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A two-sided iterative framework for model reduction of linear systems
with quadratic output

Ion Victor Gosea and Athanasios C. Antoulas

Abstract— We propose a model reduction procedure for
approximating large-scale linear systems with quadratic output
by means of lower dimensional systems with the same structure.
The framework is based on an iteration that, at each step,
computes left and right projections matrices (hence two-sided).
This is done by means of solving two linear Sylvester equations.

I. INTRODUCTION

The simulation, control and analysis of models character-
izing dynamical time-dependent processes is of interest in
many areas of science and industry. It is of course desirable
for these tasks to be performed in a direct, automated way
and as fast as possible. Sometimes, the degrees of freedom or
dimension of the mathematical model that characterizes the
technical process could be very large. This happens usually
due to the need of having accurate spatial discretization
schemes of the target domain.

In these cases, it is not feasible to use the large origi-
nal models directly. Consequently, reduced order surrogate
models are used instead.

Model order reduction (MOR) is a highly used method-
ology for which the practical application is reducing the
computational complexity (in terms of time and memory)
of large scale complex models in numerical simulations. The
general goal of most of MOR methods is to construct a much
smaller system with the same structure and similar response
characteristics as the original. For an overview of the state of
the art methodologies applicable to reducing linear systems,
we refer the reader to [2], [3], [7]. Moreover, for extensions
to nonlinear systems, see the surveys [4], [18].

Nonlinear dynamics is usually intrinsically present in most
time-dependent processes. Consequently, the study, analysis,
and modeling of nonlinear dynamical systems have received
a lot of attention. To avoid applying linearization techniques
(which induce an additional level of approximation and error
generation), it is sometimes preferable to devise reduction
methods that can be directly applied to the nonlinear system.
MOR of nonlinear dynamical systems is still a challenging
task. Nevertheless, considerable progress has been made in
recent years for extending classical MOR methods (for linear
systems) to reducing certain classes of structured mildly
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nonlinear systems such as bilinear or quadratic-bilinear (QB)
systems.

The latter class represents an important category which
typically arise from reformulating or lifting systems with
more involved analytic nonlinearities. This can be done by
means of the so-called McCormick’s relaxation approach in
[16]. By introducing auxiliary variables, one can recast the
original nonlinear system as a QB system without performing
any approximation. The first important contribution towards
this approach was [13].

That is why, in recent years, MOR of QB systems has
been intensively studied. We mention Krylov-based methods
in [1], [6], balanced truncation in [8], Ha-quasi-optimal
approximation in [9], and data-driven methods (the Loewner
framework) in [11].

The main focus of our research is studying MOR of
linear systems with quadratic output (LQO). Although the
nonlinearity is present in the state-output equation only, and
not in the state equation, this class is appealing since it is
at the boundary between linear and quadratic (nonlinear)
systems. The classical approach for reducing such systems is
to first rewrite the governing equations as an equivalent linear
system with multiple outputs. Afterwards, one can apply
basically any MOR method suitable for multiple output linear
systems. This idea has been applied for balanced truncation
in [19] and for Krylov-type methods in [20]. One downside
of this approach is that it often produces systems with large
number of outputs and hence, it is computationally expen-
sive. In [17], a different approach is proposed. It is based
on constructing a QB system, whose (single) linear output
coincides with the quadratic output of the original LQO
system. Then, again, any method for reducing QB systems
can be applied. Typically, the bottleneck of such methods
is represented by solving quadratic Lyapunov or Sylvester
equations. More recently, a structure-preserving balanced
truncation procedure was proposed in [10]. It is based on
defining an appropriate algebraic observability Gramian and
approximating the original LQO system directly by a low
dimensional LQO system.

The method proposed in this work is based on an iter-
ative interpolation procedure. The left and right subspaces
are represented by matrices that are solutions of Sylvester
equations. Hence, only linear equations need to be solved
in our MOR approach. The inspiration for the proposed
method came from the iterative rational Krylov algorithm,
or in short IRKA, which was introduced in [14] for reducing
linear systems. It was proven to be a very effective iterative
procedure, which, upon convergence, yields a locally Ho
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optimal reduced system. Over the years, many extensions
were proposed to extend IRKA to reducing (mildly) nonlin-
ear classes of systems such as bilinear in [5], QB in [9] or
switched in [12].

