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Abstract— Planning safe trajectories for nonlinear dynamical
systems subject to model uncertainty and disturbances is
challenging. In this work, we present a novel approach to
tackle chance-constrained trajectory planning problems with
nonconvex constraints, whereby obstacle avoidance chance
constraints are reformulated using the signed distance function.
We propose a novel sequential convex programming algorithm
and prove that under a discrete time problem formulation, it
is guaranteed to converge to a solution satisfying first-order
optimality conditions. We demonstrate the approach on an
uncertain 6 degrees of freedom spacecraft system and show
that the solutions satisfy a given set of chance constraints.

I. INTRODUCTION

Planning safe trajectories for autonomous systems in the

presence of uncertainty (e.g., uncertain model parameters,

external disturbances) is critical to their use in real-world

applications, especially for robotic systems with limited

control authority. Accordingly, probabilistic models have

become popular to characterize the dynamics of uncertain

systems, as they can be derived from data [1], [2], and allow

one to quantify and impose constraints on the risk associ-

ated with robotic operations in the face of uncertainty [3].

This motivates the development of trajectory optimization

algorithms tailored to tackle this class of problems.

The problem of computing a safe minimal cost trajectory

under model uncertainty and external random disturbances

has been approached from the perspectives of robust control

[4] and chance-constrained optimal control. However, con-

sidering fixed deterministic bounds on all uncertainties as in

robust control can be too conservative or lead to infeasibility

(e.g., when uncertainties follow probability distributions with

unbounded support). Instead, chance constraints guarantee

the satisfaction of constraints for a pre-defined probability

level p. For a constraint g(x) ≤ 0 with a random variable x,

chance constraints are expressed as

Pr(g(x) ≤ 0) ≥ p. (1)

To handle such constraints, most approaches reformulate

(1) as one or multiple deterministic constraints. The first class

of methods consists of using indicator functions I(·):

Pr(g(x) ≤ 0) = E(I(x)), with I(x) =






1 if g(x)≤0
0 otherwise.

(2)
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Fig. 1: Using a chance-constrained problem formulation, the pro-
posed sequential convex programming algorithm efficiently plans
safe trajectories despite nonlinear dynamics, nonconvex constraints,
model uncertainty, and external disturbances.

Methods such as the scenario approach [5], the Bernstein

approximation [6], [7], and Monte-Carlo-based methods [8],

[9] reformulate (1) by sampling x to approximate E(I(x)),
which can be computationally expensive. For discretized

state spaces, chance-constrained dynamic programming [10],

[11] also leverages (2) to incorporate chance constraints, but

such methods are too slow for fast re-planning.

On the other hand, for specific classes of constraints g(x)
and probability distributions p(x), such as affine constraints

with radial distributions, equivalent explicit reformulations

of (1) exist [12], [13]. Probabilistic confidence sets have

been proposed to conservatively reformulate such constraints.

[14]. For uncertain systems subject to polytopic constraints,

these properties have been employed in chance-constrained

trajectory planning [15], [16] and model predictive control

[17], [18]. To handle nonconvex obstacles avoidance con-

straints, it is common to decompose the free space as multi-

ple polytopes, and to solve the resulting problem with mixed

integer programming [15], [16], [19]. However, for chance-

constrained problems, such methods typically assume linear

dynamics, and are slow for a large number of obstacles.

A chance-constrained problem formulation is considered in

[20], although it is limited to ellipsoidal obstacles. To address

these limitations, the method proposed in this work exploits

explicit reformulations of chance constraints and signed

distance functions to handle obstacles of arbitrary shape.

Reliably and efficiently computing a trajectory satisfying

nonlinear dynamics and nonconvex chance constraints is

of particular interest. Recent work on sequential convex

programming (SCP) has proposed efficient algorithms for

trajectory optimization [21]–[26]. By iteratively formulating

convex approximations of the original nonconvex optimiza-

tion problem, this class of algorithms is capable of computing
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feasible trajectories in real time. Importantly, recent results

provide theoretical guarantees ensuring that the resulting

solution satisfies first-order necessary conditions for opti-

mality of the original problem [22]–[26]. However, these

works consider deterministic dynamics, penalization of the

constraints, and heuristics to facilitate convergence, such as

virtual controls and nonsmooth functions which complicate

the convergence analysis of the algorithm. In this work, we

provide a formulation and algorithm tailored to solve the

class of discrete-time chance-constrained trajectory planning

problems, as well as a proof of the convergence of our

algorithm to a locally optimal point.

