transition dipole moment of the two level system to
be a delta function at the origin and consider again the case
of no electric field at time zero, we can show that the elec-
tric dipole coupling within Ehrenfest dynamics satisfies the
relationship

Hel
01 = −~κImρ01 (35)

for both 1D and 3D systems. For a 1D system, this relation
was derived previously in Ref. 28. For a 3D system, this rela-
tion can be derived using Jefimenko’s equation for classical
electrodynamics with a current source given by Eq. (30) (see
Appendix B).

With Eq. (35), we can convert the Liouville equation
[Eq. (26)] for Ehrenfest dynamics into a set of self-consistent,
non-linear equations of motion for the electronic subsystem.

To be precise, let Ĥel =

(
0 Hel

01
Hel

10 Ω

)
and substitute Eq. (35) for

Hel
01 = Hel

10. Now, the commutator in Eq. (26) yields

∂ρ11

∂t
= −2κ(Imρ01)

2, (36)

∂ρ01

∂t
= iΩρ01 + iκImρ01(ρ11 − ρ00). (37)

In the FGR regime, because κ � Ω, we can approximate the
coherence ρ01 ≈ |ρ01 |eiΩt for a time τ satisfying 2π/Ω � τ

� 1/κ so that (Imρ01)
2
≈ |ρ01 |

2 sin2
Ωt. We may then define

an instantaneous decay rate kEh(t) for ρ11, satisfying ∂
∂tρ11

= −kEh(t)ρ11, where

kEh(t) = 2κ
|ρ01 |

2

ρ11
sin2
Ωt, (38)

so long as ρ11 , 0. (Note that kEh = 0, if ρ11 = 0.) Note also that ρ11
does not change much within the time scale τ. To monitor the
population decay in a coarse-grained sense, we can perform
a moving average over τ and denote the average decay rate
as

kEh(t) =
1
τ

∫ t+τ

t
dt′kEh(t′) = κ

|ρ01 |
2

ρ11
. (39)

Here we have used sin2
Ωt ≈ 1

2 .

This analysis quantifies Ehrenfest’s failure to capture
spontaneous emission: Eq. (39) demonstrates that Ehrenfest
dynamics yields a non-exponential decay and, when ρ00 = 0,
Ehrenfest dynamics does not predict any spontaneous emis-
sion. Interestingly, the Ehrenfest decay rate ends up being
the correct spontaneous emission rate multiplied by the lower
state population at time t.

Now we turn our attention to the coherence of the den-
sity matrix |ρ01 |. From Eq. (37), we can evaluate the change of
the coherence

∂

∂t
|ρ01 |

2 = −2κ(Imρ01)
2(ρ00 − ρ11). (40)

In analogy to our approach above for FGR dynamics, we
can define an instantaneous “dephasing” rate, γEh(t) for |ρ01 |,
satisfying ∂

∂t |ρ01 | = −γEh(t) |ρ01 |, where

γEh(t) = κ(ρ00 − ρ11) sin2
Ωt, (41)

so long as ρ01 , 0. (Note that γEh = 0, if ρ01 = 0.) We can now
perform a moving average over τ and denote the average rate
in a coarse-grained sense

γEh(t) =
1
τ

∫ t+τ

t
dt′γEh(t) =

κ

2
(ρ00 − ρ11). (42)

Apparently, the average dephasing rate [Eq. (42)] is propor-
tional to the instantaneous population difference (ρ00 − ρ11) of
the system. Note that this Ehrenfest “dephasing” rate can be
negative such that the value of |ρ01 | can grow exponentially
with time. This analysis leads to another drawback of Ehren-
fest dynamics: for the case of an isolated two-level system
interacting with a vacuum EM field, when ρ00 < ρ11, there is
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an unphysical increase of the coherence ( |ρ01 |) with respect to
time. This increase does not agree with Eq. (18).

Regarding the purity of the reduced density matrix, one
can easily show that the purity is conserved within Ehrenfest
dynamics, i.e.,

∂

∂t
Tr

{
ρ2

}
= 0. (43)

If we consider a system initialized to be in a pure state,
the density matrix will stay as a pure state within Ehrenfest
dynamics, i.e., |ρ01 |

2 = ρ00ρ11, and we find Eq. (39) can be
written as

kEh(t) = κρ00. (44)

This Ehrenfest purity conservation does not agree with
Eq. (19).

IV. EHRENFEST+R METHOD
Given the failure of Ehrenfest dynamics to capture spon-

taneous emission fully as described above, we now propose
an ad hoc Ehrenfest+R method for ensuring that the dynam-
ics of the quantum subsystem in a vacuum do agree with FGR
decay. Our approach is straightforward: we will enforce an
additional relaxation pathway on top of Ehrenfest dynamics
such that the total Ehrenfest+R emission should agree with the
true spontaneous decay rate. We will benchmark this Ehren-
fest+R approach in the context of a two-level system in 1D
or 3D space. Note that the classical radiation field is at zero
temperature, so we may exclude all thermal transitions from
|0〉 to |1〉. We begin by motivating our choice of an ad hoc
algorithm. In Sec. IV C, we provide a step-by-step outline
so that the reader can easily reproduce our algorithm and
data.

A. The quantum subsystem
1. Liouville equation

As far as the quantum subsystem is concerned, in order
to recover the FGR rate of the population in the excited state
and the correct dephasing rate, we will include an additional
relaxation (“+R”) term on top of the Liouville equation,

∂ρ̂

∂t
=

̂̂LEhρ̂ + ̂̂LRρ̂, (45)

where the super-operator

̂̂LEhρ̂ = −
i
~

[
Ĥel, ρ̂

]
(46)

accounts for Ehrenfest dynamics [Eq. (26)] and the super-

operator
̂̂LR enforces relaxation. For a relaxation pathway

from state a to state b, the super-operator affects only ρij
for i, j ∈

{
a, b

}
. We choose the diagonal elements of the

super-operator to be
[̂̂LRρ̂

]

aa
= −

[̂̂LRρ̂
]

bb
= −kRρaa, (47)

and the off-diagonal elements to be

[̂̂LRρ̂
]

ab
=

[̂̂LRρ̂
]∗
ba
= −γRρab. (48)

Specifically, for a two level system, the super-operator can be
written as

̂̂LRρ̂ = *
,

+kRρ11 −γRρ01

−γRρ10 −kRρ11

+
-
. (49)

The +R relaxation rate in Eq. (49) is chosen as

kR ≡ 2κ*
,
1 −
|ρ01 |

2

ρ11
+
-
Im

[
ρ01

|ρ01 |
eiφ

]2

, (50)

where κ is the FGR rate (kR = 0, if ρ11 = 0). Equation (50) is simi-
lar to Eq. (38) but with an arbitrary phase φ ∈ (0, 2π). Averaging
over a time scale τ [defined in Eq. (39)], we find

kR = κ*
,
1 −
|ρ01 |

2

ρ11
+
-
. (51)

Thus, the average total population decay rate predicted by
Eq. (45) is

κ = kEh + kR. (52)

In other words, Eqs. (45)–(50) should recover the true FGR rate
of the excited state decay by correcting Ehrenfest dynamics.

The +R dephasing rate γR in Eq. (49) is chosen to be

γR ≡
κ

2
(1 − ρ00 + ρ11). (53)

Together with the dephasing rate of Ehrenfest dynamics γEh
given in Eq. (42), the total dephasing rate of Eq. (45) is

κ

2
= γEh + γR. (54)

Note that γR is always positive. The additional dephasing
should eliminate the unphysical increase of |ρ01 | within Ehren-
fest dynamics and recover the correct result for spontaneous
emission.

The phase φ in Eq. (50) can be chosen arbitrarily without
affecting the total decay rate in a coarse-grained sense (i.e., if
we perform a moving average over τ). In what follows, we will
run multiple trajectories (indexed by ` ∈ Ntraj) with φ` being
chosen randomly. The choice of a random φ` allows us effec-
tively to introduce decoherence within the EM field so that we
may represent the time/phase uncertainty of the emitted light
as an ensemble of classical fields. Each individual trajectory
still carries a pure electronic wavefunction. Note that a ran-
dom phase does not affect the FGR decay rate of the quantum
subsystem.

Before finishing up this subsection, a few words are now
appropriate about how Ehrenfest+R dynamics are different
from the more standard Maxwell–Bloch equations, whereby
one introduces phenomenological damping of the electronic
density matrix. (Indeed, this will be a topic of future discussion
for another paper.44) Within such a comparison, we note that,
when solving the Maxwell–Bloch equations for the electronic
subsystem, one must take great care to separate the effects
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of incoming EM fields from the effect of self-interaction. Such
a separation is required to avoid double counting of all elec-
tronic relaxation, and several techniques have been proposed
over the years.45–47 Furthermore, once such a separation has
been achieved, one must construct a robust algorithm to
transfer all energy lost by electronic relaxation into energy of
the EM field. By contrast, for the case of Ehrenfest+R dynam-
ics, we do not require any separation between incoming EM
and self-interaction EM fields, and we avoid double count-
ing by insisting that the +R relaxation rate must itself depend
on the population on the upper state—though this leads to
nonlinear matrix elements; see Eqs. (50) and (53). Energy
conservation can be achieved by properly rescaling the EM
fields.

In the end, in seeking to capture light–matter interactions
and fluorescence correctly, the Ehrenfest+R approach elimi-
nates one problem (the separation of self-interacting fields)
but creates another problem (solving nonlinear Schrodinger
equations). Now, from our perspective, given the subtle prob-
lems that inevitably arise with any quantum–classical algo-
rithm,48 the usefulness of a semiclassical electrodynam-
ics approach (including Ehrenfest+R dynamics) can only be
assessed by rigorously benchmarking the algorithm over a
host of different model problems. And so, in Paper I and
Paper II,49 we will perform such benchmarks. Furthermore,
in Ref. 44, we make direct comparisons to more standard
Maxwell–Bloch approaches (where we also discuss energy
conservation at length).

