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Abstract
We investigate the geometric properties of Steklov eigenfunctions in smooth manifolds.
We derive the refined doubling estimates and Bernstein’s inequalities. For the real analytic
manifolds, we are able to obtain the sharp upper bound for the measure of interior nodal sets.

Mathematics Subject Classification 35P20 · 35P15 · 58C40 · 28A78

1 Introduction

In this paper, we address the geometric properties and interior nodal sets of Steklov eigen-
functions {�geλ(x) = 0, x ∈ M,

∂eλ
∂ν

(x) = λeλ(x), x ∈ ∂M,
(1.1)

where ν is a unit outward normal on ∂M. Assume that (M, g) is a n-dimensional smooth,
connected and compact manifold with smooth boundary ∂M, where n ≥ 2. The Steklov
eigenfunctions were first studied by Steklov in 1902 for bounded domains in the plane. It is
also regarded as eigenfunctions of theDirichlet-to-Neumannmap,which is a first order homo-
geneous, self-adjoint and elliptic pseudodifferential operator. The spectrum λ j of Steklov
eigenvalue problem consists of an infinite increasing sequence with

0 = λ0 < λ1 ≤ λ2 ≤ λ3, . . . , and lim
j→∞ λ j = ∞.

The eigenfunctions {eλ j } form an orthonormal basis such that

eλ j ∈ C∞(M),

∫
∂M

eλ j eλk dVg = δkj .
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Recently, the study of nodal geometry of eigenfunctions has been attracting much atten-
tion. Estimating the Hausdorff measure of nodal sets has always been an important subject
concerning the nodal geometry of eigenfunctions. The celebrated problem about nodal sets
centers around the famous Yau’s conjecture for smooth manifolds. Let φλ be eigenfunctions
of

− �gφλ = λ2φλ (1.2)

on compact manifolds (M, g) without boundary, Yau conjectured that the upper and lower
bounds of nodal sets of eigenfunctions in (1.2) satisify

cλ ≤ Hn−1({x ∈ M|φλ(x) = 0}) ≤ Cλ (1.3)

where C, c depend only on the manifold M. The conjecture is shown to be true for real
analytic manifolds by Donnelly-Fefferman in [8,10]. Lin [19] also proved the upper bound
for the analytic manifolds using a different approach. Note that we use λ2 for the eigenvalue
of Laplacian eigenfunctions to reflect the order of the elliptic operator, since the Dirichlet-
to-Neumann map is a first order elliptic pseudodifferential operator and Laplace operator is
a second order elliptic operator.

Let us briefly review the recent literature concerning the progress of Yau’s conjecture
on nodal sets of Laplacian eigenfunctions (1.2). For the conjecture (1.3) on the measure of
nodal sets on smooth manifolds, there are important breakthrough made by Logunov and
Malinnikova [20,22] and [21] in recent years. For the upper bound of nodal sets on two
dimensional manifolds, Logunov and Malinnikova [22] showed that H1({x ∈ M|φλ(x) =
0}) ≤ Cλ

3
2−ε , which slightly improves the upper boundCλ

3
2 by Donnelly and Fefferman [9]

and Dong [7]. For higher dimensions n ≥ 3 on smooth manifolds, Logunov in [20] obtained
a polynomial upper bound Hn−1({x ∈ M|φλ(x) = 0}) ≤ Cλβ for some β depending
on the dimension n. The polynomial upper bound improves the exponential upper bound
Hn−1({x ∈ M|φλ(x) = 0}) ≤ CλCλ derived by Hardt and Simon [17]. For the lower
bound, Logunov [21] completely solved the Yau’s conjecture and obtained the sharp lower
bound in (1.3). For n = 2, such sharp lower bound was obtained earlier by Brüning [4].
This sharp lower bound improves a polynomial lower bound obtained early by Colding
and Minicozzi [6], Sogge and Zelditch [30,31]. See also other polynomial lower bounds
by different methods, e.g. [18,25,28] and other related results on nodal sets and geometric
properties of Laplacian eigenfunctions, e.g. [5,14,16,24]. For detailed account about this
subject, interested readers may refer to the book [15] and surveys [23,33].

For the Steklov eigenfunctions, by themaximum principle, there exist nodal sets inM and
those sets intersect the boundary ∂M traservasally. It is interesting to askYau’s type questions
about the Hausdorff measure of nodal sets of Steklov eigenfunctions on the boundary and
interior of the manifolds, respectively. The natural and corresponding conjecture for Steklov
eigenfunctions should state as

cλ ≤ Hn−2({x ∈ ∂M|eλ(x) = 0}) ≤ Cλ, (1.4)

cλ ≤ Hn−1({x ∈ M|eλ(x) = 0}) ≤ Cλ. (1.5)

See also the survey by Girouard and Polterovich in [13] about these open questions.
Recently, much work has been devoted to the bounds of nodal sets of Steklov eigenfunc-

tions on the boundary

Zλ = {x ∈ ∂M|eλ(x) = 0}. (1.6)
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The study of (1.6) was initiated by Bellova and Lin [3] who proved the Hn−2(Zλ) ≤ Cλ6

with C depending only on M, if M is an analytic manifold. By microlocal analysis argu-
ment, Zelditch [34] was able to improve their results and gave the optimal upper bound
Hn−2(Zλ) ≤ Cλ for analytic manifolds. For the smooth manifold M, Wang and the author
in [32] established a lower bound

Hn−2(Zλ) ≥ Cλ
4−n
2 (1.7)

by considering the fact that the Steklov eigenfunctions are eigenfunctions of a first order
elliptic pseudodifferential operator. The polynomial lower bound (1.7) is the Steklov analogue
of the lower bounds of nodal sets for Laplacian eigenfunctions (1.2) obtained in [6] and [31].

Concerning about the bounds of interior nodal sets of eigenfunctions,

Nλ = {x ∈ M|eλ(x) = 0}
Sogge, Wang and the author [29] obtained a lower bound for interior nodal sets

Hn−1(Nλ) ≥ Cλ
2−n
2

for smooth manifolds M. The measure of nodal sets is more clear on surfaces. In [36], the
author was able to obtain an upper bound for the measure of interior nodal sets

H1(Nλ) ≤ Cλ
3
2 .

On surfaces, the singular set Sλ = {x ∈ M|eλ = 0,∇eλ = 0} is a finite set that consists of
isolated points on the nodal curves. It was also shown that H0(Sλ) ≤ Cλ2 in [36]. Recently,
Polterovich, Sher and Toth [27] verified Yau’s type conjecture for upper and lower bounds
in (1.5) for the real-analytic Riemannian surfacesM. Georgiev and Roy-fortin [12] obtained
polynomial upper bounds for interior nodal sets on smooth manifolds. There are still many
challenges for the study of Steklov eigenfunctions. For instance, it is well-known that the
Laplacian eigenfunctions in (1.2) are so dense that there are nodal sets in each geodesic ball
with radius Cλ−1. This fundamental result is crucial to derive the lower bounds of nodal
sets for Laplacian eigenfunctions (1.2) in [8] and [4]. For the Steklov eigenfunctions, it
is unknown whether such density results remain true on the boundary and interior of the
manifold, which cause difficulties in studying the Steklov eigenfunctions.

