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Inception loops discover what excites neurons
most using deep predictive models
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Finding sensory stimuli that drive neurons optimally is central to understanding information processing in the brain. However,
optimizing sensory input is difficult due to the predominantly nonlinear nature of sensory processing and high dimensionality
of the input. We developed ‘inception loops’', a closed-loop experimental paradigm combining invivo recordings from thousands
of neurons with in silico nonlinear response modeling. Our end-to-end trained, deep-learning-based model predicted thousands
of neuronal responses to arbitrary, new natural input with high accuracy and was used to synthesize optimal stimuli—most
exciting inputs (MEls). For mouse primary visual cortex (V1), MEls exhibited complex spatial features that occurred frequently
in natural scenes but deviated strikingly from the common notion that Gabor-like stimuli are optimal for V1. When presented
back to the same neurons in vivo, MEls drove responses significantly better than control stimuli. Inception loops represent a
widely applicable technique for dissecting the neural mechanisms of sensation.

stimuli that optimally drive neurons has been fundamental for

understanding information processing in the brain. In linear
systems, linear filters elicit responses optimally; for instance, linear-
nonlinear (LN) models with center-surround filters have high pre-
dictive power in the retina® and these patterns also strongly drive
retinal activity. However, the response selectivity of many cortical
neurons is inherently nonlinear, and even in V1, the predictive
power of LN or energy models is low, especially for responses to
natural stimuli*°. Accordingly, identifying optimal sensory input for
neurons with nonlinear sensitivity is difficult because of the intrac-
tably high-dimensional space of possible images. Proposed active
learning approaches’ ' are impractical because experimental con-
straints limit the number of responses that can be measured from
any single cell or restrict the dimensionality of the stimulus space.
Model-driven stimulus optimization, on the other hand, requires
functional models that can faithfully predict the responses of neu-
rons to arbitrary stimuli, including natural images, to guide an unre-
stricted search through a high dimensional space. Recently, deep
learning-based models have set new standards in predicting corti-
cal responses to natural images™*''-'*. In the present study, we used
end-to-end trained, deep-learning-based models to synthesize and
search for optimal stimuli in silico that we verified back in the brain.

S ince the work of Adrian and Bronk' and Hartline?, finding

Results

We designed a closed-loop experimental paradigm we call an
inception loop that combines in vivo recordings with in silico
modeling to synthesize stimuli that evoke a desired response that
we confirm in vivo (Fig. 1a). Briefly, on day 1 of an inception loop
experiment, we recorded the neural responses of large neuronal

populations to thousands of natural images, trained a convolutional
neural network (CNN) to predict these responses based on the pre-
sented images®''"", and optimized images to maximize the model
responses of selected model neurons”. Over subsequent days, we
presented these tailored images to the corresponding neurons in the
brain to test whether they indeed produced the strongest responses
among all control stimuli.

We recorded the responses to natural images of over 2,000 excit-
atory neurons in layer 2/3 (L2/3) of the V1 (V1 L2/3) for each of five
awake mice using two-photon imaging with a wide-field mesoscope
(Fig. 1b)'®. Before each functional imaging session, we recorded
a high-resolution, anatomical, three-dimensional stack (Fig. 1c).
Later we registered all recording planes into each of these stacks to
locate the neurons of interest across multiple days (Supplementary
Figs. 1 and 2; see Methods for details).

On the first day we collected the population responses to a set
of 5,000 unique natural images, which we used to fit a predictive
model of neural responses to visual stimuli (Fig. 1b). Another set of
100 images, repeated 10 times each, was used as the test set for the
model and to evaluate response reliability. Each image was shown for
500ms and we extracted each neuron’s response by integrating the
deconvolved fluorescence trace over a time window of 50-550 ms
after image onset. We ignored temporal dynamics and focused
purely on the spatial response characteristics of the neurons.

Next, we trained a deep CNN to predict the recorded responses
(Fig. 1d). Recent work established deep CNNs as state-of-the-art
models for neural response prediction, outperforming classical
models of V1 such as LN, subunit or energy models'>'7-"*. We used
a core network that consisted of three convolutional layers shared
among all recorded neurons, followed by a neuron-specific linear
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readout stage. The network also accounted for eye position and
behavioral state (pupil dilation and running) of the animal®, which
we could measure but not control experimentally (see Methods
for details on the model). In line with earlier work, we found that
the CNN model outperformed an LN model, which had the same
architecture but all nonlinearities removed from the core. Pooled
over all mice and all neurons, the CNN model achieved 77.8% rela-
tive to the achievable performance (oracle) given the noise ceiling
in the recordings (Fig. le and Methods). We also verified that the
CNN model was a nontrivial, nonlinear extension of an LN model
(Supplementary Fig. 3).

Our final step for day 1 was to obtain the MEIs for a subset of
150 neurons whose responses were reliable and reasonably well-
predicted by both the CNN and the LN model. We achieved this
via a simple optimization procedure': to find the image that maxi-
mally excites a target neuron, we started with a random image and
performed regularized gradient ascent until convergence (Fig. 1f
and Methods).

