Counterexamples to the tilting and (p, r)-filtration conjectures

By *Christopher P. Bendel* at Menomonie, *Daniel K. Nakano* at Athens, *Cornelius Pillen* at Mobile and *Paul Sobaje* at Statesboro

In memory of Elena Galaktionova

Abstract. In this paper the authors produce a projective indecomposable module for the Frobenius kernel of a simple algebraic group in characteristic p that is not the restriction of an indecomposable tilting module. This yields a counterexample to Donkin's longstanding Tilting Module Conjecture. The authors also produce a Weyl module that does not admit a p-Weyl filtration. This answers an old question of Jantzen, and also provides a counterexample to the (p,r)-Filtration Conjecture.

1. Introduction

1.1. Let G be a semisimple, simply connected algebraic group over an algebraically closed field of characteristic p > 0 and let $\mathfrak g$ be its Lie algebra. Restricted representations for the Lie algebra $\mathfrak g$ are equivalent to representations for the first Frobenius kernel G_1 . In the 1960s Curtis showed that the simple G_1 -modules lift to simple modules for G. Later, Humphreys and Verma investigated the projective indecomposable G_1 -modules. The expectation that these modules should also lift to G came to be known as the "Humphreys–Verma Conjecture." This was verified for $p \ge 2h - 2$ (where h is the Coxeter number) by work of Ballard [5] and Jantzen [11]. For over 50 years, it has been anticipated that the Humphreys–Verma Conjecture would hold for all p.

In 1990, Donkin presented a series of conjectures at MSRI. One of the conjectures, known as the Tilting Module Conjecture, states that a projective indecomposable module for G_r can be realized as an indecomposable tilting G-module (see Conjecture 2.2.2). Like the Humphreys–Verma Conjecture, the Tilting Module Conjecture holds for $p \ge 2h - 2$ with the hope of being valid for all p. Recently, the Tilting Module Conjecture has been shown to be related to another

Research of the first author was supported in part by Simons Foundation Collaboration Grant 317062. Research of the second author was supported in part by NSF grant DMS-1701768. Research of the third author was supported in part by Simons Foundation Collaboration Grant 245236.

one of Donkin's conjectures involving good (p, r)-filtrations. A more detailed exposition with the connections is presented in Section 2.2.

The Tilting Module Conjecture has taken on additional importance following work by Achar, Makisumi, Riche and Williamson [1], who have shown that when p > h, the characters of indecomposable tilting modules can be given via p-Kazhdan-Lusztig polynomials, confirming a conjecture by Riche and Williamson [17]. When $p \ge 2h - 2$, the Tilting Module Conjecture then allows one to deduce the characters of simple G-modules. The authors of [1] credit Andersen with this observation.

- 1.2. The goal of this paper is to present counterexamples to the conjectures and questions stated in Section 2.2. In this subsection, let G be a simple algebraic group whose root system is of type G_2 and p = 2. In particular, we
- (1.2.1) present a counterexample to the Tilting Module Conjecture see Theorem 4.1.1;
- (1.2.2) construct a counterexample to one direction of Donkin's Good (p, r)-Filtration Conjecture (i.e., Conjecture 2.2.3 (\Leftarrow)) see Theorem 3.5.1 and Section 3.6;
- (1.2.3) give an example of a costandard/induced module $\nabla(\lambda)$ that does not admit a good (p, r)-filtration see Theorem 3.5.1.

Specifically, we demonstrate that there does not exist a good 2-filtration for the induced module $\nabla(2,1)$.¹⁾ This gives a negative answer to an open question of Jantzen [11], and this module is also is a counterexample for (1.2.2). As a consequence of these results, we prove that the indecomposable tilting module T(2,2) is decomposable over the first Frobenius kernel of G. We present a proof of this fact that does not employ computer calculations, using instead information about extensions of simple G-modules of small highest weights.²⁾

Acknowledgement. The authors would like to thank Henning H. Andersen, Jens C. Jantzen, and also the referees of this paper for many helpful comments and suggestions.

2. Preliminaries

2.1. Notation. The notation will follow the conventions in [6, Section 2.1], most of which follow those in [13] (though our notation for induced and Weyl modules follows the costandard and standard module conventions in highest weight category literature). Let G be a connected, semisimple algebraic group scheme defined over \mathbb{F}_p and G_r be its rth Frobenius kernel.