The key contributions of this work are as follows:

1) We reformulate the chance-constrained trajectory opti-

mization problem with obstacle avoidance constraints

by leveraging signed distance functions to explicitly

reformulate chance constraints and probabilistic confi-

dence sets for obstacles of arbitrary shape.

2) We provide a novel sequential convex programming

trajectory optimization algorithm with hard enforce-

ment of constraints to solve the chance-constrained

problem.

3) We prove the convergence of our algorithm to a point

guaranteed to satisfy first-order necessary optimality

conditions and all constraints, which is critically en-

abled by our discrete-time C1 problem formulation.

This paper is organized as follows. In Section II, we state

the chance-constrained optimal control problem. In Section

III, we review known approaches to model uncertainty and

to reformulate linear chance constraints, In Section IV, these

results are leveraged together with the signed distance func-

tion to express a deterministic reformulation of the original

chance-constrained problem. This problem is convexified

in Section V and solved using a novel SCP algorithm.

In Section VI, we prove that under mild assumptions, the

proposed SCP method is guaranteed to converge to a point

satisfying first-order necessary optimality conditions of the

nonconvex problem. Finally, the approach is validated on a

6 DoF uncertain spacecraft system in Section VII.

Notations: N (µ,Σ) denotes the multivariate normal dis-

tribution of mean µ and covariance Σ, χ2
n(p) and Φ−1(p)

the p-th quantiles of the χ2 distribution with n degrees of

freedom and of the inverse cumulative function of N (0, 1),
respectively. For A∈Rn×m, Ai· denotes the i-th row of A

and Aij the j-th element of Ai·. For b∈Rn, bi denotes the

i-th element of b. For a vector-valued function f(·), ∇xf

denotes the Jacobian matrix of f with respect to x.

II. PROBLEM DEFINITION

The problem of trajectory optimization consists of

computing a sequence of control inputs uk, for a discrete

time dynamical system xk+1 = f(xk,uk,wk) with xk

the state and wk random parameters and disturbances,

whose solution xk connects an initial state x(0) ∈ R
n to

a goal region Xgoal ⊂ R
n, minimizes given final lf (·) and

step l(·) costs, and satisfies obstacle avoidance constraints

xk ∈ Xfree ⊂ R
n, input constraints uk ∈ U ⊂ R

m and linear

structural constraints Hxk ≤ h with H ∈ R
l×n, h ∈ R

l,

such as bounds on translational and angular speed. Due to

uncertainty in the dynamics, we embed this problem in the

framework of stochastic optimal control and enforce state

and input constraints as chance constraints. The resulting

optimal control problem (OCP) can be written as follows:

Problem 1. Original Chance-Constrained OCP

min
x,u

E

{

lf (xN ) +

N−1
∑

k=0

l(xk,uk,wk)

}

(3a)

s.t. xk+1 = f(xk,uk,wk) k=0. . .N−1 (3b)

Pr(Hxk ≤ h) ≥ px k=1. . .N (3c)

Pr(xk ∈ Xfree) ≥ px k=1. . .N−1 (3d)

Pr(uk ∈ U) ≥ pu k=0. . .N−1 (3e)

Pr(xN ∈ Xgoal) ≥ px (3f)

x0 = x(0), (3g)

where k ∈ {0, · · · , N}, with N the optimization horizon,

Xfree the safe region, Xgoal ⊂ Xfree the goal region, U the

admissible input set, px and pu the probability thresholds

for the state and input chance constraints. We assume that

f ∈ C2, Xgoal and U are polytopes and that Xfree = R
n\Xobs,

Xobs =
⋃M

i=1Oi where Oi ⊂ R
n are closed convex sets.

Nonconvex obstacle avoidance constraints (3d) are separated

from linear inequality state constraints (3c) to enable the user

to specify different probability thresholds for them.

As the uncertainty of the state trajectory grows over time,

planning an open-loop trajectory can lead to a conservative

reformulation of chance constraints which does not account

for feedback controllers typically used to track the planned

trajectory. Therefore, we develop our formulation using a

control policy uk = νk + K(xk)(xk − µk), where K(x)
is a pre-defined state feedback controller gain (e.g., a linear-

quadratic regulator). Due to the uncertainty in xk, uk is also

uncertain, which motivates the use of chance constraints in

(3e). This notation is general, as the user may set K(x) = 0

to plan for an open-loop trajectory instead.

