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Abstract

We investigate the geometric properties of Steklov eigenfunctions in smooth manifolds.
We derive the refined doubling estimates and Bernstein’s inequalities. For the real analytic
manifolds, we are able to obtain the sharp upper bound for the measure of interior nodal sets.
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1 Introduction

In this paper, we address the geometric properties and interior nodal sets of Steklov eigen-
functions

{Agek(x) =0, xeM, (1.1)

% (x) = hex(x), x € IM,

where v is a unit outward normal on 9 M. Assume that (M, g) is a n-dimensional smooth,
connected and compact manifold with smooth boundary d M, where n > 2. The Steklov
eigenfunctions were first studied by Steklov in 1902 for bounded domains in the plane. It is
alsoregarded as eigenfunctions of the Dirichlet-to-Neumann map, which is a first order homo-
geneous, self-adjoint and elliptic pseudodifferential operator. The spectrum A; of Steklov
eigenvalue problem consists of an infinite increasing sequence with

0=AXp <A1 <X2 <A3,..., and lim Aj =o00.
j—oo

The eigenfunctions {e; ;} form an orthonormal basis such that

e; € CTM), /BM erjen, dVy = 55
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Recently, the study of nodal geometry of eigenfunctions has been attracting much atten-
tion. Estimating the Hausdorff measure of nodal sets has always been an important subject
concerning the nodal geometry of eigenfunctions. The celebrated problem about nodal sets
centers around the famous Yau’s conjecture for smooth manifolds. Let ¢, be eigenfunctions
of

— Nyt = )L2¢,\ (1.2)

on compact manifolds (M, g) without boundary, Yau conjectured that the upper and lower
bounds of nodal sets of eigenfunctions in (1.2) satisify

ch < H" '({x € Migp(x) =0}) < Ci (1.3)

where C, ¢ depend only on the manifold M. The conjecture is shown to be true for real
analytic manifolds by Donnelly-Fefferman in [8,10]. Lin [19] also proved the upper bound
for the analytic manifolds using a different approach. Note that we use A2 for the eigenvalue
of Laplacian eigenfunctions to reflect the order of the elliptic operator, since the Dirichlet-
to-Neumann map is a first order elliptic pseudodifferential operator and Laplace operator is
a second order elliptic operator.

Let us briefly review the recent literature concerning the progress of Yau’s conjecture
on nodal sets of Laplacian eigenfunctions (1.2). For the conjecture (1.3) on the measure of
nodal sets on smooth manifolds, there are important breakthrough made by Logunov and
Malinnikova [20,22] and [21] in recent years. For the upper bound of nodal sets on two
dimensional manifolds, Logunov and Malinnikova [22] showed that H! fx e M|¢).(x) =
0h) <Cx 3 , which slightly improves the upper bound C Py by Donnelly and Fefferman [9]
and Dong [7]. For higher dimensions n > 3 on smooth manifolds, Logunov in [20] obtained
a polynomial upper bound H"~'({x € M|¢;(x) = 0}) < CAP for some B depending
on the dimension n. The polynomial upper bound improves the exponential upper bound
H"™ '({x € M|py(x) = 0}) < CA®* derived by Hardt and Simon [17]. For the lower
bound, Logunov [21] completely solved the Yau’s conjecture and obtained the sharp lower
bound in (1.3). For n = 2, such sharp lower bound was obtained earlier by Briining [4].
This sharp lower bound improves a polynomial lower bound obtained early by Colding
and Minicozzi [6], Sogge and Zelditch [30,31]. See also other polynomial lower bounds
by different methods, e.g. [18,25,28] and other related results on nodal sets and geometric
properties of Laplacian eigenfunctions, e.g. [5,14,16,24]. For detailed account about this
subject, interested readers may refer to the book [15] and surveys [23,33].

For the Steklov eigenfunctions, by the maximum principle, there exist nodal sets in M and
those sets intersect the boundary 0. M traservasally. It is interesting to ask Yau’s type questions
about the Hausdorff measure of nodal sets of Steklov eigenfunctions on the boundary and
interior of the manifolds, respectively. The natural and corresponding conjecture for Steklov
eigenfunctions should state as

ch < H'2({x € aMlex(x) = 0}) < Ca, (1.4)
ch < H" '(fx € Mlex(x) = 0}) < Ca. (1.5)

See also the survey by Girouard and Polterovich in [13] about these open questions.
Recently, much work has been devoted to the bounds of nodal sets of Steklov eigenfunc-
tions on the boundary

Z5, = {x € IM|e;. (x) = O}. (1.6)
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The study of (1.6) was initiated by Bellova and Lin [3] who proved the H"~2(Z;) < CA%
with C depending only on M, if M is an analytic manifold. By microlocal analysis argu-
ment, Zelditch [34] was able to improve their results and gave the optimal upper bound
H""%(Z;) < Cx for analytic manifolds. For the smooth manifold M, Wang and the author
in [32] established a lower bound

n—2 don
H"""(Z,) = C) 2 (1.7)

by considering the fact that the Steklov eigenfunctions are eigenfunctions of a first order

elliptic pseudodifferential operator. The polynomial lower bound (1.7) is the Steklov analogue

of the lower bounds of nodal sets for Laplacian eigenfunctions (1.2) obtained in [6] and [31].
Concerning about the bounds of interior nodal sets of eigenfunctions,

Ny = {x € Mlex(x) =0}
Sogge, Wang and the author [29] obtained a lower bound for interior nodal sets
H'™'(V) = €1

for smooth manifolds M. The measure of nodal sets is more clear on surfaces. In [36], the
author was able to obtain an upper bound for the measure of interior nodal sets

H'(N,) < CA3.