Let X_+ denote the dominant weights for G, and let X_r be the p^r -restricted weights. For $\lambda \in X_+$, there are four fundamental classes of G-modules (each having highest weight λ): $L(\lambda)$ (simple), $\nabla(\lambda)$ (costandard/induced), $\Delta(\lambda)$ (standard/Weyl), and $T(\lambda)$ (indecomposable

¹⁾ A major step in this process was a computation of a filtration of $\Delta(2,1)$, obtained using Stephen Doty's WeylModule package for the software GAP [7, 19], that, when dualized, indicated that $\nabla(2,1)$ could not have a good 2-filtration.

This fact was verified in another way by running Doty's GAP program to compute that the socle of $\Delta(2,2)$ is isomorphic to $k \oplus L(0,1)$. As $\Delta(2,2)$ is a submodule of T(2,2), one concludes that the socle of T(2,2) has at least two factors over G_1 , so that T(2,2) splits into at least two projective summands over G_1 .

tilting). A G-module M has a good filtration (resp. Weyl filtration) if and only if M has a filtration with factors of the form $\nabla(\mu)$ (resp. $\Delta(\mu)$) for suitable $\mu \in X_+$.

For $\lambda \in X_+$ with unique decomposition $\lambda = \lambda_0 + p^r \lambda_1$ with $\lambda_0 \in X_r$ and $\lambda_1 \in X_+$, define $\nabla^{(p,r)}(\lambda) = L(\lambda_0) \otimes \nabla(\lambda_1)^{(r)}$, where (r) denotes the twisting of the module action by the rth Frobenius morphism. Similarly, set $\Delta^{(p,r)}(\lambda) = L(\lambda_0) \otimes \Delta(\lambda_1)^{(r)}$. A G-module M has a $good\ (p,r)$ -filtration (resp. Weyl (p,r)-filtration) if and only if M has a filtration with factors of the form $\nabla^{(p,r)}(\mu)$ (resp. $\Delta^{(p,r)}(\mu)$) for suitable $\mu \in X_+$. In the case when r=1, we often refer to $good\ (p,1)$ -filtrations as $good\ p$ -filtrations.

Let ρ be the sum of the fundamental weights and $\operatorname{St}_r = L((p^r - 1)\rho)$ (which is also isomorphic to $\nabla((p^r - 1)\rho)$ and $\Delta((p^r - 1)\rho)$) be the rth Steinberg module. For $\lambda \in X_r$, let $Q_r(\lambda)$ denote the projective cover (equivalently, injective hull) of $L(\lambda)$ as a G_r -module. If $\lambda \in X_r$, set $\hat{\lambda} = 2(p^r - 1)\rho + w_0\lambda$, where w_0 is the long element in the Weyl group W.

Let M be a finite-dimensional G-module, and let

$$M \supseteq \operatorname{rad}_G M \supseteq \operatorname{rad}_G^2 M \supseteq \cdots \supseteq \{0\}$$

be the radical series of M. Moreover, let

$$\{0\} \subseteq \operatorname{soc}_G M \subseteq \operatorname{soc}_G^2 M \subseteq \cdots \subseteq M$$

be the socle series for M. One can similarly define such filtrations for G_r -modules.

2.2. The conjectures. In the early 1970s Humphreys and Verma presented the following conjecture on the lifting of G-structures on the projective modules for G_r .

Conjecture 2.2.1. For $\lambda \in X_r$, the G_r -module structure on $Q_r(\lambda)$ can be lifted to G.

The conjecture was first verified by Ballard [5] for $p \ge 3h - 3$ and then by Jantzen [11] for $p \ge 2h - 2$, who further showed under this improved bound that the G-structure was unique up to isomorphism. Later, at a conference at MSRI in 1990, Donkin presented the following conjecture, predicting that a G-module structure on $Q_r(\lambda)$ arises from a specific tilting module which must be the G-module structure whenever uniqueness of G-structure holds.

Conjecture 2.2.2. For all
$$\lambda \in X_r$$
, $T(2(p^r-1)\rho + w_0\lambda)|_{G_r} = Q_r(\lambda)$.