III. PRELIMINARIES

To solve Problem 1, our strategy entails reformulating

chance constraints as deterministic constraints. To do so, as

it is common in the literature [20], [27] , we (approximately)

represent the probability distributions for xk and uk as

Gaussian distributions. Specifically, given a nominal control

input trajectory (νk)
N−1
k=0 , the two moments (µk,Σk)

N
k=0

used to approximate the Gaussian distribution of the state

trajectory can be computed using different methods, such as

the sigma point transform or first order Taylor expansions.

For the latter, given µ0=x(0) and Σ0=0n2 and assuming

xk,wk are independent, the two moments of xk+1 can be

recursively computed as

µk+1 = f(µk,νk,E(wk)) (4a)

Σk+1 = ∇xfcl·Σk·∇xf
T
cl +∇wf ·Σw·∇wf

T , (4b)
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where ∇xfcl = (∇xf + ∇uf ·K), Σw = Var(wk), and K

and all gradients are evaluated at (µk,νk,E(wk)). Due to

space constraints, we refer the reader to the Appendix1 for

derivations. While this approximation might in general be

quite coarse, it is indeed common, works well in practice (as

confirmed by our experiments), and allows us to reformulate

an otherwise intractable stochastic optimal control problem

as a deterministic one (see Section IV).

Most importantly, given this Gaussian approximation,

affine chance constraints can be rigorously reformulated as

deterministic constraints in two ways: (1) exactly, using

reformulations for radial distributions, and (2) conservatively,

via ellipsoidal confidence sets. We discuss the relative merits

of both approaches in Remark 2 in Section IV.

First, consider a,b ∈ R
n, where b follows a radial prob-

ability distribution [12], c ∈ R and p ∈ (0.5, 1). Then, affine

chance constraints Pr(aTb≤c) ≥ p can be reformulated as

aT b̄+κ(p)
√

aTΣba ≤ c, where κ(p)>0 depends on the

distribution of b [12]. In particular, if b ∼ N (b̄,Σb), then

Pr(aTb ≤ c) ≥ p ⇐⇒ aT b̄+Φ−1(p)
√

aTΣba ≤ c, (5)

where Φ−1(p) denotes the p-th quantile of the inverse

cumulative function of the standard normal distribution [13].

The other method to reformulate chance constraints in-

volves confidence sets, characterizing a region in which a

random variable lies for a given probability p. In particular,

ellipsoidal confidence sets are defined as follows:

Definition III.1. (Ellipsoidal Confidence Set)2

An ellipsoidal set Bp(µ,Q), Q ∈ R
n×n,Q ≻ 0, defined as

Bp(µ,Q) :=
{

x | (x− µ)TQ−1(x− µ) ≤ 1
}

, (6)

is an ellipsoidal confidence set of probability level p for x

if
Pr(x ∈ Bp(µ,Q)) ≥ p. (7)

Remark 1. For a Gaussian-distributed random variable x ∈
R

n, x ∼ N (µ,Σ), Bp(µ, χ2
n(p)Σ) is an ellipsoidal confi-

dence set of probability level p for x.

Alternatively to (5), if Bp(b̄,Qb) is an ellipsoidal confi-

dence set of probability level p for b, then [18]

Pr(aTb ≤ c) ≥ p ⇐= aT b̄+
√

aTQba ≤ c. (8)

From Remark 1, if b ∼ N (b̄,Σb) then Qb = χ2
n(p)Σb.

Since χn(p) ≥ Φ−1(p) ∀n, (5) is less conservative than (8)

for a single chance constraint. However, when considering

multiple constraints such as (3c), using (8) can be less

conservative as we will discuss in the following section.

1The Appendix is available at asl.stanford.edu/wp-content/
papercite-data/pdf/Lew.Bonalli.Pavone.ECC20.pdf.

2Definition III.1 is equivalent to [14, Lemma 2], but with µ 6= 0. For
x ∼ N (µ,Σ), it is obtained by applying [14, Lemma 2] to (x−µ) with
Q = χ

2
n(p)Σ.

