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.p; r/-filtration conjectures
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Cornelius Pillen at Mobile and Paul Sobaje at Statesboro

In memory of Elena Galaktionova

Abstract. In this paper the authors produce a projective indecomposable module for the

Frobenius kernel of a simple algebraic group in characteristic p that is not the restriction of an

indecomposable tilting module. This yields a counterexample to Donkin’s longstanding Tilting

Module Conjecture. The authors also produce a Weyl module that does not admit a p-Weyl

filtration. This answers an old question of Jantzen, and also provides a counterexample to the

.p; r/-Filtration Conjecture.

1. Introduction

1.1. Let G be a semisimple, simply connected algebraic group over an algebraically

closed field of characteristic p > 0 and let g be its Lie algebra. Restricted representations

for the Lie algebra g are equivalent to representations for the first Frobenius kernel G1. In

the 1960s Curtis showed that the simple G1-modules lift to simple modules for G. Later,

Humphreys and Verma investigated the projective indecomposable G1-modules. The expec-

tation that these modules should also lift to G came to be known as the “Humphreys–Verma

Conjecture.” This was verified for p � 2h � 2 (where h is the Coxeter number) by work of

Ballard [5] and Jantzen [11]. For over 50 years, it has been anticipated that the Humphreys–

Verma Conjecture would hold for all p.

In 1990, Donkin presented a series of conjectures at MSRI. One of the conjectures, known

as the Tilting Module Conjecture, states that a projective indecomposable module for Gr can be

realized as an indecomposable tilting G-module (see Conjecture 2.2.2). Like the Humphreys–

Verma Conjecture, the Tilting Module Conjecture holds for p � 2h � 2 with the hope of being

valid for all p. Recently, the Tilting Module Conjecture has been shown to be related to another
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2 Bendel et al., Counterexamples to the tilting and .p; r/-filtration conjectures

one of Donkin’s conjectures involving good .p; r/-filtrations. A more detailed exposition with

the connections is presented in Section 2.2.

The Tilting Module Conjecture has taken on additional importance following work by

Achar, Makisumi, Riche and Williamson [1], who have shown that when p > h, the char-

acters of indecomposable tilting modules can be given via p-Kazhdan-Lusztig polynomials,

confirming a conjecture by Riche and Williamson [17]. When p � 2h � 2, the Tilting Module

Conjecture then allows one to deduce the characters of simple G-modules. The authors of [1]

credit Andersen with this observation.

1.2. The goal of this paper is to present counterexamples to the conjectures and ques-

tions stated in Section 2.2. In this subsection, let G be a simple algebraic group whose root

system is of type G2 and p D 2. In particular, we

(1.2.1) present a counterexample to the Tilting Module Conjecture – see Theorem 4.1.1;

(1.2.2) construct a counterexample to one direction of Donkin’s Good .p; r/-Filtration Con-

jecture (i.e., Conjecture 2.2.3 (()) – see Theorem 3.5.1 and Section 3.6;

(1.2.3) give an example of a costandard/induced module r.�/ that does not admit a good

.p; r/-filtration – see Theorem 3.5.1.

Specifically, we demonstrate that there does not exist a good 2-filtration for the induced

module r.2; 1/.1) This gives a negative answer to an open question of Jantzen [11], and this

module is also is a counterexample for (1.2.2). As a consequence of these results, we prove

that the indecomposable tilting module T .2; 2/ is decomposable over the first Frobenius kernel

of G. We present a proof of this fact that does not employ computer calculations, using instead

information about extensions of simple G-modules of small highest weights.2)

Acknowledgement. The authors would like to thank Henning H. Andersen, Jens C.

Jantzen, and also the referees of this paper for many helpful comments and suggestions.

2. Preliminaries

2.1. Notation. The notation will follow the conventions in [6, Section 2.1], most of

which follow those in [13] (though our notation for induced and Weyl modules follows the

costandard and standard module conventions in highest weight category literature). Let G be

a connected, semisimple algebraic group scheme defined over Fp and Gr be its r th Frobenius

kernel.

Let XC denote the dominant weights for G, and let Xr be the pr -restricted weights.

