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Since the work of Adrian and Bronk1 and Hartline2, finding 
stimuli that optimally drive neurons has been fundamental for 
understanding information processing in the brain. In linear 

systems, linear filters elicit responses optimally; for instance, linear-
nonlinear (LN) models with center-surround filters have high pre-
dictive power in the retina3 and these patterns also strongly drive 
retinal activity. However, the response selectivity of many cortical 
neurons is inherently nonlinear, and even in V1, the predictive 
power of LN or energy models is low, especially for responses to 
natural stimuli4–6. Accordingly, identifying optimal sensory input for 
neurons with nonlinear sensitivity is difficult because of the intrac-
tably high-dimensional space of possible images. Proposed active 
learning approaches7–10 are impractical because experimental con-
straints limit the number of responses that can be measured from 
any single cell or restrict the dimensionality of the stimulus space. 
Model-driven stimulus optimization, on the other hand, requires 
functional models that can faithfully predict the responses of neu-
rons to arbitrary stimuli, including natural images, to guide an unre-
stricted search through a high dimensional space. Recently, deep 
learning-based models have set new standards in predicting corti-
cal responses to natural images5,6,11–14. In the present study, we used 
end-to-end trained, deep-learning-based models to synthesize and 
search for optimal stimuli in silico that we verified back in the brain.

Results
We designed a closed-loop experimental paradigm we call an 
inception loop that combines in  vivo recordings with in silico 
modeling to synthesize stimuli that evoke a desired response that 
we confirm in vivo (Fig. 1a). Briefly, on day 1 of an inception loop 
experiment, we recorded the neural responses of large neuronal 

populations to thousands of natural images, trained a convolutional 
neural network (CNN) to predict these responses based on the pre-
sented images6,11–13, and optimized images to maximize the model 
responses of selected model neurons15. Over subsequent days, we 
presented these tailored images to the corresponding neurons in the 
brain to test whether they indeed produced the strongest responses 
among all control stimuli.

We recorded the responses to natural images of over 2,000 excit-
atory neurons in layer 2/3 (L2/3) of the V1 (V1 L2/3) for each of five 
awake mice using two-photon imaging with a wide-field mesoscope 
(Fig. 1b)16. Before each functional imaging session, we recorded 
a high-resolution, anatomical, three-dimensional stack (Fig. 1c). 
Later we registered all recording planes into each of these stacks to 
locate the neurons of interest across multiple days (Supplementary 
Figs. 1 and 2; see Methods for details).

On the first day we collected the population responses to a set 
of 5,000 unique natural images, which we used to fit a predictive 
model of neural responses to visual stimuli (Fig. 1b). Another set of 
100 images, repeated 10 times each, was used as the test set for the 
model and to evaluate response reliability. Each image was shown for 
500 ms and we extracted each neuron’s response by integrating the 
deconvolved fluorescence trace over a time window of 50–550 ms 
after image onset. We ignored temporal dynamics and focused 
purely on the spatial response characteristics of the neurons.

Next, we trained a deep CNN to predict the recorded responses 
(Fig. 1d). Recent work established deep CNNs as state-of-the-art 
models for neural response prediction, outperforming classical 
models of V1 such as LN, subunit or energy models13,17–19. We used 
a core network that consisted of three convolutional layers shared 
among all recorded neurons, followed by a neuron-specific linear 
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readout stage. The network also accounted for eye position and 
behavioral state (pupil dilation and running) of the animal6, which 
we could measure but not control experimentally (see Methods 
for details on the model). In line with earlier work, we found that 
the CNN model outperformed an LN model, which had the same 
architecture but all nonlinearities removed from the core. Pooled 
over all mice and all neurons, the CNN model achieved 77.8% rela-
tive to the achievable performance (oracle) given the noise ceiling 
in the recordings (Fig. 1e and Methods). We also verified that the 
CNN model was a nontrivial, nonlinear extension of an LN model 
(Supplementary Fig. 3).

Our final step for day 1 was to obtain the MEIs for a subset of 
150 neurons whose responses were reliable and reasonably well-
predicted by both the CNN and the LN model. We achieved this 
via a simple optimization procedure15: to find the image that maxi-
mally excites a target neuron, we started with a random image and 
performed regularized gradient ascent until convergence (Fig. 1f  
and Methods).

The resulting MEIs deviated substantially from the widespread 
notion of Gabor-shaped V1 receptive fields (RFs). They exhibited 
complex spatial features such as sharp corners, checkerboard pat-
terns, irregular pointillist textures and a variety of curved strokes 
(Fig. 2a and Supplementary Fig. 4). The shape of the optimized 
MEIs was also stable against different initializations of the optimiza-
tion (Supplementary Figs. 1 and 5) and across days (Supplementary 
Fig. 1). The former indicates that there are not many obvious invari-
ances in the selected V1 cells and that the optimization procedure 
does not suffer from local maxima.

