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Collisions may be harnessed as a way to improve the overall safety and navigational effectiveness of some
spacecraft. However, leveraging this capability in autonomous platforms requires the ability to plan trajectories
comprising impulsive contact. This paper addresses this problem through the development of a collision-inclusive
approach to optimal trajectory planning for a three-degree-of-freedom free-flying spacecraft. First, experimental
data are used to formulate a physically realistic collision model for the spacecraft. It is shown that this model is linear
over the expected operational range, enabling a piecewise affine representation of the full hybrid vehicle dynamics.
Next, the dynamics model and vehicle constraints are incorporated into a mixed integer program. Experimental
comparisons of trajectories with and without collision-avoidance requirements demonstrate the capability of the
collision-inclusive strategy to achieve significant performance improvements in realistic scenarios. A simulated case
study illustrates the potential for this approach to find damage-mitigating paths in online implementations.

Nomenclature

A = net obstacle avoidance region, composed of poly-
gons, P

a;,b; = parameters defining the half-plane representing the
Jjth wall

Fi = inertial reference frame defined for the testbed

Fh = inertial reference frame defined for the jth wall

1, = n X n identity matrix

ik = basis vectors for the inertial frame F;

J = cost function

M = large scalar defined according to the Big-M method

m = mass of spacecraft, kg

o = origin of inertial frame F;

P = convex polygon defining an obstacle avoidance
region

R = radius of the spacecraft, measured from rotation
center to point of contact on outer surface, m

S, S = half-plane and polygon defining surfaces with
which collision is permitted

ST, SN = position tangent and normal to a wall, m

toa ks = basis vectors for the local frame F7,, defined tan-

B i R !

gent, normal, and upward from the jth wall

u = spacecraft control vector, m/s?, m/s?, rad/s?

v, Uy = components of velocity tangent and normal to a
wall, m/s

X; = state of the vehicle on the ith iteration, expressed in
the inertial frame F,

z = generic vector used to define sets
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Yij = event variable indicating position with respect to
the jth wall of S on the ith iteration

At = fixed time period between samples in discrete time
horizon, s

1) = effective distance of a collision surface from the
origin of the inertial testbed frame F;, m

g = event variable used to indicate collisions with S on
the ith iteration

4 = orientation of the spacecraft axes with respect to
the inertial frame, measured as angle about &, rad

K7, Ky, K, = tangential, normal, and angular restitution
coefficients

Aij = event variable indicating position with respect to

the half-plane defined by a;, 3; on the ith iteration
i = event variable indicating collision with the jth wall

of S on the ith iteration

T = number of steps in discrete time horizon

0] = angular velocity of spacecraft with respect to F,
taken as the time derivative of 0, rad/s

0, = n X n zeros matrix

I. Introduction

SSISTIVE robotic spacecraft have the potential to enable the

automation of many tasks that are not well-suited to be directly
performed by astronauts, because they are either too dangerous or
overly tedious [1]. Within this context, extravehicular platforms have
been proposed for missions such as on-orbit monitoring [2,3], com-
ponent assembly [4], and debris removal [5]. Likewise, intravehicular
assistive robotics [6] is being developed to fulfill many housekeeping
duties inside the International Space Station (ISS). For instance,
the Astrobee robot [7], a successor to NASA’s highly successful
SPHERES [8] testbed, has stated goals of 1) providing a microgravity
research platform, 2) performing mobile camera tasks, and 3) per-
forming mobile sensor tasks for environment monitoring and inven-
tory management. As with most mobile autonomous platforms, safe
and efficient navigation is key to the successful integration of these
vehicles into mission operations.

A popular approach to mobility for microgravity robots is expend-
ing propellant to actuate movement between periods of free-flight,
often referred to as propulsive free-flying. One may find key results
related to path planning and close proximity operations for this case
in [9-12]. However, a common issue facing this approach is that
propellant is often expensive to acquire or in limited supply. As a
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consequence of this, fuel efficiency has become one of the primary
performance characteristics for spacecraft. The desire to reduce costs
has motivated the development of two alternate navigation modal-
ities. The first is zero-g climbing [13], where the vehicle uses grasp-
ing contact in the surrounding environment to traverse between
locations. A proposed faster and simpler alternative is the hopping
modality [14,15]. In this case, the vehicle uses a robotic arm to propel
itself between some fixed handrails. Although this strategy is attrac-
tive in the sense that it is completely propellantless, it is also more
restrictive than the propulsive free-flying strategy in the sense that it
requires the precise coordination of a robotic arm and requires hand-
rails to be present over the operational region.

This paper presents a new approach to mobility for assistive space-
craft: supplementation of propulsive free-flying with planned colli-
sional contact (bouncing). To the best of our knowledge, this approach
to spacecraft mobility has not been explored in the open literature. We
show that this offers a strategy that is both less restrictive than the
propellant-free approaches, and often more efficient (with respect to a
given cost function) than its collision-free counterpart. In contrast to
hopping, where a robotic arm interacts with the environment to provide
the energy needed to change the momentum of the spacecraft, bounc-
ing achieves similar maneuvers passively though impulsive contact.
For example, a spacecraft needing to redirect itself inside a corridor
may do so swiftly with a single well-planned collision, rather than
executing the series of maneuvers needed for coordinated hopping.
Because the interaction is passive, bouncing poses very little require-
ments on the vehicle or the surrounding environment itself. Hence the
main challenge stems from the task of developing an effective motion
planning strategy to leverage this capability. Focusing specifically on
the case of small, assistive intravehicular spacecraft, we assume that the
vehicle operates in the proximity of fixed surfaces with which it may
collide, and that both the vehicle and the surface are able to withstand
low-speed impact.