2. Practical implementation
Formally, for an infinitesimal time step dt, the electronic

density matrix can be evolved with a two-step propagation
scheme

ρ̂(t + dt) = e
̂̂LRdte

̂̂LEhdtρ̂(t). (55)

Here, the propagator

e
̂̂LEhdtρ̂ ≡ eiĤ

eldt/~ρ̂e−iĤ
eldt/~ (56)

carries out standard propagation of the Liouville equation with
the electronic Hamiltonian given by Eq. (27). The propagator

e
̂̂LRdtρ̂ ≡ *

,

1 − e−kRdtρ11 e−γRdtρ01

e−γRdtρ10 e−kRdtρ11

+
-

(57)

implements the additional +R relaxation from Eq. (49) with a
population relaxation rate kR given by Eq. (50) and a dephasing
rate γR given by Eq. (53).

In practice, we will work below with the wavefunction |ψ〉,
rather than the density matrix ρ̂ = |ψ〉〈ψ |. For each time step
dt, the wavefunction is evolved with a two-step propagation
scheme

��ψ(t + dt)
〉
= eiΦ̂[γR]T̂0←1[kR] · e−iĤ

eldt/~��ψ(t)
〉
. (58)

The operator e−iĤ
eldt/~ carries out standard propagation of

the Schrödinger equation with the electronic Hamiltonian
given by Eq. (27). The quantum transition operator T̂0←1[kR]

implements the additional +R population relaxation from
Eqs. (49), (50), and (53). Explicitly, the transition operator is
defined by

*
,

c′0
c′1

+
-
= T̂0←1[kR]*

,

c0

c1

+
-
, (59)

where

c′1 = c1e−kRdt/2 ≈
c1

|c1 |

√
|c1 |

2 − kR |c1 |
2dt (60)

and if |c0 | , 0,

c′0 = c0

√
1 +
|c1 |

2

|c0 |
2

(
1 − e−kRdt

)
≈

c0

|c0 |

√
|c0 |

2 + kR |c1 |
2dt. (61)

Note that if the subsystem happens to begin purely on
the excited state (i.e., ρ̂ = |1〉〈1 | or |c0 | = 0), there is an unde-
termined phase in the wavefunction representation. In other
words, we can write say |ψ〉 = eiθ |1〉 and choose θ randomly. In
this case, the transition operator is defined as

c′1 = eiθe−κdt/2 ≈ eiθ
√

1 − κdt, (62)

c′0 =
√

1 − e−κdt ≈
√
κdt. (63)

As emphasized in Ref. 28 and Sec. III, for these initial condi-
tions, kEh = 0 and kR = κ so that the +R relaxation must account
for all of the required spontaneous decay.

Finally, we introduce a stochastic random phase operator
defined by

eiΦ̂[γR] =




*
,

eiΦ0 0

0 eiΦ1
+
-

if RN < γRdt

1̂ otherwise,

(64)

where RN ∈ [0, 1] is a random number and Φ0,Φ1 ∈ [0, 2π]
are random phases chosen at every time step. This stochas-
tic random phase operator enforces the additional dephasing
γR. That is, within time interval dt, one reduces the ensemble
average coherence

〈
c′0c

′∗
1

〉
by an amount of

〈
c′0c

′∗
1

〉
×γRdt—even

though each individual trajectory still carries a pure wavefunc-
tion. Put differently, the average coherence decays following
inhomogeneous Poisson processes with instantaneous decay
rate γR. In practice, as shown in Paper II,49 it would appear
much more robust to set Φ1 = 0 and give a nonzero phase only
to the ground state (Φ0 , 0).

3. Energy conservation
While Ehrenfest dynamics conserves the total energy of

the quantum subsystem together with the EM field, our pro-
posed extra +R relaxation changes the energy of the quantum
subsystem Us = Tr

{
ρ̂Ĥs

}
by an additional amount (relative to

Ehrenfest dynamics)
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∂UEh+R
s

∂t
−
∂UEh

s

∂t
= Tr

{
Ĥs

(̂̂LEh + ̂̂LR

)
ρ̂
}
− Tr

{
Ĥs

̂̂LEhρ̂
}

= −ΩkRρ11. (65)

Thus, during a time step dt, the change in energy for the
radiation field is

δUR = ΩkRρ11dt. (66)

For the Ehrenfest+R approach to enforce the energy conser-
vation, this energy loss must flow into the EM field in the form
of light emission. In other words, we must rescale the E and B
fields.

B. The classical EM fields
At every time step, with the +R correction of the quantum

wavefunction, we will rescale the Ehrenfest EM field (EEh and
BEh) for each trajectory (`) as follows:

E`Eh+R = E`Eh + α`δER, (67)

B`Eh+R = B`Eh + β`δBR, (68)

or, in matrix notation,

*
,

E`Eh+R

B`Eh+R

+
-
=R

[
δU`R

]*
,

E`Eh
B`Eh

+
-
. (69)

Here, the coefficients α` and β` depend on the random phase
φ` from Sec. IV A. In choosing the rescaling function R

[
δU`R

]
,

there are several requirements

(a) δER and δBR must be transverse fields.
(b) Since the +R correction enforces the FGR rate, it is

crucial that the rescaled EM field does not interfere
with propagating the quantum subsystem. Therefore,
the spatial distribution of δER and δBR must be located
outside of the polarization distribution. In other words,
∫ dvP̂ · δER ≈ 0, ensuring the electronic Hamiltonian,
Eq. (27), does not change much after we rescale the
classical EM field.

(c) The magnitude of βδBR must be equal to 1/c times the
magnitude of αδER for all r in space so that the emission
light propagates only in one direction.

(d) The directional energy flow must be outward, i.e., the
Poynting vector, S = 1

µ0
EEh+R×BEh+R must have S(r) · r̂ > 0

for all r (assuming the light is emanating from the origin).
(e) On average, we must have energy conservation, i.e., the

energy increase of the classical EM field must be equal
to the energy loss of the quantum subsystem described
in Eq. (66).

Unfortunately, it is very difficult to satisfy all of these require-
ments concurrently, especially (c), (d), and (e). Nevertheless,
we will make an ansatz below which we believe will be robust.

Given a polarization distribution P, the rescaling func-
tions for our ansatz are picked to be of the form

δER = ∇ × ∇ × P − gP⊥, (70)

δBR = −∇ × P − h(∇×)3P, (71)

where g and h are chosen to best accommodate requirements
(b)–(d). Note that Eqs. (70) and (71) are both transverse fields.
Equations (70) and (71) arise naturally by iterating Maxwell’s
equations to low order. Since the average current has the same
spatial distribution as P, the E field derived from Maxwell’s
equations must be a linear combination of P and even order
derivatives of P. Conversely, the B field must a linear combi-
nation of the odd derivatives of P.50 In 3D space, we simply
choose g = h = 0, but the dynamics in 1D are more complicated.
(In Appendix C, we show numerically that ∇ × ∇ × P and −∇
× P are good directions of the emanated E and B fields in 3D.
For a 1D geometry, we choose g and h to minimize the spatial
overlap of both δER ·P and δBR ·P. See Appendix C.)

For a Ehrenfest+R trajectory (labeled by `), the parameters
α` and β` are chosen to be

α
` =

√√
cdt
Λ

δU`R
ε0 ∫ dv |δER |

2
× sgn

(
Im

[
ρ01eiφ

` ] )
, (72)

β
` =

√√
cdt
Λ

µ0δU`R
∫ dv |δBR |

2
× sgn

(
Im

[
ρ01eiφ

` ] )
, (73)

where Λ is the self-interference length determined by

Λ =
2π2���δẼR(0)���

2

∫ dx |δER |
2

+
2π2���δB̃R(0)���

2

∫ dx |δBR |
2

. (74)

Here, δẼR and δB̃R are the Fourier components of the rescaling
fields δER and δBR. For P in the form of a Gaussian distribu-
tion (e.g., |P | ∼ e−ax

2
in a 1D system), we find that the self-

interference length is always Λ1D = 2
3

√
2π
a . By construction,

Eqs. (72) and (73) should conserve energy only on average, i.e.,
an individual trajectory with a random phase φ` may not con-
serve energy, but the ensemble energy should satisfy energy
conservation (see Appendix D).

C. Step-by-step algorithm of the Ehrenfest+R method
Here we give a detailed step-by-step outline of the Ehren-

fest+R method. For now, we restrict ourselves to the case of
two electronic states. Given a polarization P(r) between the
electronic states, before starting an Ehrenfest+R trajectory,
we precompute the FGR rate κ [Eq. (20) or Eq. (21)] and a
self-interference length Λ (see Appendix D). At this point, for
simulating spontaneous emission in a vacuum, we can initial-
ize an Ehrenfest+R trajectory with E` (r, 0) = B` (r, 0) = 0 for all
r with a random phase φ` . For time step dt,

1. Propagate the wavefunction by ��ψEh(t + dt)
〉
= e−iĤ

eldt/~��ψ(t)
〉

and the EM field by Maxwell equations, Eqs. (28) and (29).
Here, we denote the EM field as E`Eh(t + dt) and B`Eh(t + dt),
and Ĥel is defined by Eq. (27).

2. Calculate the +R relaxation rate k`R [Eq. (50)], the +R
dephasing rate γ`R [Eq. (53)], and energy change δU`R
[Eq. (66)].
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3. Apply the transition operator ��ψ(t + dt)
〉

= T̂0←1
[
k`R,γ`R

]
|ψEh(t + dt)

〉
[Eq. (59)]. Draw a random num-

ber r ∈ (0, 1). If r < γ`Rdt, draw another two random

numbers Φ0,Φ1 ∈ (0, 2π) and apply eiΦ[γ`R].
4. Calculate α` and β` according to Eqs. (72) and

(73) and then rescale the EM field by
(
E` (t + dt)
B` (t + dt)

)
=R

[
δU`R

] (E`Eh(t + dt)
B`Eh(t + dt)

)
according to Eqs. (67)–(69).

