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ABSTRACT

This paper focuses on performance analysis of linkage-based
hierarchical agglomerative clustering algorithms for sequence
clustering using the Kolmogrov-Smirnov distance. Data se-
quences are assumed to be generated from unknown contin-
uous distributions. The goal is to group the data sequences
whose underlying generative distributions belong to one clus-
ter without a priori knowledge of both the underlying distri-
butions as well as the number of clusters. Upper bounds on
the clustering error probability are derived. The upper bounds
help establish the fact that the error probability decays expo-
nentially fast as the sequence length goes to infinity and the
obtained error exponent bound has a simple form. Tighter
upper bounds on the error probability of single-linkage and
complete-linkage algorithms are derived by taking advantage
of the simplified metric updating for these two special cases.
Simulation results are provided to validate the analysis.

Index Terms— Kolmogorov-Smirnov distance, cluster-
ing, exponential consistency, probability of error, hierarchical
clustering algorithm.

1. INTRODUCTION

Sequence clustering is of interest to a broad range of appli-
cations. Examples include market segmentation [1], image
clustering [2, 3], and meteorological parameters characteri-
zation [4–6]. This paper considers clustering of sequences
generated by unknown continuous distributions. Each data
sequence may represent a sequence of observations or fea-
tures in temporal, spatial, or other dimensions. Each class
(or cluster) is defined by distributions that are close to each
other using a suitably defined metric. Different clusters are
assumed to be separated from each other, again, with respect
to a given metric. While Euclidean distance and other vector
norms have been used for sequence clustering, metrics that
characterize distribution distances (e.g., the KS distance) are
more relevant for the clustering at hand as sequences are gen-
erated according to some underlying distributions. We choose
in the present work the Kolmogrov-Smirnov (KS) metric as
probability metric; the KS distance is a true probability met-
ric that metrizes weak convergence and has the desired con-
centration property [7].
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The above clustering problem where each cluster consists
of distributions that are close to each other belongs to the
general problem of unsupervised learning and has been well
studied in the literature (see, e.g., [8, 9]). There are gener-
ally two classes of approaches: partitional and hierarchical.
The partitional clustering algorithms include k-means cluster-
ing [10–12] and k-medoids clustering [13–15]; they usually
start with some initial cluster centers, often randomly cho-
sen, and then iteratively assign each data sequence to a clus-
ter followed by cluster center updating. The knowledge of
the number of clusters is usually required for partitional clus-
tering algorithms. Hierarchical clustering algorithms include
both hierarchical agglomerative clustering (HAC) algorithms
and hierarchical divisive clustering algorithms. The HAC al-
gorithms start with singletons and proceed to merge clusters
according to pairwise distances. Hierarchical divisive clus-
tering algorithms, on the other hand, start with one cluster
consisting of all the data sequences and then proceed to split
the clusters [16,17]. The knowledge of the number of clusters
is not necessary for hierarchical clustering algorithms. How-
ever, the threshold for merging and splitting may be required
for hierarchical clustering algorithms.

The HAC algorithms can be further divided into two
groups - linkage-based algorithms and centroid-based al-
gorithms. Examples for linkage-based algorithms include
single-linkage (SLINK) [18], complete-linkage (CLINK)
[19], weighted pair group method with arithmetic mean
(WPGMA), and unweighted pair group method with arith-
metic mean (UPGMA) [20]. Centroid-based clustering algo-
rithms include unweighted pair-group centroid method and
weighted pair-group centroid method [21]. The above HAC
algorithms can be unified using the Lance-Williams dissimi-
larity (LWD) update formula (see Eq. (4)), which computes
the distance between clusters in a recursive manner [22].
We note that LWD can include an infinite set of HAC algo-
rithms by changing the weights for the terms in the updating
formula.

The primary focus of this paper is to study asymptotic
clustering performance of the linkage-based HAC algorithms
under the KS distance. We establish that a large class of
linkage-based HAC algorithms are exponentially consistent,
that is, the clustering error probability varnishes exponentially
fast as the sequence length goes to infinity. While exponential
consistency holds for k-medoids clustering algorithms under
the KS distance and MMD distribution metrics [7, 23, 24],



there have been no parallel results in the literature for the
HAC algorithms.

The rest of the paper is organized as follows. Section 2
introduces the clustering problem and review preliminaries on
the KS distance. The general HAC algorithm is introduced in
Section 3 followed by the analysis of linkage-based clustering
algorithms in Section 4. Tighter upper bounds on the error
probabilities of SLINK and CLINK are provided in Section
4.2. Section 5 contains simulation results.