There is arich body of work related to impulsive contact in robotics,
spanning applications such as running [16]; jumping [17]; batting [18];
air hockey [19]; and car following [20]. In addition, the problem
appears in the aerospace context, within landing [21], docking [22],
grasping [23], and bouncing on planetary bodies [24]. Looking spe-
cifically at the case of vehicle collisions, there has been foundational
work in analyzing the stability and robustness of a colliding vehicle
[25], designing vehicles that are tolerant to collisions [26], and even
extracting localization information from instances of impact [27].
Collisions can further be harnessed as a practical means of improving
the effectiveness of trajectories. Through dissipation of energy or
redirection of momentum, colliding agents are endowed with greater
maneuverability. One can observe many examples of this phenomenon
in competitive situations, for example, swimming and parkour, and in
nature (e.g., animals pushing off of [28] or jumping between objects).
However, the use of planned impulsive contact explicitly for perfor-
mance gains has only recently been considered in the context of robot
trajectory planning. In [29], the authors use a mixed integer linear
programming (MILP) formulation to derive a time-optimal trajectory
incorporating planned collisions for a point mass. In this paper, we use
these initial results to develop a collision-inclusive, optimal trajectory-
planning formulation for in-plane motion of a free-flying spacecraft.
Note that because the overall set of trajectories allowing collisions
encompasses all collision-free trajectories as well, the optimal perfor-
mance with respect to any objective function must either remain the
same or improve when compared with the case where collisions are
always avoided.

In addition to performance benefits, collisions may be used to
improve the safety of a vehicle in the presence of observed changes
in the surrounding environment. Intuitively, in situations where colli-
sions cannot be avoided, a safest plan of action incorporating the
collision may be found. Looking specifically at the case of online
model predictive control (MPC), hard collision-avoidance constraints
may render the problem infeasible when collisions are unavoidable.
This problem can be addressed by either resorting to a backup con-
troller when the MPC is not feasible [30] or softening the constraints
(i.e., replacing constraints with penalties in the objective function)
such that feasibility is preserved [31]. We extend this prototypical

constraint-softening approach with the addition of an explicit model
of the collision dynamics formulated in the constraints. In addition to
remaining feasible in the presence of an inevitable collision, this allows
the vehicle to plan around the collision, all while minimizing a penalty
function that captures the estimated damage cost. This additional safety
measure may offer a particularly useful tool for platforms proposing
autonomous operation in the presence of humans.

The remainder of the paper is outlined as follows: In Sec. II, we
review the mathematical preliminaries required to develop the main
results. In Sec. III.A we introduce the assumptions on the spacecraft,
and develop basic dynamical constraints. Experimental collision data
are obtained and used to derive a realistic collision model for the
spacecraft in Sec. III.B. Section IV uses the motion model and vehicle
constraints to specify an optimal strategy for moving between states. In
Sec. V.A an experimental case study is described, and the performance
of the collision-inclusive algorithm is compared with that of the
collision-free case. It is shown that the proposed method is capable
of significantly reducing a chosen objective function. Finally, Sec. V.B
explores potential safety applications with a simulated scenario.

II. Mixed Integer Programming for Control
of Hybrid Systems

Mixed integer programming (MIP) denotes an optimization prob-
lem that is composed of both real and integer decision variables. This
type of problem provides a very general framework for capturing
many types of practical control objectives. Specifically, the inclusion
of integer variables allows for the expression of discrete decisions.
This makes it naturally well suited to optimizing the actions over
systems governed by interdependent dynamic modes, logical state-
ments, and operational constraints [32]. For our purposes, this is
leveraged to optimize trajectories for a spacecraft experiencing
unique dynamic modes encountered during collision and free flight.
By modeling this hybrid behavior, integer variables encode the
choice of whether or not to collide.

We consider programs where the objective function J(z) is opti-
mized over piecewise affine (PWA) constraints, fitting the form
below.

min J(z)
z
S.t. Dczc +Dbe Sg, AL‘ZC—FAbe =h (1)
e (S Rﬂ(" Zp € {07 l}nb’ = [ZC’ Zb] € Rn

where D, eR"™" D, eR™m,  geR" A, € R,
A, € RP* and h € R”. Although the problem is not convex in
general, one can in principle compute globally optimal solutions
whenever J is convex by solving a finite number of convex subpro-
blems [33]. Formulations with linear, quadratic, or second-order cone
objectives are commonly applied in a variety of practical applications
[12,34-36]. Although in theory these problems are difficult to solve
[37], solutions can readily be found with good average case perfor-
mance using off-the-shelf optimization software (e.g., CPLEX [38],
Gurobi [39], MOSEK [40]).

MIP allows for the representation of hybrid systems by associating
integer variables with the current mode of the system. Specifically,
integer variables (also known as event variables) allow for the direct
expression of first-order logic over the constraints. These variables
may be assigned a unique value based on the location of the state
vector, and in turn be used to relax a different set of constraints over
the continuous variables. To demonstrate this, let us consider the
following case, where an inequality condition ¢’z < d is used to
activate distinct equality constraints:

alz=by if cTz<d @
alz=b, ifcTz>d

withz,a;,¢c € R",b;,d € R,i = 0, 1. The main tools at our disposal
for representing hybrid systems as programs in the form of Eq. (1)
come from the lemmas below, which define relationships between
implications and inequalities of real and binary decision variables.
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Let{ € {0,1},z € Z C R", and parameters a, ¢ € R" and b, d € R.
We then have the following results [41-44].

Lemma I [32]: Given M € R such that max,c;(d — cTz) < M,
the following are equivalent:

() [Tz<dl=[¢c=1] (i) cTz+M>d

Proof: 1f max,cz(d — ¢”z) < M holds, then the statement (i) is
true forall z € Zwhen ¢ = 1. Given ¢ = 0, (ii) is true when ¢z < d
holds, and is false otherwise. Thus, the truth values for (ii) are
identical to the implication (i) for all assignments. O

Lemma 2 [32]: Given M € R such that max ez (c"z — d) < M,
the following are equivalent:

MHE=1=>[cTz<d] (i)cTz-M1-¢)<d

Proof: If max,e;(cTz —d) < M holds, then (ii) is true for all
¢ = 0. Given ¢ = 1, (ii) is equivalent to ¢’z < d. (]

The proofs for the above lemmas may also be made apparent via
the form of a truth table (see Appendix C). Note that we can apply
these together to form an equivalency. Likewise, application to
inequalities of opposing sense (in conjunction) extends the result to
the case of equality constraints.