5. Apply absorbing boundary conditions if the classical EM
field reaches the end of the spatial grid.

V. RESULTS: SPONTANEOUS EMISSION
As a test for our proposed Ehrenfest+R ansatz, we study

spontaneous emission of a two-level system in a vacuum for 1D
and 3D systems. We assume the system lies in the FGR regime
and the polarization distribution is relatively small in space so
that the long-wavelength approximation is valid. For a two-
level system with energy difference ε1 − ε0 = ~Ω, we consider
two types of initial conditions ��ψ(0)

〉
with distinct behaviors as

follows:

(1) A superposition state with a fixed relative phase, i.e.,
��ψ(0)

〉
= C0 |0〉 + C1 |1〉, where |C0 |

2 + |C1 |
2 = 1 and |C0 | , 0,

|C1 | , 1:
• The upper state population ρ11(t) should decay

according to the FGR rate κ, and the coherence
��ρ01(t)�� should decay at the dephasing rate κ

2 .
• According to Eqs. (22)–(25), the electric field 〈E〉

should exhibit coherent emission at frequencyΩ.
• The averaged intensity

〈
E2

〉
should not equal the

coherent emission 〈E〉2, i.e.,
〈
E2

〉
− 〈E〉2 , 0.

(2) A pure state with a random phase, i.e., ρ̂(0) = |1〉〈1 |,
which corresponds to ��ψ(0)

〉
= eiθ |1〉, where θ is a random

phase:
• The upper state population ρ11(t) should still

decay according to the FGR rate, and the coher-
ence ��ρ01(t)�� must remain zero.

• The electric field of each individual trajectory
should oscillate at frequency Ω, but the phases
of different trajectories should cancel out so
that the ensemble average of the electric field
becomes zero, i.e., 〈E〉 = 0.

• The averaged intensity should not vanish, i.e.,〈
E2

〉
, 0.

Model problems (1) and (2) capture key features when simulat-
ing spontaneous emission and can be considered critical tests
for the proposed Ehrenfest+R approach. The parameters for
our simulation are as follows. The energy difference of the two
levels system is ~Ω = 16.46 eV. The transition dipole moment is
µ01 = 11 282 (C/nm)/mol.

For a 1D geometry, we consider a polarization distribution
of the form

P1D(x) = µ01

√
a
π
e−ax

2
ẑ, (75)

with a = 1/2σ2 andσ = 3.0 nm. According to Eq. (75), the polar-
ization is in the z direction varying along the x direction. For
this polarization, the self-interference length is Λ1D ≈ 7.0 nm.

(As a reminder, Λ1D = 2
3

√
2π
a = 2.363σ.) We use the rescaling

function derived in Appendix C,

δE1D
R (x) = −µ01

√
a
π

4a2x2e−ax
2
ẑ, (76)

δB1D
R (x) = µ01

√
a
π

4
3
a2x3e−ax

2
ŷ. (77)

For a 3D geometry, we again assume the polarization is
only in the z direction, now of the form

P3D(r) = ẑµ01
2a3/2

π3/2
e−ar

2
, (78)

where we use the same parameters for a and µ01 as for the 1D
geometry. The rescaling field in 3D is chosen to be

δE3D
R (r) = ∇ × ∇ × P3D(r), (79)

FIG. 1. (a) Population of the excited state as a function of time. The black dashed
line indicates the FGR decay (e−κ t ). The red solid line is the standard Ehrenfest
dynamics, and the red dashed line is an exponential fit of the data. The blue solid
line is Ehrenfest+R dynamics. (b) Coherence of the reduced density matrix as a
function of time. The black dashed line indicates a decay at the true dephasing
rate (e−κ t /2). The red solid line is the standard Ehrenfest dynamics, and the blue
solid line is Ehrenfest+R dynamics. (c) Impurity of the reduced density matrix as a
function of time. The black dashed line is the correct QED theoretical result given
by Eq. (19). The blue solid line is Ehrenfest+R dynamics. Note that the electronic
state remain in a pure state (1−Tr

{
ρ2

}
= 0 for all time) within the standard Ehren-

fest dynamics (red solid line). (d) Energy as a function of time. The average energy
of the two-level system is plotted in blue lines, and the average energy of the EM
field is plotted in green lines. The dim lines are data from individual trajectories. The
solid black line is the average total energy (which is effectively a constant). The ini-

tial state is |ψ〉 =
√

1
2 |0〉+

√
1
2 |1〉 for all panels. The Ehrenfest+R dynamics data

are averaged over Ntraj = 200 trajectories.
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δB3D
R (r) = −∇ × P3D(r). (80)

The self-interference length can be obtained numerically as
Λ3D ≈ 0.6 nm.51

Our simulation is propagated using Cartesian coordinates
with dx = 0.1 for 1D and dx = dy = dz = 0.3 nm for 3D. The
time step is dt = 10−3 fs. Without loss of generality, the random
phase φ` for Ehrenfest+R trajectories is chosen from an evenly
space distribution, i.e., φ` = 2πj/Ntraj for j = 1, . . ., Ntraj.

A. Spontaneous decay rate
Our first focus is an initially coherent state with ρ00(0)

= ρ11(0) = 0.5. We plot the upper state population and the
decay rate of a 1D system (e−κ t) in Fig. 1(a). As shown in Ref. 28
and summarized in Sec. III above, standard Ehrenfest dynam-
ics does not agree with the FGR decay and cannot be fit to an
exponential decay. With Ehrenfest+R dynamics, however, we
can quantitatively correct the errors of Ehrenfest dynamics
and recover the full spontaneous decay rate accurately. Fur-
thermore, in Fig. 1(b), we plot the coherence |ρ01 | of the 1D
system. At early times where the system is not far from the
initial state (ρ00 ≈ ρ11 ≈ 0.5), we find that the coherence of
Ehrenfest dynamics remain a constant of time, i.e., γEh = 0 as
Eq. (42) suggested. By contrast, Ehrenfest+R dynamics recover
the correct dephasing rate (≈e−κ t/2). Finally, with an accurate
evaluation of the population and coherence, it is not surpris-
ing that Ehrenfest+R recovers the correct impurity (1−Tr

{
ρ2

}
)

in Fig. 1(c).

FIG. 2. Spontaneous decay rates extracted from excited state population dynamics
for different initial states. As a function of the initial ground state population ρ00,
we plot the exponential decay rates for both the standard Ehrenfest method (red)
and the Ehrenfest+R method (blue). The black dashed line indicates the FGR rate.
Note that, for all cases, Ehrenfest+R dynamics recover the true FGR spontaneous
emission rate.

It is important to note that the FGR rate is not modi-
fied by the EM field rescaling procedure: every Ehrenfest+R
trajectory is modified in accordance with the same FGR rate.
To visualize these trajectories, in Fig. 1(d) (see the dim blue
lines), we plot the energy of the two level system as a func-
tion of time for every trajectory, which effectively reports on
the upper state population dynamics for each trajectory. All
population dynamics are mostly overlapping with each other
because the FGR rate is the same for each individual trajec-
tory. Regarding energy conservation, even though individual
Ehrenfest+R trajectories do not conserve energy (the emitted
EM energy fluctuates and is not equal to the corresponding
quantum energy loss), the rate of energy loss for the quantum

FIG. 3. The electric field produced for spontaneous emission as a function of x at t = 100 fs. The initial population on the excited state is ρ11(0) = 0.5 for (a) and (d),
ρ11(0) = 0.9 for (b) and (e), and ρ11(0) = 1 for (c) and (f). Left panels are the electric field in the z direction 〈Ez〉 in units of µ01Ω/ε 0c, where the black dashed lines
are the theoretical results [see Eq. (22)]. The solid lines are calculated by standard Ehrenfest (red) and by Ehrenfest+R (cyan) dynamics. Right panels are the intensity
(
〈
E2
z

〉
) and the magnitude of the coherent emission (〈Ez〉

2) in units of (µ01Ω/ε0c)2, where the black dashed lines are Eqs. (24) and (25). On the right panels, we perform

a moving average over cτ = 720 nm (10 oscillations) to show the coarse-grained behavior. The solid lines are
〈
E2
z

〉
= 〈Ez〉

2 calculated by standard Ehrenfest dynamics

(red),
〈
E2
z

〉
(blue), and 〈Ez〉

2 (cyan) calculated by the Ehrenfest+R approach. The event horizon can be observed at x = ct = 30 000 nm. Ntraj = 200. Note that Ehrenfest+R
recovers all observables quantitatively, whereas Ehrenfest dynamics are accurate only when ρ11(0) � 1. Note also that Ehrenfest dynamics predicts no emission when
ρ00(0) = 0 (f).
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system is roughly the same for every trajectory because there
is only a single FGR decay time scale. As a result, an ensemble
of trajectories does converse energy on average [see the black
line in Fig. 1(d)].

In Fig. 2, for all initial conditions, we plot decay rates
extracted from excited state population dynamics for a short
time (t < 10 fs). As shown in Eq. (44), the Ehrenfest decay
rate is proportional to the lower state population. However,
even though Ehrenfest dynamics fails to predict the correct
decay rate as a function of initial condition, the decay rate
extracted from Ehrenfest+R dynamics agrees very well with
the FGR decay rate for all initial conditions. Note that, for the
extreme case ρ00(0) = 0, Ehrenfest dynamics does not predict
any population decay.

B. Emission fields in 1D
We now turn our attention to the coherent emission

and the intensity of the EM field. We start by considering a
1D geometry. According to Eq. (22), for a given time t, the
electric field of spontaneous emission can be expressed as
a function of x and shows oscillatory behavior proportional
to sinΩ(t − |x |/c) for short times. Also, an event horizon is
observed at |x | = ct, i.e., no electric field should be observed
for |x | > ct because of causality.

We find that the electric field obtained by an individ-
ual Ehrenfest+R trajectory shows the correct oscillations at
frequency Ω with an additional phase shift. For an initially
coherent state, the ensemble average of Ehrenfest+R trajec-
tories agrees with Eq. (22) very well [see Figs. 3(a) and 3(b)
for two cases with different initial conditions]. When the ini-
tial state is exclusively the excited state, the ensemble average
of Ehrenfest+R trajectories vanishes by phase cancellation and
we recover 〈E〉 = 0 [see Fig. 3(c)].