We confirmed that MEIs reflected neuronal selectivity by pre-
senting the generated MEIs back to the same neurons during the 
next days. Before presentation, we matched their mean luminance 
and root mean square (RMS) contrast to a common value. MEIs 
were highly specific, consistently eliciting higher activity in their tar-
get neurons (Fig. 2b and Supplementary Fig. 6) and evoked sparse 
responses with few images activating a neuron above baseline (Fig. 2c).  
We also confirmed that model predictions correlated highly with 
observed responses (Fig. 2c,d; average Pearson correlation = 0.68).

We repeated the same optimization for the LN model to get a 
corresponding estimate of the linear RF for each target neuron. 
RFs often appeared slightly smaller than the MEIs for the same 
neuron and notably lacked the higher-frequency details present in 
MEIs (Supplementary Fig. 7). While some RFs exhibited an atypi-
cal structure, others looked qualitatively similar to Gabor filters  
(Fig. 3a and Supplementary Fig. 8), consistent with conventional 
wisdom about V1.

When both MEIs and RFs were presented during the same exper-
iment, MEIs evoked significantly stronger activity in their associ-
ated neurons than the linear RF in most cells (Fig. 4a). To exclude 

the possibility that MEIs represent better linear models than RFs, we 
compared the predictive performance of MEIs and RFs when used 
as a linear filter. As expected, predicted responses of the linear RF 
model correlated better with neuronal responses (Supplementary 
Fig. 9). This does not mean that RFs predict neuronal responses 
better (see Fig. 1e). On the contrary, it highlights the inherent non-
linearity of neuronal processing in mouse V1 exploited by MEIs 
to produce higher activations and shows that they should not be 
thought of as linear filters. To further emphasize that point, we fitted 
an LN model to the responses of the CNN model and found that the 
RFs computed from the brain’s neurons and the RFs of this linear-
ized CNN model were virtually identical (Supplementary Fig. 10), 
implying that the nonlinear nature of the CNN model is responsible 
for the enhanced ability of MEIs to drive cells.

Comparing MEIs to linear RFs is a stringent test of current stan-
dard models of V1, including nonlinear extensions such as energy 
models20. For instance, the optimal stimulus for an energy model is 
any linear combination of the two filters in the quadrature pair, that 
is, a Gabor; based on these models, the linear RF and MEI should 
be identical. To directly demonstrate that Gabor-like stimuli are not 
the optimal stimuli for these mouse V1 cells, we identified the opti-
mal Gabor for each model neuron in the CNN using a grid search 
over a fine-grained parameter space (Fig. 3b and Supplementary 
Fig. 11; see Methods). In an additional inception loop experiment, 
we found that MEIs drive the responses of their target neurons sig-
nificantly stronger than the optimal Gabor stimuli (Fig. 4b).

We next wanted to determine how the activation elicited by the 
MEIs compared to the activations in response to optimal natural 
images. We screened a completely new set of 5,000 natural images, 
not used in any prior experiment, to find the most exciting natural 
images when restricted to match the size, location and contrast of 
the MEIs. We found that (1) the most exciting masked natural image 
patches and the MEIs show a striking perceptual resemblance even 
when searching over only 5,000 images (Fig. 3b and Supplementary 
Fig. 11) and (2) MEIs still drive biological neurons better than the 
corresponding most exciting masked natural images (Fig. 4c). While 
(2) is another strong test for our model, (1) suggests that the features 
to which neurons are responsive are remarkably pervasive in natural 
images. Finally, we found that the full-field counterpart of the best 
masked natural images elicits a weaker response than MEIs (Fig. 4d).  
Few masked natural images evoked strong responses, so the dis-
tribution of good stimuli was sparse over our ensemble of natural 
images (only 1.6% of images produced activations above half that of 
the MEI response and only 0.04% above 0.75 of it) (Fig. 4e).

Discussion
Our work shows that high-performing, end-to-end trained, black-
box models of the visual system generalize and can make in silico 