An interesting topic in the study of eigenfunction is called as the doubling inequality.
Doubling inequality plays an important role in deriving strong unique continuation property,
the vanishing order of eigenfunctions and obtaining the measure of nodal sets, see e.g. [8,10].
The doubling inequality for Laplacian eigenfunctions (1.2)∫

B(p, 2r)
e2λ ≤ eCλ

∫
B(p, r)

e2λ (1.8)

is derived using Carleman estimates in [8] for 0 < r < r0, where B(p, c) denotes as a ball
in M centered at p with radius c, and C , r0 depends on M. For the Steklov eigenfunctions
on ∂M, the author has obtained a similar type of doubling inequality on the boundary ∂M
and derived that the sharp vanishing order is less than Cλ on the boundary ∂M in [35]. For
Steklov eigenfunctions in M, we were also able to get the doubling inequality as (1.8) in
[36]. For the Laplacian eigenfunctions (1.2), a refined doubling inequality∫

B(p, (1+ 1
λ
)r)

e2λ ≤ C
∫
B(p, r)

e2λ (1.9)
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was derived in [11] by some stronger Carleman estimates. The refine doubling inequality
also leads to Bernstein’s gradient inequalities for Laplacian eigenfunctions. The first goal in
this note is to study a refined version doubling inequality for the Steklov eigenfunctions and
its applications.

Theorem 1 For the Steklov eigenfunctions in (1.1) in the smooth manifold M, there hold
(A): a refined doubling inequality∫

B(p, (1+ 1
λ
)r)

e2λ ≤ C
∫
B(p, r)

e2λ,

(B): L2-Bernstein’s inequality
∫
B(p, r)

|∇eλ|2 ≤ Cλ2

r2

∫
B(p, r)

e2λ,

(C) L∞-Bernstein’s inequality

max
B(p, r)

|∇eλ| ≤ Cλ
n+2
2

r
max
B(p, r)

|eλ|

for B(p, (1 + 1
λ
)r) ⊂ M and 0 < r < r0, where r0 depends on M.

Our second goal is to obtain the optimal upper bound of interior nodal sets of Steklov
eigenfunctions for real analytic manifolds. Our work extends the optimal upper bound in
[27] to real analytic manifolds in any dimensions, which proves the upper bound of Yau’s
type conjecture for interior nodal sets in (1.5).

Theorem 2 LetM be the real analytic compact and connectedmanifold with analytic bound-
ary. There exists a positive constant C depending on M such that,

Hn−1(Nλ) ≤ Cλ

for the Steklov eigenfunctions.

The outline of the paper is as follows. In Sect. 2, we reduce the Steklov eigenvalue problem
into an equivalent elliptic equation without boundary. Then we obtain the refined doubling
inequality and show Theorem 1. Section 3 is devoted to the upper bound of interior nodal sets
for real analytic manifolds. Section 4 is the “Appendix” which provides the proof of some
arguments for the Carleman estimates. The letter c, C , Ci denote generic positive constants
and do not depend on λ. They may vary in different lines and sections. In the paper, since we
study the asymptotic properties for eigenfunctions, we assume that λ is sufficiently large.

2 Refined doubling inequality

In this section, we will establish a stronger Carleman estimate than that in [35].Wewill trans-
form the Steklov eigenvalue problem into a second order elliptic equation on a boundaryless
manifold. The eigenvalue λ will be reflected in the coefficients of the elliptic equation.

Tomake the Steklov eigenvalue problem into an elliptic equation, adapting the ideas in [3],
we choose an auxiliary function involving the distance function. Let d(x) = dist{x, ∂M}
be the distance function from x ∈ M to the boundary ∂M. If M is smooth, d(x) is smooth
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in the small neighborhood M0
ρ of ∂M in M, where M0

ρ = {x ∈ M|dist{x, ∂M} ≤ ρ}.
By the partition of unity, we extend d(x) in a smooth manner by introducing


(x) =
{
d(x) x ∈ M0

ρ,

l(x) x ∈ M\M0
ρ,

where the smooth function l(x) is a smooth extension of d(x) in M\M0
ρ . Therefore, the

extended function 
(x) is a smooth function in M. We consider an auxiliary function

u(x) = eλ exp{λ
(x)}.
Then the new function u(x) satisfies{�gu + b(x) · ∇gu + q(x)u = 0 in M,

∂u
∂ν

= 0 on ∂M (2.1)

with {
b(x) = −2λ∇g
(x),
q(x) = λ2|∇g
(x)|2 − λ�g
(x).

(2.2)

In order to construct a boundaryless model, we attach two copies of M along the boundary
and consider a double manifold M = M ∪ M. Then induced metric g′ of g on the double
manifoldM is Lipschitz. We consider a canonical involutive isometry F : M → M which
interchanges the two copies of M. In this sense, the function u(x) can be extended to the
double manifold by a even extension as M by u ◦ F = u. Thus, u(x) satisfies

�g′u + b̄(x) · ∇g′u + q̄(x)u = 0 in M. (2.3)

Note that the new metric g′ is Lipschitz metric. From the assumptions in (2.2) and the even
extension, it follows that

{ ‖b̄‖W 1,∞(M) ≤ Cλ,

‖q̄‖W 1,∞(M) ≤ Cλ2.
(2.4)

By a standard regularity argument for dealing with Lipschitz metrics in [10] and [1],
we have established some quantitative Carleman inequality in [35] for the general second
order elliptic equation (2.3). See also e.g. [2] for similar estimates for smooth manifolds. The
quantitative Carleman estimate inequality is stated as follows.

Lemma 1 There exist positive constants ε0 and C such that for any u ∈ C∞
0

(
B(p, ε0)\

B(p, ε1)
)
, and β > C(1 + ‖b̄‖W 1,∞ + ‖q̄‖1/2

W 1,∞), one has

∫
r4e2βψ(r)|�g′u + b̄ · ∇g′u + q̄u|2 dvol ≥ Cβ3

∫
r εe2βψ(r)u2 dvol, (2.5)

where ψ(r) = − ln r(x) + r ε(x), r(x) is the geodesic distance from x to p, and 0 < ε < 1
is some fixed constant.

Since some arguments are used in the proof of Proposition 2 later, we include the major
arguments of the proof of Lemma 1 in the “Appendix”. By the Carleman estimates in Lemma
1, we can derive a Hadamard’s three-ball theorem. Based on a propagation of smallness
argument, we have obtained the following doubling inequality in M in [36].
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Proposition 1 There exist positive constants r0 and C depending only on M such that for
any 0 < r < r0 and any p ∈ M, there holds

‖u‖L2(B(p, 2r)) ≤ eCλ‖u‖L2(B(p, r)) (2.6)

for any solutions of (2.3).