Now we compare the emission intensity
〈
E2

〉
and the

magnitude of the coherent emission 〈E〉2. On the right pan-
els of Fig. 3, we plot the coarse-grained behavior of Ehren-
fest+R trajectories. We show that Ehrenfest+R can accurately

recover the spatial distribution of both
〈
E2

〉
and 〈E〉2, as well

as the event horizon. Note that in Fig. 3, the electric field
and the intensity at large x correspond to emission at ear-
lier times. If we start with a coherent initial state, the rel-

ative proportion of coherent emission is given by 〈E〉2/
〈
E2

〉
= ρ00(0), see Eqs. (22) and (24). For ρ11(0) = 0.5, the coher-
ent emission is responsible for 50% of the total energy emis-
sion at early times (x ∼ ct = 3 × 104 nm), and the coher-
ent emission dominates later (x ∼ 0). Obviously, if we begin
with a wavefunction prepared exclusively on the excited
state, there is no coherent emission due to phase cancel-
lation among Ehrenfest+R trajectories. In the end, using an
ensemble of trajectories with random phases φ` , Ehrenfest+R
is effectively able to introduce some quantum decoherence

among the classical trajectories and can recover both
〈
E2

〉
and〈

E2
〉
.

This behavior of Ehrenfest+R dynamics should be con-
trasted with the behavior of standard Ehrenfest dynamics,
where we run only one trajectory and we observe only coher-
ent emission with

〈
E2

〉
= 〈E〉2. Although the coherent emission

obtained by standard Ehrenfest dynamics is close to the quan-
tum result when ρ11(0) is small [see Fig. 3(a)], the magnitude of
the coherent emission is incorrect in general. The electric field
does oscillate at the correct frequency.

C. Emission fields in 3D
For a 3D geometry, for reasons of computational cost, we

propagate the dynamics of spontaneous emission for short-
times only (t < 1.0 fs). Our results are similar to the 1D case
and are plotted in Fig. 4. For a coherent initial state [Figs. 4(a)
and 4(c)], each Ehrenfest+R trajectory yields an electric field
and EM intensity oscillating at frequency Ω, and these features
are retained by the ensemble average. For the case of dynam-
ics initiated from the excited state only [Figs. 4(b) and 4(d)],
each trajectory still oscillates at frequency Ω, but the average
electric field is actually zero (〈E〉 = 0).

In Fig. 4, we also compare our results versus the well-
known classical Poynting flux of electric dipole radiation. In

FIG. 4. Spontaneous emission intensity calculated by Ehrenfest+R dynamics as
a function of radius r at t = 1.0 fs for the initial population (a) ρ11 = 0.5 and (b)
ρ11 = 1.0. The polar angle is θ = π

2 , and the intensity is plotted in units of
µ0Ω

4µ2
01/32π2c2. The right panels [(c) and (d)] are the corresponding spec-

trum of the electric field in the z direction and the total intensity. The dim blue
lines are data from individual trajectories, and the solid circles are the average
data of ��

〈
Ez(ω)

〉��2 (colored cyan) and
〈��Ez(ω)��2

〉
(colored blue). Note that, in

(d), there is a phase cancellation and, even though all EM fields have non-zero
Fourier transform components around ω = Ω, the net average EM field is zero.
The black dashed line is the theoretical energy flux. The self-interference length is
Λ3D ≈ 0.6 nm.
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Fig. 4(a), our reference is

I(r, t) =
µ0

c2

Ω4µ2
01

16π2

sin2 θ

r2
sin2
Ω

(
t −

r
c

)
, (81)

and, in Fig. 4(b), our reference is the mean electromagnetic
energy flux

I(r) =
µ0

c2

Ω4µ2
01

32π2

sin2 θ

r2
. (82)

In general, Ehrenfest+R dynamics yields a similar distribution
to the classical dipole radiation. When initiated from a coher-
ent state, both methods behave as sin2

Ω
(
t − r

c

)
; when initiated

from the excited state, the Ehrenfest+R method shows 1/r2

dependence for
〈
E2

〉
, while Ehrenfest dynamics does not yield

any emission (not shown in the plot). However, we note that
the intensity of the Ehrenfest+R results is slightly larger than
that of classical dipole radiation. This difference is attributed
to the fact that the classical dipole radiation includes only
coherent emission, which is captured by standard Ehrenfest
dynamics. By contrast, Ehrenfest+R dynamics can also yield
the so-called incoherent emission (

〈
E2

〉
− 〈E〉2 , 0), which

is effectively a quantum mechanical feature with no classical
analogue.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed a heuristic, new semiclas-

sical approach to quantum electrodynamics, based on Ehren-
fest dynamics and designed to capture spontaneous emission
correctly. Our ansatz is to enforce extra electronic relaxation
while also rescaling the EM field in the direction δER = ∇ × ∇
× P and δBR = −∇ × P. Our results suggest that this Ehren-
fest+R approach can indeed recover the correct FGR decay
rate for a two-level system. More importantly, both inten-
sity and coherent emission can be accurately captured by
Ehrenfest+R dynamics, where an ensemble of classical trajec-
tories effectively simulates the statistical variations of a quan-
tum electrodynamical field. Obviously, our approach here is
not unique; a more standard approach would be to explic-
itly model the EM vacuum fluctuations with a set of harmonic
oscillators. Nevertheless, by avoiding the inclusion of high fre-
quency oscillator modes, our ansatz eliminates any possibility
of artificial zero point energy loss or other anomalies from
quasi-classical dynamics.52,53

As far as computational cost is concerned, one Ehren-
fest+R trajectory costs roughly the same amount as one stan-
dard Ehrenfest trajectory, and all dynamics are numerically
stable. Implementation of Ehrenfest+R dynamics is easy to
parallelize and incorporate within sophisticated numerical
packages for classical electromagnetics [e.g., finite-difference
time-domain (FDTD)54].

Given the promising results presented above for Ehren-
fest+R, we can foresee many interesting applications. First, we
would like to include nuclear degrees of freedom within the
quantum subsystem to explicitly address the role of dephasing
in spontaneous and stimulated emission. Second, we would
like to study more than two states. For instance, a three-level

system with an incoming EM field can be employed for study-
ing inelastic light scattering processes, such as Raman spec-
troscopy. This will be the focus of Paper II.49 Third, we would
also like to model multiple spatial separated quantum emitters,
such as resonance energy transfer.

At the same time, many following questions remain and
need to be addressed:

1. The current prescription for the Ehrenfest+R approach is
fundamentally based on enforcing the FGR rate. However,
in many physical situations, such as molecules in a res-
onant cavity or near a metal surface, the decay rate of
the quantum subsystem can be modified by interactions
with environmental degrees of freedom. How should we
modify the Ehrenfest+R approach to account for each
environment?

2. For a quantum subsystem interacting with a strong
incoming field, including the well-known Mollow triplet
phenomenon55 and other multi-photon processes, EM
field quantization can lead to complicated emission spec-
tra involving frequencies best described with dressed
states. Can these effectively quantum features be cap-
tured by Ehrenfest+R dynamics?

3. Finally, and most importantly, it remains to test how
the approach presented here behaves when there
are many quantum subsystems interacting, leading to
coherent effects (i.e., plasmonic excitations). Can our
approach simulate these fascinating experiments? How
will other nonadiabatic dynamics methods based on
Ehrenfest dynamics [e.g., partially linearized density
matrix dynamics (PLDM),56 Poisson-bracket mapping
equation (PBME),57 and SQC27,58,59] behave? See also
Appendix E. Can we extend numerically exact methods
for simulating spin-boson dynamics73–80 to predict the
photon field behavior?

These questions will be investigated in the future.
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APPENDIX A: GENERALIZED WEISSKOPF–WIGNER
THEORY OF SPONTANEOUS EMISSION

Consider the electric dipole Hamiltonian given by Eq. (16).
For comparison with semiclassical dynamics in Sec. V we
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will now derive the exact population dynamics and the emis-
sion EM field of a two level system in a vacuum based on
Weisskopf–Wigner theory and a retarded Green’s function
approach.

1. Dressed state representation
Let |0, . . . , 1k, . . . , 0〉 be a state of the EM field with one

photon of mode ωk, as expressed in a Fock space represen-
tation. Let us denote the vacuum state as | {0}〉. For a sys-
tem composed of an atom interacting with the EM field, the
dressed state representation has the following basis (including
up to a single photon per mode):36,41

�� j; k
〉
= �� j

〉
|0, . . . , 1k, . . . , 0〉, (A1)

�� j; 0
〉
= �� j

〉
| {0}〉. (A2)

Here �� j
〉
= |0〉, |1〉 are the wavefunctions for the two level sys-

tem. For such a setup, the total wavefunction in the dressed
state representation must be of the form

��ψ(t)
〉
= C00(t) |0; 0〉 + C10(t) |1; 0〉

+
∑

k

C0k(t)��0; k
〉

+
∑

k

C1k(t)��1; k
〉
. (A3)

For spontaneous emission, let the initial wavefunction of the
two-level system in a vacuum be written as

��ψ(0)
〉
= C0 |0; 0〉 + C1 |1; 0〉 (A4)

with |C0 |
2 + |C1 |

2 = 1. We would like to propagate ��ψ(0)
〉

and
calculate ��ψ(t)

〉
as a function of time. We emphasize that, in

Eqs. (A3) and (A4), the Hilbert space is restricted to one photon
states.

For visualization purpose, it is helpful to write down the
electric dipole Hamiltonian explicitly in matrix form in the
dressed state representation,

H =H0 + V{��0; k
〉}

|0; 0〉 |1; 0〉
{��1; k

〉}

=

*......
,

{
[ε0 + ~ωk]

}
0 [{Vk }]

† 0

0 ε0 0 [{Vk }]

[{Vk }] 0 ε1 0

0 [{Vk }]
† 0

{
[ε1 + ~ωk]

}
+//////
-

. (A5)

Here the set
{ [
εj + ~ωk

] }
is an infinite set of matrices with

exclusively diagonal elements εj + ~ωk for j = 0, 1. [Vk] is an
infinite row with corresponding elements

Vk = iµ01 · sk

√
~ωk

2ε0Ln
(A6)

between the vacuum state | {0}〉 and a one-photon state with
mode ωk. Let us denote the diagonal part of the matrix as
the unperturbed Hamiltonian H0 and the off-diagonal part as
the coupling Hamilton V. Note that the two quantum states
in a vacuum ( |0; 0〉 and |1; 0〉) are coupled to two different
continuous manifolds

{��1; k
〉}

and
{��0; k

〉}
, respectively.