Conjecture 2.2.2 holds for $p \ge 2h - 2$ and the proof under this bound entails locating one particular G-summand of $\operatorname{St}_r \otimes L(\lambda)$. At the same conference at MSRI, another conjecture was introduced by Donkin that interrelates good filtrations with good (p,r)-filtrations via the Steinberg module.

Conjecture 2.2.3. A finite-dimensional G-module M has a good (p, r)-filtration if and only if $\operatorname{St}_r \otimes M$ has a good filtration.

We denote the two directions of the statement as follows:

- Conjecture 2.2.3 (\Rightarrow): If M has a good (p, r)-filtration, then $\operatorname{St}_r \otimes M$ has a good filtration.
- Conjecture 2.2.3 (\Leftarrow): If $St_r \otimes M$ has a good filtration, then M has a good (p, r)-filtration.

Conjecture 2.2.3 (\Rightarrow) is equivalent to $\operatorname{St}_r \otimes L(\lambda)$ being a tilting module for all $\lambda \in X_r$. Andersen [2] first verified Conjecture 2.2.3 (\Rightarrow) when $p \geq 2h-2$. Later, Kildetoft and Nakano [14] supplied two additional proofs for this bound using different methods. In recent work, the authors of this paper lowered the bound to $p \geq 2h-4$ (cf. [6]). For rank 2 groups (including G_2), Conjecture 2.2.3 (\Rightarrow) was proved for all p in [14] and [6].

There are also strong relationships, established by Kildetoft and Nakano [14] and also by Sobaje [18], between these conjectures given by the following hierarchy of implications:

Conjecture 2.2.3
$$\implies$$
 Conjecture 2.2.2 \implies Conjecture 2.2.3 (\Rightarrow) .

While we will provide counterexamples to Conjecture 2.2.2 and the full Conjecture 2.2.3, we remark that Conjecture $2.2.3 (\Rightarrow)$ may still hold for all p. A special case of Conjecture $2.2.3 (\Leftarrow)$ was earlier posed by Jantzen [11].

Question 2.2.1. For
$$\lambda \in X_+$$
, does $\nabla(\lambda)$ admit a good (p, r) -filtration?

Parshall and Scott affirmatively answered the aforementioned question if $p \ge 2h - 2$ and the Lusztig Conjecture holds for the given prime and group [16]. Recently, Andersen [3] has shown this for $p \ge (h-2)h$.

3. Weyl modules and good (p, r)-filtrations for type G_2

3.1. Simple and projective modules. Assume throughout this section that the root system of G is of type G_2 and that the prime p=2. We follow the Bourbaki ordering of the simple roots: α_1 is the short root and α_2 is the long root. For $a, b \in \mathbb{Z}$, we denote by (a, b) the weight $a\varpi_1 + b\varpi_2$, where ϖ_1 and ϖ_2 are the fundamental dominant weights. The characters of the simple modules were determined by Jantzen in [10]. The set of restricted weights is

$$X_1 = \{(0,0), (1,0), (0,1), (1,1)\}.$$

Let $St = St_1$ denote the first Steinberg module L(1, 1). The module

$$L(0,1) \cong \nabla(0,1) \cong \Delta(0,1)$$

is the 14-dimensional adjoint representation. Among the four costandard G-modules of restricted highest weight, only $\nabla(1,0)$ is not simple, and we have that $\nabla(1,0)/L(1,0)\cong k$. Every simple G-module is self-dual, and the weight lattice and root lattice coincide.

Since the characters of the simple G-modules of restricted highest weight are known here, it is possible to compute directly the dimensions of the projective indecomposable G_1 -modules. We recall in Table 1 some of the information provided by Humphreys in [9, 18.4, Table 4].

λ	$\dim L(\lambda)$	$\dim Q_1(\lambda)$
(0,0)	1	36 · 64
(1,0)	6	12 · 64
(0, 1)	14	$6 \cdot 64$
(1, 1)	64	64

Table 1. Dimensions of simple and projective G_1 -modules.

3.2. Ext¹-calculations. In our analysis of the structure of the Weyl modules we will need the following Ext¹-calculations that appear in Dowd and Sin [8, Lemma 3.3], part (c) of which dates back to work of Jantzen [12].

