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The mineralized skeletal system of the hexactinellid sponge, 
Euplectella aspergillum, commonly known as the Venus’ 
flower basket, has received considerable attention from the 

engineering and materials science communities for its remarkable 
hierarchical architecture and mechanical robustness across mul-
tiple length scales. Its constituent glassy skeletal elements (spicules) 
consist of a central proteinaceous core surrounded by alternat-
ing concentric layers of consolidated silica nanoparticles and thin 
organic interlayers1–3. These spicules are further organized to form 
a highly regular square grid, reinforced by two intersecting sets of 
paired diagonal struts, creating a chequerboard-like pattern of alter-
nating open and closed cells (Fig.  1). Although the effects of the 
spicules’ laminated architecture in retarding crack propagation4 and 
increasing buckling strength5 have been demonstrated previously, 
the potential mechanical benefits of the double-diagonal square lat-
tice created from the assembly of these constituent spicules remain 
largely unexplored.

Grid-like open-cell lattices, such as those found in the skeletal 
system of E. aspergillum, are commonly employed in engineering 
contexts owing to their reduced weight6,7, high energy absorp-
tion8 and ability to control the propagation of acoustic9 and ther-
mal waves10–12. Generally, the properties and functionality of such 
geometries are dictated by their node connectivity. For example, a 
minimum node connectivity of six is required for two-dimensional 
lattices to be stretching-dominated, and thereby achieve a higher 
strength-to-weight ratio for structural applications13. In contrast, 
lattices with simple square geometries (with a node connectivity of 
four), are unstable when the loading vector has a transverse com-
ponent (they are bending-dominated, and the only shear resistance 
arises from the joints)14, and typically require diagonal bracing for 
stabilization15.

Here we use the skeletal anatomy of E. aspergillum as inspiration 
for the design of mechanically robust square lattice architectures 
(more information on the skeletal structure of the sponge can be 
found in Supplementary Section 1 and Supplementary Fig. 1). First, 
we use a combination of experimental and numerical analyses to 

investigate the mechanical properties of the sponge’s skeletal lattice. 
We then employ an optimization algorithm to identify the beam 
configuration in a diagonally reinforced square lattice that achieves 
the highest critical load, revealing—unexpectedly—that the skeletal 
system of E. aspergillum is very close to this design optimum. These 
results demonstrate that an integrated work flow, combining biolog-
ical, computational and mechanical testing approaches, can guide 
the design of lattice architectures that are structurally more robust 
than those now employed in modern infrastructure and devices.

To understand the mechanical benefits of the sponge’s skeletal 
architecture, we compared the performance of its geometry to that 
of three other 2D square-base lattices, all with the same total vol-
ume (that is, the same total amount of material) to ensure a fair 
comparison14. In each of these structures, the base square architec-
ture was comprised of elements with lengths L, and with rectangu-
lar cross-sections characterized by a depth H that is large enough 
to avoid out-of-plane deformation. More specifically, we consid-
ered Design A, which was inspired by the sponge and comprised 
horizontal and vertical (non-diagonal) elements with thickness 
TA,nd = 0.1L and two sets of parallel double diagonals with thickness 
TA,d = 0.05L located at a distance S ¼ L=ð

ffiffiffi
2

p
þ 2Þ

I
 from the nodes 

(Fig. 2a); Design B, which was similar to the sponge-inspired design 
with TB,nd = 0.1L, but only contained a single diagonal with thick-
ness TB,d = 0.1L crossing each of the closed cells (Fig. 2b); Design C, 
which was inspired by the bracings found in modern engineering 
applications with TC,nd = 0.1L and contained a crossed set of diagonal 
beams with thickness TC,nd = 0.05L in every cell (Fig. 2c); and Design 
D, with no diagonal reinforcement and horizontal and vertical ele-
ments with thickness TD;nd ¼ 0:1Lð1þ 1=

ffiffiffi
2

p
Þ

I
 (Fig. 2d). Note that 

in an effort to further provide a fair comparison, the volume ratio 
of diagonal to non-diagonal struts was also identical for Designs A, 
B and C (see Supplementary Section 2 and Supplementary Figs. 2–5 
for details and assumptions).