On surfaces, the singular set S, = {x € M|e, = 0, Ve, = 0} is a finite set that consists of
isolated points on the nodal curves. It was also shown that H 0 S <cC 22 in [36]. Recently,
Polterovich, Sher and Toth [27] verified Yau’s type conjecture for upper and lower bounds
in (1.5) for the real-analytic Riemannian surfaces M. Georgiev and Roy-fortin [12] obtained
polynomial upper bounds for interior nodal sets on smooth manifolds. There are still many
challenges for the study of Steklov eigenfunctions. For instance, it is well-known that the
Laplacian eigenfunctions in (1.2) are so dense that there are nodal sets in each geodesic ball
with radius CA~!. This fundamental result is crucial to derive the lower bounds of nodal
sets for Laplacian eigenfunctions (1.2) in [8] and [4]. For the Steklov eigenfunctions, it
is unknown whether such density results remain true on the boundary and interior of the
manifold, which cause difficulties in studying the Steklov eigenfunctions.

An interesting topic in the study of eigenfunction is called as the doubling inequality.
Doubling inequality plays an important role in deriving strong unique continuation property,
the vanishing order of eigenfunctions and obtaining the measure of nodal sets, see e.g. [8,10].
The doubling inequality for Laplacian eigenfunctions (1.2)

/ el < e“/ el (1.8)
B(p,2r) B(p,r)

is derived using Carleman estimates in [8] for 0 < r < rg, where B(p, ¢) denotes as a ball
in M centered at p with radius ¢, and C, ro depends on M. For the Steklov eigenfunctions
on d M, the author has obtained a similar type of doubling inequality on the boundary 9. M
and derived that the sharp vanishing order is less than CX on the boundary d M in [35]. For
Steklov eigenfunctions in M, we were also able to get the doubling inequality as (1.8) in
[36]. For the Laplacian eigenfunctions (1.2), a refined doubling inequality

/ &gcf & (19)
B(p, (1+1)r) B(p.r)
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was derived in [11] by some stronger Carleman estimates. The refine doubling inequality
also leads to Bernstein’s gradient inequalities for Laplacian eigenfunctions. The first goal in
this note is to study a refined version doubling inequality for the Steklov eigenfunctions and
its applications.

Theorem 1 For the Steklov eigenfunctions in (1.1) in the smooth manifold M, there hold
(A): a refined doubling inequality

/ ef < C/ ei,
B(p, (14 1)r) B(p,r)

(B): L2-Bernstein’s inequality

CA?
[ wer<Si[ &
B(p,r) r B(p,r)

(C) L®°-Bernstein’s inequality

n+2

max |ey |

max |Ve,| <
) B(p,r)

B(p,r
for B(p, (1+ %)r) C Mand 0 < r < rg, where ry depends on M.

Our second goal is to obtain the optimal upper bound of interior nodal sets of Steklov
eigenfunctions for real analytic manifolds. Our work extends the optimal upper bound in
[27] to real analytic manifolds in any dimensions, which proves the upper bound of Yau’s
type conjecture for interior nodal sets in (1.5).

Theorem 2 Let M be the real analytic compact and connected manifold with analytic bound-
ary. There exists a positive constant C depending on M such that,

H"'(\}) < Ch
for the Steklov eigenfunctions.

The outline of the paper is as follows. In Sect. 2, we reduce the Steklov eigenvalue problem
into an equivalent elliptic equation without boundary. Then we obtain the refined doubling
inequality and show Theorem 1. Section 3 is devoted to the upper bound of interior nodal sets
for real analytic manifolds. Section 4 is the “Appendix” which provides the proof of some
arguments for the Carleman estimates. The letter ¢, C, C; denote generic positive constants
and do not depend on 1. They may vary in different lines and sections. In the paper, since we
study the asymptotic properties for eigenfunctions, we assume that X is sufficiently large.

2 Refined doubling inequality

In this section, we will establish a stronger Carleman estimate than that in [35]. We will trans-
form the Steklov eigenvalue problem into a second order elliptic equation on a boundaryless
manifold. The eigenvalue A will be reflected in the coefficients of the elliptic equation.

To make the Steklov eigenvalue problem into an elliptic equation, adapting the ideas in [3],
we choose an auxiliary function involving the distance function. Let d(x) = dist{x, oM}
be the distance function from x € M to the boundary o M. If M is smooth, d(x) is smooth
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in the small neighborhood M9 of dM in M, where M) = {x € M|dist{x, IM} < p}.
By the partition of unity, we extend d(x) in a smooth manner by introducing

| dx) x e MY,
0O =1 1) x € MIMO,

where the smooth function /(x) is a smooth extension of d(x) in /\/l\/\/lg. Therefore, the
extended function o(x) is a smooth function in M. We consider an auxiliary function

u(x) = e, exp{ro(x)}.

Then the new function u(x) satisfies

Agu+b(x) - Veu +g(x)u =0 in M, @0
g—“j =0 on I M '
with
b(x) = =2AV,40(x), 29
{q(x) = 22|V,0(0)2 = 2Ag0(x). (22

In order to construct a boundaryless model, we attach two copies of M along the boundary
and consider a double manifold M = M U M. Then induced metric g’ of g on the double
manifold M is Lipschitz. We consider a canonical involutive isometry F : M — M which
interchanges the two copies of M. In this sense, the function u(x) can be extended to the
double manifold by a even extension as M by u o F = u. Thus, u(x) satisfies

Agu+b(x) - Vou+gx)u =0 in M. (23)

Note that the new metric g’ is Lipschitz metric. From the assumptions in (2.2) and the even
extension, it follows that

”é”wl.oo(ﬂ) S C)\z- ’

By a standard regularity argument for dealing with Lipschitz metrics in [10] and [1],
we have established some quantitative Carleman inequality in [35] for the general second
order elliptic equation (2.3). See also e.g. [2] for similar estimates for smooth manifolds. The
quantitative Carleman estimate inequality is stated as follows.