From the proposition, it is easy to see that the doubling inequality for Steklov eigenfunctions
as (1.8) holds inM if B(p, 2r) ⊂ M, since 
(x) is a bounded function. By standard elliptic
estimates, the L∞ norm of doubling inequality

‖u‖L∞(B(p, 2r)) ≤ eCλ‖u‖L∞(B(p, r)) (2.7)

holds, which also implies that

‖eλ‖L∞(B(p, 2r)) ≤ eCλ‖eλ‖L∞(B(p, r)).

Next we will establish a stronger Carleman inequality than that in Lemma 1 with weight
function exp{βψ(x)} following from [11], where the function ψ satisfies some convexity
properties. Choosing a fixed number ε such that 0 < ε < 1 and T0 < 0, we define the
function φ on (−∞, T0] by φ(t) = t − eεt . If |T0| is sufficiently large, the function φ(t)
satisfies the following properties

1 − εeεT0 ≤ φ′(t) ≤ 1, (2.8)

lim
t→−∞

−φ′′(t)
et

= +∞. (2.9)

Let ψ(x) = −φ
(
ln r(x)

)
, where r(x) = d(x, p) is geodesic distance between x and p. The

stronger Carleman estimate is stated as follows.

Proposition 2 There exist positive constants h, C0 and C such that for any u ∈
C∞
0

(
B(p, h)\B(p, δ)

)
, and β > C0(1 + ‖b̄‖W 1,∞ + ‖q̄‖1/2

W 1,∞), one has
∫
B(p,h)

r4e2βψ |�u + b̄ · ∇u + q̄u|2 dvol ≥ Cβ3
∫
B(p,h)

r εe2βψu2dvol

+Cβ4
∫
B(p,δ(1+ C

β
))

e2βψu2dvol. (2.10)

Proof By the standard argument in dealing with Lipschitz Riemannian manifold in [10]
and [1], using a conformal change, we can still use polar geodesic coordinates (r , ω). The
change only results in the change of C in the norm estimates of coefficient functions in (2.4).
The geodesic balls are comparable under the conformal change of the different metrics. For
simplicity, we still keep the notations in (2.3). We introduce the polar geodesic coordinates
(r , ω) near p. Following the Einstein notation, for any v ∈ C∞, we denote the Laplace-
Beltrami operator as

r2�v = r2∂2r v + r2
(
∂r ln(

√
γ ) + n − 1

r

)
∂rv + 1√

γ
∂i

(√
γ γ i j∂ jv

)
,

where ∂i = ∂
∂ωi

and γi j (r , ω) is a metric on Sn−1, γ = det(γi j ). One can check that, for r
small enough, ⎧⎨

⎩
∂r (γi j ) ≤ C(γi j ) in term of tensors,
|∂r (γ )| ≤ C,

C−1 ≤ γ ≤ C,

(2.11)
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where C depends on M. Set a new coordinate as ln r = t . Using this new coordinate,

e2t�v = ∂2t v + (n − 2 + ∂t ln
√

γ )∂tv + 1√
γ

∂i
(√

γ γ i j∂ jv
)

(2.12)

and

e2t b̄ = e2t b̄t∂t + e2t b̄i∂i .

Since u is supported in a small neighborhood, u is supported in (−∞, T0) × Sn−1 with
T0 < 0 and |T0| large enough. Under this new coordinate, the condition (2.11) becomes⎧⎨

⎩
∂t (γi j ) ≤ Cet (γi j ) in term of tensors,
|∂t (γ )| ≤ Cet ,
C−1 ≤ γ ≤ C .

(2.13)

Let

u = e−βψ(x)v.

Define the conjugate operator,

Lβ(v) = r2eβψ(x)�(e−βψ(x)v) + r2eβψ(x)b̄ · ∇(e−βψ(x)v) + r2q̄v

= e2t e−βφ(t)�(eβφ(t)v) + e2t e−βφ(t)b̄ · ∇(eβφ(t)v) + e2t q̄v. (2.14)

From (2.12), straightforward calculations show that

Lβ(v) = ∂2t v + (
2βφ′ + e2t b̄t + (n − 2) + ∂t ln

√
γ
)
∂tv + e2t b̄i∂iv

+(
β2φ′2 + βφ′b̄t e2t + βφ′′ + (n − 2)βφ′ + β∂t ln

√
γφ′)v + �ωv + e2t q̄v,

(2.15)

where

�ωv = 1√
γ

∂i (
√

γ γ i j∂ jv).

We will work in the following L2 norm

‖v‖2φ =
∫

(−∞, T0]×Sn−1
|v|2√γφ′−3 dtdω,

where dω is measure on Sn−1. By the triangle inequality, we have

‖Lβ(v)‖2φ ≥ 1

2
A − B,

where

A = ‖∂2t v + �ωv + (
2βφ′ + e2t b̄t

)
∂tv + e2t b̄i∂iv

+(
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v‖2φ (2.16)

and

B = ‖βφ′′v + β∂t ln
√

γφ′v + (n − 2)∂tv + ∂t ln
√

γ ∂tv‖2φ. (2.17)

By integration by parts argument, we can absorb B into A. It holds that

‖Lβ(v)‖2φ ≥ 1

4
A. (2.18)
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We can also obtain a lower bound for A,

CA ≥ β3
∫

|φ′′||v|2φ′−3√γ dtdω + β

∫
|φ′′||Dωv|2φ′−3√γ dtdω

+β

∫
|∂tv|2φ′−3√γ dtdω, (2.19)

where |Dωv|2 stands for
|Dωv|2 = γ i j∂iv∂ jv.

For the completeness of the presentation, we include the proof of (2.18) and (2.19) in the
“Appendix”.

We also want to find another refined lower bound for A. We write A as

A = A1 + A2 + A3 + A4, (2.20)

where

A1 = ‖∂2t v + (
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v + �ωv‖2φ

and

A2 = ‖(2βφ′ + e2t b̄t
)
∂tv + e2t b̄i∂iv + βgv‖2φ

and

A3 = 2 < ∂2t v + (
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v + �ωv − βgv,(

2βφ′ + e2t b̄t
)
∂tv + e2t b̄i∂iv >φ

and

A4 = −β2‖gv‖2φ,

and g(t) is a function to be determined. We continue to break A3 down as

A3 = I1 + I2, (2.21)

where

I1 = 2 < ∂2t v + (
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v + �ωv,(

2βφ′ + e2t b̄t
)
∂tv + e2t b̄i∂iv >φ

and

I2 = −2 < βgv,
(
2βφ′ + e2t b̄t

)
∂tv + e2t b̄i∂iv >φ .