Fig. 1 | Experimental paradigm and model. a, Schematic of an inception loop. On day 1 (green) we showed sequences of natural images to a mouse and 
recorded neural activity by two-photon calcium imaging. Overnight (black), we trained linear models and CNNs to reproduce those measured neural 
responses and generated MEIs for each target neuron. On day 2 (blue) we showed these MEIs from linear and nonlinear models back to the same neurons 
in the brain and compared their responses. b, We presented 5,100 unique natural images to an awake mouse for 500 ms, interleaved with gray screen gaps 
of random length between 300 and 500 ms. A subset of 100 images were repeated 10 times each to estimate the reliability of neuronal responses (see 
Methods). Neuronal activity was recorded at 8 Hz in V1 L2/3 using a wide-field two-photon microscope. a.u., arbitrary unit. c, To identify the same cells 
across days, structural stacks were recorded each day. d, CNN trained to predict neuronal responses. Our network consisted of a core computing nonlinear 
features from the image, a readout predicting the neuronal responses from these features, a shifter accounting for eye movements by predicting a global 
gaze shift, Δx and Δy, and a modulator predicting an adaptive gain for each neuron based on behavioral variables (see Methods). e, CNN versus LN model 
performance. Each point denotes the correlation between the model predictions and single-trial responses. The CNN model significantly outperforms the 
LN model (two-tailed paired t-test, t(37378) = 224.98 with P < 10–9) over a total of n = 37,379 neurons pooled across five mice. The black points depict the 
performance for neurons used to generate MEIs (n = 750 neurons). Data from all mice are combined. Inset: performances for models without shifter and 
modulator signals, relative to an upper bound estimated from repeated presentations of identical stimuli, termed ‘oracle’. The values are fraction oracle 
performances averaged across all neurons, with the error bars depicting the s.e.m. f, Illustration of the optimization over all possible images. The vertical 
axis represents activation of a model neuron as a function of two example image dimensions. The black curves depict optimization trajectories converging 
to the same MEI from different initializations.
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inferences about nontrivial computational properties of V1 neu-
rons. We find that even mouse V1 neurons prefer features that are 
more complex than the classical oriented edges described by Hubel 
and Wiesel21 and predicted by many theories of early visual process-
ing22. Intriguingly, searching for optimal natural image patches in 
as few as 5,000 images often yielded natural images that exhibited 
a striking perceptual similarity to MEIs, showing that the percep-
tual attributes of MEIs occur often in natural scenes. These complex 
feature selectivities in V1 could provide a faster, albeit less general, 
method to extract task-relevant causal variables from natural inputs. 
This might benefit small animals like mice, whose size may impose 
stringent constraints on computation23.

Strong predictive models allow for a nearly unlimited number 
of in silico experiments that can be tailored to individual neurons 
or populations. This is especially important when studying high-
dimensional tuning properties, such as invariances17,24 or equivari-
ances25: searching directly for these dimensions in the brain is slow, 
costly and unlikely to reveal relevant stimulus manifolds. Using flex-
ible neural network models to optimize stimuli has been proposed 
before18,26,27. However, given that deep neural networks do not nec-
essarily generalize well beyond the typical statistics of their training 
set, it is not clear a priori whether in silico synthesized MEIs affect 
in vivo responses as predicted. Therefore, predictions derived from 

these models require experimental verification. Our current work 
with inception loops shows that such verification is indeed feasible.

Inception loops provide many opportunities for future neurosci-
ence studies. We performed this experiment in V1 since it constitutes 
a particularly rigorous test because of the large existing literature 
on V1 RF structure. This approach might prove even more useful 
for revealing feature selectivities in extrastriate or nonvisual areas, 
about which we currently understand much less28–31. Although we 
executed the inception loop once, further passes could test stimuli 
neighboring the MEI to refine estimates of tuning and invariance 
in a focused, efficient way. Combining emerging neurotechnologies 
with modeling and machine learning in an inception loop would 
provide a powerful tool to control, probe and evaluate brain trans-
formations that will probably lead to a much richer understanding 
of neural computation.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information, details of author 
contributions and competing interests, and statements of data and 
code availability are available at https://doi.org/10.1038/s41593-
019-0517-x.
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Methods
Neurophysiological experiments. All procedures were approved by the 
Institutional Animal Care and Use Committee of Baylor College of Medicine. 
Briefly, five mice (Mus musculus: three male, two female) aged 57, 62, 91, 102 
and 128 d (mouse 1–5, respectively) expressing GCaMP6s in excitatory neurons 
via Slc17a7-Cre and Ai162 transgenic lines (stock nos. 023527 and 031562, 
respectively; The Jackson Laboratory) were anesthetized and a 4 mm craniotomy 
was made over the visual cortex as described previously32,33. Mice were head-
mounted above a cylindrical treadmill and calcium imaging was performed using 
a Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm and a large field of 
view mesoscope16 equipped with a custom objective (0.6 numerical aperture, 
21 mm focal length). Laser power after the objective was kept below 60 mW. Visual 
stimuli were presented to the left eye with a 25″ LCD monitor and a resolution of 
2,560 × 1,440 px positioned 15 cm away from the eye. The rostro-caudal treadmill 
movement was measured using a rotary optical encoder with a resolution of 8,000 
pulses per revolution. We used light diffusing from the laser through the pupil to 
capture eye movements. Images of the pupil were reflected through a hot mirror 
and captured with a GigE CMOS camera (Genie Nano C1920M; Teledyne Dalsa) 
at 20 fps at a 1,920 × 1,200 px resolution. The contour of the pupil was extracted 
semiautomatically for each frame and the center and major radius of a fitted ellipse 
were used as the position and dilation of the pupil.