Lemma 1 There exist positive constants €y and C such that for any u € C3° (B(p, €0)\

B(p. ). and B> C(1+ [Bllwi + 11 ). one has

/r“e?ﬂ‘/f(”mg,u +b - Vyu+ gu|* dvol > c53frfe2ﬂ‘/f(”u2dvoz, (2.5)

where Y (r) = —Inr(x) + r€(x), r(x) is the geodesic distance from x to p, and 0 < € < 1
is some fixed constant.

Since some arguments are used in the proof of Proposition 2 later, we include the major
arguments of the proof of Lemma 1 in the “Appendix”. By the Carleman estimates in Lemma
1, we can derive a Hadamard’s three-ball theorem. Based on a propagation of smallness
argument, we have obtained the following doubling inequality in M in [36].
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Proposition 1 There exist positive constants ro and C depending only on M such that for
any 0 < r < rogand any p € M, there holds

Il 2 @p. 2y < €l 2 p. ) (2.6)
for any solutions of (2.3).
From the proposition, it is easy to see that the doubling inequality for Steklov eigenfunctions

as (1.8) holds in M if B(p, 2r) C M, since o(x) is a bounded function. By standard elliptic
estimates, the L° norm of doubling inequality

Ck|

el Loo®(p, 2r)) < € " lullLoo®(p, r)) (2.7)

holds, which also implies that

llesllLoo@(p, 2r)) < EC)L”el”LOO(B(p,r))-
Next we will establish a stronger Carleman inequality than that in Lemma 1 with weight
function exp{fy (x)} following from [11], where the function  satisfies some convexity
properties. Choosing a fixed number € such that 0 < € < 1 and 7p < 0, we define the
function ¢ on (—oo, Ty] by ¢(t) = t — €. If |Tp| is sufficiently large, the function ¢ (¢)
satisfies the following properties

1—eeTo <¢/(r) <1, (2.8)
i —¢"(1)
m =

t—>—o00 el

+o0. 2.9)

Let ¥ (x) = —¢(Inr(x)), where r(x) = d(x, p) is geodesic distance between x and p. The
stronger Carleman estimate is stated as follows.

Proposition 2 There exist positive constants h, Co and C such that for any u €
& (B, \B(p, ), and B > Co(1 + 1Blly1. + 1311 7.), one has

/ r*e®PV\Au+b - Vu + qu|* dvol > C,83/ r<e®?Vu’dvol
B(p.h) B(p.h)

+cp PV udvol . (2.10)
B(p,s(1+%))

Proof By the standard argument in dealing with Lipschitz Riemannian manifold in [10]
and [1], using a conformal change, we can still use polar geodesic coordinates (r, ). The
change only results in the change of C in the norm estimates of coefficient functions in (2.4).
The geodesic balls are comparable under the conformal change of the different metrics. For
simplicity, we still keep the notations in (2.3). We introduce the polar geodesic coordinates
(r, w) near p. Following the Einstein notation, for any v € C*, we denote the Laplace-
Beltrami operator as

n—1 1 L
80 =5+ O () + =)o+ 8 (Vo).

where 0; = %
1

small enough,

and y;;(r, w) is a metric on sn=l, y = det(y;;). One can check that, for r

9-(yij) < C(yij) in term of tensors,
[0,(y) =< C, 2.11)
c'<y=c,
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where C depends on M. Set a new coordinate as Inr = ¢. Using this new coordinate,

1 L
' Av =30+ (n—2+3InY)dv+ —yai(ﬁy'faju)

7

and

b = eZIEtB, + 62t5i8i.

(2.12)

Since u is supported in a small neighborhood, u is supported in (—oo, Tp) x S~ with
To < 0 and |Tp| large enough. Under this new coordinate, the condition (2.11) becomes

0 (vij) < Ce’(y,-j) in term of tensors,
[0: ()| < Cé',
clzy=c.

Let
u=e POy,
Define the conjugate operator,

[,ﬁ(v) = rZeﬁ‘//(x)A(e—/sllf(x)v) + 2PV V(e—ﬂllf(x)v) + r2qv

— eZte—ﬂ¢(f)A(eﬁ¢(t)v) + ezte_ﬂ‘p(t)l; . V(eﬂ¢(t)v) + 82tév.

From (2.12), straightforward calculations show that

Lp) = v+ (288 + ¥y + (n —2) + 3 In /) dv + ¥ b;d;v

(2.13)

(2.14)

+(B2¢" + Bo'bie* + B + (n —2)Bd' + B In /¥ )v + Ayv + ¥ v,

where

1 ..
AV = ﬁf)i(\/?y”ajv).

We will work in the following L? norm
ol = f Wl y7e'? dido,

(=00, TolxS"~!

where dw is measure on S"~!. By the triangle inequality, we have
5 1

125 = 54— B.

where
A=10?v+ Ayv + (289" + e2’5,)8,v + ¥ bio;v
+(B20 + B bre* + (n — 2B’ + e )]},

and

B=B¢"v+ BdInyye¢'v+ (n—2)dv+dIn/ydv|;

By integration by parts argument, we can absorb 5 into .A. It holds that

1
151G = 7A.