The rest of the paper is organized as follows: In Section
II, some theoretical aspects of linear systems with quadratic
output are presented, including the derivation of time-domain
input-output mappings. Additionally, we propose a reformu-
lation of the state-output equation that allows interpreting
certain quantities in a familiar manner.

In Section III, Gramian matrices are introduced for linear
systems with linear and quadratic outputs. Moreover, we
propose a definition of the Ho norm for LQO systems. In
Section IV, we introduce the interpolation-based iterative
procedure for MOR of LQO system. We sketch an algorithm
that computes, at each step, a pair of projection matrices by
solving Sylvester equations. Finally, Section V presents a
numerical example while Section VI concludes the paper.

II. LINEAR SYSTEMS WITH QUADRATIC OUTPUT

In this paper, we study linear systems with quadratic
output X : (A, B, C, M), for which the underlying dynamics
is characterized by the following equations

5. {)’((t) = Ax(t) + Bu(t),

y(t) = Cx(t) + xT (t)Mx(t). )

with A,M € R"*" B,C? € R". We are using the same
notation for the quadratic term in the second equation in (1)
(the state-output equation) as was previously used in [17],
[19], [20]. Note that the linear term Cx(t) appears in this
equation, while in the above mentioned contributions was
not present.

For simplicity of exposition, the single-input and single-
output case is considered, but can be easily extend to
multiple-input scenarios. Additionally, we assume that the
matrix A is stable, i.e. it has all eigenvalues in the left-half
complex plane.

Our goal is to construct a reduced order model (ROM)
) (A,B,C,M) of order r with the same structure as
the original system in (1), which is characterized by the
following equations

s {;c(t) = AX(t) + Bu(t),

y(t) = Cx(t) + T (t)Mx(t), @

where A,M IS R””,f’), Cc R", with » < n. The choice
of the ROM should be such that, its output approximately
matches that of the original system, i.e. y(t) ~ y(t) for all
admissible inputs u(t).

A. Reformulation of the state-output equation

Introduce the vectorization operator vec : R*** — R"’ as
vee(X) = [(Xer)”  (Xeg)”

where X € R™*™. Then, the following identity holds for any
matrices Y € R™*" Z € R"*P

vec(YXZ) = (ZT @ Y)vec(X), 4)

(Xe,)T]" e RY, (3)

where @ represents the Kronecker product.

In what follows, we use x instead of x(¢) to denote the
time-dependent state variable.
Hence, by using (4), it follows that we can write

vec(x"Mx) = (xT @ xT)vec(M). 5)
Now, since xT Mx is a scalar, use (5) and write
xTMx = vec(xTMx) = (xT @ xT)vec(M)
=[x"® XT)VeC(M)]T = [vec(M)]T(x ® X).
(6)

Denote with K = [vec(M)}T where K € R!*"". By
reformulating the quadratic term accordingly, we rewrite the
second equation in (1) as follows

y(t) = Ox(t) + K (x(t) @ x(1)). ©)

The formulation of the quadratic term in (7) is the same
as the term present in the differential state equations that
correspond to QB systems (as in [6], [9], [11]). In what
follows, we will sometimes use this formulation as well since
most of the quantities of interest (Gramian matrices, time-
domain and frequency-domain mappings etc.) can be easily
extended from the QB case.
Note that, since the following result holds,

x"Mx = x7 {(M + MT)/2} X,
one can assume that the matrix M is symmetric. Then, the
following property can easily be proven
Kvow)=K(wav),Vv,weR" (8)
Note that the following holds for all v € R"
K(vel,)=v'M. 9

To prove the result in (9), first note that vIM € R*",
Then, by using (4) and (8), we can write that

v"M)" = vec(v' M) = (I, @ v")vec(M) = (I, ® v )K"
T
=v'M=(Lev)K") =KL ov)=K(val,).
Finally, by multiplying the equality in (9) with w € R"

and by using classical properties of the Kronecker product,
it follows that the following holds

K(V ® W) = VTMW, (10)

for all vectors v,w € R™.