We began our analysis by comparing the mechanical response 
under uniaxial compression along the vertical elements of the four 
lattices described above. Samples comprising 6 × 6 tessellations of 
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square cells with L = 1.5 cm and H = 4 cm were fabricated with a 
Connex500 multi-material 3D printer (Stratasys) from a Shore A 
95 durometer material (digital elastomer FLX9795-DM) and com-
pressed uniaxially using a single axis Instron (Model 5969) with a 
50 kN load cell (Fig. 2e). Two key features emerged from the stress–
strain curves reported in Fig. 2f. First, we found that all designs with 
diagonal reinforcement (that is, Designs A–C) were characterized 
by a nearly identical initial elastic response, demonstrating that the 
different diagonal reinforcement designs did not impact the struc-
ture’s initial overall stiffness. Design D, as expected, exhibited a 
higher initial stiffness because of its thicker vertical and horizontal 
elements. Second, all curves showed a clear maximum load-bearing 
capacity, with Design A (the sponge-inspired design) accommodat-
ing the highest load. As each maximum load corresponded to the 
onset of buckling, we inferred that Design A displayed the high-
est critical buckling stress of the considered designs. Furthermore, 
we found that in all three designs with diagonals, the post-buckling 
behaviour resulted in a homogeneous pattern transformation 
throughout the sample (Fig. 2e). In contrast, for Design D, the criti-
cal mode resulted in a much larger wavelength than the size of a 
square unit cell, leading to a post-buckled shape qualitatively simi-
lar to that of a compressed buckled beam (more information on the 
experimental methods can be found in Supplementary Section  3 
and Supplementary Table 1).

In an effort to understand how the sponge-inspired lattice design 
resulted in substantially improved mechanical performance, we 
conducted finite element simulations using ABAQUS/Standard 
(Dassault Systémes SE). For these analyses, the geometries were 
constructed using Timoshenko beam elements (ABAQUS ele-
ment type B22) and the material’s response was captured using 
an incompressible Neo-Hookean material model with a shear 
modulus μ = 14.5 MPa. Our simulations consisted of three steps: 
(1) a buckling analysis (*BUCKLE step in ABAQUS) was con-
ducted to obtain the buckling modes for each of the structures, (2) 
a perturbation in the form of the lowest buckling mode was then 
applied to the nodes of the mesh, and (3) a static nonlinear analysis 
(*STATIC step in ABAQUS) was performed to evaluate the non-
linear, large-deformation responses. To verify the validity of our 
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Fig. 1 | Representative skeletal system of the hexactinellid sponge 
Euplectella aspergillum. a–c, Progressively magnified views of the sponge’s 
skeletal system, showing the entire skeletal tube (a), a magnified view of its 
highly regular lattice-like organization (b), and its alternating arrangemnet 
of open and closed cells (c). Scale bars, 4 cm (a); 2 cm (b); 2.5 mm (c). 
d, Composite overlay of an idealized truss model (green lines designate 
the vertical and horizonal truss elements, and the blue lines designate the 
diagonal truss elements) on the sponge’s underlying skeletal structure. e, 
Schematic of Design A, comprising non-diagonal elements with length L 
and thickness TA,nd and diagonal elements with thickness TA,d located at a 
distance S from the nodes. 
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Fig. 2 | Experimental and numerical results. a–d, Schematics of designs A–D, respectively. e, Mechanical deformation snapshots of the different 
3D-printed models at 0% applied strain (top) and 6% applied strain (bottom). Scale bar, 3 cm. f, Simulated and normalized experimental stress–strain 
curves for n = 3 independently tested samples of each design. Curves in this plot are colour coded according to a–d. All designs are characterized by the 
same total volume and mass ratio allocation between non-diagonal and diagonal elements.
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analyses, we investigated the responses of models identical to those 
specimens tested in our Instron compression studies. As shown in 
Fig. 2f, we found close agreement between the numerical and exper-
imental results up to the onset of buckling, confirming the accuracy 
of our simulations in capturing the linear regime and critical load. 
Next, we extended our finite element model to explore the effects 
of loading direction. To reduce computational cost and eliminate 
edge effects, we capitalized on the periodicity of the structures and 
investigated the response of representative volume elements (RVEs) 
with suitable periodic boundary conditions16,17 (see Supplementary 
Section 4 and Supplementary Figs. 6–24 for details and additional 
numerical analysis). Figure 3a shows the evolution of the structures’ 