For � 2 XC, there are four fundamental classes of G-modules (each having highest weight �):

L.�/ (simple), r.�/ (costandard/induced), �.�/ (standard/Weyl), and T .�/ (indecomposable

1) A major step in this process was a computation of a filtration of �.2; 1/, obtained using Stephen Doty’s

WeylModule package for the software GAP [7, 19], that, when dualized, indicated that r.2; 1/ could not have a

good 2-filtration.
2) This fact was verified in another way by running Doty’s GAP program to compute that the socle of

�.2; 2/ is isomorphic to k ˚ L.0; 1/. As �.2; 2/ is a submodule of T .2; 2/, one concludes that the socle of T .2; 2/

has at least two factors over G1, so that T .2; 2/ splits into at least two projective summands over G1.
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tilting). A G-module M has a good filtration (resp. Weyl filtration) if and only if M has a fil-

tration with factors of the form r.�/ (resp. �.�/) for suitable � 2 XC.

For � 2 XC with unique decomposition � D �0 C pr�1 with �0 2 Xr and �1 2 XC,

define r.p;r/.�/ D L.�0/ ˝ r.�1/.r/, where .r/ denotes the twisting of the module action by

the r th Frobenius morphism. Similarly, set �.p;r/.�/ D L.�0/ ˝ �.�1/.r/. A G-module M

has a good .p; r/-filtration (resp. Weyl .p; r/-filtration) if and only if M has a filtration with

factors of the form r.p;r/.�/ (resp. �.p;r/.�/) for suitable � 2 XC. In the case when r D 1,

we often refer to good .p; 1/-filtrations as good p-filtrations.

Let � be the sum of the fundamental weights and Str D L..pr � 1/�/ (which is also

isomorphic to r..pr � 1/�/ and �..pr � 1/�/) be the r th Steinberg module. For � 2 Xr ,

let Qr.�/ denote the projective cover (equivalently, injective hull) of L.�/ as a Gr -module.

If � 2 Xr , set O� D 2.pr � 1/� C w0�, where w0 is the long element in the Weyl group W .

Let M be a finite-dimensional G-module, and let

M � radG M � rad2
G M � � � � � ¹0º

be the radical series of M . Moreover, let

¹0º � socG M � soc2
G M � � � � � M

be the socle series for M . One can similarly define such filtrations for Gr -modules.

2.2. The conjectures. In the early 1970s Humphreys and Verma presented the follow-

ing conjecture on the lifting of G-structures on the projective modules for Gr .

Conjecture 2.2.1. For � 2 Xr , the Gr -module structure on Qr.�/ can be lifted to G.

The conjecture was first verified by Ballard [5] for p � 3h � 3 and then by Jantzen [11]

for p � 2h � 2, who further showed under this improved bound that the G-structure was

unique up to isomorphism. Later, at a conference at MSRI in 1990, Donkin presented the fol-

lowing conjecture, predicting that a G-module structure on Qr.�/ arises from a specific tilting

module which must be the G-module structure whenever uniqueness of G-structure holds.

Conjecture 2.2.2. For all � 2 Xr , T .2.pr � 1/� C w0�/jGr
D Qr.�/.

Conjecture 2.2.2 holds for p � 2h � 2 and the proof under this bound entails locating

one particular G-summand of Str ˝L.�/. At the same conference at MSRI, another conjecture

was introduced by Donkin that interrelates good filtrations with good .p; r/-filtrations via the

Steinberg module.

Conjecture 2.2.3. A finite-dimensional G-module M has a good .p; r/-filtration if and

only if Str ˝M has a good filtration.

We denote the two directions of the statement as follows:

� Conjecture 2.2.3 ()): If M has a good .p; r/-filtration, then Str ˝M has a good filtra-

tion.

� Conjecture 2.2.3 ((): If Str˝M has a good filtration, then M has a good .p; r/-filtration.
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4 Bendel et al., Counterexamples to the tilting and .p; r/-filtration conjectures

Conjecture 2.2.3 ()) is equivalent to Str ˝L.�/ being a tilting module for all � 2 Xr .

Andersen [2] first verified Conjecture 2.2.3 ()) when p � 2h � 2. Later, Kildetoft and Nakano

[14] supplied two additional proofs for this bound using different methods. In recent work, the

authors of this paper lowered the bound to p � 2h � 4 (cf. [6]). For rank 2 groups (includ-

ing G2), Conjecture 2.2.3 ()) was proved for all p in [14] and [6].

