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ABSTRACT

Deep learning for computer vision depends on lossy image compression: it reduces the storage required for
training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all
rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the
lossiness: an 8 x8 quantization table (Q-table) decides both the quality of the encoded image and the compression
ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image
distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that
are “better” for specific vision networks and can offer better quality—size trade-offs than ones designed for human
perception or minimal distortion.

We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under
novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted
random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter
tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization
methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is

fixed, or improve accuracy up to 2% at the same compression rate.

1 INTRODUCTION

Deep neural networks for vision have extreme storage re-
quirements. For example, ImageNet is 150 GB (Deng
et al., 2009) and the Open Image Dataset requires
500 GB (Kuznetsova et al., 2018). If a model can achieve
equivalent performance with images at a higher compres-
sion ratio, it can be cheaper to acquire, transmit, and store
the necessary datasets.

Nearly all DNN datasets use the ubiquitous JPEG compres-
sion standard, including ImageNet (Deng et al., 2009), PAS-
CAL VOC (Everingham et al.), COCO (Lin et al., 2014),
etc. Because JPEG is a loss compression format, DNNs
cope with some quality distortion in these images (Dodge &
Karam, 2016). However, the JPEG standard is tuned for the
human visual system (HVS) and preserves the components
that are most relevant to human observers, rather than to
computer vision algorithms. This work asks whether ma-
chine learning pipelines would perform better if JPEG were
instead tuned specifically for a given DNN.

Fig. 1 shows an overview of the standard JPEG compression
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algorithm. Each spatial component (i.e., each YCbCr chan-
nel) is first partitioned into 8 x8 non-overlapping blocks.
Then the spatial components are transformed to frequency
components with the 2D discrete cosine transform (DCT).
Next, the algorithm quantizes the frequency components
using a quantization table or Q-fable. The Q-table’s scale is
determined by the quality factor ranging from 1 to 100 (Lu-
aDist, 2015). For instance, a quality factor of 100 scales
Q-table coefficients to 0 and the frequency components are
rounded to integers. Then, the quantized coefficients are se-
rialized using a zig-zag ordering and losslessly compressed
with entropy coding and Huffman coding.

Quantization is the lossy part of the algorithm. The Q-table
decides how many bits to use for each frequency bucket,
potentially playing a critical role for DNNs that use JPEG-
compressed images. However, existing research on design-
ing Q-tables mostly prioritizes human-precepible distortion
as the compression target (Liu et al., 2018), which may
compress and quantize features important to DNNs (Wright
et al., 2009). Prior work instead targets DNN accuracy (Liu
et al., 2018), but it only considers recompressing existing
JPEG-compressed datasets rather than changing the way
data is compressed in the first place.

In this work, use a high-resolution dataset to simulate the
effect of compressing raw pixels with novel, task-specific
quantization. We use a range of optimization methods to
tune a customized Q-table for a specific DNN that max-
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Figure I. Overview of the JPEG compression algorithm.

imizes both vision task accuracy and compression ratio.
Starting with a simple baseline method, sorted random
search, we find Q-tables that improve ResNet50 top-1 ac-
curacy by 1-2% at the same compression rate as standard
JPEG or improve compression rate by 20-200% at the same
accuracy. We then use a range of hyper-parameter tun-
ing methods, including Bayesian optimization and a com-
posite heuristic autotuner, to improve on these Q-tables
within bounds derived from the best results from the base-
line method. We find that these autotuning approaches yield
small improvements over the simple approach, but after
cross validation, the methods perform similarly. Surpris-
ingly, our simple sorted random search approach performs
as well as the more advanced tuning approaches, and the
advantages over standard JPEG are statistically significiant.

The contributions of this paper are:

We construct a high-resolution dataset for experiment-
ing with novel compression techniques based on Ima-
geNetV2 (Recht et al., 2019).

We find that there is an opportunity to save space for the
same accuracy by customizing the JPEG quantization
table.

In particular, we recommend using a sorted random
search procedure, which quickly produces tables that
meet and exceed the standard JPEG quantization tables.
Despite extensive experimentation with other optimiza-
tion procedures, we did not find a method that obvi-
ously outperforms sorted random search.