effective stiffness, �E, as a function of the loading angle θ. We found 
that the stiffness of all structures containing diagonal reinforcement 
was virtually identical for any loading angle, further confirming that 
the structural stiffness was predominantly governed by the amount 
of material allocated along the loading direction. As a result, Design 
D, in which all of the material was allocated to the non-diagonal 
elements, exhibited the highest stiffness for θ = 0°, but had almost 
negligible load-bearing capacity for θ = 45°, where the only contri-
bution to its stiffness came from the minimal bending resistance of 
the joints (see Supplementary Fig. 21 for a detailed analysis of the 
effect of joint stiffness).

Next, we investigated the effect of θ on the buckling behaviour 
of Designs A–D. We found that the effective critical buckling stress 
(�σcr
I

) of Design A was higher than the other diagonally reinforced 
designs (Design B and Design C) for all values of θ (Fig. 3b). Design 
D surpassed Design A for 27° < θ < 63° when considering an infinite 
structure. However, given the global nature of the buckling mode 
for Design D, such performance was largely affected by boundary 
effects and the critical buckling stress was substantially reduced 
when considering a finite size structure comprising 10 × 10 RVEs 
(Fig. 3d; see also Supplementary Fig. 20). Furthermore, the geom-
etry of Design A maintained its robustness even after modifications 
to the lattice through the introduction of various levels of disorder, 
an observation consistent with the features observed in the native 
sponge skeleton (see Supplementary Figs. 23 and 24).

Having demonstrated the benefits of the sponge-inspired design 
(Design A) compared with Designs B–D, we wondered whether 
a different diagonally reinforced square lattice design with even 
higher critical buckling stress exists. To address this question, we 
formulated an optimization problem to identify the number of 
diagonals, N, their distance from the nodes of the square lattice Si 
(where i = 1,  2,  .  .  ,  N), as well as the ratio between diagonal and 
non-diagonal elements λ = Vnd/Vd (Vnd and Vd being the volume of 
the non-diagonal and diagonal elements, respectively) that resulted 
in the highest buckling stress. Specifically, we considered finite 
size structures composed of 3 × 3 RVEs and focused on uniaxial 
compression parallel to the non-diagonal elements (that is, θ = 0°), 
while constraining the total volume of the RVE to match that of 
the designs considered in Fig. 2. We maximized the objective func-
tion Z ¼ �σcr

I
 using finite element simulations coupled to a Python 

implementation of the Covariance Matrix Adaptation Evolution 
Strategy algorithm (CMA-ES)18 (more information on the imple-
mentation see Supplementary Section 5, Supplementary Figs. 25–27 
and Supplementary Tables 2 and 3). For each set of inputs identified 
by CMA-ES, a finite element buckling analysis was conducted to 
obtain �σcr

I
, which was subsequently used to evaluate the objective 

function Z
I
. We conducted seven separate optimizations, each con-

sidering a fixed integer number of diagonal elements N ranging from 
one to seven (N ¼ Z 2 ½1; 7