(2.15)

(2.16)

2.17)

(2.18)
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We can also obtain a lower bound for A,
CA= B / 10" 1101¢' >y dide + B / 16”11 Dovl?¢' > /7 dide
+8 / w2’y dtde, (2.19)
where | D,,v|? stands for
|Dwv|2 = y"fa,-va,»v.
For the completeness of the presentation, we include the proof of (2.18) and (2.19) in the

“Appendix”.
‘We also want to find another refined lower bound for A. We write A as

A=Aj + Ay + As + A, (2.20)
where
Ar = (070 + (B°0” + Bo'bie™ + (n — 2B + e G)v + Ayvllj
and
Ay = [|(2B¢ + ¥ by)dv + € bidyv + Bgull;
and
Az =2 < dPv+ (B2 + Be'bie* + (n — 2)Be’ + e*G)v + Loy — Bgv,
(280" + €¥'by)ov + €' bidiv >4
and

Ay =—Blgvll3.

and g(¢) is a function to be determined. We continue to break .43 down as

A3 =1+ Iy, (2.21)
where
Ty =2 < 0%v+ (8267 + Bebre” + (1 — 2B + ¢ d)v + Aoy,
(289" + 62’5,)8,11 + 2biov >0
and

I, = -2 < Bgv, (28" + eZIE,)atv + 2 b >4 .

Performing the integration by part arguments shows that
712 36 [ 10/11D00P 7 dide - o [ €oPe 7 dido

—cp [ 16/ l00P 8 7 dido - g [ 161109 T dida. @222)
From (2.19) and (2.22), it follows that
I1+C'A>0
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for some positive constant C’. That is,
71 > —-C'A. (2.23)

We compute 7Z,. Applying the integrating by parts gives that
T, = / Bg' 2B¢ + > b)v? ¢ 3y didw
+ / BgB" + 2¢* by + e 8,b,)v>¢' 3 fy dtdw
— [3psps +Bpw o6y dide
+ / B22BY + e b)d; In Syvie' Py didw
+ / Bge* (3;b; + b;9; In /y)v2¢' >y didw.

Combining terms in the later identity yields that

l;t 292151‘ + 62’ atgt 6¢// 3 62t5t¢/71¢//
B B B
‘b 219;b; + €*'b;d; In
eﬂt Iy + =2 ’+eﬂ i ﬁ)}v2¢’_3ﬁd1dw. (2.24)
Since A; and A; are nonnegative, from (2.20), (2.21) and (2.23), we have

n=p [ [gey g(20" +

A>T +T) + Ay
> —C'A+T + As.

By (2.24), we have a lower bound of A as

215 2 2t]; 2t8 b 215 =1
v o+ ) (22

21 b 2tp. 9.
<2¢ n 7[)) 8t1nf+ albl +e btal ln\/?)] —gz}v2¢’_3ﬁdtdw.
B B
(2.25)

From the assumption (2.8), we know ¢’ is close to 1 as |T0| 1s sufficiently large. By the

assumption of b and the condition 8 > C(1 + ||b||W1 ~ + |lg || ), it is clear that Ig by | is
small. Thus, the condition

Wloo

2t b,

B

20 + >0

holds. Let

2t 2¢2th 2ty b 2t =1 21,
g’(2¢’+e ’>+g(e sl LU Ll L "’; ¢ +<2¢’+eﬁ1)8tlnﬁ

B B
e 3,’5,‘ + €2t55 dr In ﬂ
B

2t

“) (Bt — 1)
,3 (%) %))
(2.26)

)—g2=ﬁ2<2¢’+e

@ Springer



150 Page 10 of 23 J.Zhu

where ¢(t) = 0 fort > 0, () > 0 for r < 0, and |z, is an arbitrary large number with
t, < 0. We attempt to solve (2.26) with g = 0 for # > ¢,. Making the change of rescale, we
have

g=BG, z=B@1—1).
Then (2.26) is transformed into an equation of the form

%6 = Hi(2) + H2(2)G + H3(2)G?,
G(0) =0,

with Hy, Hy and Hj are uniformly bounded in C2. Standard existence theorem from ordinary
differential equations shows a solution to (2.26) for —C| < B(¢ —t,) < 0 with a fixed small
positive constant C. Then (2.26) can be solved for _TCI +t, <t <t If we assume that

suppv C { =L + 1, < 1 < To} with Ty < 0, then (2.25) implies that

CA> p* /(2¢ + 3 )go(ﬂ(t—t*))v oSy dido. (2.27)

There exist 0 < —Ty < Cy < C3 < Cy such that
() >Cqy for —Cz3<z<—-Co

and C4 depends on C;, C3. It follows from the last inequality that

CA > Cyp / vy dido. (2.28)

——<t<t*—7

Since r = e’ and recall that u = e~#¥ )y, the previous estimates yield that

A= Csp? / APV 2193 Sy drdo. (2.29)

——<lnr<t*—%

Set e = r,. If ry exp{—ﬁ} <r <ry exp{—%}, there exist positive constants Cg and Cy
such that r, (1 — %) <r<ry(1— g). Recall the estimates (2.18), it follows that

||£/3(v)||¢ZC5,3/ APV Y2 =13 Sydrdew.  (2.30)
Ty 7?6 <r<r*(lf%>

Note that ¢’ is close to 1, we have

ILs)* = Csp* 2PV 2 qyol 2.31)

r*<lf%)<r<r*(lf%>

by a constant change of the value of 8. Since u € C{° (B(p, MH\B(p, 8)), choosing r, =

)
T s we have
B

172V | Au+b - Vu + gul|> > Csp* PV y2 dvol. (2.32)
8<r<5(1+%)

From Lemma 1, we have established that

1r2eBY | Au + b - Vu + Gull = CoB? IriePVul. (2.33)
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Combining those two Carleman inequalities (2.32) and (2.33) yields that
/ r*e®V \Au+b - Vu + qu)? dvol > CB> rée®PVuldvol
B(p.h) B(p.h)
+C,84/ . PV P dvol
p.o( 1+ B )
(2.34)

foru € C°(B(p, h)\B(p, 8)) and B > C(1 + [[blly1.cc + 1G] yiec)- O

With aid of the Carleman estimates (2.34), we are in the position to give the proof of
Theorem 1. The refined doubling inequality and Bernstein’s inequalities have been obtained
for Laplacian eigenfunctions in [11].