The resulting MEIs deviated substantially from the widespread
notion of Gabor-shaped V1 receptive fields (RFs). They exhibited
complex spatial features such as sharp corners, checkerboard pat-
terns, irregular pointillist textures and a variety of curved strokes
(Fig. 2a and Supplementary Fig. 4). The shape of the optimized
MEIs was also stable against different initializations of the optimiza-
tion (Supplementary Figs. 1 and 5) and across days (Supplementary
Fig. 1). The former indicates that there are not many obvious invari-
ances in the selected V1 cells and that the optimization procedure
does not suffer from local maxima.

We confirmed that MEIs reflected neuronal selectivity by pre-
senting the generated MEIs back to the same neurons during the
next days. Before presentation, we matched their mean luminance
and root mean square (RMS) contrast to a common value. MEIs
were highly specific, consistently eliciting higher activity in their tar-
get neurons (Fig. 2b and Supplementary Fig. 6) and evoked sparse
responses with fewimages activating aneuron abovebaseline (Fig. 2c).
We also confirmed that model predictions correlated highly with
observed responses (Fig. 2¢,d; average Pearson correlation =0.68).

We repeated the same optimization for the LN model to get a
corresponding estimate of the linear RF for each target neuron.
RFs often appeared slightly smaller than the MEIs for the same
neuron and notably lacked the higher-frequency details present in
MEIs (Supplementary Fig. 7). While some RFs exhibited an atypi-
cal structure, others looked qualitatively similar to Gabor filters
(Fig. 3a and Supplementary Fig. 8), consistent with conventional
wisdom about V1.

When both MEIs and RFs were presented during the same exper-
iment, MEIs evoked significantly stronger activity in their associ-
ated neurons than the linear RF in most cells (Fig. 4a). To exclude

the possibility that MEIs represent better linear models than RFs, we
compared the predictive performance of MEIs and RFs when used
as a linear filter. As expected, predicted responses of the linear RF
model correlated better with neuronal responses (Supplementary
Fig. 9). This does not mean that RFs predict neuronal responses
better (see Fig. 1e). On the contrary, it highlights the inherent non-
linearity of neuronal processing in mouse V1 exploited by MEIs
to produce higher activations and shows that they should not be
thought of as linear filters. To further emphasize that point, we fitted
an LN model to the responses of the CNN model and found that the
RFs computed from the brain’s neurons and the RFs of this linear-
ized CNN model were virtually identical (Supplementary Fig. 10),
implying that the nonlinear nature of the CNN model is responsible
for the enhanced ability of MEISs to drive cells.

Comparing MEIs to linear RFs is a stringent test of current stan-
dard models of V1, including nonlinear extensions such as energy
models®. For instance, the optimal stimulus for an energy model is
any linear combination of the two filters in the quadrature pair, that
is, a Gabor; based on these models, the linear RF and MEI should
be identical. To directly demonstrate that Gabor-like stimuli are not
the optimal stimuli for these mouse V1 cells, we identified the opti-
mal Gabor for each model neuron in the CNN using a grid search
over a fine-grained parameter space (Fig. 3b and Supplementary
Fig. 11; see Methods). In an additional inception loop experiment,
we found that MEIs drive the responses of their target neurons sig-
nificantly stronger than the optimal Gabor stimuli (Fig. 4b).

We next wanted to determine how the activation elicited by the
MEIs compared to the activations in response to optimal natural
images. We screened a completely new set of 5,000 natural images,
not used in any prior experiment, to find the most exciting natural
images when restricted to match the size, location and contrast of
the MEIs. We found that (1) the most exciting masked natural image
patches and the MEIs show a striking perceptual resemblance even
when searching over only 5,000 images (Fig. 3b and Supplementary
Fig. 11) and (2) MEIS still drive biological neurons better than the
corresponding most exciting masked natural images (Fig. 4c). While
(2) is another strong test for our model, (1) suggests that the features
to which neurons are responsive are remarkably pervasive in natural
images. Finally, we found that the full-field counterpart of the best
masked natural images elicits a weaker response than MEISs (Fig. 4d).
Few masked natural images evoked strong responses, so the dis-
tribution of good stimuli was sparse over our ensemble of natural
images (only 1.6% of images produced activations above half that of
the MEI response and only 0.04% above 0.75 of it) (Fig. 4e).

Discussion
Our work shows that high-performing, end-to-end trained, black-
box models of the visual system generalize and can make in silico