I
). Given the high strength of lattices 

reinforced by diagonals aligned at a 45° angle19, we assumed in all of 
the runs that all of the diagonals were oriented at 45° with respect 
to the non-diagonal members and that Vd and Vnd were distributed 
equally among the diagonal and non-diagonal elements, respec-
tively. Furthermore, to ensure symmetry, we assumed that S2i−1 = S2i 
(i = 1, 2, . . . , N/2) if N is an even number and S1 = 0 and S2i−1 = S2i 
(i = 2, 3, . . . , (N − 1)/2) for odd values of N. In Fig. 4a, we report the 
highest �σcr

I
 identified by CMA-ES for all considered values of N. We 

found that the highest �σcr
I

 was only 9.55% higher than that of Design 
A and occurred in a design similar to the sponge-inspired one (with 
two diagonals located at a distance S = 0.1800L from the nodes, and 
volume distributed so that λ = 0.6778). As such, this numerical pre-
diction, which was validated by experimental results (Fig. 4b), dem-
onstrated that the sponge-inspired design was extremely close to the 
design that exhibited the highest critical stress.

Thus far, we demonstrated that the skeletal organization pat-
tern found in E. aspergillum could be adapted to realize lattice 

Design A

Design B

Design C

Design D

N
or

m
al

iz
ed

 e
ffe

ct
iv

e 
st

iff
ne

ss
 (E

/µ
)

N
or

m
al

iz
ed

 e
ffe

ct
iv

e 
cr

iti
ca

l s
tre

ss
 (σ

cr
/µ

)
N

or
m

al
iz

ed
 e

ffe
ct

iv
e 

cr
iti

ca
l s

tre
ss

 (σ
cr

/µ
)

0 15 30 45 60 75 90
θ (degrees)

0 15 30 45 60 75 90
θ (degrees)

0 15 30 45 60 75 90
θ (degrees)

×10−2

×10−1a

c

d

b

×10−2

4.0

3.0

2.0

1.0

5.0

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

θ = 0

θ

Fig. 3 | Numerical results describing structural response to varying 
loading angle. a, Evolution of the normalized structural stiffness for infinite 
size periodic lattice designs as a function of θ. b, Normalized critical 
buckling modes for Designs A−D at θ = 0°. c, Evolution of the effective 
buckling stress for the different lattice designs as a function of θ. Results 
are obtained by simulating a supercell with 10 × 10 RVEs and periodic 
boundary conditions. d, Evolution of the normalized effective buckling stress 
as a function of θ for finite (non-periodic) lattice structures comprising 
10 × 10 RVEs. In each plot, the line colour corresponds to the designs in 
b. All designs are characterized by the same total volume and mass ratio 
allocation between non-diagonal and diagonal elements.
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structures with high buckling resistance under uniaxial compres-
sion. However, it should be noted that the superior mechanical per-
formance of the sponge-inspired lattice (Design A) is not limited to 
this loading condition. To demonstrate this important point, Fig. 5 
shows results for a slender tessellation of 11 × 2 square cells loaded 
in three-point bending. In this scenario, using an Instron, the slen-
der geometry was mounted in a three-point bending configuration 

and a displacement δappl was applied at the top centre of the geom-
etry. As the displacement was applied, the reaction force was mea-
sured and plotted in Fig. 5b for the various geometries. Both our 
experiments and finite element simulations demonstrated that the 
sponge-inspired design was stiffer and could withstand 15% higher 
loads over a larger range of applied displacements, illustrating the 
potential benefit of incorporating such a design into suspended 
structures. We further used finite element simulations to evaluate 
the performance of Designs A–D in five other loading regimes. For 
all of the loading cases considered (see Supplementary Figs. 9–12), 
we found that Design A was able to withstand considerably higher 
loads than any of the other structures—making it the best candi-
date to realize load-bearing structures for a variety of applications. 
Although we focused on lattices at the centimetre scale in this study, 
we want to emphasize that our approach can be extended to design 
structures over a wide range of length scales as long as they lie 
within the continuum limit. However, in our analysis, we did not 
account for the effect of gravity, which could become a important 
source of loading for large-scale structures.