Pixelwise response across a 2,400 × 2,400 μm2 region of interest (0.2 px μm−1) 
at 200 μm depth from the cortical surface to a drifting bar stimuli was used to 
generate a sign map to delineate visual areas34. We chose an imaging site in V1 with 
minimal blood vessel occlusion and maximal stability. The craniotomy window was 
leveled with regard to the objective with six d.f., five of which were locked between 
days to allow us to return to the same imaging site using the z axis. Imaging 
was performed at approximately 8 Hz for all scans, using a remote objective to 
sequentially image ten 630 × 630 μm2 fields per frame at 0.4 px μm−1 xy resolution. 
Fields were spaced 5 μm apart in depth to achieve dense imaging coverage of a 
630 × 630 × 50 μm3 xyz volume, with the most superficial plane positioned in L2/3 
at around 200 μm from the surface of the cortex. At this z resolution, cells in the 
imaged volume were oversampled, often appearing in 3 or more imaging planes 
and allowing matching across days with ≤2.5 μm vertical distance between masks. 
Imaging data were motion-corrected, automatically segmented and deconvolved 
using the CNMF algorithm35; cells were further selected by a classifier trained to 
detect somata based on the segmented cell masks. This resulted in 5,300–8,500 
soma masks per scan. A structural stack encompassing the volume and imaged at 
0.6 × 0.6 × 1 px3 μm−3 xyz resolution with 100 repeats was used to register the scan 
average image into a shared xyz frame of reference between scans (see further on).

No statistical methods were used to predetermine sample sizes but our sample 
sizes are similar to those reported in previous publications30. Data collection 
and analysis were not performed blind to the conditions of the experiments. 
In performing the analysis, no animal or collected data point was excluded. 
Additional details may be found in Nature Research Reporting Summary.

Monitor positioning across days. To have a consistent monitor placement relative 
to the mouse across all imaging sessions, we placed the aggregate RF for each 
session at the center of the monitor. To map the RF, we tiled the center of the screen 
in a 10 × 10 grid with single dark dots over bright background (approximately 5°) 
and averaged the calcium trace of an approximately 150 × 150 μm2 window in the 
center of our field of view from 0.5–1.5 s after stimulus onset across all repetitions 
of the stimulus for each location. We fitted the resulting two-dimensional (2D) map 
using an elliptic 2D Gaussian and we centered the position of the RF by displacing 
the monitor with approximately ±2.5° precision between imaging sessions.

Cell registration across days. We registered each 2D scanning plane to the three-
dimensional stack using an affine transformation matrix with 9 d.f. estimated  
via gradient ascent on the correlation between the average recorded plane and  
the extracted plane from the stack. We matched cells across days using their 
estimated centroids in the stack, matching each cell of interest to the closest  
cell in the stack from a different day. We repeated this matching over multiple 
stacks and selected the pairings that occurred most often. To confirm that our 
target cells were matched correctly, we correlated their responses across days 
to a set of repeated images. The resulting confusion matrix is strongly diagonal 
demonstrating that matched cells have similar functional properties as expected 
(Supplementary Fig. 2).

Presentation of natural stimuli. Stimuli consisted of 5,100 natural images 
from ImageNet (ILSVRC2012)36, cropped to fit a 16:9 monitor aspect ratio and 
converted to gray scale. In each scan, we showed 5,000 unique images and 100 
images repeated 10 times each. Each image was presented for 500 ms followed by a 
blank screen lasting between 300 and 500 ms, sampled uniformly from that range.

Preprocessing of neural and behavioral data. Neural responses were first 
deconvolved using constrained nonnegative calcium deconvolution35. We 
subsequently extracted the accumulated activity of each neuron between 50 and 
550 ms after stimulus onset using a Hamming window. Behavioral traces, used as 
auxiliary signals in model training (see further on), were extracted using the same 

temporal offset and integration window. To train our models, we isotropically 
downsampled stimuli images to 64 × 36 px. Input images, the target neuronal 
activities, behavioral traces and pupil positions were normalized across the training 
set during training.

Network architecture. The network considered in the present study consists of 
four components (Fig. 1d): a common core for all neurons providing nonlinear 
features computed from static images; a dedicated readout for each neuron 
mapping the core features to their responses; a modulator predicting a gain factor 
for each neuron depending on the running state and the pupil dilation of the 
animal recorded during the experiment; and a shifter predicting RF shifts from 
pupil position changes.

The CNN core consists of three layers (Fig. 1d, each layer is illustrated as a 
differently colored block) whose outputs are concatenated to yield a rich feature set 
used by the readout module6. Each layer in the core consists of a convolution layer 
without a bias term, a batch normalization layer with an affine function term37 and 
an exponential linear unit (ELU) nonlinearity38. The LN model and the nonlinear 
(CNN) model differ only in their core: the core for the LN network is identical to 
the CNN core except that all nonlinearities were removed. This ensures maximal 
similarity between the two networks in terms of network components, maximal RF 
size and behavioral modulation.