2
2.1 Q-Table Optimization

RELATED WORK AND MOTIVATION

Because JPEG is one of the most widely used image com-
pression techniques, JPEG Q-table optimization has been

an enduring issue. Existing approaches to design JPEG Q-
tables aim to maximize image quality in one of two ways: by
minimizing a simple distortion metric such as PSNR (Wu
& Gersho, 1993; Fung & Parker, 1995; Ramchandran &
Vetterli, 1994) or by using a model of the human visual sys-
tem (HVS) (Watson, 1993; Wang et al., 2001; Westen et al.,
1996; Jiang & Pattichis, 2011). The HVS approach aims at
optimizing visual image quality, where high-frequency com-
ponents are viewed as less important than low-frequency
components. Standard JPEG is designed with the same
goal (Wallace, 1992). This work’s hypothesis is that the best
Q-tables for DNN vision may be different than ones that
emphasize visual quality because of different sensitivity to
frequency components (Liu et al., 2018).

2.2 DeepN-JPEG

There is some work that focuses on the optimization of Q-
tables for DNNs. DeepN-JPEG (Liu et al., 2018) exploits
the difference between the HVS and DNNs and designs
a Q-table according to the frequency bands. The Q-table
search space is limited by design: the frequency bands share
a small number of parameters. We explore a larger space
using hyper-parameter tuning. Also, DeepN-JPEG both
tunes and tests on ImageNet, without cross validation on
another dataset. ImageNet is a low-resolution, compressed
dataset, and that work recompresses it. We instead focus
on simulating compression of raw pixel data using a high-
resolution rebuild from ImageNetV2 (Recht et al., 2019) and
validate our result on different datasets to check robustness.

3 VISION TASK

For the purpose of tuning Q-tables for DNNs, we need to
choose a particular vision task. We use a classification
network, ResNet50 (He et al., 2016), and reconstruct a
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dataset to simulate raw pixel data.

3.1 Constructing a Dataset

ImageNet is already downsized and lossily compressed. For
instance, the ImageNet 2013 classification dataset has an
average resolution of 482x415 pixels (Russakovsky et al.,
2015). Instead, we turn to ImageNetV2, a new test dataset
for ImageNet (Recht et al., 2019). In ImageNetV2, the
images are also downsized and compressed, but the au-
thors have open-sourced the code to generate the dataset
as well as the IDs that let us re-download the original,
large images from Flickr (Fli). The large images are also
JPEG-compressed, but they have an average resolution of
19331592 pixels. We then downsize them to a smaller size
compatible with ImageNet. The resizing removes JPEG
compression artifacts and simulates uncompressed images
at those sizes.

ImageNetV2 contains three test sets representing different
sampling strategies: MatchedFrequency, TopImages, and
Threshold0.7. Each test set has 1000 classes with 10 images
per class. Specifically, we use the MatchedFrequency as
our training dataset, which is sampled to match the MTurk
selection frequency distribution of the original ImageNet
validation set for each class.

3.2 Tuning Methodology

Hyper-parameter tuning for all kinds of DNNSs is unrealis-
tic. We focus on one particular DNN: ResNet50 (He et al.,
2016) as implemented in PyTorch (Paszke et al., 2017). We
use 500 classes with 5 images each from ImageNetV2’s
MatchedFrequency dataset to speed up compression. The
optimization targets are top-1 accuracy and the compression
rate, calculated as the ratio of the size of raw bitmap data to
compressed JPEG images.

4 SORTED RANDOM SEARCH

We start with a simple method that randomly samples Q-
tables. The idea is to get a baseline to see how hard it
is to find, among the space of all Q-tables, new ones that
mimic the performance of the standard JPEG tables—or that
outperform standard JPEG for a specific DNN for a specific
vision task.

4.1 Method

The search space for a uniform random search is 256%* ~
1.34-10"*. We need to decrease our search space. Lower
frequencies probably matter more than higher frequencies.
That is why the upper left of the standard table are large
and the lower right are small, as shown in Fig. 1. A simple
sorting strategy can restrict sampling to tables that preserve

this ordering. We generate 64 random numbers in the range
[s,e], where s,e € Z and 1 <5 < e < 255, sort them, and
build an 8 x8 table using the zig-zag ordering. We refer to
this Q-table sampling strategy as sorted random search.