Given that ε0 < ε1, the
{��0; k

〉}
manifold will always include

a quantum state, that is, energetically resonant with the |1; 0〉
state. However, the

{��1; k
〉}

manifold will always be off-resonant
with |0; 0〉 for all k. Therefore, as the lowest order approxima-
tion, we can assume

C1k(t) ≈ 0 (A7)
and

C00(t) ≈ C0e−iε0t/~. (A8)

Equations (A7) and (A8) are known as the rotating wave
approximation (RWA).

2. Retarded Green’s function formulation
We employ a retarded Green’s function formulation41 to

obtain the time evolution of C10(t) and C0k(t). The retarded
Green’s operators are G(ε) = [ε −H + iη]−1 for the full Hamil-
tonian and G0(ε) = [ε −H0 + iη]−1 for the unperturbed Hamil-
tonian, where η is a positive small quantity (η → 0+). Using
Dyson’s identity G = G0 +G0VG = G0 +GVG0, we can obtain the
retarded Green’s function in a self-consistent expression

G10,10(ε) =
1

ε − ε1 + iη + i
2Γ(ε)

, (A9)

G0k,10(ε) =
Vk

ε − ε0 − ~ωk + iη
G10,10(ε), (A10)

where the self-energy is Γ(ε) = 2i
∑

k |Vk |
2/(ε − ε0 − ~ωk + iη).

The self-energy can be evaluated by a Cauchy integral identity
(ignoring the principle value part). For 1D, we can consider a
dipole moment µ01 and use the density of states of a 1D system
to obtain the self-energy as

Γ
1D(ε) = 2i

L
2π

∑
s

∫
dk

µ2
01E

2
k

ε − ε0 − ~ωk + iη

= i
µ2

01

2πε0~c
[−iπ(ε − ε0)]

=
µ2

01

ε0~c
(ε − ε0).

Here, Ek =

√
~ωk
2ε0L

. For 3D, we consider a dipole moment
µ01 = µ01ẑ so that µ01 ·sk = µ01 sin θ and the self-energy is

Γ
3D(ε) = 4πi

(
L

2π

)3 ∫ π

0
sin3 θdθ

∫ ∞
0

k2dk
µ2

01E
2
k

ε − ε0 − ~ωk + iη

= i
µ2

01

3π2ε0~3c3

[
−iπ(ε − ε0)3

]

=
µ2

01

3πε0~3c3
(ε − ε0)3.

Here, Ek =
√
~ωk

2ε0L3 and we have used the identity ∫ π0 sin3 θdθ

= 4
3 . Note that the ε dependence of the self-energy will

result in a non-exponential decay. In the FGR regime, since all
dynamics can be extracted from Fourier transforms of Green’s
function, and Green’s operators G(ε) are expected to have a
single pole near ε = ε1 that will dominate all Cauchy integrals,
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we approximate the self-energy by the value Γ(ε) ≈ Γ(ε1)

Γ
1D(ε) ≈ ~κ1D =

µ2
01Ω

ε0c
, (A11)

Γ
3D(ε) ≈ ~κ3D =

µ2
01Ω

3

3πε0c3
. (A12)

In the following, we will use κ to represent either κ1D or κ3D

and Γ = ~κ depending on context. Finally, the retarded Green’s
function is approximated as

G10,10(ε) ≈
1

ε − ε1 + iη + i
2Γ

, (A13)

G0k,10(ε) ≈
Vk

ε − ε0 − ~ωk + iη
G10,10(ε). (A14)

The total wavefunction can then be obtained by the
Fourier transform of Green’s function

��ψ(t)
〉
= −

1
2πi

∫ ∞
−∞

dεe−i(ε+iη)t/~G(ε)��ψ(0)
〉

(A15)

with Cauchy integral

C10(t) = C1e−i
ε1
~ t−

κ
2 t, (A16)

C0k(t) =
C1Vk/~

ωk −Ω + i κ2

[
e−i(

ε0
~ +ωk)t − e−i

ε1
~ t−

κ
2 t

]
. (A17)

The reduced density matrix of the electronic system is defined
by taking trace over the photon modes of the total density
matrix, ρ(t) = Trphoton

{��ψ(t)
〉〈
ψ(t)��

}
. The reduced density matrix

element can be evaluated by

ρij(t) =
〈
i; 0��ψ(t)

〉 〈
ψ(t)��j; 0

〉
+

∑
k

〈
i; k��ψ(t)

〉 〈
ψ(t)��j; k

〉
. (A18)

As must be the case, the population of the excited state decays
as

ρ11(t) = ��C10(t)��2 = |C1 |
2e−κt, (A19)

and the coherence (the off-diagonal element) is

ρ01(t) = C00(t)C∗10(t) = C0C∗1e
iΩt− κ2 t. (A20)

Here, since we do not include pure dephasing, the total
dephasing rate of the system is half of the population decay
rate ( κ2 ). The purity of electronic quantum state is a scalar
defined as

η = Tr
{
ρ2

}
= 1 − 2 |C1 |

4
(
e−κt − e−2κt

)
. (A21)

3. Radiation field observables in 1D
While Eq. (A19) expresses the standard FGR decay of the

electronic excited state, in Sec. V our primary interest is in the
dynamics of the EM field. To that end, we now calculate the
expectation value of the radiation intensity

〈
Ê⊥(x, t)2

〉
and the

observed electric field
〈
Ê⊥(x, t)

〉
using the electric field oper-

ator [Eq. (11)] for a 1D system. Equation (11) suggests that the{��0; k
〉}

manifold is coupled to the |0; 0〉 state and the
{��1; k

〉}
manifold is coupled to the |1; 0〉 state. Since C1k(t) ≈ 0, the
expectation value can be expressed as〈

Ê⊥(x, t)
〉
=

∑
k

iEkeikxC∗00(t)C0k(t) + c.c., (A22)

where Ek =

√
~ωk

2ε0Ln
. By plugging in the density of states for a 1D

system, we have〈
Ê⊥(x, t)

〉
= C∗0C1

µ01

4πε0c

∫
dω

ω

ω −Ω + i κ2
×

{
e−iΩt−

κ
2 t+iωx/c − e−iωt+iωx/c

}
+ c.c. (A23)

Then we use a Cauchy integral to carry out the integration
over ω,〈

Ê⊥(x, t)
〉
= |C0 | |C1 |

µ01

cε0
e−

κ
2 (t− |x|c )θ(ct − |x |)

×

{
Ω sinΩ

(
t −
|x |
c

)
+
κ

2
cosΩ

(
t −
|x |
c

)}
, (A24)

where the step function θ appears because of the Cauchy inte-
gral and we will drop the κ

2 term since κ � Ω. Therefore, we
obtain the expectation value of the electric field in a 1D system
as 〈

Ê⊥(x, t)
〉
= |C0 | |C1 | × R(x, t) sinΩ

(
t −
|x |
c

)
, (A25)

where the spatial distribution function is given by

R(x, t) =
Ωµ01

cε0
e−

κ
2 (t− |x|c ) × θ(ct − |x |). (A26)

For a given time t, we find that
〈
Ê⊥(x, t)

〉
oscillates in space

at frequency Ω/c and the event horizon can be observed at
|x | = ct. The magnitude of the electric field can be estimated

by
〈
Ê⊥(x, t)

〉2
. If we calculate a coarse-grained average over a

short time τ, satisfying 2π/Ω � τ � 1/κ, we obtain〈
Ê⊥(x, t)

〉2
=

1
τ

∫ t+τ

t
dt′

〈
Ê⊥(x, t)

〉2
(A27)

= |C0 |
2
|C1 |

2
×
R(x, t)2

2
. (A28)

In Eq. (A27), we have approximated sin2
Ωt ≈ 1

2 . Within the
time scale τ, the population does not change much and the
coherence is just a rapid oscillation.

Beyond
〈
Ê⊥

〉2
, it is standard to evaluate

〈
Ê

2
⊥

〉
, so as

to better understand the nature of the quantum fluctua-

tions of the EM field. According to Eq. (11), the Ê
2
⊥ opera-

tor includes couplings only within the manifolds
{��0; k

〉}
and{��1; k

〉}
. Since

{��1; k
〉}

is the off-resonant manifold, we will ignore
this contribution. Therefore, following the same procedure as
above, we can obtain the expectation value for the radiation
intensity by〈

Ê
2
⊥(x, t)

〉
= 2

∑
k,k′

EkEk′ cos[(k − k′)x]C∗0k(t)C0k′ (t), (A29)

where we ignore the vacuum fluctuations of the radiation
field. We then calculate a coarse-grained average over a short
time τ, 〈

Ê
2
⊥(x, t)

〉
= |C1 |

2
×
R(x, t)2

2
. (A30)
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Note that the equation〈
Ê⊥(x, t)

〉2
= |C0 |

2
〈
Ê

2
⊥(x, t)

〉
(A31)

establishes a simple relationship between
〈
Ê

2
⊥

〉
and

〈
Ê⊥

〉2
.

APPENDIX B: DERIVATION OF THE ELECTRIC DIPOLE
COUPLING IN EHRENFEST DYNAMICS

To derive the electric dipole coupling of the semiclassi-
cal electronic Hamiltonian [Eq. (27)], we need a solution to
Maxwell’s equation [Eqs. (28) and (29)] with the source given
by the average polarization and the average current [Eq. (30)].
Here, we will consider a polarization distribution idealized as
a delta function at the origin and derive the electric dipole
coupling within Ehrenfest dynamics.