For the readout, we model the neural response as an instantaneous affine 
function of the core features followed by an ELU nonlinearity and an offset of 1 
to make the response positive. For each image, the output of the core is a tensor 

R∈ × ×v w h c. We model the location of the ith neuron’s RF with a spatial transformer 
layer reading from a single grid point vx y, ,:i i

6,39, that is, we extract a vector R∈vx y
c

i i
 

via bilinear interpolation of neighboring pixels of the location (xi, yi) in the tensor v.  
To facilitate the learning of the grid points via gradient descent, we decompose vijk  
into ℓ spatial scales through repeated application of a 5 × 5 Gaussian low-pass 
filter: v(j) = lowpass(j)(v) for ∈ ℓ −j [0, 1] (Fig. 1d, represented as multiple copies of 
the three-layered block at different scales). Like in a Gaussian pyramid, we keep 
the difference between the filtered and original component at each step of filtering. 
However, we include readout variants where we do not explicitly downsample 
the feature channels since we empirically found it performs slightly better on 
some datasets. The exact variant used was determined by model selection on a 
validation set (see further on). The spatial transformer layer then extracts the 
feature vector from the same learned relative location (xi, yi) at each scale. The set 
of feature vectors is then fed to the final affine function and nonlinearity, yielding:
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where o(i) is the readout layer’s output for the ith neuron, f(⋅) is the output 
nonlinearity and R∈w i j

c
( , )  is the weight vector for the ith neuron for the scale j 

(Fig. 1d, depicting feature vectors at two readout locations).
To account for fluctuations in neural responses unrelated to the visual 

stimuli, we used pupil dilations and their temporal derivative, as well as the 
absolute running speed of the animal, which are known correlates of brain 
state changes32,40,41. Using these three variables, we computed a gain factor 
for each neuron that scales the output of the readout layer o(i) (equation (1)). 
The modulator predicts the gain using a two-layer fully connected multilayer 
perceptron (MLP) with rectified linear unit nonlinearities at all hidden  
layers and a shifted exponential nonlinearity at the last layer to enforce  
positive outputs.

Unlike primates, training mice to fixate their gaze in a single position is 
impractical. To model the responses of thousands of neurons in a free viewing 
experiment, the shifter estimates a RF shift for all neurons from the tracked pupil 
position based on the predictive performance of the network6. In the model, this is 
reflected as trial-by-trial shift Δx and Δy applied to xi and yi in equation (1) across 
all neurons. Note that pupil location is measured in coordinates of the camera 
recording the eye, while the shift needs to be applied in monitor coordinates. 
This transformation can be estimated by a calibration procedure42–44 or learned 
from the data using regression on pairs of eye camera–monitor coordinates. We 
used a three-layer MLP with a tanh nonlinearity for predicting the joint receptive 
displacement for all neurons.

Both modulator and shifter components were included in the linear-nonlinear 
network to allow for a fair comparison between the models.

Training and model selection. We trained two different network architectures: 
an LN model and a CNN model. Both models used a point readout, and shifter 
and modulator networks, as described earlier. We trained four instances of each 
network configuration, corresponding to four random weight initializations.

The first layer was regularized by penalizing the L2 norm of the 3 × 3 Laplace-
filtered weights, weighted by an inverse Gaussian profile of the form:
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where x and y are the spatial pixel positions of the convolutional weights relative to 
the center of the filter. The Gaussian profile encourages the filter to be smoother at 
the edge. Empirically, we observed that this profile also helps to center the RF of the 
neuron within the convolutional kernel’s spatial extent. The values of σL and bL were 
set to 0.5 and 1, respectively. For each hidden convolutional layer, the convolutional 
weight was penalized by group sparsity, and computed as the L1 sparsity regularizer 
over the L2 norm of weight values for each channel with the regularization weight γr.  
The values of γL and γr were chosen from a discrete set of values as part of the 
hyperparameter search (Supplementary Table 1).

The dataset was split into training, validation and test set. The test set consisted 
of 100 images with 10 repeats each. The remaining unique 5,000 images were 
randomly split into 4,477 training images and 523 validation images. The network 
was trained to minimize Poisson loss ∑ ̂ − ̂= r r r( log )

m i
m i i i1

1
( ) ( ) ( )  where m denotes the 

number of neurons, ̂r the predicted neuronal response and r the experimentally 
recorded one. We used early stopping on the correlation between predicted and 
measured neuronal responses on the validation set45: if the correlation failed to 
increase during any consecutive ten passes through the entire training set, we 
stopped the training and restored the model to the best-performing model over the 
course of training. Empirically, we found that this combination of Poisson objective 
and early stopping on correlation yielded the best results. After the first stop, we 
decreased the learning rate from 5 × 10−3 to 10−3 and resumed training until it 
was stopped again. Network parameters were optimized iteratively via stochastic 
gradient descent with the Adam optimizer46 with a batch size of 60. Once training 
completed, the trained network was evaluated on the validation set to yield the 
score used for hyperparameter selection.