B. Deriving time-domain input-output mappings

The solution of the differential equation in (1) is as follows

t
x(t) = eAx(0) +/ AT Bu(r)dr. (11)

0
By assuming zero initial conditions x(0) = 0, it follows that

t t
x(t) = / AT Bu(r)dr = / eATBu(t — 7)dr. (12)
0 0
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Then, by substituting the formula of the solution in (12) onto
the state-output equation in (1), and by using the identity in
(10), it follows that

t t
= / Ce® Bu(t — 7)dr + K [/ A Bu(t — Tl)d’Tl] ®
0
t
[/ A Bu(t — TQ)dTQ / Ce* Bu(t — 7)dr

AN

Let h(ry) be the linear kernel, while h(ry,72) is the
quadratic kernel with their exact definition as follows

(A"B® eAsz)] [u(t —n)®u(t— 72)] dridrs

h(r;) = CeA" B (13)
H(Th TQ) = K(eATlB ® eATzB).
Then, by following the above derivation, it follows that

the input-output behavior of the LQO system can be written
in terms of the two kernels as

y(t) = /Ot h(r)u(t — 7)dr
+ /Ot /Ot h(r1,72) [u(t — 1) @u(t — ) |drdr.

III. GRAMIAN MATRICES

(14)

Here, we introduce controllability and observability
Gramians. First, we do so for the case of linear systems
with linear output and then provide an extension for linear
systems with quadratic output.

Assume that the matrix A is stable and that the original
linear system is controllable and observable. Then, it follows
that the Gramian matrices are unique, symmetric and positive
definite. These matrices need to be computed (or only square
root or low rank factors thereof) when applying the balanced
truncation MOR method (see [2]).

A. Linear systems with linear output

Proceed with defining the Gramians for the simplified case
when the output y is linear in terms of the variable x, i.e.
y(t) = Cx(t). This can be viewed as a special case of the
more general case treated in this work, i.e. by considering
that M = 0.

Introduce the input-to-state response of the system in (1)
with r(t), where

r(t) = eA'B. (15)

This quantity is independent of the observed output, i.e.
depends only on how the control u enters the differential
equation in (1).

We define the controllability infinite Gramian P € R™*"
as follows

-
0

It follows that P satisfies the following Lyapunov equation

o0
dt = / ABBTA g (16)
0

AP +PAT +BBT =o. (17)

Additionally, denote the state-to-output response of the
system in (1) (where M = 0), with o(t). Then, one can

write
Ceht,

o(t) =

We define the observability infinite Gramian as

Qz/ oT(t)o(t)dt:/ ATICTCeAldt.  (19)
0 0

It follows that Q satisfies the following Lyapunov equation

(18)

ATQ+0A+CTC=0. (20)

B. Linear systems with quadratic output

We now consider the general case for which M # 0.
As previously stated, the input-to-state will not change by
modifying the state-output equation. Hence, it follows that
the controllability Gramian for this case (denoted with P)
coincides to that introduced in (16). Hence write P = P.

Additionally, let the state-output equation in (1) be written
as in (7). Then, by following the definition of the two input-
output kernels in Section II-B, the state-to-output response
of the system in (1) can be partitioned into two components
(the linear and the quadratic) as

01(t) = CeAl, B(ty,ty) = K(eAtlB ® eAt2>. 21

We define the observability infinite Gramian correspond-
ing to kernel 02(151, to) as

:/O /0
=[]
0 0
_ / ATUAR gy, (22)

0

where U = [ (I, ® BTeA ")KTK (eA1B ® L,)dt1.
From (22), it follows that the matrix Q satisfies the equation

T (1, t2)0(t1, ta)dtdts

T
eA“B ® eAtZ)] K(eAtlB ® eAt2)dt1dt2

BTeAT’51 ® A 2)KTK (A1 B @ A2 dt dts

ATO+ QA +U=0. (23)

By choosing v = e B in (9), it follows that K (A" B ®
I,) = (eA"B)TM. Then, by substituting this relation into
the definition of matrix U, it follows that

U= / MTeAUB(eAMB) Mt
0
- MT[ / AUBBTA G M = MTPM. (24)
0
From (23) and (24), it follows that the matrix Q satisfies the
following Lyapunov equation
ATQ +0A +M"PM = 0. (25)

Let Q = Q + Q be the observability Gramian of the LQO
system in (1). By adding the equations in (20) and in (25), it
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follows that the Gramian Q satisfies the following Lyapunov

equation
ATQ+QA +CTCc+MTPM =o0. (26)

Note that equation (26) corresponds to equation (3.6) in [10],
provided that the linear output term is neglected, i.e. C = 0.
C. The Hy norm

For linear systems with linear output (M = 0), it is known
that the Ho norm of the system can be written in terms of
the linear kernel h(7) = CeA™B, as

I3, = / " h(r)h? (r)dr.