2. SYSTEM MODEL AND PRELIMINARIES

2.1. Preliminaries of KS distance

Denote by Fp the cumulative distribution function (c.d.f.) of
distribution p. The KS distance between distributions p and q
is defined as

dKS (p, q) = sup
a∈R
|Fp (a)− Fq (a) |. (1)

Let x be an independent and identically distributed (i.i.d.) se-
quence generated by distribution p. The empirical c.d.f. of x
is given by

Fx (a) =
1

n

n∑
i=1

1[−∞,a] (x[i]) ,

where 1A (·) is the usual indicator function. The empirical KS
distance between two sequences x and y is the KS distance
between the corresponding empirical c.d.f., and denoted by
dKS(x,y) for notational convenience.

2.2. Clustering Problem

Suppose there are K distribution clusters denoted by Pk for
k = 1, . . . ,K, where K is fixed but unknown. Define re-
spectively the intra-cluster distance ofPk and the inter-cluster
distance between Pk and Pk′ for k 6= k′ as

dKS (Pk) = sup
pi,pi′∈Pk

dKS (pi, pi′) ,

dKS (Pk,Pk′) = inf
pi∈Pk,pi′∈Pk′

dKS (pi, pi′) ,
(2)

where dKS (·, ·) is the KS distance defined in (1). Thus
dKS (Pk) and dKS (Pk,Pk′) are respectively the diameter of
Pk and the distance between Pk and Pk′ . Define

dL = max
k=1,...,K

dKS (Pk) ,

dH = min
k 6=k′

dKS (Pk,Pk′) ,

Σ = dH + dL,

∆ = dH − dL.

(3)

We further assume that dL < dH .
Suppose Mk data sequences are generated from the dis-

tributions in Pk, hence a total of
∑K
k=1Mk = M sequences

are to be clustered. Without loss of generality, assume that

each sequence xk,jk = [xk,jk [1], . . . ,xk,jk [n]] consists of n
i.i.d. samples generated from pk,jk ∈ Pk for k = 1, . . . ,K
and jk ∈ {1, . . . ,Mk}. Note that for any k, pk,jk ’s are not
necessarily distinct. Thus xk,jk ’s can be generated from the
same distribution for the same k. Additionally, all the data
sequences are assumed to have the same length; our analy-
sis can be easily extended to the case with different sequence
lengths by replacing n with the minimum sequence length.

A clustering algorithm is said to be consistent if for any
0 ≤ dL < dH ,

lim
n→∞

Pe = 0,

where Pe is the probability of clustering errors and n is the
sequence length. The algorithm is said to be exponentially
consistent if for any 0 ≤ dL < dH ,

B = lim
n→∞

− 1

n
logPe > 0.

For the case where a clustering algorithm is exponentially
consistent, we are also interested in characterizing (the bound
for) the error exponent B.

2.3. Additional Notations

Denote by Cl ∼ Pk the sequences in Cl that are generated
from Pk. When specific reference to a cluster after the t-th
iteration is needed, Ctl will be used instead for sequences in
the l-th cluster.

3. HAC ALGORITHMS WITH LWD UPDATE

Define the dissimilarity matrix of K clusters to be

D =


0 d (C1, C2) · · · d (C1, CK)

d (C2, C1) 0 · · · d (C2, CK)
...

...
...

...
d (CK , C1) d (CK , C2) · · · 0

 ,
where d (Cl, Cl′) is the dissimilarity (i.e., the distance metric
for distribution clustering) between clusters Cl and Cl′ and sat-
isfies 1) d (Cl, Cl′) ≥ 0, 2) d (Cl, Cl) = 0, and 3) d (Cl, Cl′) =
d (Cl′ , Cl). In each iteration, HAC algorithms try to merge two
clusters Cl1 and Cl2 if

d (Cl1 , Cl2) = min
l 6=l′

d (Cl, Cl′) ≤ dth,

with dth a pre-determined threshold. The algorithm stops if

min
l 6=l′

d (Cl, Cl′) > dth.

The general HAC algorithm is summarized in Algorithm 1.
Note that any HAC algorithm converges within M steps. The
LWD update formula provides a unified view for dissimilarity
updating after each merge step [22]. Suppose Cl1 and Cl2 are
merged. Then the LWD between Cl1 ∪ Cl2 and Cl3 is given by

d(Cl1∪Cl2 , Cl3) = α1d (Cl1 , Cl3) + α2d (Cl2 , Cl3)

+ βd (Cl1 , Cl2) + γ |d (Cl1 , Cl3)− d (Cl2 , Cl3)| . (4)



Algorithm 1 HAC Algorithm

1: Input: Data sequences {yi}Mi=1 and threshold dth.