There are also strong relationships, established by Kildetoft and Nakano [14] and also by

Sobaje [18], between these conjectures given by the following hierarchy of implications:

Conjecture 2.2.3 H) Conjecture 2.2.2 H) Conjecture 2.2.3 ()):

While we will provide counterexamples to Conjecture 2.2.2 and the full Conjecture 2.2.3,

we remark that Conjecture 2.2.3 ()) may still hold for all p. A special case of Conjec-

ture 2.2.3 (() was earlier posed by Jantzen [11].

Question 2.2.1. For � 2 XC, does r.�/ admit a good .p; r/-filtration?

Parshall and Scott affirmatively answered the aforementioned question if p � 2h � 2 and

the Lusztig Conjecture holds for the given prime and group [16]. Recently, Andersen [3] has

shown this for p � .h � 2/h.

3. Weyl modules and good .p; r/-filtrations for type G2

3.1. Simple and projective modules. Assume throughout this section that the root sys-

tem of G is of type G2 and that the prime p D 2. We follow the Bourbaki ordering of the simple

roots: ˛1 is the short root and ˛2 is the long root. For a; b 2 Z, we denote by .a; b/ the weight

a$1 C b$2, where $1 and $2 are the fundamental dominant weights. The characters of the

simple modules were determined by Jantzen in [10]. The set of restricted weights is

X1 D ¹.0; 0/; .1; 0/; .0; 1/; .1; 1/º:

Let St D St1 denote the first Steinberg module L.1; 1/. The module

L.0; 1/ Š r.0; 1/ Š �.0; 1/

is the 14-dimensional adjoint representation. Among the four costandard G-modules of re-

stricted highest weight, only r.1; 0/ is not simple, and we have that r.1; 0/=L.1; 0/ Š k.

Every simple G-module is self-dual, and the weight lattice and root lattice coincide.

Since the characters of the simple G-modules of restricted highest weight are known here,

it is possible to compute directly the dimensions of the projective indecomposable G1-modules.

We recall in Table 1 some of the information provided by Humphreys in [9, 18.4, Table 4].

� dim L.�/ dim Q1.�/

.0; 0/ 1 36 � 64

.1; 0/ 6 12 � 64

.0; 1/ 14 6 � 64

.1; 1/ 64 64

Table 1. Dimensions of simple and projective G1-modules.
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3.2. Ext1-calculations. In our analysis of the structure of the Weyl modules we will

need the following Ext1-calculations that appear in Dowd and Sin [8, Lemma 3.3], part (c) of

which dates back to work of Jantzen [12].

Proposition 3.2.1. One has the following isomorphisms as G-modules:

(a) Ext1G1
.L.1; 0/; L.0; 1// D 0,

(b) Ext1G1
.L.0; 1/; L.0; 1// D 0,

(c) Ext1G1
.k; L.0; 1// Š r.1; 0/.1/.

3.3. Decomposition of St ˝L.�/, � 2 X1. Recall that St is projective over the first

Frobenius kernel G1. Hence, for � 2 X1, St ˝L.�/ is also projective over G1. As the highest

weight of St ˝L.�/ is � C � D 2� � .� � �/, which is the same as that of Q1.� � �/, the

module Q1.� � �/ is necessarily a G1-summand of St ˝L.�/. The following proposition gives

a precise decomposition of St ˝L.�/ for each � 2 X1 (we note that this information can be

found elsewhere, for example it is in [4, Chapter 3]).

Proposition 3.3.1. We have the following decompositions into projective indecompos-

able modules over G1:

(a) St ˝ k Š St,

(b) St ˝ L.1; 0/ Š Q1.0; 1/,

(c) St ˝ L.0; 1/ Š Q1.1; 0/ ˚ St˚2,

(d) St ˝ St Š Q1.0; 0/ ˚ Q1.0; 1/˚2 ˚ St˚16.

Proof. The first isomorphism is immediate, and the second follows by the module

dimensions given in Table 1. Recall that St Š ind
G1

B1
.p � 1/�: Moreover, St is the projective

cover of .p � 1/� as a B1-module. Hence, for any G-module M , one obtains via Frobenius

reciprocity

HomG1
.St; St ˝ M/ Š HomB1

.St; .p � 1/� ˝ M/ Š M T1 ;

where T1 is the Frobenius kernel of the maximal torus T . Now the weight 0 appears twice

in L.0; 1/, so that St˚2 � St˝L.0; 1/. There is also an embedding of L.1; 0/ into St˝L.0; 1/.