Proof of Theorem 1 We introduce a cut-off function 6 (x) € C§° (IB( p, H\B(p, 8)) satisfying
the following properties:

@: 6 =lin B(p, INB(p. 8 + G5,

(i Vel < L. 126 < LB inB(p. s + £,

(iii): [VO| < C inB(p, H\B(p, 5).
Let w(x) = 6(x)u(x). Since u satisfies

Au+l;~Vu+éu=0,
then w satisfies
Aw+b-Vw+qw=A0u+2V0-Vu+b-Vou.

Substituting w into the left hand side of the stronger inequality (2.34) and calculating its
integrals gives that

/ 4PV \NOu +2V0 - Vu + b - Voul|?
(BB, D) U (Bp.s+55)\B(p.5))

< C,Bzf 4PV (u? +|Vul?)
B(p.m)\B(p. %)

-I—C/ rie?PV (ﬂ /32| |2 + 'B4uz> ,
B(p.o+ 55 ) \B(p.9) 5" 82

where we have used the assumption for b and g in (2.4) and the assumption 8 > C(1 +
- —1/2
1Bl + 13117 ).

Substituting w into the right hand side of (2.34) and taking the later inequality into con-
sideration yields that

2
1
c/ rte?V (u* + |Vul?) + c/ et B 1 Loy
h cs 54 52
B(p.m\B(p.}) B(p.3+155 )\B(p.0)

- / ree2PV 2 4 g2 2PV ,2
B(p.4)\B(p.o+55) B(p.6+%)\B(p.o+155)
(2.35)
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Using the fact that v is a decreasing function and the standard elliptic estimates, we have

FePV vu? < Ch4e2’3‘/’(%)f IVul?
B(p.m\B(p.4)

< CA2R2V D) / 2, (2.36)
T heayeey)”

/IE%(p,h)\B(p,Z)

Thus,

2PV (U2 1 |V ?) < CAZR2e2PV (D) / u?. (2.37)
(%) e(r )

J
E(p.i\E(p.% )
By the decreasing property of ¥, we have

ﬂ/ r<ePVy? > B € 2BV 2
B(p4)\(p.o+ f53) B(r.45)\8(r- %)

> ﬁhfe%’f(u%)/ W (2.38)
B(p. 45)\B(p. %)

From the doubling inequality in [36], we learn that

2 u? (2.39)

O / W > /
B(p,%)\B(P;zh*o) B(”'%)\B@’%)

for some C depending on M. If we choose § > CoA for some large constant Co, from (2.37)
and (2.38), we arrive at

ﬁ/ r%m%ﬁch AP (VU +ut). (240)
B(p.5)\B(p.o+55) B m\B(r.4)

The combination of (2.35) and (2.40) yields that

2
1
rte?bv —ﬂ u? + —IVMIZ > ,82 2PV,
cs 54 52 cs ol
B(p.0+ 55 )\B(p.8) B(p.3+S\B(p.6+{55)

(2.41)
We continue to simplify the last inequality,
Cs 2 Cs 1
6+ —)4e2ﬁ¢<‘”ﬂ—4 \ w4+ ——)te PO / |Vul|?
108 8% JB(p.6+55)\B(p.8) 108 3% JB(p,5+ 55)\B(p.0)
> ﬁzezﬁ'““*%’/ u?. (2.42)
B(p.5+F)\B(p.6+g5)

From the explicit form of 1 (x), there exists some small positive constant ¢ such that

Cé
exp{2By (8 + F) —2BY (8} >c
for B large enough. Thus,

,32

132
2+/ \v4 2 > 7/ 2
52 /IB(p,HS;;)\B(p,a)u B(p,a+%)\m%<p,a)| ey B(p.6+ 5 )\B(p.o+55)

u-.

(2.43)
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Let
Cé 1
— <A
108 —
Since u satisfies (2.3), standard elliptic theory yields that
ﬁ n+2
IVu(x)* < C (g) / u?(y) dy. (2.44)
yeB(x,%)

We integrate last inequality for x € B (p, 5+ %) \B(p, 8). It follows that

ﬂ l’l+2
/ Vul? < ¢ (—) f W2(y) dydx
B(p,5+%)\lﬂ%(p,6) 8 {erB(p,é—}—%)\]E(p,&), yema<x,%)}
p? )
=C=H / u”(y)dy, (2.45)
7 Jres(o s t)is(ro- )

where we have changed the order of integration in the last inequlity. Substituting last inequal-
ity into (2.43) gives that

/ u® > / u’. (2.46)
B(p.o+$5)\B(p.5— %) B(p.6+% )\B(p.s+155)
Recall that u(x) = e, (x) exp{ro(x)}. Let
o(xo) = max o(x), olx1) = min o(x).
B(p.5+$5)\B(p.6— 1) B(p.5+G)\B(p.6+135)

Then

Mo(xo) —o(x)| < Cn%x [Vo(x)|s,

since B > CoA. Furthermore, thanks to the fact that Vo(x) is a bounded function in M, we
have

c f el > / el (2.47)
(00§ 5(ra-5) 7 Ja(rarg)is(oon i)
Adding fB(p’ 553 e; to both sides of (2.47) yields that
c / e > / el (2.48)
]B(p,5+§—g) Iaa(p,zw%)
If we replace 6 = ‘S—/C, we get
455
c / el > / el (2.49)
B(p.8') B(p.6'+S)
Since we can choose 8 = CoA, by finite number of iteration, we arrive at
/ e2>C / el (2.50)
B(p.5) B(p.8(1+1))
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This completes conclusion (A) in Theorem 1. Next we show the L2-Bernstein’s inequality.
By the standard elliptic estimates,