IV. DETERMINISTIC PROBLEM REFORMULATION

To reformulate Problem 1 as a deterministic problem with

optimization variables (µk,νk)k, we exploit the Gaussian

approximation and present a method to conservatively refor-

mulate obstacle avoidance chance constraints by leveraging

signed distance functions.

A. Cost and Dynamics

As in [17], we use an approximation of the expected cost

along the nominal trajectory (µk,νk)k as

E{l(xk,uk,wk)} ≈ l(µk,νk,E{wk}) := l̃(µk,νk) (9)

E{lf (xN )} ≈ lf (µN ) := l̃f (µN ). (10)

This mean-equivalent reformulation could be replaced

with different approaches, e.g., using a first-order approxi-

mation or risk metrics [3]. Choosing a cost function is not the

focus of this paper and we leave the reader choose a problem-

dependent cost. For the dynamics, we use (4) to reformulate

the state trajectory as a function of (µk,νk)k only. Note that

our proposed trajectory optimization algorithm can leverage

other uncertainty propagation techniques, e.g., [18].

B. Polytopic Chance Constraints

The linear state chance constraints in (3c) can be conserva-

tively rewritten using (a) (Pr(
∧

i Ai) ≥ p) ≡ (Pr(
∨

i Āi) ≤
1− p), where Ai ∈ {0, 1} denotes a random event, and (b)
Boole’s inequality (Pr(

∨

i Ai) ≤
∑

i Pr(Ai)), as

Pr(Hxk ≤ h) ≥ px
(a)⇐⇒ Pr

( l
∨

i=1

Hi·xk > hi

)

≤ 1− px

(b)⇐=
l

∑

i=1

Pr (Hi·xk > hi) ≤ 1− px. (11)

Using a uniform risk allocation with δlx = 1−px

l , a

conservative condition for (11) is given as

(11) ⇐= Pr(Hi·xk > hi) ≤ δlx, i = 1, . . . , l

⇐⇒ Pr(Hi·xk ≤ hi) ≥ 1− δlx, i = 1, . . . , l. (12)

Finally, exploiting the approximation xk∼N (µk,Σk) and

using (5), (12) can be equivalently rewritten with l determin-

istic constraints as

Hi·µk +Φ−1(1−δlx)
√

Hi·ΣkH
T
i· ≤ hi, i = 1, . . ., l. (13)

Alternatively, assuming that Bpx(µk,Qk) is an ellipsoidal

confidence set of probability level px for xk and using

(8), (3c) can be directly reformulated as l deterministic

constraints (without the use of Boole’s inequality) as

Hi·µk +
√

Hi·QkH
T
i· ≤ hi, i = 1, . . . , l. (14)

Remark 2. For a given statespace dimension n, there exists

a critical number of linear constraints l such that it is per-

ferable to use (14) than (13). For the Gaussian distribution,

such values are reported in Appendix IX-F.

The same approach is used to reformulate control input

chance constraints in (3e). Let U = {u |Guu≤bu} with
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Gu ∈Rr×m, bu ∈Rr, and δu =
1−pu

r . Since u = ν +
K(x−µ), we approximate uk∼N (νk,KΣkK) and obtain

Pr(uk ∈ U) ≥ pu ⇐⇒ Pr(Guuk ≤ bu) ≥ pu, i = 1. . .r

⇐= Gu
i·νk +Φ−1(1−δu)

√

Gu
i·KΣkK

TGuT
i· ≤ bi, (15)

where (15) holds ∀i = 1, . . ., r, and K = K(µk). Similarly,

if Bpu(νk,Q
u
k) satisfies Definition III.1 for uk, (3e) can

be reformulated as Gu
i·νk+

√
Gu

i·Q
u
kG

uT
i· ≤ bi, i = 1, . . ., r.

Finally, with Xgoal = {x |Px≤p}, P∈Rq×n,p∈Rq , and

δN = 1−px

q , the goal region constraint Pr(xN ∈Xgoal) ≥ px
in (3f) is reformulated similarly using either (13) or (14).