Exact architectural details, including the weights of regularizers, or whether to 
downsample the spatial pyramid, were selected using grid search on the validation 
performance. We repeated our model selection for each mouse and used the best 
CNN and LN architecture for all subsequent experiments (Supplementary Table 2).  
Remaining network configurations, namely, the input convolution kernel size 
(kin = 15), the number of hidden layers (n = 2), hidden layer convolution kernel 
size (khidden = 7) and number of channels (c = 32) were manually selected based on 
previous experience.

Since the imaging volume was densely scanned (10 planes spaced 5 μm apart 
in depth), the same soma would appear in several planes. During training, we used 
masks from every plane, including potentially duplicate ones.

Oracle correlation and fraction of oracle. Cortical neurons naturally exhibit 
substantial response variability. To estimate a bound for maximally achievable 
correlation, we computed an ‘oracle’ per cell by correlating the leave-one-out mean 
response with the response to the remaining trial across repeated images in the 
test set, and averaged that correlation across all cells. We estimated the fraction of 
oracle performance achieved by a model as the slope of a line without offset fitted 
on the oracle correlation to the model’s test set correlation across all neurons. Since 
the oracle is only conditioned on repeats of the same image and not factors relating 
to brain state, a network with shifter and modulator components that utilize brain 
state parameters, could in principle achieve a fraction of oracle score >1. To avoid 
this confounding element, we froze the shifter and modulator input to the training 
set mean when computing the fraction of oracle (Fig. 1e).

Selection of neurons for MEI generation. We selected neurons to generate MEIs 
based on the following criteria. First, select neurons in the top 50th percentile of 
oracle correlation. This restricts us to cells with reliable responses to visual stimuli. 
Second, exclude neurons within 10 μm of the edge of the scanning fields. This 
avoids artifacts near the edge of the fields and avoids missing a cell on subsequent 
days if the scanning field of view moves slightly in xy. Next, select neurons in the 
intersection of the top 30th percentile of the CNN model’s fraction of oracle score 
ρCNN and the top 30th percentile of the LN model’s fraction of oracle score ρLN. This 
selects cells that are predicted reasonably well by both CNN and LN models and 
ensures that each neuron has a significant linear part that can be predicted by an 
LN model using the linear RF. Last, iterate through the remaining neurons, from 
largest to smallest in ρCNN − ρLN, placing the visited neuron into a final to-keep 
set and removing any unvisited neuron that falls within 20 μm distance of it. This 
avoids selecting neurons that are too close to each other, reducing the chance of 
picking two masks that belong to the same cell. These criteria yielded a total of 206, 
304, 311, 309 and 346 neurons for mouse 1–5. Among these, for each mouse, we 
selected the top 150 neurons according to largest ρCNN − ρLN for MEI generation.

Generation of synthetic stimuli. To find stimuli that optimally drive particular 
cells in V1, we were inspired by deep learning approaches to visualize the hidden 
features of an artificial neural network15,47–57.

For each model neuron, we generated the image that most strongly activates 
it55, subject to a number of regularization constraints to encourage stable results. 
We started the optimization with a Gaussian white noise image R∈ × ×I w h c

0  and 
iteratively added the gradient of the target neuron’s activity with respect to the 
image ∇ ̂rI i averaged over four instances of the network; we trained four instances 
of each selected architecture, each initialized with different random parameters. 
Optimizing on four networks simultaneously better estimates the gradient and 
reduces high-frequency noise. High-frequency noise obscures the gradient signal 

and depends highly on the starting image; thus, it is more powerful during the 
start of the optimization50. We used two additional strategies to dampen its effect. 
First, we blurred the image after every gradient ascent step using a Gaussian 
filter with an s.d. that decreases gradually after each iteration58. Second, we 
preconditioned the gradient before adding it to the image with a low-pass filter 

ω ω ω ω= +
π

α−G( , ) ( )x y x y
1

(2 )
2 2

2  in the Fourier domain that preferentially suppresses 

the higher-frequency content of the gradient50; we selected α = 0.1 by visual 
inspection of the resulting images.

When this image generation technique is applied to a CNN model, it creates 
the MEIs for the target neuron. When it is applied to an LN model, the resulting 
image is equivalent to a (highly regularized) linear RF. After optimization, we 
matched the mean luminance and RMS contrast of all MEIs and RFs to a  
common value.