>
>

Fig. 1| Experimental paradigm and model. a, Schematic of an inception loop. On day 1 (green) we showed sequences of natural images to a mouse and
recorded neural activity by two-photon calcium imaging. Overnight (black), we trained linear models and CNNs to reproduce those measured neural
responses and generated MEls for each target neuron. On day 2 (blue) we showed these MEls from linear and nonlinear models back to the same neurons
in the brain and compared their responses. b, We presented 5,100 unique natural images to an awake mouse for 500 ms, interleaved with gray screen gaps
of random length between 300 and 500 ms. A subset of 100 images were repeated 10 times each to estimate the reliability of neuronal responses (see
Methods). Neuronal activity was recorded at 8 Hz in V1 L2/3 using a wide-field two-photon microscope. a.u., arbitrary unit. ¢, To identify the same cells
across days, structural stacks were recorded each day. d, CNN trained to predict neuronal responses. Our network consisted of a core computing nonlinear
features from the image, a readout predicting the neuronal responses from these features, a shifter accounting for eye movements by predicting a global
gaze shift, Ax and Ay, and a modulator predicting an adaptive gain for each neuron based on behavioral variables (see Methods). e, CNN versus LN model
performance. Each point denotes the correlation between the model predictions and single-trial responses. The CNN model significantly outperforms the
LN model (two-tailed paired t-test, t(37378) =224.98 with P < 10-°) over a total of n=37,379 neurons pooled across five mice. The black points depict the
performance for neurons used to generate MEls (n=750 neurons). Data from all mice are combined. Inset: performances for models without shifter and
modulator signals, relative to an upper bound estimated from repeated presentations of identical stimuli, termed ‘oracle’. The values are fraction oracle
performances averaged across all neurons, with the error bars depicting the s.e.m. f, Illustration of the optimization over all possible images. The vertical
axis represents activation of a model neuron as a function of two example image dimensions. The black curves depict optimization trajectories converging

to the same MEI from different initializations.
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Fig. 2 | MEls. a, Examples of MEls for one mouse (mouse 1). MEls exhibit complex, high-frequency features. (See Supplementary Fig. 4 for examples from
other mice.) b, MEls activate neurons with high specificity. The confusion matrix shows the responses of each neuron to the MEls of all neurons. The
responses of each neuron were normalized and pooled across days, and each row was scaled so the maximum response across all images equals 1. Data
shown for mouse 1. ¢, Predicted versus observed responses of one example neuron (from mouse 1) to all 150 MEls presented to a single cell (Pearson
correlation=0.89). d, Single-trial Pearson correlations between model predictions and actual responses to presented MEls for all neurons (750) across
five mice selected for MEI generation (average Pearson correlation coefficient=0.68).
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Fig. 3 | Comparison of MEIs and other types of stimuli. a, Examples of MEls and RFs from one mouse (mouse 1). The images are grouped based on
their similarity, measured by correlation between RF and MEI within a center mask. Strongly correlated MEls and RFs are shown in the top block.

b, Examples of MEls and other control stimuli. MEls, RFs, best Gabor filters (Gabor), best masked natural images and full-field natural images

(‘'unmasked’ version of the best masked natural image) are shown for 30 neurons of mouse 5. (See Supplementary Fig. 11 for the images for the
rest of the neurons.).
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Fig. 4 | Neurons respond more to MEIs than other types of stimuli. a-d, Each point corresponds to the normalized activity of a single neuron, averaged
over repeats, in response to its MEI versus its RF (a), best Gabor filter (b), best masked natural image (c) or full-field natural image (d). Neurons

with a significant difference in their mean responses are colored black (P < 0.05, two-tailed Welch's t-test with 55.5, 28.9, 32.0 and 30.3 average d.f,,
respectively). MEls activated their target neurons significantly stronger than their corresponding RF (two-sided Wilcoxon signed-rank test, W =47139,

P <107), Gabor filter (two-sided Wilcoxon signed-rank test, W =579, P < 10-°), masked natural image (two-sided Wilcoxon signed-rank test, W=2271,

P < 107) and full-field natural image (two-sided Wilcoxon signed-rank test, W=2911, P=2.43x1077). a, Data are pooled over 8 scans from 5 mice,
displaying a total of 750 neurons; 569 neurons showed stronger response to their MEls than their RFs, of which 228 were statistically significant. In
contrast, only ten had a statistically significantly stronger response to RFs, consistent with random choice. b-d, Each plot corresponds to a single closed
loop scan from mouse 5. b, We found that 131 of 150 neurons showed a stronger response to MEls (93 statistically significant); 2 responded more strongly
to Gabor filters with statistical significance. ¢, We found that 114 of 150 neurons showed a stronger response to MEls (52 were statistically significant);

11 responded more strongly to its best masked natural image with statistical significance. d, We found that 102 of 150 neurons showed a stronger response
to MEls (62 were statistically significant); 11 responded more strongly to its full-field natural image with statistical significance. e, Neuron responses to
natural images are sparse and smaller than those to MEls. The gray lines show the fraction out of 5,000 images that elicit a given activation or higher for
150 model target neurons in mouse 5; black is the average. Responses from each cell are divided by the response to its MEl; on average, 1.6% of images
produced activations above half and only 0.04% above 0.75 of the MEI activation. For a representative cell (in red), we show images at different activation

levels, along with its MEI (blue box).

inferences about nontrivial computational properties of V1 neu-
rons. We find that even mouse V1 neurons prefer features that are
more complex than the classical oriented edges described by Hubel
and Wiesel”' and predicted by many theories of early visual process-
ing?. Intriguingly, searching for optimal natural image patches in
as few as 5,000 images often yielded natural images that exhibited
a striking perceptual similarity to MEIs, showing that the percep-
tual attributes of MEIs occur often in natural scenes. These complex
feature selectivities in V1 could provide a faster, albeit less general,
method to extract task-relevant causal variables from natural inputs.
This might benefit small animals like mice, whose size may impose
stringent constraints on computation®.