Then, it directly follows from the definitions introduced in
(16) and (19), that the H> norm can be written in terms of
the Gramians P and Q as

|=|3, = BTQOB = CPCT.

27)

(28)

Next, based on the definitions introduced in Section III-
B, one can consequently define the Ho norm of the LQO
system in (1), as follows

=I5, = [ " h(r)h? (r)dr

+/ / H(Tl,Tg)ET(Tl,Tz)dTldTQ
0 0

=BT0OB + BTOB. (29)

Note that equation (29) corresponds to equation (4.3) pro-
posed in [10], provided that the linear output term is ne-
glected, i.e. C = 0. In this case, h(7) =0, Vr > 0.

Since the observability Gramian can be split Q = Q + O,
it follows that the identity in (29) can be rewritten as

1=]3, = B"QB. (30)

IV. INTERPOLATION BASED ITERATIVE PROCEDURE

In this section, we introduce the proposed procedure for
reducing LQO systems. It is an iterative procedure that
interpolates, at each step, input-output mappings in frequency
domain corresponding to the original system.

A. Frequency-domain input-output mappings

For linear systems (with linear output), the transfer func-
tion represents a system invariant quantity that relates the
input and output of the system. It can be explicitly written
in terms of the system matrices as follows

H(s) = C(sI - A)"'B = C®(s)B, (31)

where ®(s) = (sI — A)~!. Note that H(s) can be obtained
by applying the Laplace transform to the linear kernel h(t)
in (13). One can also apply the (generalized multivariate)
Laplace transform to the quadratic kernel in (13). Then, write
the definition of the quadratic transfer functions as

H(s1,s0) =K[(s1I- A)"'B® (21 — A)"'B]

= K[®(s1)B © ®(s0)B]. 32)

B. An interpolation framework

In general, let {py, pro, . .., pox } and {A1, Aa, ..., Aox} be
sets of left and respectively, right interpolation points with
i, A; € C. The interpolation grids are constructed as follows

Left grid : p = [{p1}, {1, p2}s o ooy {pan—1}, {A2k—1, par ],
nght gl‘]d A= [{)\1}, {)\2}7 ey {)\Qk}]
(33)

Introduce the generalized reachability matrix R € C"*2F
corresponding to grid A in (33) as follows
R=[®(\)B @®(\)B ®(\2k-1)B  @(N\2r)B],

(34)

and the generalized observability matrix @ € C2**™ corre-

sponding to grid p in (33) as

C&®(p1)
K[®(M)B ® ®(u2)]
0= : =

Ctp(N‘Qk—l)
K[®(A2k—1)B ® ® (2]

C&®(p1)
[®(A1)B]"M®(k2)

C'I)(N.2k—1)
[@(A2k—1)B]TM& (o)
(35)

Note that, the following relations hold and hence relate the
entries of matrices R and O to the transfer functions in
Section IV-A

CR = [H(\1) H(\2) H(\2i)]
(OB)" = [H(um) H(Ai, pa) (36)
H(u2k-1) ﬁo\zk—l,ﬂzk)]

Also, it follows by construction that the matrix R satisfies
the following Sylvester equation

AR+ R(-A) + Br =0, (37)

r=[11--1] € R™*?¢ and A = diag(\y,...,\ax) €
R2k*2k - Additionally, also by construction, one can show
that the matrix O satisfies the following equation

H(\2k1

k
OA +) eyK(Ryi 1 ®1,) +£C = QO,

i=1

(38)
where e; is the i*" unit vector of length 2k, i.e. e;(h) =
1, for h = i and e;(h) = 0, for h # . Additionally,
£ € R?* is a vector with £ = Eleegi_l and Q =
diag(py, . . ., plog) € R2FX2k,

Next, rewrite the term e, K(Ro;—1 ® I,,) in (38) by using
the identity in (9) as

e K(Roi 1 ®1,)=R5 M=¢ej5 R'M. (39)
By substituting (39) into (38), we can write that
k
OA + Z esiels; (R* M+ £C = QO. (40)
i=1