C. Obstacle Avoidance Constraints

Consider M obstacles Oi ⊂ R
n and the unsafe and safe

sets Xobs =
⋃M

i=1Oi and Xfree = R
n \ Xobs. Then,

Pr(xk ∈ Xfree) ≥ px ⇐⇒ Pr

( M
∧

i=1

xk /∈ Oi

)

≥ px. (16)

Following similar derivations as before with a uniform risk

allocation δx := 1−px

M , a sufficient condition for (16) is

(16)
(a)⇐⇒ Pr

( M
∨

i=1

xk ∈ Oi

)

≤ 1− px (17)

(b)⇐=
M
∑

i=1

Pr (xk∈Oi)≤1−px ⇐=
M
∧

i=1

Pr (xk∈Oi)≤δx

⇐⇒ Pr (xk /∈ Oi) ≥ 1− δx, i = 1, . . .,M. (18)

For general nonconvex sets Oi and probability

distributions for xk, the constraints above are nonconvex.

Instead of using conservative polytopic approximations of

the obstacles as in [19] and to avoid the use of mixed integer

programming, we leverage the signed distance function

di : X → R: a nonlinear function which returns the shortest

distance from a point x to the boundary ∂Oi of a set Oi

[21]. It is defined as

di(x) = inf
y∈Oi

‖x− y‖2 − inf
z/∈Oi

‖x− z‖2. (19)

States out of obstacles return positive signed distances, i.e.,

x /∈ Oi ⇐⇒ di(x) ≥ 0. Also, note that ∇di(x) is given as

ni(x) =
x− xi

obs

di(x)
, with xi

obs = argmin
xobs∈∂Oi

‖xobs − x‖2, (20)

where ∂Oi denotes the boundary of Oi. Compared to

[26] which uses projection operators, the signed distance

function is differentiable almost everywhere which facili-

tates the convergence analysis of our algorithm and en-

ables its initialization with infeasible trajectories. Further,

although di(·) is nonconvex, it is possible to formulate a

convex conservative approximation of each individual obsta-

cle avoidance constraint xk /∈Oi by simply linearizing the

constraint di(x)≥ 0. Indeed, define x
j
k ∈Rn, djik = di(x

j
k)

and n
j
ik =ni(x

j
k). Then, given p∈ (0, 1),

djik + n
jT
ik (xk − x

j
k) ≥ 0 =⇒ xk /∈ Oi, and (21)

Pr
(

djik+n
jT
ik (xk−xj

k)≥0
)

≥p =⇒ Pr (xk /∈Oi)≥p. (22)

This result is generalized to the free set Xfree and summa-

rized in the following proposition:

Proposition 1. Define x, xj ∈ R
n, Xfree = R

n\Xobs, dmin ≥
0 a safety margin, dji = di(x

j), and n
j
i = (xj − xobs)/d

j
i .

If Xobs =
⋃M

i=1Oi, and Oi ⊂ R
n are closed convex sets,

then

dji +n
jT
i (x−xj)≥ dmin, i=1, . . .,M =⇒ x∈Xfree. (23)

Further, for p ∈ (0, 1), and any probability distribution of x,

Pr
(

dji + n
jT
i (x− xj) ≥ dmin, i = 1, . . .,M

)

≥ p (24)

=⇒ Pr (x ∈ Xfree) ≥ p.

Proof. Due to space constraints, we refer the reader to the

Appendix for the full proof of the first fact.

For the second, define the indicator functions Il(x)
and I(x), such that Il(x)=1 if dji+n

jT
i (x−xj)≥dmin,

I(x)=1 if x∈Xfree, and Il(x)=0, I(x)=0 otherwise.

Using (2), it holds that (24)⇐⇒ E(Il(x))≥p and

Pr(x∈Xfree)≥p⇐⇒ E(I(x))≥p. From the definitions

of E(·), Il(x), I(x) and due to Proposition 1,

E(I(x))≥E(Il(x)). Hence, E(Il(x))≥p =⇒ E(I(x)))≥p,

from which Proposition 1 follows.

Importantly, (21) holds for any x
j
k and is linear in xk.

Thus, using the procedure used to obtain (13), each chance

constraint in (18) can be conservatively reformulated as

djik+n
jT
ik (µk−xj

k)− Φ−1(1−δx)
√

n
jT
ik Σkn

j
ik ≥ 0. (25)

As Proposition 1 holds ∀xj
k, we set x

j
k = µk and obtain

(18) ⇐= di(µk)− Φ−1(1−δx)
√

nT
i Σkni ≥ 0, (26)

with i=1, . . .,M and ni = ni(µk).
Similarly, if Bpx(µk,Qk) satisfies Definition III.1 for xk,

(16) can be conservatively reformulated with Proposition 1

as

(16) ⇐= di(µk)−
√

nT
i Qkni ≥ 0, i=1, . . .,M. (27)

As mentioned in Remark 2 and shown in Figure 2,

there exists obstacle configurations for which (27) is less

conservative than (26).