C
Ves(x))* < f e; () dy (2.51)
F2+n Blx.r) A
if Ar < 1and B(x,r) C M . Choosing r = % and integrating over x € B(p, d),
2 ¢ 2
Ver(x)|"dx = —— e (y)dydx
B(p,8) r {yeB(x,r), xeB(p,d)}
C
<5 el (x) dx, (2.52)
= JB(p,s+r)

where we have changed the order of integration in last inequality. Application of (2.50) yields
that
2

2 Ch 2
Ve, (x)|“dx < 5 ey (x)dx. (2.53)
B(p.8) 8 JB(p.s)

Thus, we arrive at the conclusion (B).
We continue to obtain L* version of Bernstein’s inequality. For x € B(p, §), choosing
r= %, the refined doubling inequality (2.50) and (2.51) yield that

C 2 C 2
Ver (o)l < / &< —/ &
2 B 2 JB(p.str)

- ¢ / 2

e
— A
2 JB(p.5)

C n 2
< r2+"8 15?(1;)5() e;. (2.54)
Therefore,
'
Ve, (x)] < max |e; | (2.55)
B(p,d)

for any x € B(p, §). The conclusion (C) in Theorem 1 is arrived.

3 Upper bound of nodal sets of Steklov eigenfunctions

In this section, we will prove the optimal upper bound for the interior nodal sets of the Steklov
eigenfunctions. Assume that M is a real analytic Riemannian manifold with boundary. We
first estimate the measure of nodal sets in the neighborhood close to boundary, then show the
upper bound of nodal sets away from the boundary 9. M. Since M is a real analytic Rieman-
nian manifold with boundary, we may embed M C M as arelatively compact subset, where
M is an open real analytic Riemannian manifold. The real analytic Riemannian manifold
M and M are of the same dimension. We analytically extend the eigenfunction e; in M.
Denote the neighborhood of the boundary o.M as M, = {x € M |dist{x, M} <r}. Todo
the analytic continuation across the boundary, we want to get rid of A on the boundary. We
introduce the following lifting argument. Let

B(x, 1) = eMey (x).
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Then 0(x, t) satisfies the equation

{Agﬁ+a,21;— 220 =01in M x (—00, —00), 3.1
a—g—% =0o0n oM x (—o0, —00).
We also want to get rid of A in the equation. Choose
v(x, t,5) = ™ 0(x, 1).
Then we get that
Agv + 320+ 32v =0 in M x (—00, —00) X (—00, —00),
{ % - % =0ondM x (—00, —00) X (—00, —00). (3-2)

We can see that (3.2) is as a uniform elliptic equation with oblique boundary conditions. We
introduce the cubes with unequal side-length as

Qr,p={(x,1,5) € R"*2||x;| < R wheni < n, |x,| < pR, |t| <R, |s| < R}
and half-cube
Q;’p ={(x,t,s5) € R"+2||xi| < Rwheni <n,0<x, <pR, |t| <R, |s]| < R}.

Choose any point p € 9dM, using Fermi coordinates and rescaling arguments, we may
consider the function v(x, ¢, s) locally in the cube centered at origin with the flatten boundary.
Hence, v(x, t, s) satisfies the following equation locally

Agv+07v+97v =0in Q7 ,

v v _ + —
m—w—o OHQZ’lﬂ{xn—O}.

(3.3)

Thanks to the analyticity results in [26], we can extend v(x, , s) to the region 21 ,, where
p > 0 depends only on M. Furthermore, the growth of the extended v is controlled as

||U||L°°(S21,p) = C”U”Lw(g};l)v (3.4)

where C depends only on M. By compactness of the manifold and the uniqueness of the
analytic continuation, it follows that

—Aes(x) =0 in Mj, (3.5)

where M, = {x € M|dist{x, M} < p}.Recall the definition of v(x, #, 5) = e* e e) (x),
it follows from (3.4) that

leallzoee,) < e llexll o ms)- (3.6)

From the Proposition 1 and the even extension of u, the following doubling inequality
holds in half balls as

Ch
”M”LOO(B;) <e ”””LW(BT)

for 0 < r < rp, where ro depends only M. From the relations of u and e,, we obtain the
following doubling inequality

leall ooty < €t lleall oo (3.7)
(B3,) B)
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Iterating the doubling inequality (3.7) in the half balls by finite number of steps, we can
show that

Ch
”e)L”LOO(]Bp) <e ||e)\.||LOO(B'§)
2
= ePlerlli=m,)- (3.8)
By rescaling arguments, it also implies that

llesll ooy < et llerll Lo, 3.9)

forany r < g with By, € M and C depending only on M.

To get the upper bounds of nodal sets for the Steklov eigenfunctions, we need to extend
e, (x) locally as a holomorphic function in C". Applying elliptic estimates for ¢, in (3.5) in
aball B(p,r) C //\/\11, we have

D%e; (p) -
‘T < Yl es 1o, (3.10)

where « is a multi-index and C; > 1 depends on M. By translation, we still consider the point
p as the origin. Summing up a geometric series, we can extend e; (x) to be a holomorphic
function e, (z) with z € C" to have

sup |ex(2)| = C2 sup [ex(x)] (G.1D)

j2l< 25 Il <r

with C > 1.
Iterating the doubling inequality (3.9) finitely many times, by the rescaling arguments, we
obtain that

sup |e; (2)| < e“* sup |e; (x)] (3.12)

lz<2r lx|=<r

for 0 < r < pg with pg depending on M and C3z depends on M.
We need a lemma concerning the growth of a complex analytic function with the number
of zeros. See e.g. [8] and [15].

