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ABSTRACT

Deep learning for computer vision depends on lossy image compression: it reduces the storage required for

training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all

rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the

lossiness: an 8×8 quantization table (Q-table) decides both the quality of the encoded image and the compression

ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image

distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that

are “better” for specific vision networks and can offer better quality–size trade-offs than ones designed for human

perception or minimal distortion.

We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under

novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted

random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter

tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization

methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is

fixed, or improve accuracy up to 2% at the same compression rate.

1 INTRODUCTION

Deep neural networks for vision have extreme storage re-

quirements. For example, ImageNet is 150 GB (Deng

et al., 2009) and the Open Image Dataset requires

500 GB (Kuznetsova et al., 2018). If a model can achieve

equivalent performance with images at a higher compres-

sion ratio, it can be cheaper to acquire, transmit, and store

the necessary datasets.

Nearly all DNN datasets use the ubiquitous JPEG compres-

sion standard, including ImageNet (Deng et al., 2009), PAS-

CAL VOC (Everingham et al.), COCO (Lin et al., 2014),

etc. Because JPEG is a loss compression format, DNNs

cope with some quality distortion in these images (Dodge &

Karam, 2016). However, the JPEG standard is tuned for the

human visual system (HVS) and preserves the components

that are most relevant to human observers, rather than to

computer vision algorithms. This work asks whether ma-

chine learning pipelines would perform better if JPEG were

instead tuned specifically for a given DNN.

Fig. 1 shows an overview of the standard JPEG compression
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algorithm. Each spatial component (i.e., each YCbCr chan-

nel) is first partitioned into 8×8 non-overlapping blocks.

Then the spatial components are transformed to frequency

components with the 2D discrete cosine transform (DCT).

Next, the algorithm quantizes the frequency components

using a quantization table or Q-table. The Q-table’s scale is

determined by the quality factor ranging from 1 to 100 (Lu-

aDist, 2015). For instance, a quality factor of 100 scales

Q-table coefficients to 0 and the frequency components are

rounded to integers. Then, the quantized coefficients are se-

rialized using a zig-zag ordering and losslessly compressed

with entropy coding and Huffman coding.

Quantization is the lossy part of the algorithm. The Q-table

decides how many bits to use for each frequency bucket,

potentially playing a critical role for DNNs that use JPEG-

compressed images. However, existing research on design-

ing Q-tables mostly prioritizes human-precepible distortion

as the compression target (Liu et al., 2018), which may

compress and quantize features important to DNNs (Wright

et al., 2009). Prior work instead targets DNN accuracy (Liu

et al., 2018), but it only considers recompressing existing

JPEG-compressed datasets rather than changing the way

data is compressed in the first place.

In this work, use a high-resolution dataset to simulate the

effect of compressing raw pixels with novel, task-specific

quantization. We use a range of optimization methods to

tune a customized Q-table for a specific DNN that max-
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dataset to simulate raw pixel data.

3.1 Constructing a Dataset

ImageNet is already downsized and lossily compressed. For

instance, the ImageNet 2013 classification dataset has an

average resolution of 482×415 pixels (Russakovsky et al.,

2015). Instead, we turn to ImageNetV2, a new test dataset

for ImageNet (Recht et al., 2019). In ImageNetV2, the

images are also downsized and compressed, but the au-

thors have open-sourced the code to generate the dataset

as well as the IDs that let us re-download the original,

large images from Flickr (Fli). The large images are also

JPEG-compressed, but they have an average resolution of

1933×1592 pixels. We then downsize them to a smaller size

compatible with ImageNet. The resizing removes JPEG

compression artifacts and simulates uncompressed images

at those sizes.

ImageNetV2 contains three test sets representing different

sampling strategies: MatchedFrequency, TopImages, and

Threshold0.7. Each test set has 1000 classes with 10 images

per class. Specifically, we use the MatchedFrequency as

our training dataset, which is sampled to match the MTurk

selection frequency distribution of the original ImageNet

validation set for each class.

3.2 Tuning Methodology

Hyper-parameter tuning for all kinds of DNNs is unrealis-

tic. We focus on one particular DNN: ResNet50 (He et al.,

2016) as implemented in PyTorch (Paszke et al., 2017). We

use 500 classes with 5 images each from ImageNetV2’s

MatchedFrequency dataset to speed up compression. The

optimization targets are top-1 accuracy and the compression

rate, calculated as the ratio of the size of raw bitmap data to

compressed JPEG images.

4 SORTED RANDOM SEARCH

We start with a simple method that randomly samples Q-

tables. The idea is to get a baseline to see how hard it

is to find, among the space of all Q-tables, new ones that

mimic the performance of the standard JPEG tables—or that

outperform standard JPEG for a specific DNN for a specific

vision task.

4.1 Method

The search space for a uniform random search is 25664 ≈

1.34 ·10154. We need to decrease our search space. Lower

frequencies probably matter more than higher frequencies.

That is why the upper left of the standard table are large

and the lower right are small, as shown in Fig. 1. A simple

sorting strategy can restrict sampling to tables that preserve

this ordering. We generate 64 random numbers in the range

[s,e], where s,e ∈ Z and 1 ≤ s < e ≤ 255, sort them, and

build an 8×8 table using the zig-zag ordering. We refer to

this Q-table sampling strategy as sorted random search.

4.2 Performance

Fig. 2 compares 4000 Q-tables sampled using sorted random

search, 1000 from uniform random search, and the standard

Q-tables with quality factor from 10 to 100 at an interval of

5 in terms of compression rate and accuracy. We also plot

the Pareto frontier for sorted random search. With uniform

random search, we cannot find any Q-table that outperforms

the standard JPEG Q-table. Sorted random search finds

Pareto-optimal points that outperform standard JPEG by 1%

to 2% in top-1 accuracy given the same compression rate

when the quality factor of standard JPEG is in the range

[15,90]. Given the same accuracy, sorted random search can

find Q-tables with compression rates 10% to 200% higher

than standard JPEG depending on the baseline compression

rate. We further take a close look at points with closest

compression rate and accuracy to the quality-50 Q-table of

standard JPEG, where the standard table is scaled at 100%.