Fig. 2: Consider x ∼ N (µ,Σ). For many obstacles or linear
chance constraints, using ellipsoidal confidence sets (Def. III.1,
in blue) rather than risk allocation and the exact reformulation
of each chance constraint (Eq. (26), feasible set in gray) is less
conservative.
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D. Nonlinear Deterministic Problem

Using the deterministic reformulations defined above, the

chance-constrained optimal control problem (OCP) can be

conservatively reformulated as a deterministic problem with

optimization variables (µ,ν) := (µk,νk)
N
k=0 as

Problem 2. Chance-Constrained OCP (CC-OCP)

min
µ,ν

l̃f (µN ) +

N−1
∑

k=0

l̃k(µk,νk)

s.t. µk+1=f̃(µk,νk), µ0=x(0), Σk+1(µ,ν)=(4b), Σ0=0n2

Hi·µk+Φ−1

δl
x

‖Hi·‖Σk
≤ hi, di(µk)−Φ

−1

δx
‖nik‖Σk

≥ 0,

G
u
i·νk+Φ−1

δu
‖Gu

i·K‖Σk
≤bi, Pi·µN+Φ−1

δN
‖Pi·‖ΣN

≤ pi,

where the indices i and j are defined separately

for each constraint in this section, Φ−1
δ :=Φ−1(1−δ),

f̃(µk,νk)=f(µk,νk,E(wk))) and ‖a‖Σ:=
√
aTΣa for

conciseness. We stress that instead of using the reformulation

for Gaussian distributions with Φ−1
δ with (5) as in this

formulation, ellipsoidal confidence sets can be used with (8),

as specified in Remark 2.

V. CONVEX PROBLEM REFORMULATION AND

SEQUENTIAL CONVEX PROGRAMMING

We provide solutions for (CC-OCP) by leveraging se-

quential convex programming (SCP). Specifically, in Algo-

rithm 1, we provide Chance-Constrained SCP (CC-SCP), a

version of [23, Algorithm 1] designed to solve (CC-OCP).

By leveraging the discrete time and chance constraints setting

in (CC-OCP), we are able to prove that, when convergence

is achieved, (CC-SCP) finds a point that 1) is a feasible point

for (CC-OCP), and in particular, it satisfies state constraints,

and 2) it satisfies strong necessary conditions for optimality

for (CC-OCP).

The working principle of (CC-SCP) consists of suc-

cessively linearizing the costs and nonconvex constraints,

seeking a solution of the original problem through a sequence

of convex problems. Given the solution (µj ,νj) from the

convexified problem at iteration j, the convex approximation

of (CC-OCP) at the current iteration (j+1) is described next.

First, we approximate the cost terms l̃f (·), l̃k(·) around

zj = (µj ,νj) using a first order Taylor approximation and

denote each linearized term as ljf (µN ) and ljk(µk,νk). Next,

all nonconvex constraints, including the dynamics and chance

constraints, are also linearized around (µj ,νj).
To avoid artificial unboundedness [25], where the solution

of the linearized problem may lie far from the lineariza-

tion trajectory (µj ,νj), it is necessary to add trust region

constraints ‖µk−µj
k‖2 ≤ ∆j , ‖νk−νj

k‖2 ≤ ∆j , where

∆j ∈ [0,∆0], ∆0 > 0 is the trust region radius. Also,

to provide theoretical convergence guarantees, we penalize

this constraint using a convex C1 approximation ϕ(t) for

max{t, 0} satisfying dϕ
dt (t)=0 for t ≤ 0.

Therefore, the convexified chance-constrained optimal

control problem at iteration (j + 1) is defined as follows:

Problem 3. Chance-Constrained Lin. OCP (CC-LOCP)

min
µ,ν

ljf (µN ) +

N−1
∑

k=0

ljk(µk,νk) + (29a)

ωj

( N
∑

k=1

ϕ(‖µk−µj
k‖2−∆j)+

N−1
∑

k=0

ϕ(‖νk−νj
k‖2−∆j)

)

s.t. Linearized Version of the Constraints in (CC-OCP).

where ωj ≥ 0 is a penalization weight. The complete problem

formulation is expressed in the Appendix.