Strong predictive models allow for a nearly unlimited number
of in silico experiments that can be tailored to individual neurons
or populations. This is especially important when studying high-
dimensional tuning properties, such as invariances'”** or equivari-
ances”: searching directly for these dimensions in the brain is slow,
costly and unlikely to reveal relevant stimulus manifolds. Using flex-
ible neural network models to optimize stimuli has been proposed
before'®***". However, given that deep neural networks do not nec-
essarily generalize well beyond the typical statistics of their training
set, it is not clear a priori whether in silico synthesized MEIs affect
in vivo responses as predicted. Therefore, predictions derived from
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these models require experimental verification. Our current work
with inception loops shows that such verification is indeed feasible.

Inception loops provide many opportunities for future neurosci-
ence studies. We performed this experiment in V1 since it constitutes
a particularly rigorous test because of the large existing literature
on V1 REF structure. This approach might prove even more useful
for revealing feature selectivities in extrastriate or nonvisual areas,
about which we currently understand much less**~*'. Although we
executed the inception loop once, further passes could test stimuli
neighboring the MEI to refine estimates of tuning and invariance
in a focused, efficient way. Combining emerging neurotechnologies
with modeling and machine learning in an inception loop would
provide a powerful tool to control, probe and evaluate brain trans-
formations that will probably lead to a much richer understanding
of neural computation.
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Methods
Neurophysiological experiments. All procedures were approved by the
Institutional Animal Care and Use Committee of Baylor College of Medicine.
Briefly, five mice (Mus musculus: three male, two female) aged 57, 62, 91, 102
and 128d (mouse 1-5, respectively) expressing GCaMP6s in excitatory neurons
via Slc17a7-Cre and Ail62 transgenic lines (stock nos. 023527 and 031562,
respectively; The Jackson Laboratory) were anesthetized and a 4 mm craniotomy
was made over the visual cortex as described previously**’. Mice were head-
mounted above a cylindrical treadmill and calcium imaging was performed using
a Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm and a large field of
view mesoscope'® equipped with a custom objective (0.6 numerical aperture,
21 mm focal length). Laser power after the objective was kept below 60 mW. Visual
stimuli were presented to the left eye with a 25” LCD monitor and a resolution of
2,560 % 1,440 px positioned 15 cm away from the eye. The rostro-caudal treadmill
movement was measured using a rotary optical encoder with a resolution of 8,000
pulses per revolution. We used light diffusing from the laser through the pupil to
capture eye movements. Images of the pupil were reflected through a hot mirror
and captured with a GigE CMOS camera (Genie Nano C1920M; Teledyne Dalsa)
at 20 fps at a 1,920 X 1,200 px resolution. The contour of the pupil was extracted
semiautomatically for each frame and the center and major radius of a fitted ellipse
were used as the position and dilation of the pupil.

Pixelwise response across a 2,400 X 2,400 pm? region of interest (0.2 pxpm™")
at 200 pm depth from the cortical surface to a drifting bar stimuli was used to
generate a sign map to delineate visual areas’. We chose an imaging site in V1 with
minimal blood vessel occlusion and maximal stability. The craniotomy window was
leveled with regard to the objective with six d.f., five of which were locked between
days to allow us to return to the same imaging site using the z axis. Imaging
was performed at approximately 8 Hz for all scans, using a remote objective to
sequentially image ten 630 X 630 um? fields per frame at 0.4 px pm™" xy resolution.
Fields were spaced 5 pm apart in depth to achieve dense imaging coverage of a
630X 630 50 pm® xyz volume, with the most superficial plane positioned in L2/3
at around 200 pm from the surface of the cortex. At this z resolution, cells in the
imaged volume were oversampled, often appearing in 3 or more imaging planes
and allowing matching across days with <2.5 pm vertical distance between masks.
Imaging data were motion-corrected, automatically segmented and deconvolved
using the CNMF algorithm®; cells were further selected by a classifier trained to
detect somata based on the segmented cell masks. This resulted in 5,300-8,500
soma masks per scan. A structural stack encompassing the volume and imaged at
0.6x0.6 X 1 px® pm~> xyz resolution with 100 repeats was used to register the scan
average image into a shared xyz frame of reference between scans (see further on).

No statistical methods were used to predetermine sample sizes but our sample
sizes are similar to those reported in previous publications™. Data collection
and analysis were not performed blind to the conditions of the experiments.
In performing the analysis, no animal or collected data point was excluded.
Additional details may be found in Nature Research Reporting Summary.

Monitor positioning across days. To have a consistent monitor placement relative
to the mouse across all imaging sessions, we placed the aggregate RF for each
session at the center of the monitor. To map the RE, we tiled the center of the screen
in a 10 X 10 grid with single dark dots over bright background (approximately 5°)
and averaged the calcium trace of an approximately 150 X 150 pm? window in the
center of our field of view from 0.5-1.5s after stimulus onset across all repetitions
of the stimulus for each location. We fitted the resulting two-dimensional (2D) map
using an elliptic 2D Gaussian and we centered the position of the RF by displacing
the monitor with approximately +2.5° precision between imaging sessions.