Lemma 3 ([45] Sec. 16.4): Given M € R such that
max,c(a’z — b) < M, the following are equivalent:

(DOg=1]=[a"z=0b] (i)[a"z-M(1-)<b]Ala"z+M(1-)2b]

Proof: If max,cz(a’z —b) <M holds, then (i) is trivially
satisfied for £ = 0. Given ¢ = 1, (ii) is equivalent to a’z = b.
Equivalence then follows from the truth table. |

From here we can combine these results to yield a conjunction of
mixed integer inequalities that is equivalent to Eq. (2) over some
specified range on z.

Theorem 1 ([45] Sec. 16.4): Given M € R sufficiently large such
that max(max,cz(|cTz — d|), max,cz(a”z — b)) < M holds, then
the system Eq. (2) is equivalent to

l[agz—ME<bg] A lajz=M(1={) <b] A [¢"z—-M{<d]
lalz +ME>bo] A [alz+M(1=0)2b|] A [c"z+M(1-0)>d]

In practice, the parameter M should be chosen carefully. Whereas
values that are too low may not satisfy the above conditions, exces-
sively large values will decrease computational efficiency and may
introduce numerical error. For notational simplicity, the sequel uses
the same parameter M in all instances of this method. Note that from a
computational viewpoint it is often better to avoid strict inequalities
in implementation. This may be accomplished by using a nonstrict
inequality and adding a small number ¢ to the side with lesser value.

III. Vehicle Description and Constraints

The system of interest consists of a single free-flying spacecraft in
the presence of one or more flat surfaces. The spacecraft is subject to
input constraints and is restricted to moving within a plane. The
colliding surface is assumed to be fixed and orthogonal to this plane.
The collision model is developed empirically for the specific use case
of operation on the robot and testbed at Stanford’s Space Robotics
Facility (see Fig. 1). A detailed description of this environment and
the experimental setup is provided in Sec. V.A.1.

A. Free Flight Dynamics

The motion of the spacecraft is expressed in an inertial frame
Fr= (O, i f 12) with right-handed orthogonal basis vectors i, f lying
in the plane of motion and k=ix j For the testbed shown in Fig. 1,
the origin O is taken as the lower left corner, i, j lie along the testbed
boundary, and k points upward. The position of the vehicle’s center
of mass Op with respectto O is s = sxf + syf and the translational
velocity is v = vxf + vyf. We may also define a body frame

Fp = (Op, fB,]A'B,IQB), with basis vectors fB and fB aligned with
the orientation of the thrusters, and IQB = k. The orientation of F B
with respect to F; is 6, with positive increments in the angle 6
corresponding to counterclockwise rotations of the spacecraft, as seen
from above. This geometry is illustrated in Fig. 2a. The angular

velocity of the vehicle is @ = 0 k. The nominal—that is, collision-
free—spacecraft dynamics™ are then

Sy = Uy, Sy = uy, 0= Uy 3)
where u, and u, are the translational accelerations due to applied
thrust, and uy is the rotational acceleration from an applied moment,
which is generated by changes in the reaction wheel speed from a
lower level controller. We assume that the thrust inputs are balanced,
such that the applied moment comes entirely from the reaction wheel.
For the configuration shown in Fig. 2a, the relationship between
translational acceleration and the thrust output from the eight indi-

vidual thrusters is

u, | 1[cos(@ —sin@][0 -1 1 0 01 —-10
uy |~ m|sin@) cos® [[-1 0 0 -1 10 0 1|

@

where m is the mass of the spacecraft and uy € [0, up . is the
vector of individual thruster output forces. Here ur ,,,x represents the
maximum force output of a single thruster.

Note that the thruster arrangements on the spacecraft are such that
the maximum accelerations achievable in the i, j directions are
functions of the body orientation 8. We can simplify this with the
use of a conservative inner approximation on the maximum accel-
eration from thrust u.,, (), which generates a condition that is
uniform (not dependent on orientation) in the inertial frame.

u% + Mf < ulznaxv Umax = mgin(umax(g))) 5
With the present geometry, we have that u,x = (2/m)ur max-

B. Collision Model

To develop a framework for optimizing trajectories that allow
collisions, we must first develop a model for the collision effects
on the spacecraft. Collisions are generally difficult to understand and
model conceptually, as a first principles analysis requires the consid-
eration of many interacting physical phenomena relating to the geo-
metric, material, and inertial properties of each body involved, many
of which are in themselves difficult to model accurately. Many
approaches have been proposed to model general collision behavior
over a wide range of scenarios [46,47]. However, because we use a
specific pair of objects over a relatively limited range of conditions,
we are able to develop an algebraic collision model empirically, by
directly considering the relationship between the velocities immedi-
ately before and after the instant of contact with no thrust com-
manded. Figure 3 shows the effects of 82 individual collisions for
the free-flyer spacecraft and testbed shown in Fig. 1. Within the tested
range, the data suggest that the changes in rotational velocity (Aw),
translational velocity normal to the wall (Avy), and tangent to the
wall (Avy) all follow a linear relationship with the precollision
normal velocity (vy) and relative velocity of the point of contact
(V). Furthermore, we observe that, for this set of parameters, effects
in the normal direction are uncoupled from the tangential and rota-
tional effects, leading to the following model:

Avy 0 k7 -
Avy [=xy O [ vﬁl ] (6)
Aw 0

rel

**The modeling and trajectory planning phases will assume a disturbance-
free and deterministic spacecraft model. Noise, parametric uncertainty, and
errors from approximation are to be addressed through online regulation.
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\ i .~j /S .
Fig.1 Free-flyer spacecraft and testbed with the avoidance region for the experiment in Sec. V.A outlined in adhesive tape.
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Fig.2 Geometry and conventions for a) free-flyer spacecraft and b) collision with a flat wall S.
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Fig.3 Observed data from 82 collisions, with linear interpolations taken with respect to the least-squares error.

where
— A — _
Vg = V7 + Roo (7)

(k7. Ky, Ky) = (=0.29,-1.43,-5.0), and R is the radius of
the spacecraft, measured from the outer rim to the rotation center.
The coefficients are obtained via a least-squares regression on the
model error.