Another key component of (CC-SCP) is the computation

of an accuracy ratio ρ to quantify whether the solution to

(CC-LOCP) is close to a solution of (CC-OCP): where

|∆lj+1
k |, ‖∆f

j+1
k ‖, ‖∆g

j+1
k ‖ quantify the differences be-

tween the true and linearized costs, dynamics and constraints,

respectively, normalized by the respective linearized expres-

sions as in [23].

(CC-SCP), outlined in Algorithm 1, consists of solving

a sequence of (CC-LOCP) (line 3) to obtain a solution

to (CC-OCP). If the solution lies outside the trust region

(line 4) or is deemed not accurate with respect to the

nonlinear problem (lines 5-6), it is rejected and weights are

updated accordingly (lines 7-8, 12-14) to ensure that the next

solution satisfies these conditions. Otherwise, each solution

is accepted and used to obtain the next (CC-LOCP). The

algorithm terminates once it converges or if it cannot find

a feasible solution (line 2). At line 15, ∆ is shrunk by

a coefficient α to satisfy an assumption necessary for the

theoretical convergence result presented in the next section,

although this step appeared to have no impact in practice.

Algorithm 1 Chance-Constrained SCP (CC-SCP)

Input: Initial guess (µ0,ν0)
Parameters: ∆0, βfail, βsucc, ρ0, ρ1, ω0, ωmax, γfail, α
Output: Solution (µ,ν)

1: j ← 0
2: while (µj+1,νj+1) 6= (µj ,νj) and ωj ≤ ωmax do

3: Solve (CC-LOCP)j+1 for (µj+1,νj+1)
4: if ‖µj+1−µj‖2≤∆j and ‖νj+1−νj‖2≤∆u

j then

5: Compute model accuracy ratio ρj
6: if ρj > ρ1 then

7: Reject solution (µj+1,νj+1)
8: ∆j+1 ← βfail∆j

9: else
10: Accept solution (µj+1,νj+1)

11: ∆j+1 ←

{

min{βsucc∆j ,∆0} if ρj < ρ0

∆j if ρj ≥ ρ0

12: else

13: Reject solution (µj+1,νj+1)
14: ωj+1 ← γfail · ωj

15: ∆j+1 ← α∆j+1, with α ≈ 1, α < 1
16: j ← j + 1

17: return (µj+1,νj+1)
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VI. CONVERGENCE GUARANTEES

(CC-SCP) enjoys theoretical guarantees of convergence.

Specifically, the main takeaway is that, when convergence is

achieved, (CC-SCP) returns a feasible point for (CC-OCP)

satisfying first-order necessary conditions for optimality, i.e.,

the Karush–Kuhn–Tucker (KKT) conditions associated to

(CC-OCP). In other words, (CC-SCP) leads to points that

are necessarily local optima for the nonconvex problem

(CC-OCP). In this section, we state and prove these the-

oretical guarantees of convergence. It is worth pointing out

that our analysis does not rely on the specific formulation of

(CC-OCP), but, under mild assumptions, it rather applies to

a broader class of nonlinear optimization problems.

A. Reformulation of the Main Problem

Denote z=(µ1, . . .,µN ,ν0, . . .,νN−1). Then, (CC-OCP)

takes the form of the following nonconvex problem:

Problem 4. Nonlinear/Nonconvex Formulation

min
z

c(z) s.t. h(z) = 0, g(z) ≤ 0,

where c: RN(n+m)→R, h: RN(n+m)→R
r, g: RN(n+m)→R

s,

where integers r, s > 0 sum up over all constraints in for-

mulation (2) and the inequality above holds componentwise.

In practice, (CC-SCP) successively solves linearized ver-

sions of Problem 4, defined as (CC-LOCP). Under the

formalism adopted above, these problems can be written as

the following family of convex problems:

Problem 5. Convexified Formulation at Iteration (j + 1)

min
z

(

c(zj) +∇c(zj)(z − zj)
)

+ ϕ(‖z − zj‖2 −∆j)

s.t. h(zj) +∇h(zj)(z − zj) = 0

g(zj) +∇g(zj)(z − zj) ≤ 0

where zj denotes the unique solution to Problem 5 at the

previous iteration j, around which Problem 4 was linearized,

∇h and ∇g are the Jacobians of h and g respectively,

and with the notation ‖z− zj‖2−∆j , gathers all the con-

tributions ‖µk−µj
k‖2−∆j , ‖νk−νj

k‖2−∆j in formulation

(3). Recall that the scalar function ϕ(t) is a C1, convex

approximation for max{t, 0} with dϕ
dt (t) = 0 for t ≤ 0.