Cell registration across days. We registered each 2D scanning plane to the three-
dimensional stack using an affine transformation matrix with 9 d.f. estimated
via gradient ascent on the correlation between the average recorded plane and
the extracted plane from the stack. We matched cells across days using their
estimated centroids in the stack, matching each cell of interest to the closest

cell in the stack from a different day. We repeated this matching over multiple
stacks and selected the pairings that occurred most often. To confirm that our
target cells were matched correctly, we correlated their responses across days

to a set of repeated images. The resulting confusion matrix is strongly diagonal
demonstrating that matched cells have similar functional properties as expected
(Supplementary Fig. 2).

Presentation of natural stimuli. Stimuli consisted of 5,100 natural images

from ImageNet (ILSVRC2012)*, cropped to fit a 16:9 monitor aspect ratio and
converted to gray scale. In each scan, we showed 5,000 unique images and 100
images repeated 10 times each. Each image was presented for 500 ms followed by a
blank screen lasting between 300 and 500 ms, sampled uniformly from that range.

Preprocessing of neural and behavioral data. Neural responses were first
deconvolved using constrained nonnegative calcium deconvolution®. We
subsequently extracted the accumulated activity of each neuron between 50 and
550 ms after stimulus onset using a Hamming window. Behavioral traces, used as
auxiliary signals in model training (see further on), were extracted using the same
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temporal offset and integration window. To train our models, we isotropically
downsampled stimuli images to 64 X 36 px. Input images, the target neuronal
activities, behavioral traces and pupil positions were normalized across the training
set during training.

Network architecture. The network considered in the present study consists of
four components (Fig. 1d): a common core for all neurons providing nonlinear
features computed from static images; a dedicated readout for each neuron
mapping the core features to their responses; a modulator predicting a gain factor
for each neuron depending on the running state and the pupil dilation of the
animal recorded during the experiment; and a shifter predicting RF shifts from
pupil position changes.

The CNN core consists of three layers (Fig. 1d, each layer is illustrated as a
differently colored block) whose outputs are concatenated to yield a rich feature set
used by the readout module’. Each layer in the core consists of a convolution layer
without a bias term, a batch normalization layer with an affine function term*” and
an exponential linear unit (ELU) nonlinearity*®. The LN model and the nonlinear
(CNN) model differ only in their core: the core for the LN network is identical to
the CNN core except that all nonlinearities were removed. This ensures maximal
similarity between the two networks in terms of network components, maximal RF
size and behavioral modulation.

For the readout, we model the neural response as an instantaneous affine
function of the core features followed by an ELU nonlinearity and an offset of 1
to make the response positive. For each image, the output of the core is a tensor
v € R We model the location of the ith neuron’s RF with a spatial transformer
layer reading from a single grid point inx)’,-ﬁmg’ that is, we extract a vector v, S R
via bilinear interpolation of neighboring pixels of the location (x;, y,) in the tensor v.
To facilitate the learning of the grid points via gradient descent, we decompose v,
into ¢ spatial scales through repeated application of a 5x5 Gaussian low-pass
filter: v¥ =lowpass?(v) for j€[0,# — 1] (Fig. 1d, represented as multiple copies of
the three-layered block at different scales). Like in a Gaussian pyramid, we keep
the difference between the filtered and original component at each step of filtering.
However, we include readout variants where we do not explicitly downsample
the feature channels since we empirically found it performs slightly better on
some datasets. The exact variant used was determined by model selection on a
validation set (see further on). The spatial transformer layer then extracts the
feature vector from the same learned relative location (x; y,) at each scale. The set
of feature vectors is then fed to the final affine function and nonlinearity, yielding:
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(i) _ T j)

=f1¥ w(,.,j)vgw b, (1)
j:l

where 0 is the readout layer’s output for the ith neuron, f{-) is the output
nonlinearity and w; ; € R° is the weight vector for the ith neuron for the scale j
(Fig. 1d, depicting feature vectors at two readout locations).

To account for fluctuations in neural responses unrelated to the visual
stimuli, we used pupil dilations and their temporal derivative, as well as the
absolute running speed of the animal, which are known correlates of brain
state changes’>***!. Using these three variables, we computed a gain factor
for each neuron that scales the output of the readout layer o’ (equation (1)).
The modulator predicts the gain using a two-layer fully connected multilayer
perceptron (MLP) with rectified linear unit nonlinearities at all hidden
layers and a shifted exponential nonlinearity at the last layer to enforce
positive outputs.

Unlike primates, training mice to fixate their gaze in a single position is
impractical. To model the responses of thousands of neurons in a free viewing
experiment, the shifter estimates a RF shift for all neurons from the tracked pupil
position based on the predictive performance of the network’. In the model, this is
reflected as trial-by-trial shift Ax and Ay applied to x; and y; in equation (1) across
all neurons. Note that pupil location is measured in coordinates of the camera
recording the eye, while the shift needs to be applied in monitor coordinates.