4.2 Performance

Fig. 2 compares 4000 Q-tables sampled using sorted random
search, 1000 from uniform random search, and the standard
Q-tables with quality factor from 10 to 100 at an interval of
5 in terms of compression rate and accuracy. We also plot
the Pareto frontier for sorted random search. With uniform
random search, we cannot find any Q-table that outperforms
the standard JPEG Q-table. Sorted random search finds
Pareto-optimal points that outperform standard JPEG by 1%
to 2% in top-1 accuracy given the same compression rate
when the quality factor of standard JPEG is in the range
[15,90]. Given the same accuracy, sorted random search can
find Q-tables with compression rates 10% to 200% higher
than standard JPEG depending on the baseline compression
rate. We further take a close look at points with closest
compression rate and accuracy to the quality-50 Q-table of
standard JPEG, where the standard table is scaled at 100%.
The improvements of accuracy and compression rate are
1.5% and 12.9%.

Fig. 3 shows the distribution of sorted random points with
compression rate between 22 to 22.2. Among 52 points,
there are 48 points that perform at least as well as the stan-
dard JPEG Q-table, of which 93.75% perform better. Taking
into account the strong randomness of sorted random search,
the result indicates sorted random search can easily find
many Q-tables that outperform standard JPEG.

To demonstrate the difference between the PSNR and DNN
optimization goals, Fig. 4 plots the PSNR of sorted random
search points and we highlight the Pareto frontier in terms of
compression rate and accuracy. Although PSNR is closely
related to DNN accuracy, it cannot be taken as the sole
indicator of high accuracy.

5 BOUNDED SEARCH

The random search method from the previous section sam-
ples from a tremendously large search space but uses an
ordering constraint to make the search tractable. In this
section, we hypothesize that, if we limit our search space
of Q-table components to a smaller range, we can elimi-
nate ordering constraint and find better tables using more
sophisticated optimization methods.

To limit the search space, we need to focus on a particular
compression rate range. We focus on a regime close to
standard JPEG at quality 50, where the compression rate
is approximately 22. Let P be the set of Q-tables on the
Pareto frontier and P’ C P be the set of Q-tables with com-
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pression rate ranges in [21,23]. Let P” be the set of Q-tables
in P’ and their transpose. Let Mpr be the n x 8 x § array
that results from concatenating the Q-tables in P”. We can
get a symmetric upper bound matrix by taking maximum
along first dimension of Mpr. Therefore, the 8 x 8 boundary
matrices are set to:

M ower Bound []7k] :Inl,in(MP” [la.]ak]) - 0~56i (MP” [i, ja k])

MUpper Bound []7k] :miax(MP” [i7 ]7k]) + O-SGi(MP" [ia ],k])

where i € [0,n—1],j €[0,7],k € [0,7] and o; takes the stan-
dard deviation along first dimension of a matrix. We can
sample Q-tables with the two boundary matrices to limit
the exploration space. We expect that Q-tables sampled
within these boundaries will result in compression rates in
the range [21,23].

5.1 Bounded Random Search

The most intuitive way as a baseline for bounded search is
uniformly sampling Q-tables within the boundaries, which
we called bounded random search. We plot Q-tables sam-
pled using bounded random search in Fig. 5 and correspond-
ing Pareto frontiers in Fig. 6.

5.2 Bayesian Optimization

Bayesian optimization is widely used when evaluation of the
objective function is expensive. It approaches the objective
function with a surrogate model, which is cheap to evaluate.

Figure 3. Sorted random search distri-
bution with compression rate range
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Figure 4. PSNR of sorted random search
with Pareto-optimal points according to
DNN accuracy.
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To take the advantage of Bayesian optimization, there are
two problems we need to address.

First, Bayesian optimization optimizes a single target ob-
jective function and our task involves two: compression
rate CR and accuracy ACC. We therefore use a parabola
fitness(CR) = aCR? + bCR + ¢ to fit the Pareto frontier
formed by Q-tables obtained in sorted random search. Then
we can set the target value y = ACC — fitness(CR), standing
for the difference between the accuracy gap between actual
accuracy and best accuracy found by sorted random search.

Second, the search space is huge—as large as 1.34- 10134,
We therefore set the sampling bound the same as the one
in the previous section. Also, the low frequency (LF) and
middle frequency (MF) components of DCT 8x8 arrays
have larger absolute values (Kaur et al., 2011), and therefore
are more susceptible to changes in quantization values. We
define the area of interest as the low frequency and middle
frequency bands as shown in Fig 10. We first generate 10°
random Q-tables and keep the one with highest acquisition
function value. Then we randomly choose 5 indices of that
Q-table in the area of interest and perform a local grid search
that exhaustively list possible Q-tables within the bound.
The Q-table with highest acquisition function value is kept.
The process is repeated 20 times. In our experiments, we try
Bayesian optimization both with and without local random
search for comparison and plot them in Figs. 5 and 6.