Performing the integration by part arguments shows that

I1 ≥ 3β
∫

|φ′′||Dωv|2φ′−3√γ dtdω − cβ3
∫

et |v|2φ′−3√γ dtdω

−cβ
∫

|φ′′||∂tv|2φ′−3√γ dtdω − cβ2
∫

|φ′′||v|2φ′−3√γ dtdω. (2.22)

From (2.19) and (2.22), it follows that

I1 + C ′A ≥ 0
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for some positive constant C ′. That is,

I1 ≥ −C ′A. (2.23)

We compute I2. Applying the integrating by parts gives that

I2 =
∫

βg′(2βφ′ + e2t b̄t )v
2φ′−3√γ dtdω

+
∫

βg(2βφ′′ + 2e2t b̄t + e2t∂t b̄t )v
2φ′−3√γ dtdω

−
∫

3βg(2βφ′ + e2t b̄t )φ
′−1

φ′′v2φ′−3√γ dtdω

+
∫

βg(2βφ′ + e2t b̄t )∂t ln
√

γ v2φ′−3√γ dtdω

+
∫

βge2t (∂i b̄i + b̄i∂i ln
√

γ )v2φ′−3√γ dtdω.

Combining terms in the later identity yields that

I2 = β2
∫ {

g′(2φ′ + e2t b̄t
β

) + g
(
2φ′′ + 2e2t b̄t + e2t∂t b̄t

β
− 6φ′′ − 3

e2t b̄tφ′−1
φ′′

β

+ (2φ′ + e2t b̄t
β

)∂t ln
√

γ + e2t∂i b̄i + e2t b̄i∂i ln
√

γ

β

)}
v2φ′−3√γ dtdω. (2.24)

Since A1 and A2 are nonnegative, from (2.20), (2.21) and (2.23), we have

A ≥ I1 + I2 + A4

≥ −C ′A + I2 + A4.

By (2.24), we have a lower bound of A as

CA ≥ β2
∫ {[

g′
(
2φ′ + e2t b̄t

β

)
+ g

(2e2t b̄t + e2t∂t b̄t
β

− 4φ′′ − 3
e2t b̄tφ′−1

φ′′

β

+
(
2φ′ + e2t b̄t

β

)
∂t ln

√
γ + e2t∂i b̄i + e2t b̄i∂i ln

√
γ

β

)]
− g2

}
v2φ′−3√γ dtdω.

(2.25)

From the assumption (2.8), we know φ′ is close to 1 as |T0| is sufficiently large. By the

assumption of b̄ and the condition β > C(1+ ‖b̄‖W 1,∞ + ‖q̄‖1/2
W 1,∞), it is clear that | e2t b̄t

β
| is

small. Thus, the condition

2φ′ + e2t b̄t
β

> 0

holds. Let

g′
(
2φ′ + e2t b̄t

β

)
+ g

(2e2t b̄t + e2t∂t b̄t
β

− 4φ′′ − 3
e2t b̄tφ′−1

φ′′

β
+

(
2φ′ + e2t b̄t

β

)
∂t ln

√
γ

+e2t∂i b̄i + e2t b̄i∂t ln
√

γ

β

)
− g2 = β2

(
2φ′ + e2t b̄t

β

)
ϕ(β(t − t∗)),

(2.26)
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where ϕ(t) = 0 for t ≥ 0, ϕ(t) > 0 for t < 0, and |t∗| is an arbitrary large number with
t∗ < 0. We attempt to solve (2.26) with g = 0 for t ≥ t∗. Making the change of rescale, we
have

g = βG, z = β(t − t∗).

Then (2.26) is transformed into an equation of the form{
∂G
∂z = H1(z) + H2(z)G + H3(z)G2,

G(0) = 0,

with H1, H2 and H3 are uniformly bounded inC2. Standard existence theorem from ordinary
differential equations shows a solution to (2.26) for −C1 ≤ β(t − t∗) ≤ 0 with a fixed small
positive constant C1. Then (2.26) can be solved for −C1

β
+ t∗ ≤ t ≤ t∗. If we assume that

supp v ⊂ {−C1
β

+ t∗ ≤ t ≤ T0} with T0 < 0, then (2.25) implies that

CA ≥ β4
∫ (

2φ′ + e2t b̄t
β

)
ϕ(β(t − t∗))v2φ′−3√γ dtdω. (2.27)

There exist 0 < −T0 < C2 < C3 < C1 such that

ϕ(z) > C4 for − C3 < z < −C2

and C4 depends on C2, C3. It follows from the last inequality that

CA ≥ C4β
4
∫
t∗− C3

β
<t<t∗− C2

β

v2φ′−3√γ dtdω. (2.28)

Since r = et and recall that u = e−βψ(x)v, the previous estimates yield that

A ≥ C5β
4
∫
t∗− C3

β
<ln r<t∗− C2

β

e2βψ(x)u2r−1φ′−3√γ drdω. (2.29)

Set et∗ = r∗. If r∗ exp{−C3
β

} < r < r∗ exp{−C2
β

}, there exist positive constants C6 and C7

such that r∗(1 − C6
β

) < r < r∗(1 − C7
β

). Recall the estimates (2.18), it follows that

‖Lβ(v)‖2φ ≥ C5β
4
∫
r∗

(
1− C6

β

)
<r<r∗

(
1− C7

β

) e2βψ(x)u2r−1φ′−3√γ drdω. (2.30)

Note that φ′ is close to 1, we have

‖Lβ(v)‖2 ≥ C5β
4
∫
r∗

(
1− C6

β

)
<r<r∗

(
1− C7

β

) e2βψ(x)u2 dvol (2.31)

by a constant change of the value of β. Since u ∈ C∞
0

(
B(p, h)\B(p, δ)

)
, choosing r∗ =

δ

1− C6
β

, we have

‖r2eβψ |�u + b̄ · ∇u + q̄u|‖2 ≥ C5β
4
∫

δ<r<δ
(
1+ C8

β

) e2βψ(x)u2 dvol. (2.32)

From Lemma 1, we have established that

‖r2eβψ |�u + b̄ · ∇u + q̄u‖ ≥ C9β
3
2 ‖r ε

2 eβψu‖. (2.33)
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Combining those two Carleman inequalities (2.32) and (2.33) yields that∫
B(p,h)

r4e2βψ |�u + b̄ · ∇u + q̄u|2 dvol ≥ Cβ3
∫
B(p,h)

r εe2βψu2dvol

+Cβ4
∫
B

(
p,δ

(
1+ C8

β

)) e2βψu2dvol

(2.34)

for u ∈ C∞
0

(
B(p, h)\B(p, δ)

)
and β > C(1 + ‖b̄‖W 1,∞ + ‖q̄‖W 1,∞). ��

With aid of the Carleman estimates (2.34), we are in the position to give the proof of
Theorem 1. The refined doubling inequality and Bernstein’s inequalities have been obtained
for Laplacian eigenfunctions in [11].

Proof of Theorem 1 We introduce a cut-off function θ(x) ∈ C∞
0

(
B(p, h)\B(p, δ)

)
satisfying

the following properties:

(i): θ = 1 in B(p, h
2 )\B(p, δ + Cδ

10β ),

(ii): |∇θ | ≤ Cβ
δ
, |�θ | ≤ Cβ2

δ2
in B(p, δ + Cδ

10β ),

(iii): |∇θ | ≤ C in B(p, h)\B(p, h
2 ).

Let w(x) = θ(x)u(x). Since u satisfies

�u + b̄ · ∇u + q̄u = 0,

then w satisfies

�w + b̄ · ∇w + q̄w = �θu + 2∇θ · ∇u + b̄ · ∇θu.