Proposition 3.2.1. *One has the following isomorphisms as G-modules:*

- (a) $\operatorname{Ext}_{G_1}^1(L(1,0), L(0,1)) = 0$,
- (b) $\operatorname{Ext}_{G_1}^1(L(0,1), L(0,1)) = 0$,
- (c) $\operatorname{Ext}_{G_1}^1(k, L(0, 1)) \cong \nabla(1, 0)^{(1)}$.
- **3.3. Decomposition of St** $\otimes L(\lambda)$, $\lambda \in X_1$. Recall that St is projective over the first Frobenius kernel G_1 . Hence, for $\lambda \in X_1$, $\operatorname{St} \otimes L(\lambda)$ is also projective over G_1 . As the highest weight of $\operatorname{St} \otimes L(\lambda)$ is $\rho + \lambda = 2\rho (\rho \lambda)$, which is the same as that of $Q_1(\rho \lambda)$, the module $Q_1(\rho \lambda)$ is necessarily a G_1 -summand of $\operatorname{St} \otimes L(\lambda)$. The following proposition gives a precise decomposition of $\operatorname{St} \otimes L(\lambda)$ for each $\lambda \in X_1$ (we note that this information can be found elsewhere, for example it is in [4, Chapter 3]).

Proposition 3.3.1. We have the following decompositions into projective indecomposable modules over G_1 :

- (a) St \otimes $k \cong$ St,
- (b) St \otimes $L(1,0) \cong Q_1(0,1)$,
- (c) St \otimes $L(0,1) \cong Q_1(1,0) \oplus St^{\oplus 2}$
- (d) $\operatorname{St} \otimes \operatorname{St} \cong O_1(0,0) \oplus O_1(0,1)^{\oplus 2} \oplus \operatorname{St}^{\oplus 16}$.

Proof. The first isomorphism is immediate, and the second follows by the module dimensions given in Table 1. Recall that $St \cong \operatorname{ind}_{B_1}^{G_1}(p-1)\rho$. Moreover, St is the projective cover of $(p-1)\rho$ as a B_1 -module. Hence, for any G-module M, one obtains via Frobenius reciprocity

$$\operatorname{Hom}_{G_1}(\operatorname{St}, \operatorname{St} \otimes M) \cong \operatorname{Hom}_{B_1}(\operatorname{St}, (p-1)\rho \otimes M) \cong M^{T_1},$$

where T_1 is the Frobenius kernel of the maximal torus T. Now the weight 0 appears twice in L(0, 1), so that $St^{\oplus 2} \subseteq St \otimes L(0, 1)$. There is also an embedding of L(1, 0) into $St \otimes L(0, 1)$. The dimensions in Table 1 then imply that (c) holds.

Finally, the G_1 -socle of St \otimes St is determined by all $L(\lambda)^{T_1}$ for $\lambda \in X_1$. Using a table of weights for G-modules (see for example [15]) and the fact that St \otimes St is a tilting module, one finds that

$$\operatorname{soc}_{G_1}(\operatorname{St} \otimes \operatorname{St}) \cong k \oplus L(0,1)^{\oplus 2} \oplus (\operatorname{St} \otimes T(1,0)^{(1)})^{\oplus 2},$$

when viewed as a G-module. Note that

$$\operatorname{St} \otimes T(1,0)^{(1)} \cong \operatorname{St}^{\oplus 8}$$

as a G_1 -module, proving (d).

For $\lambda \in X_1$, we know that $\operatorname{St} \otimes L(\lambda)$ is a tilting module [14] of highest weight $\rho + \lambda$. Hence, the indecomposable tilting module $T(\rho + \lambda)$ embeds in $\operatorname{St} \otimes L(\lambda)$. Furthermore, the G_1 -Steinberg block component of any G-module splits off as a summand over G. Thus we conclude from Proposition 3.3.1 the following theorem.

Theorem 3.3.1. Over G_1 there are isomorphisms

- (a) $T(1,1) \cong St$,
- (b) $T(2,1) \cong Q_1(0,1)$,
- (c) $T(1,2) \cong Q_1(1,0)$.

One can show that these are the unique G-structures on these modules, by showing that any G-structure on $Q_1(1,0)$ or on $Q_1(0,1)$ must admit a good filtration (a more detailed explanation of this will be provided in a forthcoming paper).

3.4. There exists a surjective homomorphism of *G*-modules

$$T(2,1) \twoheadrightarrow \nabla(2,1)$$
.