Optimizing JPEG Quantization for Classification Networks

20.5 21.0

0.80
o o N e Standard o ., e Standard 075 ® * e e Standard
0.65 LA % Sorted Random Search o 0 Sorted Random Search * "2 Sorted Random Search
.
> o dd 075 .2 3
@ 0.60 ee 3 °% o0 e,
o Y . © o, © L
5 LAk c P © s
3 g 2 o7 & 2 ¢
O 055 4] g 065
< < . < ¢
0.50 0.65 0.60
. . .
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Compression Rate Compression Rate Compression Rate
0631 ¢ . v 0721 v
v v 0.75 . v
v Vo, v v v -] v, ve
00 ® © e g > o ° AT Zon ° ® \’
9 o eatpe o @ o7 parel W @ e’
5 0611 @ Standard o Opm® v 5 @ Standard v 5 @ Standard v
S v Sorted Random Search ° g 3 0734 ¥ Sorted Random Search ° S 070{ v Sorted Random Search ) v
< 4601 a Bound Random Search ° < A Bound Random Search < A Bound Random Search
’ e Bayesian w/ Local Grid Search @ Bayesian w/ Local Grid Search e Bayesian w/ Local Grid Search
0.59 @  Composite Heuristic Optimization 0.72 @ Composite Heuristic Optimization 0.69 m Composite Heuristic Optimization
0 0 .0

205 210 215 220 225 235 20

Compression Rate

23.0

Figure 7. Pareto performance validated on
MatchedFrequency (part) in ImageNetV2.

LF cc

MF components

HF

Figure 10. Frequency band partitions.

5.3 Composite Heuristic Optimization

Different search methods have different strengths. We next
apply OpenTuner (Ansel et al., 2014), a generic auto-tuning
framework that uses a multi-armed bandit (MAB) approach
to select between several methods. OpenTuner maximizes
an objective by picking a strategy among different optimiza-
tion approaches (the bandit arms). We select the particle
swarm optimization (PSO), simulated annealing (SA), differ-
ential evolution (DE), greedy mutation, and random Nelder—
Mead heuristics as the bandit arms. All these heuristics
are generic optimization algorithms and can be performed
without much computation overhead.

Figs. 5 and 6 show that this method produces results that
perform as successfully as Bayesian optimization.

5.4 Performance

Fig. 5 shows 618 points from bounded random search,
610 points from Bayesian optimization without local grid
search, 416 points from Bayesian optimization with local
grid search, and 262 points from composite heuristic op-
timization. We also plot the points from sorted random
search in the range [21,23] as a baseline. Fig. 6 shows that
the Pareto frontiers of all methods and standard JPEG. All
proposed methods can find Q-tables that outperform stan-
dard JPEG. Simple techniques like bounded random search

215
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Figure 8. Pareto performance validated on
Toplmages in ImageNetV2.
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Figure 9. Pareto performance validated on
ImageNet validation set.

can give a better distribution than sorted random search, but
the Pareto frontier does not improve. Bayesian optimization
without local grid search does not show a strong advantage
over sorted and bounded random search mainly because
the sampling space is too large to find a promising point
to probe. Bayesian optimization with local grid search and
composite heuristic optimization are the two methods with
the highest means, smallest standard deviations, and the best
Pareto frontiers. Given the same compression rate, the accu-
racy improvement can be up to 2.5% over standard JPEG.
In particular, the point with the closest compression rate to
quality-50 standard JPEG is found by Bayesian optimiza-
tion, and the absolute accuracy improvement is 1.9%.

6 EVALUATION

This section examines accuracy under cross validation and
the efficiency of each method.

6.1 Cross Validation

The experiments above find good Q-tables using part of
ImageNetV2’s MatchedFrequency dataset. It is important to
check whether these Q-tables perform consistently on other
datasets. We cross-validate our Q-tables on the other 500
classes of the reconstructed MatchedFrequency dataset with
5 images each in Fig. 7, the reconstructed TopImage dataset
of ImageNetV2 in Fig. 8, and the original ImageNet dataset
with 10 images per class in Fig. 7.