Substituting w into the left hand side of the stronger inequality (2.34) and calculating its
integrals gives that∫

(
B(p,h)\B(p, h2 )

)⋃(
B(p,δ+ Cδ

10β )\B(p,δ)
) r4e2βψ |�θu + 2∇θ · ∇u + b̄ · ∇θu|2

≤ Cβ2
∫
B(p,h)\B(p, h2 )

r4e2βψ(u2 + |∇u|2)

+C
∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

r4e2βψ

(
β4

δ4
u2 + β2

δ2
|∇u|2 + β4

δ2
u2

)
,

where we have used the assumption for b̄ and q̄ in (2.4) and the assumption β > C(1 +
‖b̄‖W 1,∞ + ‖q̄‖1/2

W 1,∞).
Substituting w into the right hand side of (2.34) and taking the later inequality into con-

sideration yields that

C
∫
B(p,h)\B

(
p, h2

) r4e2βψ(u2 + |∇u|2) + C
∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

r4e2βψ(
β2

δ4
u2 + 1

δ2
|∇u|2)

≥ β

∫
B

(
p, h2

)
\B(p,δ+ Cδ

10β )

r εe2βψu2 + β2
∫
B(p,δ+ Cδ

β
)\B

(
p,δ+ Cδ

10β

) e2βψu2.

(2.35)
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Using the fact that ψ is a decreasing function and the standard elliptic estimates, we have∫
B(p,h)\B

(
p, h2

) r4e2βψ |∇u|2 ≤ Ch4e2βψ( h2 )

∫
B(p,h)\B

(
p, h2

) |∇u|2

≤ Cλ2h2e2βψ( h2 )

∫
B

(
p, 5h4

)
\B

(
p, h4

) u2. (2.36)

Thus,

C
∫
B(p,h)\B

(
p, h2

) r4e2βψ(u2 + |∇u|2) ≤ Cλ2h2e2βψ( h2 )

∫
B

(
p, 5h4

)
\B

(
p, h4

) u2. (2.37)

By the decreasing property of ψ , we have

β

∫
B

(
p, h2

)
\B

(
p,δ+ Cδ

10β

) r εe2βψu2 ≥ β

∫
B

(
p, h

10

)
\B

(
p, h

20

) r εe2βψu2

≥ βhεe2βψ( h
10 )

∫
B(p, h

10 )\B
(
p, h

20

) u2. (2.38)

From the doubling inequality in [36], we learn that

eCλ

∫
B

(
p, h

10

)
\B

(
p, h

20

) u2 ≥
∫
B

(
p, 5h4

)
\B

(
p, h4

) u2 (2.39)

for some C depending onM. If we choose β > C0λ for some large constant C0, from (2.37)
and (2.38), we arrive at

β

∫
B

(
p, h2

)
\B

(
p,δ+ Cδ

10β

) r εe2βψu2 ≥ C
∫
B(p,h)\B

(
p, h2

) r4e2βψ(|∇u|2 + u2). (2.40)

The combination of (2.35) and (2.40) yields that∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

r4e2βψ

(
β2

δ4
u2 + 1

δ2
|∇u|2

)
≥ β2

∫
B(p,δ+ Cδ

β
)\B(p,δ+ Cδ

10β )

e2βψu2.

(2.41)

We continue to simplify the last inequality,

(δ + Cδ

10β
)4e2βψ(δ) β

2

δ4

∫
B(p,δ+ Cδ

10β )\B(p,δ)
u2 + (δ + Cδ

10β
)4e2βψ(δ) 1

δ2

∫
B(p,δ+ Cδ

10β )\B(p,δ)
|∇u|2

≥ β2e2βψ(δ+ Cδ
β

)

∫
B(p,δ+ Cδ

β
)\B(p,δ+ Cδ

10β )

u2. (2.42)

From the explicit form of ψ(x), there exists some small positive constant c such that

exp{2βψ(δ + Cδ

β
) − 2βψ(δ)} > c

for β large enough. Thus,

β2

δ2

∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

u2 +
∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

|∇u|2 ≥ c
β2

δ2

∫
B

(
p,δ+ Cδ

β

)
\B

(
p,δ+ Cδ

10β

) u2.

(2.43)
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Let

Cδ

10β
≤ λ−1.

Since u satisfies (2.3), standard elliptic theory yields that

|∇u(x)|2 ≤ C

(
β

δ

)n+2 ∫
y∈B

(
x, Cδ

10β

) u2(y) dy. (2.44)

We integrate last inequality for x ∈ B

(
p, δ + Cδ

10β

)
\B(p, δ). It follows that

∫
B

(
p,δ+ Cδ

10β

)
\B(p,δ)

|∇u|2 ≤ C

(
β

δ

)n+2 ∫
{x∈B

(
p,δ+ Cδ

10β

)
\B(p,δ), y∈B

(
x, Cδ

10β

)
}
u2(y) dydx

≤ C
β2

δ2

∫
y∈B

(
p,δ+ Cδ

5β

)
\B

(
p,δ− Cδ

10β

) u2(y) dy, (2.45)

where we have changed the order of integration in the last inequlity. Substituting last inequal-
ity into (2.43) gives that∫

B(p,δ+ Cδ
5β )\B

(
p,δ− Cδ

10β

) u2 ≥
∫
B

(
p,δ+ Cδ

β

)
\B

(
p,δ+ Cδ

10β

) u2. (2.46)

Recall that u(x) = eλ(x) exp{λ
(x)}. Let

(x0) = max

B(p,δ+ Cδ
5β )\B(p,δ− Cδ

10β )


(x), 
(x1) = min
B(p,δ+ Cδ

β
)\B(p,δ+ Cδ

10β )


(x).

Then

λ|
(x0) − 
(x1)| ≤ C max
M

|∇
(x)|δ,

since β ≥ C0λ. Furthermore, thanks to the fact that ∇
(x) is a bounded function in M, we
have

C
∫
B

(
p,δ+ Cδ

5β

)
\B

(
p,δ− Cδ

10β

) e2λ ≥
∫
B

(
p,δ+ Cδ

β

)
\B

(
p,δ+ Cδ

10β

) e2λ. (2.47)

Adding
∫
B(p,δ+ Cδ

10β )
e2λ to both sides of (2.47) yields that

C
∫
B

(
p,δ+ Cδ

5β

) e2λ ≥
∫
B

(
p,δ+ Cδ

β

) e2λ. (2.48)

If we replace δ = δ′
1+ C

5β
, we get

C
∫
B(p,δ′)

e2λ ≥
∫
B

(
p,δ′+ Cδ′

β

) e2λ. (2.49)

Since we can choose β = C0λ, by finite number of iteration, we arrive at∫
B(p,δ)

e2λ ≥ C
∫
B(p,δ(1+ 1

λ
))

e2λ. (2.50)