Since $T(2,1) \cong Q_1(0,1)$, L(0,1) is its unique semisimple quotient over G_1 , and therefore the same holds over G since every simple G-module is semisimple over G_1 . These facts are then true of its homomorphic image $\nabla(2,1)$. That is,

$$\operatorname{rad}_{G_1} \nabla(2, 1) = \operatorname{rad}_G \nabla(2, 1),$$
$$\nabla(2, 1) / \operatorname{rad}_G \nabla(2, 1) \cong L(0, 1).$$

Since $T(2,1) \cong Q_1(0,1)$ as a G_1 -module, the G_1 -socle of T(2,1) is L(0,1).

We now want to compute the second layer of the radical series of $\nabla(2, 1)$. This will be accomplished by calculating the second socle layer of T(2, 1) using the Ext¹-results of Proposition 3.2.1.

Proposition 3.4.1. *There exist the following isomorphisms of G-modules:*

- (a) $\operatorname{soc}_{G_1}^2 T(2,1) / \operatorname{soc}_{G_1} T(2,1) \cong \nabla(1,0)^{(1)}$,
- (b) $\operatorname{soc}_G^2 T(2,1) / \operatorname{soc}_G T(2,1) \cong L(1,0)^{(1)}$,
- (c) $\operatorname{rad}_{G} \nabla(2,1)/\operatorname{rad}_{G}^{2} \nabla(2,1) \cong L(1,0)^{(1)}$.

Proof. (a) and (b) For $\lambda \in X_1$, one has isomorphisms

$$\operatorname{Hom}_{G_1}(L(\lambda), T(2, 1)/L(0, 1)) \cong \operatorname{Hom}_{G_1}(L(\lambda), Q_1(0, 1)/L(0, 1))$$

 $\cong \operatorname{Ext}_{G_1}^1(L(\lambda), L(0, 1)),$

where the first isomorphism holds since $T(2,1) \cong Q_1(0,1)$, and the second comes from degree shifting in cohomology. Proposition 3.2.1 then establishes that

$$\operatorname{soc}_{G_1}^2 T(2,1) / \operatorname{soc}_{G_1} T(2,1)$$

is 7-dimensional and is trivial as a G_1 -module. Considering this, as a G-module, its only possible composition factors are k and $L(1,0)^{(1)}$. Since k does not extend L(0,1) nontrivially over G, we conclude that

$$\operatorname{soc}_{G}^{2} T(2,1) / \operatorname{soc}_{G} T(2,1) \cong L(1,0)^{(1)},$$

and that

$$\operatorname{soc}_{G_1}^2 T(2,1) / \operatorname{soc}_{G_1} T(2,1) \cong \nabla(1,0)^{(1)}$$

(which agrees with the G-module structure in Proposition 3.2.1; this extended argument is included to be precise on the inference of G-module structure).

(c) Every tilting G-module and every simple G-module is self-dual, and

$$\Delta(2,1)^* \cong \nabla(2,1),$$

so we will work in the dual situation. We have that $\Delta(2,1) \subseteq T(2,1)$, therefore

$$\operatorname{soc}_{G}^{2} \Delta(2,1)/\operatorname{soc}_{G} \Delta(2,1) \subseteq \operatorname{soc}_{G}^{2} T(2,1)/\operatorname{soc}_{G} T(2,1) \cong L(1,0)^{(1)}$$
.

But, $\operatorname{soc}_G^2 \Delta(2,1)/\operatorname{soc}_G \Delta(2,1) \neq 0$, therefore $\operatorname{soc}_G^2 \Delta(2,1)/\operatorname{soc}_G \Delta(2,1) \cong L(1,0)^{(1)}$. Finally, one has

$$\operatorname{rad}_{G} \nabla(2,1)/\operatorname{rad}_{G}^{2} \nabla(2,1) \cong (\operatorname{soc}_{G}^{2} \Delta(2,1)/\operatorname{soc}_{G} \Delta(2,1))^{*} \cong L(1,0)^{(1)}.$$

3.5. This following example answers Question 2.2.1 in the negative, and it is also a counterexample to Conjecture 2.2.3 (\Leftarrow), since St $\otimes \nabla$ (2, 1) has a good filtration.

Theorem 3.5.1. The module $\nabla(2,1)$ for the group G of type G_2 does not have a good 2-filtration.