Presentation of synthetic stimuli. For closed-loop scans designed to compare 
MEI to RF responses (day 2 − N), we presented 150 MEIs and 150 RFs with 20 
repetitions each. During the presentation, the images were upscaled to the monitor 
resolution using third-order spline interpolation. We also included 100 images 
repeated 10 times to compute the oracle score. Just as with natural images (day 1),  
images were presented for 500 ms followed by a blank screen, with duration 
uniformly distributed between 300 and 500 ms; the order of presentation was 
chosen at random.

Statistical significance of MEI comparisons. Recorded responses were 
normalized across all presented images per scan. The normalized responses of the 
matched neurons were then averaged across MEI (or RF) repetitions in the same 
scan and, if available, across multiple scans (2, 2, 1, 2, 1 scans for each of our five 
mice); all scans were recorded on separate days.

We used these aggregate responses to assess whether MEIs generated for their 
target neurons elicited higher responses than their corresponding linear RF, Gabor 
image, masked natural image or full-field natural image. For single neurons, the 
statistical significance of the difference in response was assessed using a two-tailed 
Welch’s t-test across the pooled repeats (average d.f. of 55.5, 28.9, 32.0 and 30.3 for 
MEI versus RF, Gabor, masked natural and full-field natural, respectively). The 
overall difference in average responses pooled across all neurons (750 for MEI 
versus RF, 150 for other comparisons) was assessed using a two-sided Wilcoxon 
signed-rank test.

Generation of MEI mask. We created a weighted mask for each MEI to capture the 
region containing most of its variance so that the resulting masked MEI activates 
the model neuron only slightly less than the original MEI. We generated this mask 
as follows: (1) starting with an MEI image IMEI, compute the absolute deviation 
of the pixels from the mean image intensity μI, ΔIx,y = |IMEI,x,y − μI|, and threshold 
it at 1 s.d. of ΔI to identify highly active pixels; (2) compute the convex hull over 
pixels identified in the previous step, producing a mask image M(0) with a single 
connected region. M = 1 for all pixels inside the convex hull and 0 otherwise;  
(3) Gaussian blur the mask M(k) (σ = 2 px) to smooth its edges, resulting in M̂

k( )
;  

(4) compute masked MEI as μ= ̂ ⊙ + − ̂I M I M(1 )k k
I

k
MEI,masked
( ) ( )

MEI
( )

MEI
; (5) run 

I k
MEI,masked
( )  through the model to yield the model neuron response ̂r k( ); (6) binary 

erode M(k) with a 3 × 3 square structuring element59 to yield M(k+1); and (7) repeat 
steps 3–6 until ̂r k( ) goes below 90% of ̂r (0) for the first time. We take M̂

k( )
 to be the 

final MEI mask; ⊙ denotes the Hadamard product (elementwise product).

Selection of Gabor stimuli. To directly compare the effectiveness of MEI  
against Gabor stimuli, we selected the Gabor image with the highest predicted 
activation for each target cell. A Gabor image was generated according to the 
following equation:
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in the luminance space, where μx and μy control the center of the Gabor, σ controls 
the fall off of the Gaussian window and θ, λ and ϕ control the orientation, spatial 
frequency and phase of the grating, respectively. We defined a set of discrete values 
for each of the six parameters and searched over all combinations to find the most 
exciting Gabor image (Supplementary Table 3). For each candidate Gabor image, 
the image mean and scaling was adjusted to ensure that all images shared the same 
mean luminance and RMS contrast (Fig. 3b and Supplementary Fig. 11).

In one closed-loop experiment for mouse 5, we presented the 150 best Gabor 
filter for each of our target cells and their corresponding MEIs exactly as we did in 
scans comparing MEIs to RFs.

Selection of masked and full-field natural images. For each target cell with 
an index, we searched for the natural image that yielded the highest predicted 
activation after masking it with the neuron’s MEI mask (see earlier); we used 5,000 
images not used during training. This allowed us to compare responses for  
MEIs to those for natural images and assess the prevalence of MEI-like features in 
natural scenes.
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For a neuron with MEI mask M, we masked each original full-field natural 
image Ij (j is the index of the natural image in the set of 5,000 images), yielding the 
masked natural image Īj as follows:

Ī α β μ= ⊙ + + −M I M( ) (1 ) (4)j j j j

where the scalars αj and βj are adjusted so that the mean luminance μ and RMS 
contrast of the masked images for this neuron are kept constant. We then selected 
the masked natural image Ī ȷ  ̂that gives rise to the largest model neuron activation 
among the 5,000 new natural images, where ȷ  ̂is the index of the best natural 
image; we also compared it against the corresponding full-field natural image ȷ ̂I  
(Fig. 3b and Supplementary Fig. 11).