If we assume that the collision occurs instantaneously, the positions
after the collision can be obtained by integrating the equations of motion
with precollision velocities until the point of contact, and postimpact
velocities afterward. Let At 2 At~ + Ar* be the period between the
state measurements, and & be the effective location of the wall along the
orthogonal axis (inflated by R, as seen in Fig. 2b). Then the experimental
model of Eq. (6) yields the following position update equations:

Ast = (1 + xk7)Atvy + k7 RAtw™ — kr (V7 + Ro™) At~

Asy = (1 + ky)Atvy + ky(sy — )
A0 = (1 + k,R)Atw™ + k,Atv; —k,(v; + Ro™)Ar~ ®)

where the time until collision is

A~ = M )

Uy

Note that the term A¢~ introduces a nonlinearity in the tangential and
rotational update laws. Making the approximation that collision occurs
midway through the interval A~ = 0.5A¢ allows us to obtain a linear
form of these equations. The bounds on error from this assumption can
be calculated from the maximum difference between the exact and
approximated equations, which yields

K1

Kﬂ) —
er < > | |At, ey =0, ey < > [vglAt  (10)

where e, ey, ey are the errors in the tangential, normal, and angular
directions, respectively. Note that errors vanish both as |vy | decreases
and for finer resolutions Az. The collision geometry of the free-flyer
system is illustrated in Fig. 2b.
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IV. Problem Formulation

This section formulates the problem of generating optimal trajecto-
ries for a spacecraft in the presence of 1) an obstacle avoidance region
A, composed of Np convex polygons Py, with k € {1,...,Np},
and 2) surfaces S, S (representing half-planes and convex polygons,
respectively) with which collisions are permissible. For bothand S, S,
we will use the convention that the interior of the walls is denoted
by the union of sublevel surfaces of some defined planes in R?, and
the exterior is the complement of the interior. It is shown that the
combined dynamics of the spacecraft, saturation constraints, and
obstacle avoidance conditions are all amenable to approximation
with piecewise affine constraints. In light of this, we choose to pose
the trajectory optimization problem as an MIP. We consider the
discrete time approximations of the models developed in previous
sections over a horizon of i = 1, ..., 7. The state of the vehicle at the
ith time step is defined as xT = [s, ;, 5,1, 0;, v, ;, Vy;, ], and control
vector as u! = [u,, Uy ;, Ug ;). For completeness, we expound upon
some basic control and obstacle avoidance constraint formulations
found in [34,43,44].

A. Obstacle Avoidance and Saturation Constraints

The saturation constraint Eq. (5) can be represented by approxi-
mating the Euclidean norm with an Ny, sided polygon:

. (2nn 2rn .
Uy ;Sin N +u, ;Cos N SUpmaxs B=1,...,Ny, i=1,..,7

U U
(11)

Whereas the approximation improves with the number of sides
Ny, the added constraints may increase the amount of time required
to calculate the solution. The aggregate obstacle avoidance region A
can be constructed from a set of Np convex polygons P;:

N,
AL {zeR2|k\_}’lzePk},
where, Py £ {z € R[] z<dppq=1,....Noi} (12)

where ¢, € R?and d, 4 € Rspecify the gth side of the kth polygon,
which has N sides. We can construct the avoidance constraint
s & A by defining event variables v , ; € {0, 1} such that czqsi <
dyg = W4 = 1, and ensuring that the position of the vehicle lies in
the positive end (exterior) of at least one of half-spaces defining the
walls of each polygon. This is accomplished with the following
constraints:

Nox
Nox Qk

qi\lc;qsi'f'M'l/k,q.ide.q A ZWk,q.iSNQ.k_la

a ~

k=1,...Np, i=1,...1 (13)

Note that each conjunct is an application of Lemma 1, and the
summations enforce the condition that there is at least one side ¢ in
each polygon such that chsi 2 dp -

Example: Rectangular Boundary Let us consider the simplified
case of a rectangle A=P, = {z€R?z € (", "),
7, € (Z", 7)Y, The equivalent MIP constraints for the condition
s ¢ Aare

=S+ My 2 =2 A s+ My 220 A sy + My > =250
4

A sy +Myy 228 A Yy, <3 (14)
g=1

B. Representing Dynamics in the Presence of a Single Collision Surface

For notational simplicity, we assume for this case that the basis
vectors of F are oriented with the wall S so that j points away from

the wall, { is tangent, and k=i xf remains pointed upward (see
Fig. 2b). The discrete time equations of motion are given by

_ _ Ax,»-i—Bu,- ifé’H’l =0 , _
Xin x"_{Acx,»erc el Z) = leeml ()

where A and B represent the nominal dynamics:

R AN; _ (05502
e il S vl B

and A, and b, represent the collision dynamics:

[0 0 0 (1+0.5k7)A¢ 0 0.5k;RA?
0 ky O 0 (1 +Ky)At 0
e 0 0 0 0.5k,At 0 (1+0.5x,R)At
“lo oo Ky 0 k7R ’
000 0 Ky 0
|0 0 0 K, 0 K,R i
- 0
—KpnO
0
b, = (17
0
0
L 0

The period between steps i and i — 1 is Atz, which is assumed to
remain constant over all iterations.

Let the wall be located at a distance §” from the origin of the inertial
frame F;, and define § 2 §’ 4+ R, where R is the radius of the
spacecraft, measured from the rotation center to the point of contact.
Then we can define the wall by the set S 2 {z € R?|z, < 8}. The
occurrence of a collision can be associated with an event variable
{; € {0, 1}. This triggers the switch between the nominal and colli-
sion dynamics; it is activated (equal to one) on an iteration i if the
nominal dynamics predict that the vehicle will enter S on that
iteration, that is,

Sy,i + vy,iAt"_uy,iO-SAtz <6©§i+1 = 1, i= 1,...,7—1

(18)

Using Lemmas 1 and 2, we can express Eq. (18) with the equiv-
alent set of constraints:

Syt vy A+ uy, 0.5AP +ME > 6
Sy + vy A+ uy 0.SAPZ = M(1=(ipy) <6,

and from Theorem 1, we see that Eq. (15) is equivalent to

X1 —%—Ax;—Bu; + MIc{; >0
Xip1—Xx;—Ax;—Bu;—MI¢C; <0
X1 —%—AXxi—b.+MIg(1-{;11) 20
X1 —Xi—Ax;i—b.—MIs(1-C; 1) <0,

i=1,....t—1 (20)

Section B of the Appendix provides an example implementation of
this method for the simple case of an idealized bouncing ball.
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Note that collisions may have the undesirable effect of imparting
an external moment onto the spacecraft. Although this may be useful
for translating stored angular momentum into lateral momentum in
safety critical scenarios, it could also lead to saturation of the reaction
wheels over time. As such, it may be desirable to minimize momen-
tum transfer by constraining the relative velocity of the contact point
to zero at the time of collision: {; = 1 = v, = 0. Equivalently,
from Lemma 3, .