This transformation can be estimated by a calibration procedure*~* or learned
from the data using regression on pairs of eye camera-monitor coordinates. We
used a three-layer MLP with a tanh nonlinearity for predicting the joint receptive
displacement for all neurons.

Both modulator and shifter components were included in the linear-nonlinear
network to allow for a fair comparison between the models.

Training and model selection. We trained two different network architectures:
an LN model and a CNN model. Both models used a point readout, and shifter
and modulator networks, as described earlier. We trained four instances of each
network configuration, corresponding to four random weight initializations.

The first layer was regularized by penalizing the L2 norm of the 3x 3 Laplace-
filtered weights, weighted by an inverse Gaussian profile of the form:

—ﬁ(xﬁyz) @

op,

a,,=y, [bL —exp
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where x and y are the spatial pixel positions of the convolutional weights relative to
the center of the filter. The Gaussian profile encourages the filter to be smoother at
the edge. Empirically, we observed that this profile also helps to center the RF of the
neuron within the convolutional kernel’s spatial extent. The values of 6, and b, were
set to 0.5 and 1, respectively. For each hidden convolutional layer, the convolutional
weight was penalized by group sparsity, and computed as the L, sparsity regularizer
over the L, norm of weight values for each channel with the regularization weight y,.
The values of y; and y, were chosen from a discrete set of values as part of the
hyperparameter search (Supplementary Table 1).

The dataset was split into training, validation and test set. The test set consisted
of 100 images with 10 repeats each. The remaining unique 5,000 images were
randomly split into 4,477 training images and 523 validation images. The network
was trained to minimize Poisson loss i Zzl #9- r(i)logf(i)) where m denotes the

number of neurons, 7 the predicted neuronal response and r the experimentally
recorded one. We used early stopping on the correlation between predicted and
measured neuronal responses on the validation set": if the correlation failed to
increase during any consecutive ten passes through the entire training set, we
stopped the training and restored the model to the best-performing model over the
course of training. Empirically, we found that this combination of Poisson objective
and early stopping on correlation yielded the best results. After the first stop, we
decreased the learning rate from 5X 10~ to 10~ and resumed training until it

was stopped again. Network parameters were optimized iteratively via stochastic
gradient descent with the Adam optimizer* with a batch size of 60. Once training
completed, the trained network was evaluated on the validation set to yield the
score used for hyperparameter selection.

Exact architectural details, including the weights of regularizers, or whether to
downsample the spatial pyramid, were selected using grid search on the validation
performance. We repeated our model selection for each mouse and used the best
CNN and LN architecture for all subsequent experiments (Supplementary Table 2).
Remaining network configurations, namely, the input convolution kernel size
(k,,=15), the number of hidden layers (n=2), hidden layer convolution kernel
size (Kyggen =7) and number of channels (c=32) were manually selected based on
previous experience.

Since the imaging volume was densely scanned (10 planes spaced 5 pm apart
in depth), the same soma would appear in several planes. During training, we used
masks from every plane, including potentially duplicate ones.

Oracle correlation and fraction of oracle. Cortical neurons naturally exhibit
substantial response variability. To estimate a bound for maximally achievable
correlation, we computed an ‘oracle’ per cell by correlating the leave-one-out mean
response with the response to the remaining trial across repeated images in the
test set, and averaged that correlation across all cells. We estimated the fraction of
oracle performance achieved by a model as the slope of a line without offset fitted
on the oracle correlation to the model’s test set correlation across all neurons. Since
the oracle is only conditioned on repeats of the same image and not factors relating
to brain state, a network with shifter and modulator components that utilize brain
state parameters, could in principle achieve a fraction of oracle score >1. To avoid
this confounding element, we froze the shifter and modulator input to the training
set mean when computing the fraction of oracle (Fig. le).

Selection of neurons for MEI generation. We selected neurons to generate MEIs
based on the following criteria. First, select neurons in the top 50th percentile of
oracle correlation. This restricts us to cells with reliable responses to visual stimuli.
Second, exclude neurons within 10 pm of the edge of the scanning fields. This
avoids artifacts near the edge of the fields and avoids missing a cell on subsequent
days if the scanning field of view moves slightly in xy. Next, select neurons in the
intersection of the top 30th percentile of the CNN model’s fraction of oracle score
Pony and the top 30th percentile of the LN model’s fraction of oracle score p;. This
selects cells that are predicted reasonably well by both CNN and LN models and
ensures that each neuron has a significant linear part that can be predicted by an
LN model using the linear RE Last, iterate through the remaining neurons, from
largest to smallest in py — p1n Placing the visited neuron into a final to-keep

set and removing any unvisited neuron that falls within 20 pm distance of it. This
avoids selecting neurons that are too close to each other, reducing the chance of
picking two masks that belong to the same cell. These criteria yielded a total of 206,
304, 311, 309 and 346 neurons for mouse 1-5. Among these, for each mouse, we
selected the top 150 neurons according to largest pcyy — ppx for MEI generation.

Generation of synthetic stimuli. To find stimuli that optimally drive particular
cells in V1, we were inspired by deep learning approaches to visualize the hidden
features of an artificial neural network'>*="".