Proof. Suppose that

$$0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = \nabla(2, 1)$$

is a good 2-filtration. In view of the structure of the radical series of $\nabla(2, 1)$,

$$F_n/F_{n-1} \cong L(0,1)$$
 and $F_{n-1}/F_{n-2} \cong \nabla(\mu)^{(1)}$,

with L(1,0) being the G-head of $\nabla(\mu)$. Since $2\mu \leq (2,1)$ under the usual partial ordering of weights, we have

$$2\langle \mu, \alpha_0^{\vee} \rangle \leq \langle (2, 1), \alpha_0^{\vee} \rangle = 7,$$

where α_0 denotes the maximal short root. Therefore,

$$\langle \mu, \alpha_0^{\vee} \rangle \leq 3$$
,

implying that $\mu \in \{(0,0), (1,0), (0,1)\}$. But L(1,0) is not in the head of $\nabla(\mu)$ for any of these choices of μ , therefore no such filtration on $\nabla(2,1)$ is possible.

- **Remark 3.5.1.** H. H. Andersen has pointed out to us that the module $\nabla(0, 2)$ is uniserial, and that its top two layers are the same as those of $\nabla(2, 1)$, so that this module also fails to have a good 2-filtration.
- **3.6.** The lack of a good 2-filtration leads to other interesting phenomena which will factor into our proof that the Tilting Module Conjecture does not hold.

Proposition 3.6.1. For the group G of type G_2 with p = 2, the module $St \otimes rad_G \nabla(2, 1)$ does not have a good filtration.

Proof. It suffices to show that the Steinberg block component of this module does not admit a good filtration. Any composition factor of $\operatorname{St} \otimes \operatorname{rad}_G \nabla(2,1)$ that lies within the Steinberg block has the form $\operatorname{St} \otimes L(\mu)^{(1)}$. Further, for any such composition factor, we have $2\mu < (2,1)$, and as in the previous proof one has $\mu \in \{(0,0),(1,0),(0,1)\}$. Since $L(1,0)^{(1)}$

is the head of $\operatorname{rad}_G \nabla(2,1)$, $\operatorname{St} \otimes L(1,0)^{(1)}$ must appear in the head of (the Steinberg block of) $\operatorname{St} \otimes \operatorname{rad}_G \nabla(2,1)$. But we again reason as in the proof above. If the Steinberg block of $\operatorname{St} \otimes \operatorname{rad}_G \nabla(2,1)$ has a good filtration, then there is some $\nabla(\mu)$ such that L(1,0) is the head of $\nabla(\mu)$ and $\operatorname{St} \otimes \nabla(\mu)^{(1)}$ is a subquotient of $\operatorname{St} \otimes \operatorname{rad}_G \nabla(2,1)$. But no such subquotient is possible with the limitations on μ .

3.7. Conjecture 2.2.3 (\Leftarrow): Minimal counterexample. The module $\operatorname{St} \otimes \nabla(2,1)$ has a good filtration, and none of its ∇ -quotients map onto $L(3,1) \cong \operatorname{St} \otimes L(1,0)^{(1)}$. It was observed earlier that two copies of St are contained in $\operatorname{St} \otimes L(0,1)$. Therefore, it follows that one of these copies nontrivially extends the composition factor $\operatorname{St} \otimes L(1,0)^{(1)}$ in $\operatorname{St} \otimes \operatorname{rad}_G \nabla(2,1)$ that comes from

St
$$\otimes$$
 [rad_G $\nabla(2,1)/\text{rad}_G^2 \nabla(2,1)$].

Now define the G-module M via the short exact sequence

(3.7.1)
$$0 \to \operatorname{rad}_{G}^{2} T(2,1) \to T(2,1) \to M \to 0.$$

Then the non-split sequences

$$0 \to \operatorname{rad}_G^2 \nabla(2,1) \to \nabla(2,1) \to M \to 0$$

and

$$0 \to L(1,0)^{(1)} \to M \to L(0,1) \to 0$$

are immediate consequences of Proposition 3.4.1.