Ui+ Ro;—M(1=() <0 A v+ R+ M(1-() >0, i=2,...,7
21

Note that meeting this condition preserves the initial tangential and
angular velocity over the collision.

C. Representing Dynamics in the Presence of Polygonal Collision
Surfaces

At the expense of introducing some complexity, we can generalize
collision surfaces S from half-planes to convex polygons:
S&{zeRalz<b;j=1.....Ng} (22)
where Nz is the number of sides in the polygon and the indices j label
the walls in a counterclockwise order. In contrast to the previous case,
the basis vectors 7, f are not restricted to a particular orientation. We
will assume that the vehicle collides into the jth wall of S on iteration
i if 1) the position at time step i — 1 is closest to the boundary of the
Jjth wall, and 2) the nominal update equation predicts that the vehicle
will enter the interior of S on iteration i. It is convenient to represent
the second condition as §; = A,x;_; + Byu,_; € S, where Ay, By
are the first two rows of A, B, corresponding to the position update
under the nominal dynamics. Likewise we can represent the first
conditionas s;_; € C;, where C; is the region exterior to the polygon,
closest to wall j. This can be defined as

Cjé{z E]R2|ajrz <ﬁj,a£(j)z Zﬁ(,(j),ajrz > b} (23)

where o(}) is the jth element of ¢ £ (N3, 1,2,...,Nz —1),and e,
B define the half-space bisecting wall j and the next wall in the
counterclockwise rotation, such that asz < p; is satisfied for points
closer to the jth edge. An example configuration is shown in Fig. 4.

Our goal is to define event variables &; ; € {0, 1} to indicate the
occurrence of collisions. Specifically, we want Z; ; = 1 when a
collision occurs with the jth wall on iteration i,

B, j=1e§eSAs, 1 €C, i=2..1 j=1..N; (24

These indicator variables may then be used to activate the collision
dynamics for the wall involved in the collision. To indicate the
position with respect to the walls (a;, b;) defining the polygon S,
we introduce constraints:

Fig.4 Example geometry for triangular collision polygon S.

aJT§,+M;/U Zb/ A aijl—M(l —}’in) <bj7
i=2,...,71, Jj=1,...,Ng (25)

which fixesy; ; = 1 exactly when the constraint aij i < bjis satisfied
(e,yij=1® ast~,~ < b;). We can use constraints of the same form

to indicate the position of the vehicle with respect to the half-spaces
defined by (a;, §):

a Si+Mh ;> p; A a ;=M =2 ;) <p;
i=2,...,t, j=1,..,Ng (26)

which expresses 1; ; = 1 & a]TE i < p; for the appropriate values of

i, j. The equivalencies in Eq. (24) can then be enforced by the
constraints

N
Z}/i,p +Aim1j = Aicto(y = Vierj T M1 =E;j) 2Nz + 1
p=1
Ng
A ZJ’i.p + dic1j — Aict o) — Vie1,j — ME;; < Nz 27
p=1

which are applied fori = 2,...,7,j=1,...,Ng.
The dynamics for this system are then

Ax;+Bu; if g,
Yip1=X%i= i Z = 'HJ i=1,..,7—1 (28)
A'Cx,--}—b'c lfdi+l‘j:l,J:1,..,N3,

where A’;, b£ are the collision dynamics for the jth wall. To
represent these dynamics, let us first define a local frame for the jth

wall FJ, = (O, fj, aj;, 12) with ?j, a; pointing tangent and normal to
wall j, and lgj = fj x a; upward. Each local frame is a rotation of
F; = (0,1, ], k) about k by an angle ¢;. Let Ly(¢p;) € R¥ be the
rotation matrix converting vectors in F; to vectors in JF° J.. Then we

can express the collision dynamics for each wall in F; by rotating the
position and velocity vectors to and from this local frame:

Al = AAAT bngj[o, .00, 00}
: llajll, Jllz
o | L3@) 05
where, A; £ (29)
0;  Ls(¢))

The dynamics in Eq. (28) are then represented by the following
MIP constraints:

Ns
xi+1—xi—Axi—Bui—M( EH—I/)S‘)

J=1
Xip —X;—Alx;—bl—MZ, ;<0

AXip—x;— Alx; — b’+MHl+II>0 ji=1...,Nz (30
which are appliedati =1,...,7—1.

D. Example Objective Functions

In practice, the appropriate choice of an objective function
depends on the specific needs of the mission. The proposed method-
ology does not assume a particular form for the objective. However,
because vehicle efficiency is commonly of critical importance to real-
world missions, we find it useful to review here two common
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approximations for penalizing actuation using quadratic and linear
functions. A simple option is to use the power limiting cost
function [48,49],

=Y (2, +u2) 31
i=1

which forms a Mixed Integer Quadratic Program (MIQP). With the
introduction of additional constraints, it is also possible to use a PWA
approximation of the Euclidean norm of commanded translational
acceleration [34]. The resulting cost function is linear:

: N 2 2
J2=;G,-, s.t. n/leiZMX,isin(Nij)+uy_,~00s(NLj), i=l,..,7
(32)

The constraints here approximate the second-order cone con-
straints G; > ||[uy;, uy ]ll2. i = 1,...,7 with an N-sided polygon.