The dimensions in Table 1 then imply that (c) holds.

Finally, the G1-socle of St ˝ St is determined by all L.�/T1 for � 2 X1. Using a table of

weights for G-modules (see for example [15]) and the fact that St ˝ St is a tilting module, one

finds that

socG1
.St ˝ St/ Š k ˚ L.0; 1/˚2 ˚ .St ˝ T .1; 0/.1//˚2;

when viewed as a G-module. Note that

St ˝ T .1; 0/.1/ Š St˚8

as a G1-module, proving (d).

For � 2 X1, we know that St ˝ L.�/ is a tilting module [14] of highest weight � C �.

Hence, the indecomposable tilting module T .� C �/ embeds in St ˝L.�/. Furthermore, the

G1-Steinberg block component of any G-module splits off as a summand over G. Thus we

conclude from Proposition 3.3.1 the following theorem.

Authenticated | bendelc@uwstout.edu author's copy
Download Date | 1/3/20 8:11 PM



6 Bendel et al., Counterexamples to the tilting and .p; r/-filtration conjectures

Theorem 3.3.1. Over G1 there are isomorphisms

(a) T .1; 1/ Š St,

(b) T .2; 1/ Š Q1.0; 1/,

(c) T .1; 2/ Š Q1.1; 0/.

One can show that these are the unique G-structures on these modules, by showing that

any G-structure on Q1.1; 0/ or on Q1.0; 1/ must admit a good filtration (a more detailed

explanation of this will be provided in a forthcoming paper).

3.4. There exists a surjective homomorphism of G-modules

T .2; 1/ � r.2; 1/:

Since T .2; 1/ Š Q1.0; 1/, L.0; 1/ is its unique semisimple quotient over G1, and therefore the

same holds over G since every simple G-module is semisimple over G1. These facts are then

true of its homomorphic image r.2; 1/. That is,

radG1
r.2; 1/ D radG r.2; 1/;

r.2; 1/=radG r.2; 1/ Š L.0; 1/:

Since T .2; 1/ Š Q1.0; 1/ as a G1-module, the G1-socle of T .2; 1/ is L.0; 1/.

We now want to compute the second layer of the radical series of r.2; 1/. This will

be accomplished by calculating the second socle layer of T .2; 1/ using the Ext1-results of

Proposition 3.2.1.

Proposition 3.4.1. There exist the following isomorphisms of G-modules:

(a) soc2
G1

T .2; 1/=socG1
T .2; 1/ Š r.1; 0/.1/,

(b) soc2
G T .2; 1/=socG T .2; 1/ Š L.1; 0/.1/,

(c) radG r.2; 1/=rad2
G r.2; 1/ Š L.1; 0/.1/.

Proof. (a) and (b) For � 2 X1, one has isomorphisms

HomG1
.L.�/; T .2; 1/=L.0; 1// Š HomG1

.L.�/; Q1.0; 1/=L.0; 1//

Š Ext1G1
.L.�/; L.0; 1//;

where the first isomorphism holds since T .2; 1/ Š Q1.0; 1/, and the second comes from degree

shifting in cohomology. Proposition 3.2.1 then establishes that

soc2
G1

T .2; 1/=socG1
T .2; 1/

is 7-dimensional and is trivial as a G1-module. Considering this, as a G-module, its only pos-

sible composition factors are k and L.1; 0/.1/. Since k does not extend L.0; 1/ nontrivially

over G, we conclude that

soc2
G T .2; 1/=socG T .2; 1/ Š L.1; 0/.1/;

and that

soc2
G1

T .2; 1/=socG1
T .2; 1/ Š r.1; 0/.1/

(which agrees with the G-module structure in Proposition 3.2.1; this extended argument is

included to be precise on the inference of G-module structure).
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(c) Every tilting G-module and every simple G-module is self-dual, and

�.2; 1/� Š r.2; 1/;

so we will work in the dual situation. We have that �.2; 1/ � T .2; 1/, therefore

soc2
G �.2; 1/=socG �.2; 1/ � soc2

G T .2; 1/=socG T .2; 1/ Š L.1; 0/.1/:

But, soc2
G �.2; 1/=socG �.2; 1/ ¤ 0, therefore soc2

G �.2; 1/=socG �.2; 1/ Š L.1; 0/.1/.