From weight considerations, Proposition 3.3.1, and Theorem 3.3.1, it follows that

$$\operatorname{St} \otimes M \cong T(1,2) \oplus S$$
,

where S is the summand containing all composition factors in the G_1 -Steinberg block of $\operatorname{St} \otimes M$. We know that S contains $\operatorname{St} \otimes L(1,0)^{(1)}$ once as a composition factor and the Steinberg module twice. No other composition factors occur. As a consequence of previous discussion, one of the Steinberg factors must sit on top of $\operatorname{St} \otimes L(1,0)^{(1)}$. Hence, together the two composition factors form a module that is isomorphic to $\operatorname{St} \otimes \nabla(1,0)^{(1)} \cong \nabla(3,1)$. In conclusion,

$$\operatorname{St} \otimes M \cong T(1,2) \oplus (\operatorname{St} \otimes \nabla(1,0)^{(1)}) \oplus \operatorname{St}$$

 $\cong T(1,2) \oplus \nabla(3,1) \oplus \operatorname{St},$

which has a good filtration. Then this proves the following:

Proposition 3.7.1. Let M be the module defined in (3.7.1).

- (a) St \otimes *M* has a good filtration.
- (b) $\operatorname{Hom}_G(\operatorname{St}, \operatorname{St} \otimes M) = k$.

The module M has composition factors L(0, 1) and $L(1, 0)^{(1)}$. Since

$$L(1,0)^{(1)} \not\cong \nabla(1,0)^{(1)},$$

we see that M does not have a good 2-filtration, even though $\operatorname{St} \otimes M$ has a good filtration. One could then consider M as a minimal counterexample to Conjecture 2.2.3 (\Leftarrow), as it has only two composition factors.

Indeed, in the general context of a semisimple G and arbitrary prime p, a counterexample with only one composition factor is not possible. For example, if for some $\lambda = \lambda_0 + p\lambda_1$,

with $\lambda_0 \in X_1$ and $\lambda_1 \in X_+$, the module $\operatorname{St} \otimes L(\lambda_0) \otimes L(\lambda_1)^{(1)}$ has a good filtration, then it must be tilting. But then $\operatorname{St} \otimes L(\lambda_0) \otimes T((p-1)\rho - \lambda_0) \otimes L(\lambda_1)^{(1)}$ is tilting, and since St is a summand of $L(\lambda_0) \otimes T((p-1)\rho - \lambda_0)$, we have that $\operatorname{St} \otimes \operatorname{St} \otimes L(\lambda_1)^{(1)}$ is also tilting, and then that $\operatorname{St}^{\otimes 3} \otimes L(\lambda_1)^{(1)}$ is tilting. But St is a summand of $\operatorname{St}^{\otimes 3}$, so that $\operatorname{St} \otimes L(\lambda_1)^{(1)}$ is tilting, and we conclude that $L(\lambda_1) \cong \nabla(\lambda_1) \cong T(\lambda_1)$. Consequently, $L(\lambda_0) \otimes L(\lambda_1)^{(1)}$ is a good p-filtration module.

4. On the Tilting Module Conjecture

4.1. We continue to assume that G has a root system of type G_2 and the prime p = 2. The fact that $St \otimes rad_G \nabla(2, 1)$ does not have a good filtration guarantees that the Tilting Module Conjecture does not hold in this case. This essentially follows from [18, Theorem 5.1.1], but here we will give a simple self-contained proof of this fact using the results already established in this paper.

Theorem 4.1.1. The Tilting Module Conjecture does not hold for groups of type G_2 and p=2.

Proof. Assume that the Tilting Module Conjecture holds, so that $T(2,2)|_{G_1} \cong Q_1(0,0)$. From the G-module structure of the G_1 -socle of $\operatorname{St} \otimes \operatorname{St}$, as observed in the proof of Proposition 3.3.1 part (d), and Theorem 3.3.1, one then concludes that (as G-modules)

$$(4.1.1) St \otimes St \cong T(2,2) \oplus T(2,1)^{\oplus 2} \oplus T(3,1)^{\oplus 2}.$$

In particular, the tilting module T(2,1) appears twice in the tensor product $St \otimes St$. Let M be the quotient of T(2,1) from Proposition 3.7.1. Then we have that

$$2 < \dim \operatorname{Hom}_G(\operatorname{St} \otimes \operatorname{St}, M) = \dim \operatorname{Hom}_G(\operatorname{St}, M \otimes \operatorname{St}),$$

a contradiction to part (b) of Proposition 3.7.1.