123



  150 Page 14 of 23 J. Zhu

This completes conclusion (A) in Theorem 1. Next we show the L2-Bernstein’s inequality.
By the standard elliptic estimates,

|∇eλ(x)|2 ≤ C

r2+n

∫
B(x,r)

e2λ(y) dy (2.51)

if λr ≤ 1 and B(x, r) ⊂ M . Choosing r = δ
λ
and integrating over x ∈ B(p, δ),∫

B(p,δ)
|∇eλ(x)|2 dx ≤ C

r2+n

∫
{y∈B(x,r), x∈B(p,δ)}

e2λ(y)dydx

≤ C

r2

∫
B(p,δ+r)

e2λ(x) dx, (2.52)

where we have changed the order of integration in last inequality. Application of (2.50) yields
that ∫

B(p,δ)
|∇eλ(x)|2 dx ≤ Cλ2

δ2

∫
B(p,δ)

e2λ(x) dx . (2.53)

Thus, we arrive at the conclusion (B).
We continue to obtain L∞ version of Bernstein’s inequality. For x ∈ B(p, δ), choosing

r = δ
λ
, the refined doubling inequality (2.50) and (2.51) yield that

|∇eλ(x)|2 ≤ C

r2+n

∫
B(x,r)

e2λ ≤ C

r2+n

∫
B(p,δ+r)

e2λ

≤ C

r2+n

∫
B(p,δ)

e2λ

≤ C

r2+n
δn max

B(p,δ)
e2λ. (2.54)

Therefore,

|∇eλ(x)| ≤ Cλ
n+2
2

δ
max
B(p,δ)

|eλ| (2.55)

for any x ∈ B(p, δ). The conclusion (C) in Theorem 1 is arrived.
��

3 Upper bound of nodal sets of Steklov eigenfunctions

In this section, wewill prove the optimal upper bound for the interior nodal sets of the Steklov
eigenfunctions. Assume that M is a real analytic Riemannian manifold with boundary. We
first estimate the measure of nodal sets in the neighborhood close to boundary, then show the
upper bound of nodal sets away from the boundary ∂M. SinceM is a real analytic Rieman-
nianmanifoldwith boundary, wemay embedM ⊂ M1 as a relatively compact subset, where
M1 is an open real analytic Riemannian manifold. The real analytic Riemannian manifold
M and M1 are of the same dimension. We analytically extend the eigenfunction eλ in M1.
Denote the neighborhood of the boundary ∂M as Mr = {x ∈ M1|dist{x,M} ≤ r}. To do
the analytic continuation across the boundary, we want to get rid of λ on the boundary. We
introduce the following lifting argument. Let

v̂(x, t) = eλt eλ(x).
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Then v̂(x, t) satisfies the equation
{�g v̂ + ∂2t v̂ − λ2v̂ = 0 in M × (−∞, −∞),

∂v̂
∂ν

− ∂v̂
∂t = 0 on ∂M × (−∞, −∞).

(3.1)

We also want to get rid of λ in the equation. Choose

v(x, t, s) = eiλs v̂(x, t).

Then we get that
{�gv + ∂2t v + ∂2s v = 0 in M × (−∞, −∞) × (−∞, −∞),

∂v
∂ν

− ∂v
∂t = 0 on ∂M × (−∞, −∞) × (−∞, −∞).

(3.2)

We can see that (3.2) is as a uniform elliptic equation with oblique boundary conditions. We
introduce the cubes with unequal side-length as

�R,ρ = {(x, t, s) ∈ R
n+2||xi | < R when i < n, |xn | < ρR, |t | < R, |s| < R}

and half-cube

�+
R,ρ = {(x, t, s) ∈ R

n+2||xi | < R when i < n, 0 ≤ xn < ρR, |t | < R, |s| < R}.
Choose any point p ∈ ∂M, using Fermi coordinates and rescaling arguments, we may
consider the function v(x, t, s) locally in the cube centered at originwith the flatten boundary.
Hence, v(x, t, s) satisfies the following equation locally

{
�gv + ∂2t v + ∂2s v = 0 in �+

2,1,
∂v
∂xn

− ∂v
∂t = 0 on �+

2,1 ∩ {xn = 0}. (3.3)

Thanks to the analyticity results in [26], we can extend v(x, t, s) to the region�1,ρ , where
ρ > 0 depends only on M. Furthermore, the growth of the extended v is controlled as

‖v‖L∞(�1,ρ ) ≤ C‖v‖L∞(�+
2,1)

, (3.4)

where C depends only on M. By compactness of the manifold and the uniqueness of the
analytic continuation, it follows that

−�eλ(x) = 0 in M̂1, (3.5)

where M̂1 = {x ∈ M1|dist{x, M} ≤ ρ}. Recall the definition of v(x, t, s) = eλt eλiseλ(x),
it follows from (3.4) that

‖eλ‖L∞(Bρ) ≤ eCλ‖eλ‖L∞(B+
2 ). (3.6)

From the Proposition 1 and the even extension of u, the following doubling inequality
holds in half balls as

‖u‖L∞(B+
2r )

≤ eCλ‖u‖L∞(B+
r )

for 0 < r < r0, where r0 depends only M. From the relations of u and eλ, we obtain the
following doubling inequality

‖eλ‖L∞(B+
2r )

≤ eCλ‖eλ‖L∞(B+
r ). (3.7)
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Iterating the doubling inequality (3.7) in the half balls by finite number of steps, we can
show that

‖eλ‖L∞(Bρ) ≤ eCλ‖eλ‖L∞(B+
ρ
2

)

≤ eCλ‖eλ‖L∞(B ρ
2

). (3.8)

By rescaling arguments, it also implies that

‖eλ‖L∞(B2r ) ≤ eCλ‖eλ‖L∞(Br ) (3.9)

for any r ≤ ρ
2 with B2r ⊂ M̂1 and C depending only on M.

To get the upper bounds of nodal sets for the Steklov eigenfunctions, we need to extend
eλ(x) locally as a holomorphic function in C

n . Applying elliptic estimates for eλ in (3.5) in
a ball B(p, r) ⊂ M̂1, we have∣∣∣∣D

αeλ(p)

α!
∣∣∣∣ ≤ C |α|

1 r−|α|‖eλ‖L∞ , (3.10)

whereα is amulti-index andC1 > 1 depends onM. By translation, we still consider the point
p as the origin. Summing up a geometric series, we can extend eλ(x) to be a holomorphic
function eλ(z) with z ∈ C

n to have

sup
|z|≤ r

2C1

|eλ(z)| ≤ C2 sup
|x |≤r

|eλ(x)| (3.11)

with C2 > 1.
Iterating the doubling inequality (3.9) finitely many times, by the rescaling arguments, we

obtain that

sup
|z|≤2r

|eλ(z)| ≤ eC3λ sup
|x |≤r

|eλ(x)| (3.12)

for 0 < r < ρ0 with ρ0 depending on M and C3 depends on M.
We need a lemma concerning the growth of a complex analytic function with the number

of zeros. See e.g. [8] and [15].