Finally, one has

radG r.2; 1/=rad2
G r.2; 1/ Š .soc2

G �.2; 1/=socG �.2; 1//� Š L.1; 0/.1/:

3.5. This following example answers Question 2.2.1 in the negative, and it is also

a counterexample to Conjecture 2.2.3 ((), since St ˝r.2; 1/ has a good filtration.

Theorem 3.5.1. The module r.2; 1/ for the group G of type G2 does not have a good

2-filtration.

Proof. Suppose that

0 D F0 � F1 � � � � � Fn D r.2; 1/

is a good 2-filtration. In view of the structure of the radical series of r.2; 1/,

Fn=Fn�1 Š L.0; 1/ and Fn�1=Fn�2 Š r.�/.1/;

with L.1; 0/ being the G-head of r.�/. Since 2� � .2; 1/ under the usual partial ordering of

weights, we have

2h�; ˛_
0 i � h.2; 1/; ˛_

0 i D 7;

where ˛0 denotes the maximal short root. Therefore,

h�; ˛_
0 i � 3;

implying that � 2 ¹.0; 0/; .1; 0/; .0; 1/º. But L.1; 0/ is not in the head of r.�/ for any of these

choices of �, therefore no such filtration on r.2; 1/ is possible.

Remark 3.5.1. H. H. Andersen has pointed out to us that the module r.0; 2/ is unise-

rial, and that its top two layers are the same as those of r.2; 1/, so that this module also fails

to have a good 2-filtration.

3.6. The lack of a good 2-filtration leads to other interesting phenomena which will

factor into our proof that the Tilting Module Conjecture does not hold.

Proposition 3.6.1. For the group G of type G2 with p D 2, the module St˝radG r.2; 1/

does not have a good filtration.

Proof. It suffices to show that the Steinberg block component of this module does

not admit a good filtration. Any composition factor of St ˝ radG r.2; 1/ that lies within the

Steinberg block has the form St ˝ L.�/.1/. Further, for any such composition factor, we have

2� � .2; 1/, and as in the previous proof one has � 2 ¹.0; 0/; .1; 0/; .0; 1/º. Since L.1; 0/.1/
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8 Bendel et al., Counterexamples to the tilting and .p; r/-filtration conjectures

is the head of radG r.2; 1/, St ˝ L.1; 0/.1/ must appear in the head of (the Steinberg block

of) St ˝ radG r.2; 1/. But we again reason as in the proof above. If the Steinberg block of

St ˝ radG r.2; 1/ has a good filtration, then there is some r.�/ such that L.1; 0/ is the head

of r.�/ and St ˝ r.�/.1/ is a subquotient of St ˝ radG r.2; 1/. But no such subquotient is

possible with the limitations on �.

3.7. Conjecture 2.2.3 ((): Minimal counterexample. The module St ˝ r.2; 1/ has

a good filtration, and none of its r-quotients map onto L.3;1/ Š St˝L.1;0/.1/. It was observed

earlier that two copies of St are contained in St ˝ L.0; 1/. Therefore, it follows that one of

these copies nontrivially extends the composition factor St ˝ L.1; 0/.1/ in St ˝ radG r.2; 1/

that comes from

St ˝ ŒradG r.2; 1/=rad2
G r.2; 1/�:

Now define the G-module M via the short exact sequence

(3.7.1) 0 ! rad2
G T .2; 1/ ! T .2; 1/ ! M ! 0:

Then the non-split sequences

0 ! rad2
G r.2; 1/ ! r.2; 1/ ! M ! 0

and

0 ! L.1; 0/.1/ ! M ! L.0; 1/ ! 0

are immediate consequences of Proposition 3.4.1.