The Pareto frontier of sorted random search becomes less
smooth. When the compression rate is the same, the gap of
accuracy improvement between our methods and standard
JPEG decreases to at most 1.5% for the MatchedFrequency
and TopImages datasets (Figs. 7 and 8) and 1% for ImageNet
(Fig. 9) but never disappears. Bayesian optimization and
MAB no longer significantly outperform sorted random and
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Table 1. Significance of improvement over baseline, where * de-
notes mean differences that are statistically significant according
to a Student 7-test with p < 107> and ** denotes p < 1011,

MATCHED IMAGENET
FREQUENCY
SORTED RANDOM SEARCH 0.91%** 1.16%**
BOUNDED RANDOM SEARCH 0.72%* 0.66%*
BAYESIAN OPTIMIZATION
W/ LoCAL GRID SEARCH 0.55% 0.77%*
COMPOSITE HEURISTIC 0.73%* 1 17%%%

OPTIMIZATION

bounded random search. Overall, after cross validation, the
complex algorithms do not show any advantage over our
simple baseline algorithm, sorted random search.

6.2 Significance of Improvement

To check whether the improvement of our methods over
standard JPEG is significant, we perform statistical analysis
of accuracy improvement given the closest compression rate.
We test one Q-table obtained by each method against stan-
dard JPEG with quality set to 50. To avoid unintentionally
cheating, we choose the point with the closest compression
rate that is larger than that for the quality-50 standard Q-
table, i.e., we allow accuracy to be a little worse. For each
Q-table, we randomly sample 100 datasets from the original
ones with 700 classes and 4 images per class. Then we com-
pare the difference in mean accuracy and check significance
using Student’s ¢-test.

Table 1 shows the difference of mean top-1 accuracy be-
tween standard JPEG and our Q-table obtained by different
methods, on the MatchedFrequency and ImageNet Valida-
tion dataset. All methods find Q-tables with statistically
significant accuracy improvement.

6.3 Efficiency

Dataset compression is expensive. For instance, the time to
compress our training dataset and measure accuracy is ap-
proximately 3 minutes. A good method should find optimal
Q-tables in as few trials as possible and the decision time
for each trial should be short.

Table 2 shows the results of profiling each method on a
server with two Intel Xeon(R) E5-2620 v4 CPUs with 8
cores per socket and 2 threads per core. The table lists
two factors affecting efficiency: the decision time for an
algorithm to decide the next point to search, and the num-
ber of trials required to generate the first 10 good points.
“Good” points are defined as those with Acc — fitness(CR) >
—0.001. The decision time is given as the average over 100
trials, rounded to two significant digits. Among all methods,

Table 2. Efficiency of different methods.

METHOD DECISION  TRIALS FOR
TIME 10 GooD POINTS

SORTED RANDOM SEARCH 1.2Ms 412
BOUNDED RANDOM SEARCH 12.MS 617
BAYESIAN OPTIMIZATION
W/ LOCAL GRID SEARCH 60.5 253
COMPOSITE HEURISTIC

5.1Ms 150

OPTIMIZATION

composite heuristic optimization requires the fewest trials
to generate good points, while bounded random search takes
the most trials to find good points. The decision time for
all except Bayesian optimization is negligible, as the latter
requires an expensive local grid search.

7 CONCLUSION AND FUTURE WORK

Our research shows the potential for accuracy and compres-
sion rate improvement by redesigning the JPEG Q-table, a
topic that lacks attention from researchers in both of the im-
age compression and DNN communities. All our proposed
methods obtain better Q-tables compared to the standard
one with an accuracy gain of 1% to 2% when the compres-
sion rate is fixed and a compression rate increase of 10%
to 200% given the same accuracy. Although a composite
heuristic optimizer stands out in efficiency and accuracy, we
recommend a simple sampling technique, sorted random
search, which can find good quantization tables at a wide
range of compression—accuracy trade-offs. The resulting
improved Q-tables outperform standard JPEG for our vision
task in cross validation.

In this work, we consider the DNN fixed and only tune com-
pression. But the network was trained on data using standard
JPEG and therefore might perform worse on images using
our new Q-tables. Fine-tuning retraining might help adjust
the networks to match the new image characteristics, further
improving the accuracy with nonstandard quantization. We
have done a preliminary retraining experiment, which shows
a positive result. Avenues for future work include further
work on DNN retraining and applying our techniques to
more vision applications such as object detection, semantic
segmentation, and other tasks.
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