Lemma 2 Suppose f : B(0, 1) ⊂ C → C is an analytic function satisfying

f (0) = 1 and sup
B(0,1)

| f | ≤ 2N

for some positive constant N . Then for any r ∈ (0, 1), there holds

�{z ∈ B(0, r) : f (z) = 0} ≤ cN

where c depends on r. Especially, for r = 1
2 , there holds

�{z ∈ B(0, 1/2) : f (z) = 0} ≤ N .

We are ready to show the upper bound of interior nodal sets of Steklov eigenfunctions based
on doubling inequality and the growth control lemma, see the pioneering work in [8] and
[19].
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Proof of Theorem 2 We first prove the nodal sets in a neighborhood M ρ
4
. By rescaling and

translation, we can argue on scales of order one. Let p ∈ B1/4 be the point where the
maximum of |eλ| in B1/4 is attained. For each direction ω ∈ Sn−1, set êω(z) = eλ(p + zω)

in z ∈ B(0, 1) ⊂ C. Denoted by N (ω) = �{z ∈ B(0, 1/2) ⊂ C|êω(z) = 0}. By the doubling
property (3.12) and the Lemma 2, we have

�{x ∈ B(p, 1/2)|x − p is parallel to ω and eλ(x) = 0}
≤ �{z ∈ B(0, 1/2) ⊂ C|êω(z) = 0}
= N (ω) ≤ Cλ. (3.13)

With aid of integral geometry estimates, it implies that

Hn−1{x ∈ B(p, 1/2)|eλ(x) = 0} ≤ c(n)

∫
Sn−1

N (ω) dω

≤
∫
Sn−1

Cλ dω = Cλ. (3.14)

Therefore, we have

Hn−1{x ∈ B(0, 1/4)|eλ(x) = 0} ≤ Cλ. (3.15)

By covering the compact manifold M ρ
4

⊂ M̂1 by a finite number of coordinate charts,
we arrive at

Hn−1{x ∈ M ρ
4
|eλ(x) = 0} ≤ Cλ. (3.16)

Next we deal with the measure of nodal sets in M\M ρ
4
. We have obtained the doubling

inequality (2.7) in the interior of the manifold. Since u(x) = eλ(x) exp{λ
(x)} and −Ĉ <


(x) ≤ Ĉ for some constant Ĉ depending on M, it is true that

‖eλ‖L∞(B(p, 2r)) ≤ eCλ‖eλ‖L∞(B(p, r)) (3.17)

holds for p ∈ M\M ρ
4
and 0 < r ≤ ρ0 ≤ ρ

4 . We similarly extend eλ(x) locally as a
holomorphic function inCn . Since eλ(x) is harmonic inM\M ρ

4
, applying elliptic estimates

in a small ball B(p, r), we have∣∣∣∣D
αeλ(p)

α!
∣∣∣∣ ≤ C |α|

4 r−|α|‖eλ‖L∞ , (3.18)

where C4 > 1 depends only onM. We consider the point p as the origin as well. Summing
up a geometric series, we can extend eλ(x) to be a holomorphic function eλ(z) with z ∈ C

n .
Moreover, we have

sup
|z|≤ r

2C4

|eλ(z)| ≤ C5 sup
|x |≤r

|eλ(x)| (3.19)

with C5 > 1.
Thanks to the doubling inequality (3.17), by finite steps of iterations, we obtain that

sup
|z|≤ r

2C4

|eλ(z)| ≤ eC6λ sup
|x |≤ r

4C4

|eλ(x)| (3.20)

with C6 depends on M. In particular, by rescaling arguments,

sup
|z|≤2r

|eλ(z)| ≤ eCλ sup
|x |≤r

|eλ(x)| (3.21)
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holds for 0 < r <
ρ0
2 with ρ0 depending on M. Using the same arguments as obtaining

the nodal sets in the neighborhood of the boundary, we take advantage of lemma 2 and the
inequality (3.21). By rescaling and translation, we can argue on scales of order one. Let
p ∈ B1/4 be the point where the maximum of |eλ| in B1/4 is achieved. For each direction
ω ∈ Sn−1, set eω

λ (z) = eλ(p + zω) in z ∈ B(0, 1) ⊂ C. From the doubling property (3.21)
and the lemma 2 above, we have

�{x ∈ B(p, 1/2) | x − p is parallel to ω and eλ(x) = 0}
≤ �{z ∈ B(0, 1/2) ⊂ C|eω

λ (z) = 0}
= N (ω) ≤ Cλ. (3.22)

Thanks to the integral geometry estimates, we get

Hn−1{x ∈ B(p, 1/2)|eλ(x) = 0} ≤ c(n)

∫
Sn−1

N (ω) dω

≤
∫
Sn−1

Cλ dω = Cλ. (3.23)

Thus, we obtain

Hn−1{x ∈ B(0, 1/4)|eλ(x) = 0} ≤ Cλ. (3.24)

Using the finite number of coordinate charts to cover the compact manifold M\M ρ
4
, we

obtain

Hn−1{x ∈ M\M ρ
4
|eλ(x) = 0} ≤ Cλ. (3.25)

Together with (3.16) and (3.25), we arrive at the conclusion in Theorem 2.
��
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4 Appendix

In this section, we provide the proof of Lemma 1 and some arguments stated in the proof
Proposition 2. Recall that

‖Lβ(v)‖2φ ≥ 1

2
A − B,

where

Lβ(v) = ∂2t v + (
2βφ′ + e2t b̄t + (n − 2) + ∂t ln

√
γ
)
∂tv + e2t b̄i∂iv

+(
β2φ′2 + βφ′b̄t e2t + βφ′′ + (n − 2)βφ′ + β∂t ln

√
γφ′)v + �ωv + e2t q̄v(4.1)

and

A = ‖∂2t v + �ωv + (
2βφ′ + e2t b̄t

)
∂tv + e2t b̄i∂iv

+ (
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v‖2φ (4.2)

and

B = ‖βφ′′v + β∂t ln
√

γφ′v + (n − 2)∂tv + ∂t ln
√

γ ∂tv‖2φ. (4.3)
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Modifying the arguments in [2] and [35], we can obtain the following lemma, which verifies
the proof of (2.18) and (2.19) in Proposition 2.

Lemma 3 There holds that

‖Lβ(v)‖2φ ≥ 1

4
A

≥ Cβ3
∫

|φ′′||v|2φ′−3√γ dtdω + Cβ

∫
|φ′′||Dωv|2φ′−3√γ dtdω

+ Cβ

∫
|∂tv|2φ′−3√γ dtdω. (4.4)

Proof We decompose A as

A = A′
1 + A′

2 + A′
3,

where

A′
1 = ‖∂2t v + (

β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
v + �ωv‖2φ

and

A′
2 = ‖(2βφ′ + e2t b̄t

)
∂tv + e2t b̄i∂iv‖2φ

and

A′
3 = 2 < ∂2t v + (

β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
v + �ωv,(

2βφ′ + e2t b̄t
)
∂tv + e2t b̄i∂iv >φ .