V. Applications and Case Studies

The potential benefits of the proposed approach are demonstrated
through two case studies. First, the problem formulation developed in
Sec. IV is validated on hardware. The effectiveness of the approach in
improving upon a chosen objective function is studied through a
comparison between collision-inclusive and collision-free trajecto-
ries. Results are tabulated for both ideal and experimental cases.
Next, a simulated example provides a qualitative demonstration of
how the collision-inclusive planner may be applied in safety-critical
applications.

A. Experimental Performance Comparison
1. Description of Hardware and Testbed

Experiments were conducted for this work in the Stanford Space
Robotics Facility on the free-flyer spacecraft robot testbed. A set of
robots is designed to hover frictionlessly on air bearings, thus emu-
lating microgravity dynamics in the plane of a table. Though previous
generations of the free-flyer robot used in this experiment operated on
compressed air [50], the current iteration of the free-flyer operates on
CO,, owing to CO,’s ability to be stored in liquid form at room
temperature at only 1000 psi, resulting in a much higher fuel density
than can be achieved at comparable pressures with compressed air.
The robots are also equipped with actuators commonly used in
spacecraft, namely, a reaction wheel for attitude control and eight
cold-gas thrusters primarily for translational control. Because of high
capacity of the CO, tanks, the robots can perform aggressive thrust
maneuvers for over an hour and can hover without thrust for over 10 h
continuously.

The robots use an Odroid XU4 for its primary onboard computa-
tion, as well as an mbed Microcontroller for low-level control of
various subsystems. Additionally, the free-flyer software stack is
implemented in ROS and is connected to an off-board hub computer,
where more heavy computation can be run as needed for planning and
control. The ROS stack also gives access to real-time data from a
motion-capture system, giving position and velocity information at
120 Hz. The granite table used for experiments is 9’ X 12'—approx-
imately 2.74 m X 3.66 m—allowing ample room for complex plan-
ning scenarios. Further parameters for the free-flyer robot can be
found in Table 1, where average mass is reported due to variations in
the state of the tanks.

2. Performance Comparison

The spacecraft and testbed described in the above section are
considered with S taken as the lower wall of the testbed and the
origin of F at the lower left corner, as shown in Figs. 1 and 5.

‘We now compare the performance of vehicles navigating from rest
at initial position s; = [0.41 m,2.29 m]” to rest at final position
s, = [3.15 m,2.29 m]”, while remaining in the boundary of the
testbed, and avoiding a central rectangular region P = {z € R?|z,
€[1.45,2.12],z, €[0.57,2.74]}. We minimize the cost J;

Table1 Free-flyer spacecraft parameters

Parameter Value Unit
Average mass, m 18.08 kg
Radius, R 0.157 m
Max individual thruster output, u7 ., 0.20 N
Body inertia about spin axis, /,, 0.184 kg -m?
Reaction wheel inertia, 0.029 kg-m?
Max acceleration of reaction wheel 0.628  rad/s?
Reaction wheel speed range 60-340 RPM

introduced in Eq. (31). The performances of the vehicle are compared
both in terms of this approximation, and a fuel cost measured through
pulse width modulation (PWM) signals sent to the thruster. Assum-
ing constant mass flow rate through the thrusters, the latter cost is
directly proportional to fuel consumption. The relative velocity
of the contact point is constrained to zero in order to minimize
angular momentum transfer with the wall [Eq. (21)]. A small penalty
on angular velocity is also included to reduce unnecessary spin
of the spacecraft, which, due to the limited update rate of the thrust
controller—approximately 2 Hz—may diminish the accuracy of
acceleration commands.

The trajectory is generated with Gurobi optimization software
using the formulation in Sec. IV with the parameters listed above.
The thrust saturation constraint Eq. (5) uses Ny = 20 sides in the
approximation. To ensure that regulation is possible in the presence
of disturbances, the MIP limits the maximum acceleration (i,,y) to
90% of its theoretical value. The ideal state is tracked using a linear
quadratic regulator (LQR) as the ancillary control law. The net
control at time ¢t € R is

u(t) = u*(t) + Kig (x* (1) — x(2)) (33)

where Ko = [2.8615,14.4315] € R js the LQR gain matrix, and

u* € R3, x* € RO are the ideal control and state at time ¢, taken from
a polynomial interpolation of the control and state solutions returned
from the MIP. The input u is then mapped to PWM signals on the
thrusters @y, = Uy /U7 max € [0, 11®. This mapping is derived by
taking the pseudo-inverse of the mapping from individual thruster
forces to forces in the body frame. The resulting mixing equation is
balanced in the body frame, ensuring that no moment is produced
from the thrusters. An inner PID loop regulates the speed of the
reaction wheel, which is used to achieve the desired moment.
Experiments are conducted for this scenario with the time horizons
fixed to 45 and 60 s. The experimental update rate of the controller
varies slightly from the fixed 0.5 s period assumed in the planning
phase. As a consequence of this, the 45 s experiments are both
completed in 82 steps, and the collision-free and collision-inclusive
60 s experiments are completed in 108 and 109 steps, respectively.
The trajectories taken are shown in Fig. 5, and the efficiency mea-
sures are plotted against time in Fig. 6. A video comparison of two
experiments may be found in [51]. Note that despite having a
significant effect on the total cost, the difference in time allocated
to reach the goal has virtually no effect on the shape of the planned
path. Table 2 shows the total costs for each experiment, along with the
corresponding ideal values, and the resulting PWM costs. It is
apparent that the collision-inclusive approach is capable of demon-
strating significant improvements in overall efficiency for a given
time horizon. In particular, we see reductions in the J; cost of 44.3
and 22.9% for the 45 and 60 s experiments, respectively (compared
with 47.8 and 41.2% for the ideal case), and reductions of 31.7 and
23.8% in the PWM cost for the 45 and 60 s experiments, respectively.
The main boost in efficiency occurs midway through the trajectory.
As the collision-free vehicle requires increased thrust to reduce its
velocity and redirect its momentum, the collision-inclusive approach
allows the spacecraft to minimize its thrust at this point, gaining the
required momentum transfer directly from an impulsive force at the
wall. There appears to be some tradeoff when using this approach
in that a spike in thrust is seen to occur directly after collision.
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This might be attributed to a number of factors that could potentially
lead to increased model error on the collision iteration. For example,
sensitivity to modeling the precise location of the wall () or vehicle
radius (R); to precisely matching the commanded tangential and
angular velocities at the time of collision; or from the zero thrust
approximation made in the update equations.