Lemma 2 Suppose f : B(0, 1) C C — C is an analytic function satisfying

fO) =1 and sup |f| <2V
B(0,1)

Sfor some positive constant N. Then for any r € (0, 1), there holds
H{zeBO,r): f(z) =0} <cN
where c depends on r. Especially, for r = %, there holds

#{ze B(0,1/2): f(z) =0} < N.

We are ready to show the upper bound of interior nodal sets of Steklov eigenfunctions based
on doubling inequality and the growth control lemma, see the pioneering work in [8] and
[19].
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Proof of Theorem 2 We first prove the nodal sets in a neighborhood M ». By rescaling and
translation, we can argue on scales of order one. Let p € Bj/4 be the point where the
maximum of |e; | in By 4 is attained. For each direction @ € "1 set ew(2) = ex(p + zw)
inz € B(0, 1) C C. Denoted by N (w) = #{z € B(0, 1/2) C C|é,(z) = 0}. By the doubling
property (3.12) and the Lemma 2, we have
g{x € B(p, 1/2)|x — p is parallel to w and e, (x) = 0}
=< t{z € B(0, 1/2) C Cléw(2) = 0}
= N(w) <Cx. (3.13)

With aid of integral geometry estimates, it implies that

H'\x € B(p. 1/2)|ex(x) = 0) < c(n) / Nw)do
Sn—=

IA

/ Cidw = C. (3.14)
sn—1

Therefore, we have
H" Yx € B(0, 1/4)|es(x) = 0} < CA. (3.15)

By covering the compact manifold M o C M by a finite number of coordinate charts,
we arrive at

H'" Yx e M§|ek(x) =0} < Cax. (3.16)

Next we deal with the measure of nodal sets in M\ M 6. We have obtained the doubling

mequahty (2.7) in the 1nter10r of the manifold. Since u(x) = ¢;(x)exp{ro(x)} and -C <
o(x) < C for some constant C depending on M, it is true that

lleallLem@p,2r)) < e e Lo B(p, r) (3.17)

holds for p € ./\/l\./\/lg and 0 < r < py < % We similarly extend e) (x) locally as a
holomorphic function in C". Since e, (x) is harmonic in M\ M o, applying elliptic estimates
in a small ball B(p, r), we have

’ D%e;.(p)

| = O e (3.18)
ol

where C4 > 1 depends only on M. We consider the point p as the origin as well. Summing
up a geometric series, we can extend e; (x) to be a holomorphic function e, (z) with z € C".
Moreover, we have

sup lex(z)| < Cs sup |ex(x)] (3.19)
lzl<3¢7 lx|<r
with C5 > 1.
Thanks to the doubling inequality (3.17), by finite steps of iterations, we obtain that
sup e (2)| < € sup e (1)) (3.20)
l<1<3¢; I¥I=g¢;

with Cg depends on M. In particular, by rescaling arguments,

sup |e; (2)| < e* sup lex(x)| (3.21)

lz<2r lx|<r
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holds for 0 < r < £ with py depending on M. Using the same arguments as obtaining

the nodal sets in the neighborhood of the boundary, we take advantage of lemma 2 and the
inequality (3.21). By rescaling and translation, we can argue on scales of order one. Let
p € By/4 be the point where the maximum of |e, | in By /4 is achieved. For each direction
we S"1 set e?(z) = ex(p +zw) in z € B(0, 1) C C. From the doubling property (3.21)
and the lemma 2 above, we have

fi{x € B(p, 1/2) | x — pisparallel to w and ¢, (x) = 0}
< #{z € B(0, 1/2) C Clef(z) = 0}
= N(w) < CA. (3.22)

Thanks to the integral geometry estimates, we get
H"*l{x € B(p, 1/2)]e,(x) =0} < c(n) /S”*l N(w)dw
< /S'H Crdw = Ch. (3.23)
Thus, we obtain

H" Y{x e B(0, 1/4)|e,(x) = 0} < Ci. (3.24)

Using the finite number of coordinate charts to cover the compact manifold M\Mg , we
obtain

H'" x e M\Mpex(x) = 0} < Ch. (3.25)

Together with (3.16) and (3.25), we arrive at the conclusion in Theorem 2.
O

Acknowledgements Itis my pleasure to thank Professor Christopher D. Sogge, Joel Spruck, and Steve Zelditch
for helpful discussions about the topic of eigenfunctions.

4 Appendix

In this section, we provide the proof of Lemma 1 and some arguments stated in the proof
Proposition 2. Recall that

1
15 = A= B,
where

Lpv) = 82v+ (284" + by + (n —2) + 8 In /¥)dv + ¥ b;dv
+(B2¢" + Bp'bie* + B¢ + (n —2)Bd' + B3 In /¥ )v + Ayv + ¥ G4 1)

and
A= 020 + Apv + (289" + € by)dv + ¥ b v
+ (B¢ + B'be™ + (n — 2B’ + ¥ q)vl} 4.2)
and
B=B¢"v+ BdInyye¢'v+ (n—2)dv+dIn/ydv|; (4.3)
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Modifying the arguments in [2] and [35], we can obtain the following lemma, which verifies
the proof of (2.18) and (2.19) in Proposition 2.