In one closed-loop experiment for mouse 5, we presented the 150 best masked 
natural images Ī ȷ  ̂for each of our target cells and their corresponding MEIs exactly 
as we did in the closed-loop scans comparing MEIs to RFs. In a separate closed-
loop scan for mouse 5, we presented the 150 full-field counterparts of the best 
masked natural images ȷ ̂I  and the 150 MEIs.

Nontrivial nonlinearity of the CNN. An LN model has the form = +⊤r g bw I( ) 
where r is the neuronal response prediction, I is the input image, w is a weight 
vector of the same dimensions, b is an offset and g is a static nonlinearity usually 
chosen as part of the model design. In our case, we chose g(z) = ELU(z) + 1, 
where38:


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= ≥
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x x xELU( ) , if 0
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(5)x

It is possible that the CNN model differs from the LN model only in trivial ways 
by effectively learning an LN model but achieving higher prediction scores 
because of more freedom in fitting the static nonlinearity g or because of an inbuilt 
architectural bias that makes learning w easier.

To demonstrate that the CNN model deviates nontrivially from the LN model, 
we computed the gradient of both models with respect to the input image on the 
entire image dataset and computed the largest ten eigenvalues of the covariance 
matrix of these gradients. For the LN model, all gradients are proportional to w. 
Thus, there must be exactly one eigenvalue greater than zero. If the CNN model 
behaves just like an LN model, the spectrum should look the same. However, if it 
is nonlinear in a nontrivial way, gradients should differ and the spectrum should 
have more nonzero eigenvalues.

We find the latter to be the case (Supplementary Fig. 3), indicating that the 
CNN model performs better because it can model interesting nonlinearities of 
cortical neurons that cannot be captured by the linear model.

Difference in spatial frequency content between MEIs and RFs. We compared 
the spatial frequency content of MEIs and RFs by computing the average 
differences in the amplitude of the spatial frequency spectrums of the MEI  
and RF images:

F F∑Ā = ∣ ⊙ ∣ − ∣ ⊙ ∣
N

h I h I1 ( ( ) ( ) ) (6)
i

i idiff MEI, RF,

where F ⋅( ) denotes the 2D Fourier transform, h is a Hamming window and N is 
the total number of MEI/RF image pairs (Supplementary Fig. 7).

MEIs as linear filters. CNNs model the nonlinear processing of the cells they 
encode. Intuitively, a CNN allows us to generate images (MEIs) that use this 
additional capacity to drive a cell more strongly than images generated from an 
LN model (RFs) by disregarding their ability to act as a linear filter. To test this 
intuition and assert that the observed higher activations for MEIs are not due to 
them being better linear filters than RFs, we compared their performance as a 
linear encoder. For each cell, we used its MEI or RF as a linear filter to predict its 
responses to 100 test set images and correlated the predicted responses with the 
real neuron responses. We used Spearman’s rank correlation to sidestep the need 
to fit a monotonic nonlinear function to the output of the filter. Filters generated 
with an LN model produce better predictions (Supplementary Fig. 9), suggesting 
that the capacity of MEIs to excite cells depends on their ability to exploit subtle 
nonlinear processing in V1 cells.

RFs of the linearized CNN model. To further assess the importance of the 
nonlinear nature of our models, we approximated our CNN using an LN model 
and compared the original RFs to the RFs of this linearized CNN model. We fitted 
LN models on the same training set used for the rest of experiments but replaced 
the real cell responses with those predicted by a trained CNN, and followed the 
same procedures described earlier for model selection, training and RF generation. 
The resulting RFs looked virtually identical to the RFs learned directly from the 
neuronal responses, further corroborating the importance of a nonlinear model 
(Supplementary Fig. 10).

Statistics. All statistical tests used, including statistical values, sample sizes and P 
values are provided in the figure captions. Where a t-test was used, the underlying 
data distribution was assumed to be normal, although this was not formally tested. 
Exact P values less than 10−9 were reported as P < 10−9.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All figures were generated from raw or processed data. The data generated and/
or analyzed during the current study are available from the corresponding author 
upon request. No publicly available data was used in this study.

Code availability
Experiments and analyses were performed using custom software developed using 
the following tools: ScanImage 2018a (ref. 60), CaImAn v.1.0 (ref. 61), DataJoint 
v.0.11.1 (ref. 62), PyTorch v.0.4.1 (ref. 63), NumPy v.1.16.4 (ref. 64), SciPy v.1.3.0  
(ref. 65), Docker v.18.09.7 (ref. 66), Matplotlib v.3.0.3 (ref. 67), seaborn v.0.9.0 (ref. 68), 
pandas v.0.24.2 (ref. 69) and Jupyter v.1.0.0 (ref. 70). The code for carrying out the 
data collection and preprocessing is available at https://github.com/cajal/pipeline; 
the code to perform MEI generation and analysis is available at https://github.com/
cajal/inception_loop2019.
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