We first computeA′
1. Let α̂ be some small positive constant. Recall that φ(t) = t−eεt . Since

|φ ′′ | ≤ 1 and β is large enough, it is true that

A′
1 ≥ α̂

β
A′′

1, (4.5)

where A′′
1 is given by

A′′
1 =

∥∥∥∥
√

|φ ′′ |[∂2t v + (
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v + �ωv]

∥∥∥∥
2

φ

.

We split A′′
1 into three parts:

A′′
1 = K1 + K2 + K3, (4.6)

where

K1 =
∥∥∥∥
√

|φ ′′ |(∂2t v + �ωv
)∥∥∥∥

2

φ

and

K2 =
∥∥∥∥
√

|φ ′′ |(β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
v

∥∥∥∥
2

φ
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and

K3 = 2

〈
|φ ′′ |(∂2t v + �ωv),

(
β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
v

〉
φ

.

The expression K1 is considered to be a nonnegative term. We estimate K2. By the triangle
inequality,

K2 ≥ β4
∥∥∥∥
√

|φ ′′ |φ′v
∥∥∥∥
2

φ

−
∥∥∥∥
√

|φ ′′ |(βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
v

∥∥∥∥
2

φ

. (4.7)

Using the fact that β > C(1 + ‖b̄‖W 1,∞ + ‖q̄‖1/2
W 1,∞), we have

∥∥∥∥
√

|φ ′′ |(βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
v

∥∥∥∥
2

φ

≤ Cβ4
∥∥∥∥
√

|φ ′′ |etv
∥∥∥∥
2

φ

+ Cβ2
∥∥∥∥
√

|φ ′′ |v
∥∥∥∥
2

φ

. (4.8)

Since t is close to negative infinity and then φ′ is close to 1, from (4.7) and (4.8), we obtain
that

K2 ≥ Cβ4
∥∥∥∥
√

|φ ′′ |v
∥∥∥∥
2

φ

, (4.9)

where we also used the fact that φ′ is close to 1. We derive a lower bound forK3. Integration
by parts shows that

K3 = −2
∫

|φ ′′ ||∂tv|2(β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
φ′−3√γ dtdω

− 2
∫

∂tvv∂t
[|φ ′′ |(β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄

)
φ′−3√γ

]
dtdω

− 2
∫

|φ ′′ ||Dωv|2(β2φ′2 + βφ′b̄t e2t + (n − 2)βφ′ + e2t q̄
)
φ′−3√γ dtdω

− 2
∫

β|φ ′′ |φ′γ i j∂iv∂ j b̄t e
2tφ′−3√γ dtdω

− 2
∫

|φ ′′ |γ i j∂iv∂ j q̄e
2tvφ′−3√γ dtdω. (4.10)

By the Cauchy-Schwartz inequality and the condition that β > C(1+‖b̄‖W 1,∞ +‖q̄‖1/2
W 1,∞),

we arrive at

K3 ≥ −Cβ2
∫

|φ ′′ |(|∂tv|2 + |Dωv|2 + v2)φ′−3√γ dtdω. (4.11)

Since K1 is nonnegative, the combination of (4.6), (4.9) and (4.11) yields that

A′′
1 ≥ Cβ4

∥∥∥∥
√

|φ ′′ |v
∥∥∥∥
2

φ

− Cβ2
∥∥∥∥
√

|φ ′′ |∂tv
∥∥∥∥
2

φ

− Cβ2
∥∥∥∥
√

|φ ′′ ||Dωv|
∥∥∥∥
2

φ

. (4.12)
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From (4.5), it follows that

A′
1 ≥ C α̂β3

∥∥∥∥
√

|φ ′′ |v
∥∥∥∥
2

φ

− C α̂β

∥∥∥∥
√

|φ ′′ |∂tv
∥∥∥∥
2

φ

− C α̂β

∥∥∥∥
√

|φ ′′ ||Dωv|
∥∥∥∥
2

φ

. (4.13)

Recall that

A′
2 = ‖(2βφ′ + e2t b̄t

)
∂tv + e2t b̄i∂iv‖2φ.

By the triangle inequality, one has

A′
2 ≥ 2β2‖φ′∂tv‖2φ − ‖e2t b̄t∂tv + e2t b̄i∂iv‖2φ.

It is obvious that

A′
2 ≥ 1

β
A′

2.

From the assumption that β > C(1 + ‖b̄‖W 1,∞ + ‖q̄‖1/2
W 1,∞), we obtain that

A′
2 ≥ Cβ‖φ′∂tv‖2φ − Cβ‖et∂tv‖2φ − Cβ‖et |Dωv|‖2φ

≥ Cβ‖φ′∂tv‖2φ − Cβ‖et |Dωv|‖2φ. (4.14)

For the inner productA′
3, using the arguments of integration by parts, since et � 1 as t < T0

and |T0| is large enough, we can show a lower bound of A′
3,

A′
3 ≥ Cβ

∥∥∥∥
√

|φ ′′ ||Dωv|
∥∥∥∥
2

φ

− Cβ3
∥∥etv∥∥2

φ
− Cβ

∥∥∥∥
√

|φ ′′ |∂tv
∥∥∥∥
2

φ

− Cβ2
∥∥∥∥
√

|φ ′′ |v
∥∥∥∥
2

φ

. (4.15)

Recall that A = A′
1 + A′

2 + A′
3. From (4.13), (4.14) and (4.15), it follows that

A ≥ C α̂β3
∫

|φ ′′ |v2φ′−3√γ dtdω + Cβ

∫
|∂tv|2φ′−3√γ

+ Cβ

∫
|φ ′′ ||Dωv|2φ′−3√γ dtdω − Cβ2

∫
|φ ′′ |v2φ′−3√γ dtdω

− Cβ3
∫

e2tv2φ′−3√γ dtdω − Cβ

∫
|φ ′′ ||∂tv|2φ′−3√γ dtdω

− C α̂β

∫
|φ ′′ ||Dωv|2φ′−3√γ dtdω − Cβ

∫
e2t |Dωv|2φ′−3√γ dtdω. (4.16)

If we choose α̂ to be appropriately small and take the fact |φ ′′ | > et into account, we obtain
that

CA ≥ β3
∫

|φ′′||v|2φ′−3√γ dtdω + β

∫
|φ′′||Dωv|2φ′−3√γ dtdω

+β

∫
|∂tv|2φ′−3√γ dtdω. (4.17)
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Now we show B can be absorbed into A for large |T0| and large β. Since

|∂t ln√
γ | ≤ Cet ≤ |φ ′′ |,

then

B = ‖βφ′′v + β∂t ln
√

γφ′v + (n − 2)∂tv + ∂t ln
√

γ ∂tv‖2φ
≤ β2

∫
|φ′′|v2φ′−3√γ dtdω + C

∫
|∂tv|2e2tφ′−3√γ dtdω. (4.18)

Thus, the right hand side of (4.18) can be incorporated by the right hand side of (4.17). Hence
the proof of the lemma is arrived. ��
Proof of Lemma 1 If we recall that u = e−βϕ(x)v, the proof of Lemma 3 just implies Lemma
1 stated in Sect. 2. ��
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