The improvements of accuracy and compression rate are

1.5% and 12.9%.

Fig. 3 shows the distribution of sorted random points with

compression rate between 22 to 22.2. Among 52 points,

there are 48 points that perform at least as well as the stan-

dard JPEG Q-table, of which 93.75% perform better. Taking

into account the strong randomness of sorted random search,

the result indicates sorted random search can easily find

many Q-tables that outperform standard JPEG.

To demonstrate the difference between the PSNR and DNN

optimization goals, Fig. 4 plots the PSNR of sorted random

search points and we highlight the Pareto frontier in terms of

compression rate and accuracy. Although PSNR is closely

related to DNN accuracy, it cannot be taken as the sole

indicator of high accuracy.

5 BOUNDED SEARCH

The random search method from the previous section sam-

ples from a tremendously large search space but uses an

ordering constraint to make the search tractable. In this

section, we hypothesize that, if we limit our search space

of Q-table components to a smaller range, we can elimi-

nate ordering constraint and find better tables using more

sophisticated optimization methods.

To limit the search space, we need to focus on a particular

compression rate range. We focus on a regime close to

standard JPEG at quality 50, where the compression rate

is approximately 22. Let P be the set of Q-tables on the

Pareto frontier and P′ ⊆ P be the set of Q-tables with com-
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Table 1. Significance of improvement over baseline, where * de-

notes mean differences that are statistically significant according

to a Student t-test with p < 10−5 and ** denotes p < 10−11.

MATCHED

FREQUENCY
IMAGENET

SORTED RANDOM SEARCH 0.91%** 1.16%**
BOUNDED RANDOM SEARCH 0.72%* 0.66%*
BAYESIAN OPTIMIZATION

W/ LOCAL GRID SEARCH
0.55%* 0.77%*

COMPOSITE HEURISTIC

OPTIMIZATION
0.73%* 1.17%**

bounded random search. Overall, after cross validation, the

complex algorithms do not show any advantage over our

simple baseline algorithm, sorted random search.

6.2 Significance of Improvement

To check whether the improvement of our methods over

standard JPEG is significant, we perform statistical analysis

of accuracy improvement given the closest compression rate.

We test one Q-table obtained by each method against stan-

dard JPEG with quality set to 50. To avoid unintentionally

cheating, we choose the point with the closest compression

rate that is larger than that for the quality-50 standard Q-

table, i.e., we allow accuracy to be a little worse. For each

Q-table, we randomly sample 100 datasets from the original

ones with 700 classes and 4 images per class. Then we com-

pare the difference in mean accuracy and check significance

using Student’s t-test.

Table 1 shows the difference of mean top-1 accuracy be-

tween standard JPEG and our Q-table obtained by different

methods, on the MatchedFrequency and ImageNet Valida-

tion dataset. All methods find Q-tables with statistically

significant accuracy improvement.

6.3 Efficiency

Dataset compression is expensive. For instance, the time to

compress our training dataset and measure accuracy is ap-

proximately 3 minutes. A good method should find optimal

Q-tables in as few trials as possible and the decision time

for each trial should be short.

Table 2 shows the results of profiling each method on a

server with two Intel Xeon(R) E5-2620 v4 CPUs with 8

cores per socket and 2 threads per core. The table lists

two factors affecting efficiency: the decision time for an

algorithm to decide the next point to search, and the num-

ber of trials required to generate the first 10 good points.

“Good” points are defined as those with Acc−fitness(CR)>
−0.001. The decision time is given as the average over 100

trials, rounded to two significant digits. Among all methods,

Table 2. Efficiency of different methods.

METHOD
DECISION

TIME

TRIALS FOR

10 GOOD POINTS

SORTED RANDOM SEARCH 1.2MS 412
BOUNDED RANDOM SEARCH 12.MS 617
BAYESIAN OPTIMIZATION

W/ LOCAL GRID SEARCH
60.S 253

COMPOSITE HEURISTIC

OPTIMIZATION
5.1MS 150

composite heuristic optimization requires the fewest trials

to generate good points, while bounded random search takes

the most trials to find good points. The decision time for

all except Bayesian optimization is negligible, as the latter

requires an expensive local grid search.

7 CONCLUSION AND FUTURE WORK

Our research shows the potential for accuracy and compres-

sion rate improvement by redesigning the JPEG Q-table, a

topic that lacks attention from researchers in both of the im-

age compression and DNN communities. All our proposed

methods obtain better Q-tables compared to the standard

one with an accuracy gain of 1% to 2% when the compres-

sion rate is fixed and a compression rate increase of 10%

to 200% given the same accuracy. Although a composite

heuristic optimizer stands out in efficiency and accuracy, we

recommend a simple sampling technique, sorted random

search, which can find good quantization tables at a wide

range of compression–accuracy trade-offs. The resulting

improved Q-tables outperform standard JPEG for our vision

task in cross validation.

In this work, we consider the DNN fixed and only tune com-

pression. But the network was trained on data using standard

JPEG and therefore might perform worse on images using

our new Q-tables. Fine-tuning retraining might help adjust

the networks to match the new image characteristics, further

improving the accuracy with nonstandard quantization. We

have done a preliminary retraining experiment, which shows

a positive result. Avenues for future work include further

work on DNN retraining and applying our techniques to

more vision applications such as object detection, semantic

segmentation, and other tasks.
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