For each model neuron, we generated the image that most strongly activates
it™, subject to a number of regularization constraints to encourage stable results.
We started the optimization with a Gaussian white noise image I, € R""“and
iteratively added the gradient of the target neuron’ activity with respect to the
image V; 7, averaged over four instances of the network; we trained four instances
of each selected architecture, each initialized with different random parameters.
Optimizing on four networks simultaneously better estimates the gradient and
reduces high-frequency noise. High-frequency noise obscures the gradient signal

and depends highly on the starting image; thus, it is more powerful during the
start of the optimization™. We used two additional strategies to dampen its effect.
First, we blurred the image after every gradient ascent step using a Gaussian
filter with an s.d. that decreases gradually after each iteration®®. Second, we
preconditioned the gradient before adding it to the image with a low-pass filter

Glo,, w,) = ﬁ(w: + wyz)’” in the Fourier domain that preferentially suppresses
2z

the higher-frequency content of the gradient™’; we selected a=0.1 by visual
inspection of the resulting images.

When this image generation technique is applied to a CNN model, it creates
the MEIs for the target neuron. When it is applied to an LN model, the resulting
image is equivalent to a (highly regularized) linear RE. After optimization, we
matched the mean luminance and RMS contrast of all MEIs and RFs to a
common value.

Presentation of synthetic stimuli. For closed-loop scans designed to compare
MEI to RF responses (day 2 — N), we presented 150 MEIs and 150 RFs with 20
repetitions each. During the presentation, the images were upscaled to the monitor
resolution using third-order spline interpolation. We also included 100 images
repeated 10 times to compute the oracle score. Just as with natural images (day 1),
images were presented for 500 ms followed by a blank screen, with duration
uniformly distributed between 300 and 500 ms; the order of presentation was
chosen at random.

Statistical significance of MEI comparisons. Recorded responses were
normalized across all presented images per scan. The normalized responses of the
matched neurons were then averaged across MEI (or RF) repetitions in the same
scan and, if available, across multiple scans (2, 2, 1, 2, 1 scans for each of our five
mice); all scans were recorded on separate days.

We used these aggregate responses to assess whether MEIs generated for their
target neurons elicited higher responses than their corresponding linear RE, Gabor
image, masked natural image or full-field natural image. For single neurons, the
statistical significance of the difference in response was assessed using a two-tailed
Welch’s t-test across the pooled repeats (average d.f. of 55.5, 28.9, 32.0 and 30.3 for
MEI versus RE, Gabor, masked natural and full-field natural, respectively). The
overall difference in average responses pooled across all neurons (750 for MEI
versus RE, 150 for other comparisons) was assessed using a two-sided Wilcoxon
signed-rank test.

Generation of MEI mask. We created a weighted mask for each MEI to capture the
region containing most of its variance so that the resulting masked MEI activates
the model neuron only slightly less than the original MEI. We generated this mask
as follows: (1) starting with an MEI image I;;;, compute the absolute deviation
of the pixels from the mean image intensity u;, Al = |y, — |, and threshold
it at 1 s.d. of A to identify highly active pixels; (2) compute the convex hull over
pixels identified in the previous step, producing a mask image M® with a single
connected region. M =1 for all pixels inside the convex hull and 0 otherwise;
(3) Gaussian blur the mask M® (6=2px) to smooth its edges, resulting in M (k);
(4) compute masked MEI as IIE/I[‘)F/] maskedzM( Oy tu, (- M(k)); (5) run

(k) o MEI ~ (k) :
I\ BLmasked through the model to yield the model neuron response 7; (6) binary
erode M® with a 3 3 square structuring element™ to yield M**"; and (7) repeat

~ A . ~ (k)
steps 3-6 until p® goes below 90% of 79 for the first time. We take M to be the
final MEI mask; © denotes the Hadamard product (elementwise product).

Selection of Gabor stimuli. To directly compare the effectiveness of MEI
against Gabor stimuli, we selected the Gabor image with the highest predicted
activation for each target cell. A Gabor image was generated according to the
following equation:

Igpor(%,y) = exp —? ((x—/tx)2 + (y—yy)z))]cos [zf(xc059+ysin0) +¢ 3)

in the luminance space, where 4, and g, control the center of the Gabor, o controls
the fall off of the Gaussian window and 6, 4 and ¢ control the orientation, spatial
frequency and phase of the grating, respectively. We defined a set of discrete values
for each of the six parameters and searched over all combinations to find the most
exciting Gabor image (Supplementary Table 3). For each candidate Gabor image,
the image mean and scaling was adjusted to ensure that all images shared the same
mean luminance and RMS contrast (Fig. 3b and Supplementary Fig. 11).

In one closed-loop experiment for mouse 5, we presented the 150 best Gabor
filter for each of our target cells and their corresponding MEIs exactly as we did in
scans comparing MEIs to RFs.