B. Application to Safety-Critical Systems

If collision avoidance is posed as a hard constraint in the problem
formulation, then online MPC becomes vulnerable to being rendered
infeasible in situations where collisions can no longer be avoided.
This situation might arise from a number of factors, including model
error, external perturbations, or movement of objects in the environ-
ment. The problem is exacerbated by the tendency of optimal trajec-
tories to lie near the boundary of the infeasible region (see, e.g.,
Fig. 5). On the other hand, if the constraint to avoid collisions is
replaced by aterm in the cost function capturing the damage from this

Table2 Experiment cost values

Experimental  Ideal J; cost, Experimental

Specification Jy cost, m? /s* m?/s* PWM cost, s
Collision-free, 45 s 0.01822 0.01619 65.04
Collision-inclusive, 45 s 0.01014 0.00845 44.42
Collision-free, 60 s 0.00633 0.00611 43.76
Collision-inclusive, 60 s 0.00488 0.00359 33.33

event, and the effects of the collision are considered in the constraints,
then the planner can not only remain feasible, but also direct the
vehicle toward an optimal mitigating action. In this section we turn to
a simulated scenario to demonstrate the potential of the collision-
inclusive planner to bring about enhanced safety in this sense.
Consider the spacecraft and parameters as described in previous
sections, now given the task of traversing across a larger, more
cluttered environment, consisting of a number of walls whose loca-
tions are known to it via an internal map. The vehicle also performs
online sensing, which it may use to detect unmapped objects in the
environment. Collision with the walls is known to cause minor
damage to the robot, whereas collision with a newly detected object
is considered more damaging, as neither the type of object nor
consequences of hitting it are known in advance. We now compare
the two strategies for this case in the environment shown in Fig. 7.
Here the spacecraft (with parameters from previous sections) is given
the goal of reaching the point in the top right corner while avoiding
obstacles. The vehicle starts on the green trajectory shown in Fig. 7;
however, the vehicle eventually detects the presence of a new obstacle
(red box) obstructing the original path and is not able to stop in time to
prevent collision. If collision avoidance with the obstacles is posed as
a hard constraint, then the MPC is rendered infeasible. Without an
update, the vehicle may simply continue on its original course and hit
the object at high velocity. A more thoughtful implementation might
include a backup controller that brings the vehicle to rest as quickly as
possible; however, even this backup strategy will result in inevitable
and uncontrolled collisions with both the wall and obstacle [43].
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As an alternative strategy, we may incorporate the presence of the
various objects in the program through penalties in a multi-objective
cost function. The total cost J will be taken as the sum of some nominal
costJ om (€.g., fuel consumption) and adamage cost J g, . Here we will
take the damage cost to be a weighted sum of the speeds at the time of
impact, defined for the jth wall on the ith iteration as follows:

impact A a.,
vi_',‘;PaL 2 _‘—‘i,j[vx.i’ v},vi]m (34)
J

where E; ; = 1 indicates collision with wall defined by a; on iteration
i. Note that impact speed is a quadratic function of the problem
variables. Letting o, be the set of indices for the mapped walls (blue)
and o, be the indices for the unmapped walls (red). Then we can
express the total cost as J = Jon + Jgam With

Jdam 2 i Z KI vi_ffj}PaCl + i Z szi;;pact (35)

i=2 j€o, i=2 j€o,

where K, K, € R weight the collision penalties for each type of
object. For this situation, we specify that K; is much less than K,,
directing to vehicle to avoid the unknown object as much as possible.
The red path in Fig. 7 shows the new trajectory that is calculated using
this cost function once the red box is first detected—that is, accounted
for in the motion planning. Here the spacecraft is able to leverage the
collision dynamics with the blue box to avoid collision with the
unknown obstacle altogether. In addition to simply applying thrust to
pushitself away from the object, the vehicle increases its angular speed
before the collision and uses stored angular momentum to push itself
away on impact. Additional simulation parameters are listed in Sec. A
of the Appendix. A video of the simulation may be found at [52].

VI. Limitations of the Proposed Approach
and Future Work

The formulation may be further developed through consideration
of more complex environments or vehicle geometries, either of which
may require the construction of a more complex collision model. The
results of the trajectory planning may be sensitive to the accuracy of
the collision model and other parameters. New regulation strategies
may be explored to reduce the loss in efficiency in the time samples
surrounding the collision, and to make the strategy more robust to
parametric uncertainty. The basic framework for optimizing around
collisions may be adapted to applications such as docking or landing,
or alternate vehicle platforms such as quad-copters. A key focus of
future research will be to expand on the applications toward safety
though the creation and implementation of damage-minimizing
backup controllers. Though the proposed framework is capable of
generating the necessary trajectories, the current implementation of
the MPC may not be able to generate the aggressive paths quickly
enough to be practical for online use. To make this more tractable,

a learning approach may be used to approximate the policy of the
collision-inclusive backup controller. Once this has been achieved,
the backup strategy may be validated in an experimental scenario. As
an alternate safety application, the enhanced maneuverability of the
collision-inclusive MPC may be leveraged in a controlled set invari-
ance framework such as the one presented in [53,54].

If the proposed approach is to be applied in orbit, and over longer
timescales, then one may consider replacing the double-integrator
model with Clohessy—Wiltshire-Hill (CWH) dynamics [12,55].
Because this model is linear, the nominal dynamics may be incorpo-
rated directly into the form presented in Egs. (15) and (28). In this case,
one would either need to modify the collision update equations to
account for the new dynamics, or for the errors introduced if the
perturbation is neglected between the time steps surrounding the
collision. A general extension of the planner to the six-degree-of-
freedom case may potentially be challenging. However, it is important
to note that for planar (2-D) and spatial (3-D) operations, the coupling
terms between the attitude and translational dynamics disappear during
collision if the relative velocity at the point of contact goes to zero.
Hence, one could in principle use this approach to plan trajectories for
the translational states, and delegate the task of rotating the spacecraft
to match the relative velocity of the wall to a separate, lower-level
controller. Similarly, one might simplify the spatial case formulation in
a way that allows some of the translation—attitude coupling to be
leveraged by constraining the robot to orient its rotation axis to be
orthogonal to the direction of relative velocity on collision iterations.