2: Output: Partition set {Ck}K̂k=1.
3: Ci = {yi} for i = 1, . . . ,M , and construct the corre-

sponding D.
4: while minCl,Cl′∈{C1,C2,...} d (Cl, Cl′) ≤ dth do
5: Merge Cl1 and Cl2 if

d (Cl1 , Cl2) = minCl,Cl′∈{C1,C2,...} (Cl, Cl′),
6: Update the distance matrix D.
7: end while
8: Return {Ck}K̂k=1

Table 1: Coefficients of linkage-based HAC algorithms

SLINK α1 = α2 = 0.5,
β = 0, γ = −0.5.

CLINK α1 = α2 = 0.5,
β = 0, γ = 0.5.

UPGMA α1 =
|Cl1 |

|Cl1 |+|Cl2 |
, α2 = 1− α1,

β = 0, γ = 0.

WPGMA α1 = α2 = 0.5,
β = 0, γ = 0.

The choices of coefficients in (4) for typical linkage-based
HAC algorithms are given in Table 1, where |C| denotes the
cardinality of C [25]. For the rest of the paper, linkage-based
clustering algorithms with LWD update are assumed to satisfy

αi ≥ 0 for i = 1, 2, (5a)
α1 + α2 = 1, (5b)
|γ| ≤ min{α1, α2}, (5c)
β = 0. (5d)

Thus d (Cl1 ∪ Cl2 , Cl3) in (4) is always non-negative and

d (Cl1 ∪ Cl2 , Cl3) ≥ min{d (Cl1Cl3) , d (Cl2Cl3)},
d (Cl1 ∪ Cl2 , Cl3) ≤ max{d (Cl1Cl3) , d (Cl2Cl3)}.

Equation (5d) is a necessary condition for linkage-based clus-
tering algorithms, which implies that d (Cl, Cl′) is only a func-
tion of d (yi,yi′), where yi ∈ Cl and yi′ ∈ Cl′ .

4. LINKAGE-BASED ALGORITHMS

This section presents an upper bound on the error probability
of linkage-based HAC algorithms generated from the LWD
update formula with coefficients satisfying (5). The complete
proof of the results omitted due to the space limit.

4.1. General Case

Proposition 1. If the linkage-based HAC algorithm updates
D by (4), then for t ≥ 0 and l 6= l′,

d
(
Ctl , Ctl′

)
=

∑
i: yi∈Ctl

∑
i′: yi′∈Ctl′

θtii′ (yi,yi′) d (yi,yi′) . (6)

Moreover, if the LWD update satisfies (5), then θtii′ (yi,yi′) ≥
0 and for any l 6= l′,∑

i: yi∈Ctl

∑
i′: yi′∈Ctl′

θtii′ (yi,yi′) = 1. (7)

Outline of the Proof. Equation (6) can be proved by induc-
tion while (7) results from (6) and (5).

Intuitively, with (5), the updated metric in (4) can be
rewritten as a convex combination of d (Cl1 , Cl3) and d (Cl2 , Cl3),
leading to (7).

Proposition 2. Suppose a linkage-based HAC algorithm uses
update in (4) and the KS distance metric is used. If data se-
quences are generated from distributions satisfying dL < dH ,
then for dth ∈ (dL, dH) and sufficiently large n,

P
(
d
(
Ctl1 , C

t
l3

)
≤ dth

)
≤ 4M2e−nb1 , (8a)

P
(
d
(
Ctl1 , C

t
l2

)
> dth

)
≤ 4M2e−nb2 , (8b)

where Ctl1 , C
t
l2
∼ Pk, Ctl3 ∼ Pk′ for k 6= k′, b1 = (dH−dth)2

2

and b2 = (dth−dL)2

2 .

Outline of the Proof. Equation (8) is proved by the union
bound, Proposition 1 and lemmas in [7].

Therefore, for sequence clusters obtained after the t-th
iteration by any linkage-based algorithm, any cluster pair
generated from the same distribution is close to each other
whereas any cluster pair generated from different distribution
clusters is sufficiently separated.