In a 3D system, Jefimenko’s equations give a general
expression for the classical EM field due to an arbitrary charge
and current density, taking into account the retardation of the
field. The retarded electric field in the frequency domain is
given by60,61

Eω (r) =
1

4πε0

∫
dv′eiks

{
ρ′ω ŝ
s2
− ik

ρ′ω ŝ
s

+ ik
J′ω
cs

}
, (B1)

where s = r − r′, s = |r − r′ |, ŝ = s/s, andω = ck. Here, we denote
the Fourier transform of a time-dependent function f(t) as
fω = 1

2π ∫ f(t)e
iωtdt for convenience. According to the defini-

tion of bound charge (ρ = −∇·P) and the continuity equation
(ρ̇+∇ ·J = 0, transformed to Fourier space as −iωρω + ∇·Jω = 0),
the retarded field can be written as

Eω (r) =
1

4πε0

∫
dv′eiks

{
−
∇′ · Pω (r′)

s2
ŝ −
∇′ · Jω (r′)

cs
ŝ +

ikJω (r′)
cs

}
.

(B2)

Now, given the polarization operator P̂(r) = ξ(r)( |0〉〈1 | + |1〉〈0 |),
the average polarization (P(r, t) = Trs

{
ρ̂(t)P̂(r)

}
) can be

expressed in the frequency domain as

Pω (r) = 2Rωξ(r), (B3)

where we define Rω = (Reρ01)ω . The average current (J(r, t) =
∂
∂tP(r, t)) can be obtained by taking the time derivative of
P(r, t) = ∫ Pω (r)e−iωtdω,

J(r, t) =
∫
−iωPω (r)e−iωtdω, (B4)

or, in Fourier space,

Jω (r) = −i2ωRωξ(r). (B5)

Alternatively, according to the Liouville equation for the
reduced density matrix ρ̂(t) [Eq. (26)], the average current can
be expressed in terms of

Jω (r) = −2ΩIωξ(r), (B6)

where Iω = (Imρ01)ω .

We would like to calculate the electric dipole coupling

Hel
01(t) = −

∫
dωe−iωt

∫
dvEω (r) · ξ(r), (B7)

where the spatial integration is∫
dvEω (r) · ξ(r) =

Rω

2πε0

∫
dv

∫
dv′eiks

{
−
∇′ · ξ(r′)

s2
ξs(r)

+ iω
∇′ · ξ(r′)

cs
ξs(r) +

ω2ξ(r) · ξ(r′)
c2s

}
, (B8)

and ξs(r) = ξ(r) · ŝ. The spatial integration can be carried out
using integration by parts and eliminating boundary contribu-
tions

−

∫
dv′eiks

∇′ · ξ(r′)
s2

ξs(r)

=

∫
dv′ξ(r′) · ∇′

ξs(r)eiks

s2

=

∫
dv′eiks

[
−
ik
s2
ξs(r)ξs(r′)+

2
s3
ξs(r)ξs(r′)+

1
s2

(ξ(r′) · ∇′)ξs(r)
]
,

∫
dv′eiksiω

∇′ · ξ(r′)
cs

ξs(r)

= −

∫
dv′ikξ(r′) · ∇′

ξs(r)eiks

s

=

∫
dv′eiks

[
−
k2

s
ξs(r)ξs(r′)−

ik
s2
ξs(r)ξs(r′)−

ik
s

(ξ(r′) · ∇′)ξs(r)
]
.

Here, we have used the identity ∇′s = −ŝ. Now, Eq. (B8)
becomes∫

dvEω (r) · ξ(r)

=
Rω

2πε0

∫
dv

∫
dv′eiks

{(
−2

ik
s2

+
2
s3
−
k2

s

)
ξs(r)ξs(r′)

+
(

1
s2
−
ik
s

)
(ξ(r′) · ∇′)ξs(r) +

k2

s
ξ(r) · ξ(r′)

}
. (B9)

Explicitly, in Cartesian coordinates, let s = sxx̂ + syŷ + szẑ, so we
can evaluate

(ξ(r′) · ∇′)ξs(r) = −
1
s
ξ(r) · ξ(r′) +

1
s3

[
ξx(r)ξx(r′)s2

x

+ ξy(r)ξy(r′)s2
y + ξz(r)ξz(r′)s2

z

]
. (B10)

Let us now assume that the source distribution is a delta
function at the origin without dependence on either θ or φ,
and polarized in the z direction

ξ(r′) = µ01δ
3(r′)ẑ, (B11)

where δ3(r′) is a 3D delta function and r′ = |r′ |. Because we
integrate over r and r′ in Eq. (B9), we need only consider r ≈ r′
≈ 0 in the above integral, and so we can approximate

ξ(r) = µ01δ
3(��r′ + s��)ẑ ≈ µ01δ

3( |s |)ẑ = µ01δ
3(s)ẑ. (B12)

J. Chem. Phys. 150, 044102 (2019); doi: 10.1063/1.5057365 150, 044102-15

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

Now we transform the integral by ∫ dv∫ dv′ → ∫ dv′ ∫ dsdθdφs2

sin θ and use

ξs(r) ≈ µ01δ
3(s) cos θ, (B13)

ξs(r′) = µ01δ
3(r′) cos θ (B14)

and by Eq. (B10)

(ξ(r′) · ∇′)ξs(r) ≈ −µ2
01δ

3(r′)δ3(s)
sin2 θ

s
. (B15)

Then Eq. (B9) turns into∫
dvEω (r) · ξ(r) =

µ2
01Rω

2πε0

∫
dv′

∫
dsdθdφs2 sin θeiksδ3(r′)δ3(s)

×

{(
−
ik
s2

+
2
s3
−
k2

s
−

ik
s2

)
cos2 θ

−

(
1
s3
−

ik
s2

)
sin2 θ +

k2

s

}
. (B16)

Now we transform the 3D δ-function to a 1D δ-function,
δ3(s) = 1

2πs2 δ(s), and use ∫ dr′δ3(r′) = 1. After carrying
out the θ and φ integration in spherical coordinates using
∫
π

0 dθ sin θ cos2 θ = 2
3 , ∫ π0 dθ sin3 θ = 4

3 , and ∫ π0 dθ sin θ = 2,
we obtain∫

dvEω (r) · ξ(r) =
2µ2

01Rωk2

3πε0

∫ ∞
0

dsδ(s)
eiks

s
, (B17)

where all of the 1/s2 and 1/s3 terms cancel. The radial integra-
tion of Eq. (B17) gives∫ ∞

0
dsδ(s)

eiks

s
=

∫ ∞
0

dsδ(s)
(

cos ks
s

+ i
sin ks

s

)
= lim
η→0

1
η

+ i
k
2

,

(B18)

where the real part of the integral is infinite but does not
depend on k. When plugging into Eq. (B7), this real part turns
out to be limη→0

1
η δ(t) which represents a self-interaction at

t = 0 and will be ignored.

At this point, we can plug Eqs. (B17) and (B18) into Eq. (B7)
and use ik3Rω =

...
Rω/c3 to obtain the electric dipole coupling

Hel
01(t) = −

µ2
01

3πε0c3

...
R(t). (B19)

The presence of a third derivative of Reρ01(t) is reminiscent
of the Abraham–Lorentz force in classical electrodynamics.62

Finally, we approximate
...
R ≈ Ω3I and conclude

Hel
01(t) = −

µ2
01Ω

3

3πε0c3
I(t) = −~κ3DImρ01(t). (B20)

APPENDIX C: THE DIRECTION
OF THE RESCALING FIELD
1. The 3D case

Here, we provide numerical proof that δER = ∇ × ∇ × P and
δBR = −∇ × P are reasonable rescaling directions for sponta-
neous emission. To do so, we run Ehrenfest dynamics for the

3D system in Sec. V. We calculate the overlap of the Ehrenfest
EM field arising from the origin (where P3D , 0) with ∇ × ∇
× P3D and −∇ × P.3D To be precise, consider a spherical shell
outside of the region of P3D(r). We calculate the normalized
overlap estimation in this region defined as

(EEh |δER) = ∫} dvEEh · δER√
∫} dv��EEh

��2 ∫} dv |δER |
2

, (C1)

where ∫ }dv denote the integral within the spherical shell.
If our intuition is correct, the overlap should be large and
oscillatory as the emanated wave propagates out into free
space.

In Fig. 5, we plot the normalized overlap for short times.
We consider a Gaussian distribution of width about 3 nm. The
overlap of magnetic fields exhibits an oscillatory behavior in
the near and far field. However, the overlap of the electric field
shows similar behavior only in the far field. This distortion is
attributed to the fact that the electric field behaves in a more
complicated fashion in the near field. Despite this difference,
we find that, when the emission field begins to enter the vac-
uum (t < 0.05 fs),

(
EEh |(∇×)2P3D

)
and

(
BEh | − ∇ × P3D

)
account

for more than 90% of the emission field in the near field. Thus,
these data then strongly suggest that the leading order contri-
butions to the rescaling field should in fact be in the direction

FIG. 5. The normalized overlap of the EM field of Ehrenfest dynamics as a function

of time in 3D space. The initial state of Ehrenfest dynamics is |ψ〉 =
√

1
2 |0〉

+
√

1
2 |1〉. The blue dashed line is the overlap of (EEh |P), the blue solid line is the

overlap of (EEh |∇ × ∇ × P), and the green line is the overlap of (BEh | − ∇ × P).
The shell radius is (a) 6.0–7.5 nm and (b) 30.0–31.5 nm. Note the large overlap
between EEh and BEh fields with ∇ × ∇ × P and −∇ × P. Overall these data
suggest that ∇ × ∇ × P and −∇ × P should be the leading order contributions to
the rescaled E and B fields, respectively.

J. Chem. Phys. 150, 044102 (2019); doi: 10.1063/1.5057365 150, 044102-16

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

of δER = (∇×)2P3D for the electric field and δBR = −∇ × P3D for
the magnetic field.