Lemma 3 There holds that
5 1
1L5W)lG = 7A
> Cp f 19" [|v[*¢'—> /¥ dtdw + CB / 1¢”|| Dov|*¢' 2/ dtdw

+CB / 10,0203y didw. (4.4)

Proof We decompose A as

A=A+ Ay + AL,

where
Ay = (070 + (B20” + Bo'be™ + (n — B + e G)v + Ayvllj
and
Ay = (1289’ + €*'by)dv + e bidiv]}
and

Ay =2 < 920+ (B2¢” + Bp'bre® + (n — 2)Bd + ¥ §)v + Ay,
(2,3¢/ + €2t5r)3tv +e¥b;d;v >4 .
We first compute A’l . Let @ be some small positive constant. Recall that ¢ () = t — e’. Since
Iqb//l < 1 and B is large enough, it is true that

’

A= LA 4.5)
B
where .A/l/ is given by
2
Aj = H\/ 10”1070 + (B2 + Bg'bre™ + (n = 2)B¢ + € q)v + Lyv]
¢
We split .A,l/ into three parts:
A =K1+ K2 + K3, (4.6)
where
2
Ky = H,/|¢”|(a,2u + Apv)
]
and

2

Ky = H\/ 19" 1(B*¢* + Bd'bre™ + (n — 2)B¢’ + e*q)v
[
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and
Ky = 2<|¢”|(33v + Do), (B2 + Bo'bie* + (n —2)Bd + ezfq)u> .
¢

The expression K1 is considered to be a nonnegative term. We estimate K,. By the triangle
inequality,

2 B 2
K> B4 V1g 19| — H,/ 19" 1(B'bre® + (n —2)B¢ + e*G)v 4.7)
¢ ¢
Using the fact that 8 > C(1 + |[b]l 1.0 + IIQII%IZ_OO), we have
_ 2 2
H\/ 9" 1(B¢'bre™ + (n —2)B¢’ + e q)v| < CB*|\/Ig"le"v
¢ ¢
2
+Cp*|\/Ig" v 4.8)
¢

Since 1 is close to negative infinity and then ¢’ is close to 1, from (4.7) and (4.8), we obtain
that

2

where we also used the fact that ¢’ is close to 1. We derive a lower bound for K3. Integration
by parts shows that

Ko > CB* , 4.9)

Ky =-2 / 16" 118,01* (820 + B bre® + (n —2)p¢’ + ¢ §)¢' ">y dtdw
-2 / v, [19”1(8%¢™ + Bd'bie® + (n — 2)B¢ + ¥ §)d' > Y¥] didw
2 / 16 1DV (8267 + Bo'5,e% + (n — DB + ¥ §)¢ > JFdidew

—2 [ 51610y 0058 e

- 2/ 16 1y 8iv0;Ge* vd' > Sy dtdw. (4.10)
By the Cauchy-Schwartz inequality and the condition that 8 > C(1+ [|b|| 1.0 + |17l tﬁ_m),
we arrive at
Ky > —Cp* f 1610100 + | Dvl? + v2)¢' 3 ydido. @.11)
Since K; is nonnegative, the combination of (4.6), (4.9) and (4.11) yields that
" 2 2
Ay = CBH 19" o] —CB [\/18" 10w
¢ ¢
2
— Cp* /19" || Do “.12)
[
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From (4.5), it follows that

2

—Cap H |¢" 11 Doy

2
A, = Cap?

- Cap H |¢N|3zv

2

¢

(4.13)

[
Recall that

Ay = [[(2B¢ + *'by)dv + €' b ;v ][5
By the triangle inequality, one has
Ay = 282116/ 0,vll5 — Il brdrv + ¥ b0 vl
It is obvious that

Ay > — A,

|~

From the assumption that 8 > C(1 + ”l;le,oo + gl %,2,30), we obtain that

Ay > CBllg' vl — CBle vl — CBlle' I Dovllly
> CBllp'dvll5 — CBlle' | Dyl 13- (4.14)
For the inner product A}, using the arguments of integration by parts, since ¢’ < last < Ty
and |Tp| is large enough, we can show a lower bound of .Af N

2

2
AngﬁH 1”11 Doyl —Cﬂ3}|efv|1j,—CﬁH 19" 13;v
¢ ¢

2

Recall that A = A + A) + Aj. From (4.13), (4.14) and (4.15), it follows that

—Cp? (4.15)

A> c&,33/|¢”|u2¢’—3ﬁdzdw+c,3/|a,v|2¢’—3ﬁ
+Cp / 161 DovI?¢’ > ydtde — CB2 / 9 10?9/ ydtdo
- Cﬂ3/e2’u2¢/*3ﬁdtdw—c5/ 19”118, v%¢' > fydidw
- C&,B/ |¢”||Dwv|2¢”3ﬁdzdw—Cﬂ/e2’|Dwv|2¢>”3ﬁdtdw. (4.16)

If we choose & to be appropriately small and take the fact l¢"| > e’ into account, we obtain
that

CA= B / 16" [vPd 3 7 dide + B / 16”1 D26 V7 dide

+8 / 100?93y didw. 4.17)

@ Springer



150

Page 22 of 23 J.Zhu

Now we show B can be absorbed into .4 for large |Tp| and large 8. Since

10 In /y| < Ce' < 9],

then

B=B¢"v+ B0 In/yd'v+ (n—2)0v+dIn ﬁa,:;nﬁ,

< ﬁ2/ |¢”|v2¢”3ﬁdtdw+C/ |3,v)%e? ¢’ 3 Sydidw. (4.18)

Thus, the right hand side of (4.18) can be incorporated by the right hand side of (4.17). Hence
the proof of the lemma is arrived. O

ProofofLemma 1 If we recall that u = e~#¢™)y, the proof of Lemma 3 just implies Lemma

1 stated in Sect. 2. O
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