B. Necessary Conditions for Optimality

Definition VI.1. A point z satisfies the Linear Independence

Constraint Qualification (LICQ) for a nonlinear, nonconvex

formulation as in Problem 4 if, for every i ∈ A ⊆ {1, . . . , s}
for which gi(z) = 0, the vectors ∇(gi)(z), i ∈ A and

∇(h1)(z), . . . ,∇(hr)(z) are linearly independent.

Definition VI.2. A point z satisfies the KKT conditions for

a nonlinear, nonconvex formulation as in Problem 4 if there

exists a multiplier (α,λ, ζ) ∈ R
1+r+s satisfying

α∇c(z) + λ⊤∇h(z) + ζ⊤∇g(z) = 0, (32a)

h(z) = 0, g(z) ≤ 0, (α,λ, ζ) 6= 0, (32b)

ζigi(z) = 0, ζi ≥ 0, i = 1, . . . , s. (32c)

Below, we recall the classical result concerning first-order

necessary conditions for optimality (see, e.g., [28]):

Theorem 1. Let z∗ be an optimum for Problem 4 for which

LICQ holds. Then, z∗ satisfies the KKT conditions related

to Problem 4 with multiplier (α,λ, ζ) satisfying α = 1.

The previous theorem provides the existence of multipliers

(α,λ, ζ) for which α 6= 0. As a consequence, this might

prevent from having a control over the norm of the multiplier,

that is, when considering a family of optimization problems

(in our case, represented by the family of convexified Prob-

lems 5) it might happen that the family of associated mul-

tipliers (when they exist) is not bounded. Having bounded

families of multipliers will be crucial to prove our theoretical

result. For this, below we derive slightly different necessary

conditions for optimality tailored to our framework:

Corollary 1. Let z∗ be an optimum for Problem 4 for which

LICQ holds. Then, z∗ satisfies the KKT conditions related to

Problem 4 with multiplier satisfying ‖(α,λ, ζ)‖ = 1, α ≥ 0.

Proof. Thanks to Theorem 1, z∗ satisfies the KKT condi-

tions related to Problem 4 with multiplier (α̃, λ̃, ζ̃) satisfying

α̃ = 1. Since (α̃, λ̃, ζ̃) 6= 0, the conclusion follows by taking

(α,λ, ζ) := (α̃, λ̃, ζ̃)/‖(α̃, λ̃, ζ̃)‖.

C. Assumptions and Proof of the Main Result

The proof of our main result makes use of the following

set of assumptions, which we list below. We appropriately

comment these assumptions and their validity in the context

of our main problem (CC-OCP).

Assumption 1. Functions c, h and g are C1.

This assumption is easily satisfied in the context of

(CC-OCP). Indeed, all deterministic cost and dynamics are

taken to be C2, therefore, the covariance matrices Σk are C1.

Moreover, all original deterministic constraints can be chosen

to be C1, including the signed distance function which is

C∞ when the obstacles are either walls or discs (for which

the differentiability holds everywhere but at their centers; this

also extends to ellipsoids). A proof of this fact is provided in

the Appendix. Finally, it is worth noting that this assumption

can always be enforced because any Lipschitz function can

be approximated by a smooth function with a precision that

is selected by the user (see, e.g., [29]).

Assumption 2. At each iteration j, Problem 5 has a solution

zj . Moreover, zj satisfies LICQ related to Problem 5.

Finally, the family of solutions zj , j ∈ N is bounded.

This assumption is classic in convex optimization and

easily satisfied in the context of the linearized Problems

(CC-LOCP). In particular, since the constraints in for-

mulation (29) define a convex and closed feasible region,

every Problem (CC-LOCP) has at least one solution as

soon as the feasible region is not empty and either the

convexified version of the cost goes to infinity at infinity

or the feasible region is bounded. The latter is satisfied
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