4.2. The socle of T(2,2). There are two copies of L(0,1) in the G-socle of $St \otimes St$, but we have now established that T(2,1) occurs as a summand of $St \otimes St$ at most once (i.e., the decomposition in (4.1.1) fails to hold). Looking again at Theorem 3.3.1, it follows that L(0,1) must appear as a submodule of T(2,2). This fact has been independently confirmed by Doty's program [7,19], which has computed more precisely that

$$k \oplus L(0,1) \cong \operatorname{soc}_{G} \Delta(2,2) \subseteq T(2,2).$$

We note that, whenever $T(\hat{\lambda}) = Q_1(\lambda)$ as a G_1 -module for $\lambda \in X_1$, then $\operatorname{soc}_G \Delta(\hat{\lambda})$ must be simple and isomorphic to $L(\lambda)$.

4.3. The Humphreys–Verma Conjecture. Although T(2,2) is not a lift of $Q_1(0,0)$, it is still possible that $Q_1(0,0)$ has some other G-module structure, so the Humphreys–Verma Conjecture remains open for now. Nevertheless, it is significant that even if there is some G-structure, it will not occur as a G-submodule of $St \otimes St$ (though it could appear as a subquotient). This defies the long held expectation, going back to early work by Humphreys and Verma, that a G-structure should occur in precisely this way.

References

- [1] P. N. Achar, S. Makisumi, S. Riche and G. Williamson, Koszul duality for Kac–Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32 (2019), no. 1, 261–310.
- [2] H. H. Andersen, p-filtrations and the Steinberg module, J. Algebra 244 (2001), no. 2, 664-683.
- [3] H. H. Andersen, p-filtrations of dual Weyl modules, Adv. Math. 352 (2019), 231–245.
- [4] M. F. Anwar, Representations and cohomology of algebraic groups, Ph.D. Thesis, University of York, 2011.
- [5] J. W. Ballard, Injective modules for restricted enveloping algebras, Math. Z. 163 (1978), no. 1, 57–63.
- [6] C. P. Bendel, D. K. Nakano, C. Pillen and P. Sobaje, On tensoring with the Steinberg representation, Transformation Groups (2019), DOI 10.1007/s00031-019-09530-x.
- [7] S. Doty, WeylModules, a GAP package, Version 1.1, 2009, http://doty.math.luc.edu/weylmodules.
- [8] M. F. Dowd and P. Sin, On representations of algebraic groups in characteristic two, Comm. Algebra 24 (1996), no. 8, 2597–2686.
- [9] *J. E. Humphreys*, Modular representations of finite groups of Lie type, London Math. Soc. Lecture Note Ser. **326**, Cambridge University Press, Cambridge 2006.
- [10] J. C. Jantzen, Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. reine angew. Math. 290 (1977), 117–141.
- [11] J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157–199.
- [12] J. C. Jantzen, First cohomology groups for classical Lie algebras, in: Representation theory of finite groups and finite-dimensional algebras (Bielefeld 1991), Progr. Math. 95, Birkhäuser, Basel (1991), 289–315.
- [13] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Math. Surveys Monogr. 107, American Mathematical Society, Providence 2003.
- [14] T. Kildetoft and D. K. Nakano, On good (p,r)-filtrations for rational G-modules, J. Algebra 423 (2015), 702–725.
- [15] F. Lübeck, Tables of weight multiplicities, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/ WMSmall/index.html.
- [16] B. J. Parshall and L. L. Scott, On p-filtrations of Weyl modules, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 127–158.
- [17] S. Riche and G. Williamson, Tilting modules and the p-canonical basis, Astérisque (2018), no. 397.
- [18] *P. Sobaje*, On (p, r)-filtrations and tilting modules, Proc. Amer. Math. Soc. **146** (2018), no. 5, 1951–1961.
- [19] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.8.10, 2018, https://www.gap-system.org.

Christopher P. Bendel, Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie, WI 54751, USA e-mail: bendelc@uwstout.edu

Daniel K. Nakano, Department of Mathematics, University of Georgia, Athens, GA 30602, USA e-mail: nakano@math.uga.edu

Cornelius Pillen, Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA e-mail: pillen@southalabama.edu

Paul Sobaje, Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30458, USA e-mail: psobaje@georgiasouthern.edu

Eingegangen 8. Juni 2019, in revidierter Fassung 10. August 2019