VII. Conclusions

This paper both introduces and validates the idea of optimizing
spacecraft trajectories comprising planned collisions. The main theo-
retical contribution consists of formulating the collision-inclusive
trajectory planner as a mixed integer programming problem. Ex-
periments comparing the efficiency of collision-free and collision-
inclusive trajectories provide a proof-of-concept demonstration of
the approach’s capability to bring about practical performance
enhancements. Moreover, a simulated case study shows the potential
for application of the method as an online safety measure. Though
modeling of the collision in the constraints and penalizing a metric of
damage in the cost, the vehicle is able to find novel solutions to
mitigate scenarios where collisions are inevitable. Tradeoffs appear
to be present in the added complexity of the problem and its apparent
sensitivity to model error over iterations surrounding the collisions.
Future work will focus on generalizing the approach to the spatial
case, developing more robust regulation strategies, and extending the
practicality of online safety applications.

Appendix A: Parameters Used in Simulated
Safety Scenario

The vehicle navigates from the initial state x7 =
[0.30m,0.40 m,0.00rad,0.15 m/s,0.15m/s,0.00 rad/s], to the final



Downloaded by STANFORD UNIVERSITY on September 21, 2020 | http://arc.aiaa.org | DOI: 10.2514/1.G004788

1256 MOTE ET AL.

Table A1 Location of boxes in safety scenario

Xmin> M Ymin> M Xmax> M Ymax> M Index
1.20 1.40 2.00 2.80 1
2.80 0.50 3.80 1.50 2
2.60 2.05 3.50 2.90 3
3.23 1.65 3.43 1.85 4

state x7 =[4.60m,3.40m,0.00rad,0.0 m/s,0.00m/s,0.00rad/s].
The time resolution of the simulation is 0.06 s. The collision penalty
weights are (K, K,) = (10, 10e6). The vehicle is initially com-
manded to reach its goal location in 25 s, and the time horizon is
appended by 10 s until a feasible solution is found. The collision and
vehicle parameters are taken as those found for the real vehicle. The
locations of the boxes are listed in Table A1. Indices 1-3 correspond
to the boxes that were previously mapped out by the object, and box 4
is the box that is discovered by the vehicle. This obstacle is observed
att = 12.37 s from the start of the simulation.

Syi Uy AL+ MG — g0.5A12 >0
sy.i—l —+ vy,i—lAt - M(l - Z:,) - gO.SAtz <0

= AXx; if s5,; + v, ;Ar - 0.5gA* <0
HLTHT ) Ax; + b if sy + vy Af— 0.5gA >0

where

AC _ Ky (1 +K'N)At q A _ 0 At ’
0 Ky 0 0

—0.5gA1* Sy
b= , X, = i

—8 At vy.i
and At is the time step. Note that, because this model is uncontrolled,
the objective function plays no role here. The set of constraints used

to model these dynamics is given as follows.

First the condition that collision is predicted to occur on the next
iteration can be associated with the event variable { € {0, 1}, leaving

us with §; = 1 & sy; + vy At — 0.5gA> < 0. This is transformed
to the constraints

([sy.i + vy A1 = g0.SAL > 0] = [y = 1])
([Sy_i + Uy'iAt - gOSAtz < 0][Ci+1 <:1])

withi = 1,...,7 — 1. Next, the nominal position and velocity dynamics constraints are

Syi+1 = Syi— Atvy; 4+ My > 0.5gAr

Syipl — Sy —Arvy; =M < 0.5gA7

Uy iyl — Uy t+ M{ | > —gAt

Vyip1 — Uy, —MEi ) < —gAt

Syiv1 — (L+xy)sy; — (1 +xy)Atvy,; = MEy > —M
Syir1 — (L +xy)sy; — (1 +xy)Atvy; + M <M
Vy i1 — (1 +Kkp)vy; = MG 2 —M

Uy i1 — (L+xp)vy; + MG <M

Appendix B: Example: 1-D Modeling of Bouncing
Particle with MIP

Here we consider the simple case of a free-floating particle
being released from rest at s, = 1 m and pulled down at gra-
vitational acceleration g = 9.8 m/s? until it experiences a collision
with the ground at s, = 0. The particle responds to the collision
according to the update law Avy” = kyvy, where ky = —1.55 and
Avyf, vy indicate the change in velocity, and velocity immediately
before collision, respectively. We can model the motion of the
particle with

E T
S 05¢
.9
z m .,
& ol A B N
0 0.5 1 1.5
Time (s]

([Asy i1 2 Arvy; = 05gAP] = [y = 0))
([Asyip1 < Arvy; = 0.5gAP]=[E; = 0])
([Avy 41 2 —gA7] = [{i11 = 0))

([Avy 141 < —gA1]&[ = 0])

([Asy i1 2 kysy; + (1 + xy)Atvy ;1= [ = 1))
([Asy i1 S kysy; + (1 +xy)Atv, ][ = 1))
([Avy 41 2 KyVy ] = [Cigr = 1))

([Avy i1 S xyvy]=[Ei = 1))

which are applied at i = 1,...,7 — 1. The system is simulated with
an MIP using At = 0.01, and = = 150. The solution is plotted in
Fig. B1. Points found with the collision update equation are shown in
red, and points found with the nominal update equation are shown
in blue.

Appendix C: Truth Tables for Lemmas 1 and 2

As shown in Table C1, Lemmas 1 and 2 may be conveniently
expressed in the form of a truth table. The constant M is assumed to
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Fig. B1 Position and velocity of 1-D bouncing particle modeled with MIP.
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Table C1  Truth table for Lemmas 1 and 2
c'z<d (=1 clz+M.>d c’'z-M(1-¢)<d clz<d=>¢=1 {=1=>c"z<d
T T T T T T
T F F T F T
F T T F T F
F F T T T T

have a value satisfying the appropriate assumptions from these
lemmas over the variable domains.
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