In summary, through analysis of the skeletal organization of E. 
aspergillum, we discovered that its non-trivial, double-diagonal, 
chequerboard-like square lattice design provides enhanced 
mechanical performance compared to existing structures. We 
compared the sponge-inspired lattice (Design A) to other com-
mon diagonally reinforced square lattices (Designs B and C) and 
a non-diagonally reinforced lattice (Design D), all with the same 
total mass, and found that the sponge-inspired design provides a 
superior mechanism for withstanding loads before the onset of 
buckling for a wide range of loading conditions. By using optimi-
zation tools to survey a broad multidimensional design space, we 
also found that the architecture of the sponge skeleton is nearly 
identical to the lattice design that provides the highest critical 
stress under uniaxial compression.

The results presented here therefore demonstrate that, by intel-
ligently allocating material within a square lattice, it is possible to 
produce structures with optimal buckling resistance without the 
need to add more material to the system. The mechanical properties 
of the sponge-inspired lattice described here thus have implications 
for improving the performance of a wide range of truss systems, 
with applications ranging from large-scale infrastructure such as 
bridges and buildings to small-scale medical implants.

Although not the primary focus of this study, the results pre-
sented here may also shed light on functional aspects of the skeletal 
organization in E. aspergillum. It is important to note that skeletal 
maturation in this and related species progresses through two dis-
tinct phases (a flexible phase and a rigid phase), ultimately result-
ing in the terminal growth form shown in Fig. 1 (refs. 1,20,21). In the 
early, flexible stage of growth, the vertical, horizontal and diagonal 
skeletal struts are not fused to one another, and can thus accom-
modate radial expansion of the skeletal cylinder. At this point, the 
mechanical behaviour of the sponge skeleton is dominated by the 
properties of the individual spicules, which have been reported to 
support large bending deformation and fail at strains greater than 
those found for buckling in our lattices—namely at strains greater 
than ϵ ≈ 0.04 (refs. 22,23). Once the maximum length and width of the 
cylindrical lattice is achieved, the skeleton goes through a series of 
rigidification steps, resulting in a progressive stiffening of the skele-
tal system through nodal fusion of the vertical, horizontal and diag-
onal struts via the deposition of a lower-modulus laminated silica 
cement24, followed by the addition of the spiralling external ridges 
and further densification of the skeleton. Therefore, although the 
results presented here are thus unlikely to be biologically relevant 
with regards to the fully mature skeleton shown in Fig. 1, they may 
very well be relevant during the early stages of skeletal consolida-
tion in this and related species where the buckling strains exceed the 
laminate yield strains22–24.
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lattices comprising 11 × 2 square cells when loaded in three-point bending at 
δappl/L = 0.45. Scale bar, 3 cm. The photographs have been false-coloured to 
more clearly reflect the corresponding plots in b for each design.  
b, Evolution of the normalized reaction forces for n = 3 experimentally 
obtained samples (solid lines) and simulations (dashed lines) of the four 
designs as a function of the applied displacement. Normalization involved 
dividing the resulting reaction forces by the material shear modulus, 
specimen cell length L, and specimen depth H.
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Methods
Parameter derivation and an explanation of each geometry can be found in 
Supplementary Section 2. Details of the fabrication of the samples and the protocol 
for testing can be found in Supplementary Section 3. The numerical set-up 
and explanation for the finite element analysis can be found in Supplementary 
Section 4. Additional numerical analysis, including parameter exploration 
and considerations for different cross-sectional geometries, is presented in 
Supplementary Section 4.1. A detailed description of the optimization algorithm 
can be found in Supplementary Section 5.

Data availability
Raw data for the plots are available on GitHub at http://fer.me/sponge-structure. 
Additional data that support the findings of this study are available from the 
corresponding authors on request.

Code availability
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http://fer.me/sponge-structure.
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