2. The 1D case
Interestingly, the analysis above is less straightforward

in 1D. Here we consider a polarization distribution given by
Eq. (75), and the width of Gaussian distribution is assumed to
be much smaller than the wavelength ( 1√

a
� 2πc

Ω
). Compared

against the 3D case, ∇ × ∇ × P1D and −∇ × P1D overlap strongly
with P1D and this overlap cannot be ignored.43 For instance,
for a 1D system, this overlap can lead to unwanted EM fields
propagating back to the origin.

To circumvent this issue, we can simply add additional
transverse fields63 to the rescaling field

δER = ∇ × ∇ × P1D
− gP1D, (C2)

δBR = −∇ × P1D
− h(∇×)3P1D, (C3)

where the coefficients g and h are determined by

δER(x = 0) = 0, (C4)

∇ × δBR(x = 0) = 0. (C5)

In the end, using Eqs. (C4) and (C5), we find g = 2a and h = 1/6a
and the rescaling field is

δER(x) = −µ01

√
a
π

4a2x2e−ax
2
ẑ, (C6)

δBR(x) = µ01

√
a
π

4
3
a2x3e−ax

2
ŷ. (C7)

Note that all e−ax
2

and xe−ax
2

terms have been canceled out by
our choice of g and h.

APPENDIX D: DERIVATION OF THE RESCALING
FACTORS α` AND β`

Here we discuss the details of EM field rescaling and
energy conservation.

1. Each trajectory cannot conserve energy
In an ideal world, one would like to enforce energy

conservation for every trajectory, much in the same way
as Tully’s fewest switches surface hopping (FSSH) algorithm
operates.20,64 Thus, every time an electron is forced to relax,
one would like to insert a corresponding increase in the
energy of the EM field so as to satisfy conservation of
energy

δUR =
ε0

2

∫
dv

(
2EEh · αδER + |αδER |

2
)

+
1

2µ0

∫
dv

(
2BEh · βδBR + |βδBR |

2
)
. (D1)

And given requirement (c) in Sec. IV B, Eq. (D1) implies two
independent quadratic equations

δUR

2
=
ε0

2

∫
dv

(
2EEh · αδER + |αδER |

2
)

(D2)

=
1

2µ0

∫
dv

(
2BEh · βδBR + |βδBR |

2
)
. (D3)

Now, if α and β are chosen to have well-defined signs
(e.g., in Tully’s FSSH model, the sign for velocity rescal-
ing is chosen to minimize the change of momentum), we
will necessarily find that

〈
E2

〉
= 〈E〉2 and

〈
B2

〉
= 〈B〉2—

which we know to be incorrect (see Appendix A). Thus, it
is inevitable that either we sample trajectories over which
α and β have different phases or that α and β are dynam-
ically assigned random phases within one trajectory. In the
latter case, we will necessarily obtain large discontinuities
in the E and B fields and the wrong emission intensity.
After all, solving Eqs. (D2) and (D3) for α and β must lead
to two solutions with opposite sign since ∫ dv |δER |

2 > 0,
∫ dv |δBR |

2 > 0, and δUR > 0. Thus, the only way forward
is to sample over trajectories, where α and β have different
phases.

Given that δUR can be defined with a random phase φ [see
Eqs. (50) and (66)]

δUR = Ωκρ11(1 − ρ00)Im
[
ρ01

|ρ01 |
eiφ

]2

dt, (D4)

it would seem natural to apply the following sign convention:

sgn(α) = sgn(β) = sgn
(
Im

[
ρ01eiφ

] )
. (D5)

This convention can achieve two goals. First, it ensures that
the Poynting vector of the rescaled field will be usually out-
ward, away from the polarization. Second, it ensures that we
will not introduce any artificial frequency into the EM field
(because ρ01 is rotating at frequency Ω). Nevertheless, even
with these two points in its favor, this convention is still
unworkable.

Consider the case where the initial electronic state is
barely excited (ρ11 = 0.1). In this case, Ehrenfest dynamics
should be very accurate and the effects of spontaneous emis-
sion should be very minor. However, one will find bizarre
behavior as a function of the random phase φ. On the one
hand, if the rescaling field is in-phase [i.e., φ = φ0 in Fig. 6(a)],
we will find a slightly large, coherent outgoing electric field.
On the other hand, if the rescaling field is out of phase [e.g.,
φ = φ0 + π in Fig. 6(b)], we will find a large, completely inverted
EM field. To understand why this inversion is obviously
unphysical, consider the extreme case where spontaneous
emission is very weak. How can a weak emission possibly lead
to the inversion of the entire EM field that was previously
emitted long ago? And to make things worse, how would this
hypothetical approach behave with an external incoming EM
field; would that external EM field also be inverted? Ultimately,
averaging over a set of random phases would not yield the
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FIG. 6. The hypothetical electric field that would result from enforcing energy
conservation for individual trajectories in a 1D system. We consider two different
phases of the rescaling field in two columns: (a) φ = 0 + φ0 and (b) φ = π + φ0,
where φ0 = −

√
3σΩ/c = −0.13π. In the upper two panels of each column,

we plot the total electric field (EEh), Ehrenfest component (EEh), and the rescaling
component (αδER) at t = 1.5 fs as a function of x. The initial condition is ρ11 = 0.1.
The dashed red lines are the Ehrenfest component (EEh), and the solid blue lines
are the rescaling fields (αδER). The lower panel of each column is the calculated
α coefficient along the trajectory as a function of 450 − ct nm [as determined by
Eq. (D2)]. While the EM field looks physical in (a), note that the rescaling field in
(b) is completely phase-inverted relative to the Ehrenfest component and cannot
be physical. In the end, applying energy conservation for each trajectory would
result in absurdly large changes in the EM field, even when spontaneous emis-
sion should not be important. We believe that this approach is not reasonable for
a semiclassical ansatz.

correct total EM field. In this case, rescaling the EM field
leads to results that are qualitatively worse than no correction
at all.

2. An ensemble of trajectories can conserve energy
In the end, our intuition is that one cannot capture the

essence of spontaneous emission by enforcing energy conser-
vation for each trajectory; instead, energy conservation can
be enforced only on average. Note that this ansatz agrees with
a host of work modeling nuclear quantum effects with inter-
acting trajectories designed to reproduce the Wigner distribu-
tion.65,66 For the reader uncomfortable with this approach, we
emphasize that true spontaneous emission requires quantum
(not classical) photons (bosons); this is not the same problem
as the FSSH problem, where one is dealing with a classical
nuclei (bosons).

Now, in order to enforce energy conservation on aver-
age, imagine that we run N trajectories (indexed by `), and for
each trajectory, the EM field is written as the pure Ehrenfest
EM field plus a sum of Ntraj rescaling fields from each retarded
time step jdt,

E`Eh+R(t) = E`Eh(t) +
n∑
j=0

α`j δER(t − jdt), (D6)

B`Eh+R(t) = B`Eh(t) +
n∑
j=0

β`j δBR(t − jdt). (D7)

Here δER(t − jdt) and δBR(t − jdt) are the rescaling fields that
were created at time jdt and have been propagated for a time
t − jdt according to Maxwell’s equations. For the last time
step (t = ndt), energy conservation must satisfy the following
condition:〈

δU`R
〉
=

1
N2

traj

∑
` ,`′

{
ε0

2

∫
dvE`Eh(t) · α`

′

n δER

+
ε0

2

n−1∑
j=0

∫
dvα`j δER(t − jdt) · α`

′

n δER

+
ε0

2

∫
dvα`nδER · α

`′

n δER

+
1

2µ0

∫
dvB`Eh(t) · β`

′

n δBR

+
1

2µ0

n−1∑
j=0

∫
dvβ`j δBR(t − jdt) · β`

′

n δBR

+
1

2µ0

∫
dvβ`nδBR · β

`′

n δBR

}
. (D8)

Now, let us assume that the phases of α`
′

n and β`
′

n are random
[i.e., we will enforce Eq. (D5)] so that on average∑

` ,`′
E`Eh(t) · α`

′

n δER =
∑
` ,`′

B`Eh(t) · β`
′

n δBR = 0. (D9)

Furthermore there should also be complete phase cancellation
between trajectories, e.g., for all j,∑
` ,`′

α`j δER(t − jdt) · α`
′

n δER = 2Ntraj

∑
`

α`j α
`
nδER(t − jdt) · δER

(D10)

and ∑
` ,`′

α`nδER · α
`′

n δER = Ntraj

∑
`

���α
`
nδER

���
2
. (D11)

Then, Eq. (D8) becomes an equation that must be enforced for
each trajectory

δU`R =
ε0

2

∫
dv

n−1∑
j=0

2α`j δER(t − jdt) · α`nδER +
ε0

2

∫
dv���α

`
nδER

���
2

+
1

2µ0

∫
dv

n−1∑
j=0

2β`j δBR(t − jdt) · β`nδBR +
1

2µ0

∫
dv���β

`
nδBR

���
2
.

(D12)

While Eq. (D12) might appear daunting, we emphasize that we
never solve this equation in practice. Instead, we will now
make a simple approximation to convert this complicated
equations (with memory) into a simple, Markovian quadratic
equation.
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3. Overlaps with previous rescaling fields cause
self-interference

Although the cross terms between the pure Ehrenfest
field and the rescaling fields will be eliminated by phase
cancellation [Eq. (D9)], the rescaling fields at the current time
step (j = n) will have a non-vanishing cross term with the
rescaling field from previous times (j < n). Given a polarization
distribution, that is, small in space and EM fields propagat-
ing freely at the speed of light, the relevant cross term is the
overlap ∫ dvδER(t − jdt) · δER and ∫ dvδBR(t − jdt) · δBR for small
t − jdt. At this point, we presume that

α`j ≈ α
`
n , β`j ≈ β

`
nr (D13)

does not change much for a short, local time period and
simplify Eq. (D12) as

δU`R =
ΛE(t)
cdt

ε0

2

∫
dv���α

`
nδER

���
2

+
ΛB(t)
cdt

1
2µ0

∫
dv���β

`
nδBR

���
2
.