Selection of masked and full-field natural images. For each target cell with

an index, we searched for the natural image that yielded the highest predicted
activation after masking it with the neuron’s MEI mask (see earlier); we used 5,000
images not used during training. This allowed us to compare responses for

MEIs to those for natural images and assess the prevalence of MEI-like features in
natural scenes.
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For a neuron with MEI mask M, we masked each original full-field natural
image I; (j is the index of the natural image in the set of 5,000 images), yielding the
masked natural image J; as follows:

L=Mo (af+p8)+ (1 - My (4)

where the scalars a; and f; are adjusted so that the mean luminance x and RMS
contrast of the masked images for this neuron are kept constant. We then selected
the masked natural image 7; that gives rise to the largest model neuron activation
among the 5,000 new natural images, where j is the index of the best natural
image; we also compared it against the corresponding full-field natural image I;
(Fig. 3b and Supplementary Fig. 11).

In one closed-loop experiment for mouse 5, we presented the 150 best masked
natural images I for each of our target cells and their corresponding MEIs exactly
as we did in the closed-loop scans comparing MEIs to RFs. In a separate closed-
loop scan for mouse 5, we presented the 150 full-field counterparts of the best
masked natural images I; and the 150 MEIs.

Nontrivial nonlinearity of the CNN. An LN model has the form r= g(wTI +b)
where r is the neuronal response prediction, I is the input image, w is a weight
vector of the same dimensions, b is an offset and g is a static nonlinearity usually
chosen as part of the model design. In our case, we chose g(z) =ELU(z) + 1,
where*:

X, if x>0
e*—1, otherwise

ELU(x)= «l (5)

It is possible that the CNN model differs from the LN model only in trivial ways
by effectively learning an LN model but achieving higher prediction scores
because of more freedom in fitting the static nonlinearity g or because of an inbuilt
architectural bias that makes learning w easier.

To demonstrate that the CNN model deviates nontrivially from the LN model,
we computed the gradient of both models with respect to the input image on the
entire image dataset and computed the largest ten eigenvalues of the covariance
matrix of these gradients. For the LN model, all gradients are proportional to w.
Thus, there must be exactly one eigenvalue greater than zero. If the CNN model
behaves just like an LN model, the spectrum should look the same. However, if it
is nonlinear in a nontrivial way, gradients should differ and the spectrum should
have more nonzero eigenvalues.

We find the latter to be the case (Supplementary Fig. 3), indicating that the
CNN model performs better because it can model interesting nonlinearities of
cortical neurons that cannot be captured by the linear model.

Difference in spatial frequency content between MEIs and RFs. We compared
the spatial frequency content of MEIs and RFs by computing the average
differences in the amplitude of the spatial frequency spectrums of the MEI

and RF images:

Rar =g X (F0 Iy )| = IFhO L)) ©

where F(-) denotes the 2D Fourier transform, h is a Hamming window and N is
the total number of MEI/RF image pairs (Supplementary Fig. 7).

MEIS as linear filters. CNNs model the nonlinear processing of the cells they
encode. Intuitively, a CNN allows us to generate images (MEIs) that use this
additional capacity to drive a cell more strongly than images generated from an
LN model (RFs) by disregarding their ability to act as a linear filter. To test this
intuition and assert that the observed higher activations for MEIs are not due to
them being better linear filters than RFs, we compared their performance as a
linear encoder. For each cell, we used its MEI or RF as a linear filter to predict its
responses to 100 test set images and correlated the predicted responses with the
real neuron responses. We used Spearman’s rank correlation to sidestep the need
to fit a monotonic nonlinear function to the output of the filter. Filters generated
with an LN model produce better predictions (Supplementary Fig. 9), suggesting
that the capacity of MEIs to excite cells depends on their ability to exploit subtle
nonlinear processing in V1 cells.

RFs of the linearized CNN model. To further assess the importance of the
nonlinear nature of our models, we approximated our CNN using an LN model
and compared the original RFs to the RFs of this linearized CNN model. We fitted
LN models on the same training set used for the rest of experiments but replaced
the real cell responses with those predicted by a trained CNN, and followed the
same procedures described earlier for model selection, training and RF generation.
The resulting RFs looked virtually identical to the RFs learned directly from the
neuronal responses, further corroborating the importance of a nonlinear model
(Supplementary Fig. 10).
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Statistics. All statistical tests used, including statistical values, sample sizes and P
values are provided in the figure captions. Where a t-test was used, the underlying
data distribution was assumed to be normal, although this was not formally tested.
Exact P values less than 10~° were reported as P<10~°.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All figures were generated from raw or processed data. The data generated and/
or analyzed during the current study are available from the corresponding author
upon request. No publicly available data was used in this study.

Code availability

Experiments and analyses were performed using custom software developed using
the following tools: ScanImage 2018a (ref. *°), CaImAn v.1.0 (ref. '), DataJoint
v.0.11.1 (ref. *), PyTorch v.0.4.1 (ref. *), NumPy v.1.16.4 (ref. **), SciPy v.1.3.0

(ref. ©°), Docker v.18.09.7 (ref. °°), Matplotlib v.3.0.3 (ref. ©’), seaborn v.0.9.0 (ref. **),
pandas v.0.24.2 (ref. *°) and Jupyter v.1.0.0 (ref. ”°). The code for carrying out the
data collection and preprocessing is available at https://github.com/cajal/pipeline;
the code to perform MEI generation and analysis is available at https://github.com/
cajal/inception_loop2019.
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