From weight considerations, Proposition 3.3.1, and Theorem 3.3.1, it follows that

St ˝ M Š T .1; 2/ ˚ S;

where S is the summand containing all composition factors in the G1-Steinberg block

of St ˝ M . We know that S contains St ˝ L.1; 0/.1/ once as a composition factor and the

Steinberg module twice. No other composition factors occur. As a consequence of previous

discussion, one of the Steinberg factors must sit on top of St ˝ L.1; 0/.1/. Hence, together

the two composition factors form a module that is isomorphic to St ˝ r.1; 0/.1/ Š r.3; 1/: In

conclusion,

St ˝ M Š T .1; 2/ ˚ .St ˝ r.1; 0/.1// ˚ St

Š T .1; 2/ ˚ r.3; 1/ ˚ St;

which has a good filtration. Then this proves the following:

Proposition 3.7.1. Let M be the module defined in (3.7.1).

(a) St ˝ M has a good filtration.

(b) HomG.St; St ˝ M/ D k:

The module M has composition factors L.0; 1/ and L.1; 0/.1/. Since

L.1; 0/.1/ 6Š r.1; 0/.1/;

we see that M does not have a good 2-filtration, even though St ˝ M has a good filtration. One

could then consider M as a minimal counterexample to Conjecture 2.2.3 ((), as it has only

two composition factors.

Indeed, in the general context of a semisimple G and arbitrary prime p, a counterexample

with only one composition factor is not possible. For example, if for some � D �0 C p�1,
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with �0 2 X1 and �1 2 XC, the module St ˝ L.�0/ ˝ L.�1/.1/ has a good filtration, then it

must be tilting. But then St ˝ L.�0/ ˝ T ..p � 1/� � �0/ ˝ L.�1/.1/ is tilting, and since St

is a summand of L.�0/ ˝ T ..p � 1/� � �0/, we have that St ˝ St ˝ L.�1/.1/ is also tilting,

and then that St˝3 ˝L.�1/.1/ is tilting. But St is a summand of St˝3, so that St ˝ L.�1/.1/

is tilting, and we conclude that L.�1/ Š r.�1/ Š T .�1/. Consequently, L.�0/ ˝ L.�1/.1/ is

a good p-filtration module.

4. On the Tilting Module Conjecture

4.1. We continue to assume that G has a root system of type G2 and the prime p D 2.

The fact that St ˝ radG r.2; 1/ does not have a good filtration guarantees that the Tilting Mod-

ule Conjecture does not hold in this case. This essentially follows from [18, Theorem 5.1.1], but

here we will give a simple self-contained proof of this fact using the results already established

in this paper.

Theorem 4.1.1. The Tilting Module Conjecture does not hold for groups of type G2

and p D 2.

Proof. Assume that the Tilting Module Conjecture holds, so that T .2; 2/jG1
Š Q1.0; 0/.

From the G-module structure of the G1-socle of St ˝ St, as observed in the proof of Proposi-

tion 3.3.1 part (d), and Theorem 3.3.1, one then concludes that (as G-modules)

(4.1.1) St ˝ St Š T .2; 2/ ˚ T .2; 1/˚2 ˚ T .3; 1/˚2:

In particular, the tilting module T .2; 1/ appears twice in the tensor product St ˝ St. Let M be

the quotient of T .2; 1/ from Proposition 3.7.1. Then we have that

2 � dim HomG.St ˝ St; M/ D dim HomG.St; M ˝ St/;

a contradiction to part (b) of Proposition 3.7.1.

4.2. The socle of T.2; 2/. There are two copies of L.0; 1/ in the G-socle of St ˝ St,

but we have now established that T .2; 1/ occurs as a summand of St ˝ St at most once (i.e., the

decomposition in (4.1.1) fails to hold). Looking again at Theorem 3.3.1, it follows that L.0; 1/

must appear as a submodule of T .2; 2/. This fact has been independently confirmed by Doty’s

program [7, 19], which has computed more precisely that

k ˚ L.0; 1/ Š socG �.2; 2/ � T .2; 2/:

We note that, whenever T . O�/ D Q1.�/ as a G1-module for � 2 X1, then socG �. O�/ must be

simple and isomorphic to L.�/.

4.3. The Humphreys–Verma Conjecture. Although T .2; 2/ is not a lift of Q1.0; 0/,

it is still possible that Q1.0; 0/ has some other G-module structure, so the Humphreys–Verma

Conjecture remains open for now. Nevertheless, it is significant that even if there is some

G-structure, it will not occur as a G-submodule of St ˝ St (though it could appear as a sub-

quotient). This defies the long held expectation, going back to early work by Humphreys and

Verma, that a G-structure should occur in precisely this way.
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