(D14)

Here we define the self-interference lengthsΛE(t) andΛB(t) for
δER and δBR, respectively, as

ΛE(t)
cdt

= 1 +
n−1∑
j=0

2 ∫ dvδER(t − jdt) · δER

∫ dv |δER |
2

, (D15)

ΛB(t)
cdt

= 1 +
n−1∑
j=0

2 ∫ dvδBR(t − jdt) · δBR

∫ dv |δBR |
2

. (D16)

Note that Eq. (D13) should hold when the time that a rescal-
ing field overlaps with δER or δBR is much smaller than the
oscillating period of the EM field, i.e., σ/c � 2π/Ω. Given
σ ∼ O(1 nm), this condition should be roughly Ω � 1018 Hz, i.e.,
this assumption should be valid as long as the photon energy
is not in a high frequency X-ray regime. Finally, we recall that
the δER and δBR rescaling fields must carry equal energy den-

sity (i.e., ε0
2 ∫ dv���α

`
nδER

���
2
= 1

2µ0
∫ dv���β

`
nδBR

���
2
) so that energy

conservation [Eq. (D14)] can be further simplified

δU`R =
Λ(t)
cdt

ε0

2

∫
dv���α

`
nδER

���
2

(D17)

=
Λ(t)
cdt

1
2µ0

∫
dv���β

`
nδBR

���
2
, (D18)

where Λ(t) = (ΛE(t) + ΛB(t))/2 is the average self-interference
length. Note that, for an infinitesimal time step dt, we can
ignore the 1 term on the right-hand side of Eq. (D15) and write
dt

∑n−1
j=0 = ∫

t
0 dt′ for t′ = t − jdt and the self-interference length

becomes

Λ(t) =
c ∫ t0 dt′ ∫ dvδER(t′) · δER

∫ dv |δER |
2

+
c ∫ t0 dt′ ∫ dvδBR(t′) · δBR

∫ dv |δBR |
2

.

(D19)

At this point, to evaluate the overlap of the current rescal-
ing field (at time t) with previous rescaling fields (created at
time jdt, and propagated for t′ = t − jdt), we suppose that

the rescaling fields propagate freely according to Maxwell’s
equations

∂

∂t
δBR(r, t) = −∇ × δER(r, t), (D20)

∂

∂t
δER(r, t) = c2

∇ × δBR(r, t). (D21)

We expand in Fourier space δER(r, t) = ∫ dknδẼR(k, t)eik·r and
δBR(r, t) = ∫ dknδB̃R(k, t)eik·r and find the relevant equations of
motion

∂

∂t
δB̃R(k, t) = ik × δẼR(k, t), (D22)

∂

∂t
δẼR(k, t) = −ic2k × δB̃R(k, t). (D23)

Here, without loss of generality, we let k = kx̂, δẼR(k, t)
= δẼR(k, t)ẑ and δB̃R(k, t) = δB̃R(k, t)(−ŷ). For an arbitrary ini-
tial condition given by δẼR(k) and δB̃R(k), the general solution
of Eqs. (D22) and (D23) is (with ω = ck)

δẼR(k, t) = δẼR(k) cosωt + icδB̃R(k) sinωt, (D24)

δB̃R(k, t) = δB̃R(k) cosωt +
i
c
δẼR(k) sinωt. (D25)

With this general solution for free propagation, we can evalu-
ate the total overlap in the Fourier space by∫

dvδER(t′) · δER = 2π
∫ ∞
−∞

dk
[
δẼR(k) cosωt′ + icδB̃R(k) sinωt′

]

× δẼR(−k), (D26)∫
dvδBR(t′) · δBR = 2π

∫ ∞
−∞

dk
[
δB̃R(k) cosωt +

i
c
δẼR(k) sinωt

]

× δB̃R(−k). (D27)

Here we have used ∫ ∞−∞ dxei(k+k′)x = 2πδ(k + k′). We now plug
Eqs. (D26) and (D27) back into Eq. (D19) so that the time
integration of the overlap becomes∫ t

0
dt′ cosωt′ =

1
2

∫ t

−t
dt′eiωt′ , (D28)∫ t

0
dt′ sinωt′ =

1 − cos kct
kc

. (D29)

Note that the cross terms [the second terms of Eqs. (D26) and
(D27)] become zero after we carry out ∫ ∞−∞ dk with Eq. (D29)
using a Cauchy integral. We now assume that the rescaling
field overlaps with only a short history of itself so that the
time integral of the overlap must reach a constant in a rea-
sonably short period of time. With this assumption in mind,
we can approximate Λ ≡ Λ(t→ ∞) for all time so that Eq. (D28)
becomes ∫ ∞

0
dt′ cosωt′ =

π

c
δ(k). (D30)

Therefore, the self-interference length turns out to be

Λ =
2π2���δẼR(0)���

2

∫ dx |δER |
2

+
2π2���δB̃R(0)���

2

∫ dx |δBR |
2

. (D31)

{As a practical matter for a Gaussian polarization distribu-
tion in 1D, we use the rescaling fields derived in Appendix C
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FIG. 7. The self-interference length as a function of time for a 1D system
[Eqs. (D15), (D16), and (D19)]. The polarization distribution is given by Eq. (75),
and the spatial distribution of the rescaling fields is given by Eqs. (C6) and (C7).
Note that ΛB(t) is non-zero only for a short time.

[Eqs. (C6) and (C7)] and find an analytical expression for the
self-interference length given by

Λ
1D =

2
3

√
2π
a

. (D32)

In this particular 1D case, ���δB̃R(0)���
2
= 0 and the overlap of the

δBR field is canceled out for long time (see Fig. 7 blue area)
since δBR(x) is an odd spatial function.}

Thus, in the end, α`n and β`n can be determined by

α`n =

√√
cdt
Λ

δU`R
ε0 ∫ dv |δER |

2
× sgn

(
Im

[
ρ01eiφ

` ] )
, (D33)

β`n =

√√
cdt
Λ

µ0δU`R
∫ dv |δBR |

2
× sgn

(
Im

[
ρ01eiφ

` ] )
. (D34)

We have now justified Eqs. (72) and (73) in the main body of the
text.

APPENDIX E: THE FEASIBILITY OF SURFACE HOPPING
FOR SIMULATING SPONTANEOUS EMISSION

One of the most well-known semiclassical approaches
for the coupled electronic–nuclear system is Tully’s surface
hopping algorithm. One can ask: how would surface hop-
ping dynamics behave as an ansatz for simulating light–matter
interactions and propagating the EM fields together with an
electronic subsystem? Unfortunately, our preliminary calcu-
lations show that the results for spontaneous emission are not
ideal.

Let us now be more specific. For the entirety of this paper,
we have made the conscious decision to avoid modeling the
vacuum fluctuations of the photon field. Thus, for the case
of spontaneous emission, we imagine that initially, both 〈E〉
and

〈
E2

〉
are identically zero. Our Ehrenfest+R results above

demonstrate that, by initiating some small amount of elec-
tronic relaxation plus EM emission—again without ever includ-
ing vacuum fluctuations—we recover a smooth and correct
description of spontaneous emission.

Unfortunately, in this regard, FSSH cannot perform as
well as Ehrenfest: according to FSSH, a little relaxation of the
electronic state does not lead to a smooth decay process rem-
iniscent of spontaneous emission with the correct time con-
stant or frequency spectrum. Instead, when FSSH trajectories
hop back and forth between adiabats, they produce a discon-
tinuous polarization that yields an awkward and incorrect fre-
quency spectrum for the radiated light. In retrospect, this fail-
ure of surface hopping dynamics can be attributed to the fact
that the photon wavepackets corresponding to different elec-
tronic states interfere for a long time and the non-adiabatic
coupling is effectively periodic (of a period 2π/Ω), which leads
to a catastrophic “recoherence” problem.67 Because of this
recoherence problem, FSSH dynamics cannot easily report
accurate absorption and emission spectra in general. For the
electron–nuclei problems, even if one examines several dif-
ferent protocols, one almost always finds that FSSH elec-
tronic coherences are not as accurate as Ehrenfest electronic
coherences.68–71,83 For all of these reasons, we have chosen
not to include any surface hopping results when investigating
light–matter interactions.

Now, the argument above assumed that we did not
include the zero point energy of the photon field. If we do
include the vacuum fluctuations of the photon field and sam-
ple the classical EM field from a Wigner distribution (instead
of a Boltzmann distribution), one can expect that FSSH may do
far better at capturing spontaneous emission at short times.
As far as our own experiences with Wigner sampling and
FSSH dynamics are concerned, however, Ref. 33 shows that,
for vibrational relaxation, even though surface hopping with
a Wigner distribution leads to improved short time dynam-
ics (see Fig. 2 therein), long time equilibrium populations can
indeed be quite incorrect when initializing from a Wigner dis-
tribution (and much worse than using a Boltzmann distribu-
tion; see Fig. 4 in Ref. 33).

At this point, there is only one final nuance to consider.
Recall that spontaneous emission involves an entirely har-
monic bath because the photon field maps exactly to a col-
lection of harmonic oscillators. The fact that the photon field
is strictly harmonic brings up a crucial question about ergod-
icity. For the two-state spin–boson model, there is some evi-
dence that zero point leakage may not be a problem in practice
for semiclassical dynamics and so Wigner sampling may not
be dangerous at all. For example, see Sec. IV B and Fig. 7(c)
in Ref. 72. Thus, after initialization with a Wigner distribu-
tion, one can find computationally (at least sometimes) that
the long time equilibrium does not have the classical tem-
perature (but instead retains the form of a Wigner distribu-
tion). Obviously, far more mathematical rigor will be needed
before one can conclude anything definitive about the ergod-
icity of the spin–boson Hamiltonian for spontaneous emission.
Nevertheless, even if the spin–boson problem is exactly (or
in practice close to non-ergodic), one must wonder: is the
same true if I consider N two-level systems (instead of just
one)? Can I safely ignore zero point leakage for an ensemble
of point dipoles? Our own instinct is that, with an increasing
number of dipoles and more electron–photon coupling, zero
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point leakage must inevitably contaminate semiclassical cal-
culations; further work in this regard will certainly be very
interesting.
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