Theorem 4.1. Suppose a linkage-based clustering algorithm
uses update in (4) and the KS distance is used. If data se-
quences are generated from distributions satisfying dL < dH ,
then for dth ∈ (dL, dH) and sufficiently large n, the error
probability upon convergence is upper bounded by

Pe ≤ 4M5e−nb1 + 4M4e−nb2 .

Outline of the Proof. The idea of proving the upper bound on
the error probability is as follows. We first show the exponen-
tial decay of the probability of the event, denoted by Êt, that
after the t-th iteration there exists one cluster that contains
sequences generated from two distribution clusters while the
clustering result after the (t− 1)-th iteration is correct. Sup-
pose the clustering algorithm converges after T iterations with
T finite. We then show the exponential decay of the probabil-
ity of the event, denote by ĤT , that there exist two clusters in
clustering output such that all the sequences in the two cluster
are generated form the same distribution clusters. The error
event is the union of Êt for t = 1, . . . , T and ĤT . Since the
algorithm converges after at most M iterations, the exponen-
tial consistency is established using the union bound.



4.2. Tighter Error Bounds for SLINK and CLINK

Tighter upper bounds on the error probability for SLINK and
CLINK can be derived by taking advantage of the fact the
inter-cluster distance is computed using a single pair of se-
quences. The entry d (Cl, Cl′) in D for SLINK is given by

dS (Cl, Cl′) = min
y1∈Cl,y2∈Cl′

d (y1,y2) . (9)

The distance between two clusters for CLINK is given by

dC (Ck, Ck′) = max
y1∈Ck,y2∈Ck′

d (y1,y2) . (10)

The following theorem provides a tighter upper bound on the
error probability of SLINK and CLINK.

Theorem 4.2. Given the KS distance, the error probability of
SLINK and CLINK for dth ∈ (dL, dH) and sufficiently large
n is upper bounded by

Pe,S ≤ 4M3e−nb1 + 4M2e−nb2 .

Outline of the Proof. The idea of proving the upper bound on
the error probability is the same as the proof of Theorem 4.1.
The only difference is that the distance between two clusters
for both SLINK and CLINK only depends on a pair of se-
quences from the two clusters.

The bound on error probability in Theorem 4.2 is tighter
than the general bound in Theorem 4.1 by a factor of 1

M2 .

5. EXPERIMENTAL RESULTS

This section provides some experimental results for both link-
age and centroid based algorithms. Set K = 5, Mk = 5 for
k = 1, . . . , 5, and xk,jk [i] ∈ R. Gaussian N

(
µk,jk , σ

2
)

and
Gamma Γ (ak,jk , b) distributions are used in the simulation.
The probability density function (p.d.f.) of a Γ (α, β) is given
as

f (x;α, β) =
1

βαΓ (α)
xα−1 exp

(
−x
β

)
(x > 0) ,

where α > 0, β > 0 and Γ (·) is the Gamma function. For
this experiment, we set σ = 1, β = 1, and

µk,jk = (k − 1) +

(
jk −

Mk + 1

2

)
δ

2
,

αk,jk = 2.5 (k − 1) +

(
jk −

Mk + 1

2

)
δ

2
,

where jk = 1, . . . , 5, δ = 0 and 0.1. Note that when δ =
0, sequences belonging to the same distribution cluster are
generated from a single distribution.

The Monte Carlo experiment for a given sample size con-
tinues until following two conditions are both satisfied:

1. the number of trials that provides incorrect clustering
output reaches 1000,
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Fig. 1: Gaussian distributions under the KS distance
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Fig. 2: Gamma distributions under the KS distance

2. the total number of trials reaches 5× 104.

The error probabilities of SLINK, and CLINK under the
KS distance are given in Figs. 1 and 2. One can observe that
logPe is a linear function of the sample size, validating the
exponential consistency of these algorithms. Furthermore,
SLINK outperforms CLINK under the KS distance in terms
of the error probability. One possible reason is that the dis-
tance between two clusters estimated by (10) tends to under-
estimate the number of clusters. Thus, a larger dth may help
improve the performance of CLINK. Moreover, the slope of
logPe with respect to n, i.e., the quantity − logPe

n , is non-
decreasing as δ becomes smaller. In the current simulation
setting, this implies a larger ∆ under the KS distance.

However, with Gamma distributions, logPe given δ = 0
can be larger than logPe given δ = 0.1. A possible reason is
that the KS distance between two sequences is always lower
bounded by 1

n , which has an amplified effect on the clustering
result when all sequences in the same cluster are generated
from a single distribution.
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