By applying the complex transposition of (40), it follows that
A0+ 0" (-Q) + M*"RZ* + C*¢* =0, 41)

where Z* = Zle eg;_1eh; € R?k*2k i a block diagonal

0 1

0 0

The matrices R, O* € C™*?" will be used as projectors

for the initialization step of the algorithm presented in the
following section.

matrix containing k Jordan blocks Jo =
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C. The proposed algorithm

We propose an iterative algorithm that computes projec-
tion matrices X,Y € R"*?* by solving (linear) Sylvester
equations related to those introduced in (37) and (41):

AX + XA +BB* =0,

A*Y + YA + M*XM + C*C = 0.
In the previous section it was shown that the solution of
such equations are linked with certain sample values of the
transfer functions corresponding to the original LQO system.

In general it is not clear exactly how to choose the
interpolation points, i.e. the sets {u1,p2,...,p2r}t and
{A1, A2, ..., Aar}. Hence, we propose a solution to this
problem by means of iteration.

We start with an initial guess of the points p;, A; € C for
i€{1,2,...,2k}. Based on this selection, we compute the
projection matrices for the initialization step. More precisely,
for the right side take X = R which satisfies equation (37),
and respectively for the left side Y = OF, that satisfies (41).
Hence, start with the following reduced order matrices

A = (OR)'OAR, B=(OR)'0B,
C=CR, M=R'MR.

The iterative procedure is repeated until the eigenvalues
of matrix A are constant (the deviation with respect to the
previous step does not exceed a certain tolerance value € >
0). The interpolation points can be found in the last step
of the algorithm (when convergence is reached ), i.e. as the
eigenvalues of the matrix —A.

Similar to the case when IRKA is applied, in this case the
reduced order model satisfies specific interpolation condi-
tions. Optimality conditions can also be derived with respect
to minimizing the Ho norm of the error system X — 3.

(42)

(43)

Algorithm 1 TIterative two-sided MOR approach based on
solving Sylvester equations
Input: A € R™*" stable matrix, B, C* € R", M € R™*" sym-
metric matrix and initial choice of A, M € C?**2* B C* ¢
C?" asin (43).
1: while(change in o(A) > 0) do
2: Solve the Sylvester equation for X €

(Cn><2k,

AX +XA +BB* = 0.

3: Solve the Sylvester equation for Y € C"*2k:

A'Y + YA+ M'XM + C*C =0.
4: Perform orthogonalization of the solution matrices:
V =orth(X), W = orth(Y).
5: Compute reduced-order matrices
A=(W'V)'W*AV, B=(W"V) 'W"B,
C=CV, M=V"MV.

6: end while. o o
Output: Reduced order matrices A, M € C2x2k B C* e C?.

V. NUMERICAL EXAMPLE

In this section, we analyze the classical benchmark ex-
ample of the international space station (ISS) 1R (Russian
service module) from [15]. The original system characteriz-
ing the dynamics is a linear system (with linear output) of
order n = 270 with 3 inputs and 3 outputs.

We modify this model such that the observed output is
quadratic (with respect to state variable). We do this by
introducing a matrix M in the state-output equation, as in (1).
Take M = 22, where €2; is a matrix composed of ones.
Additionally, we select only the first input and the second
output of the original ISS model. We approximate this large-
scale LQO system of order n = 270 with a reduced-order
LQO system of order 2k = 28.

In Fig. 1, we depict the magnitude of the first trans-
fer function of the LQO system evaluated in the interval
[1072,103] rad/sec.

The first transfer function

Magnitude
S o o o
S 4 &5 &

102 107 10° 10’ 10? 10°
Frequency(rad/sec)
Fig. 1. Frequency response

Next, choose 56 left and right interpolation points as log-
arithmically spaced inside the interval [10~1,102]. Although
not necessarily needed, we decided to choose real points in
order to avoid complex arithmetics. Based on the procedure
included in Algorithm 1, we compute a reduced-order LQO
system and perform a time-domain simulation from O to 2
seconds (with A; = 10™%). A classical forward Euler scheme
has been used for approximating the derivative.

In Fig. 2, we depict the observed outputs of the original
and reduced-order model. Note that the curve corresponding
to y(¢) matches that of the original quadratic output y(¢).
Hence, conclude that the reduced system accurately repro-
duces the response of the original system.

Observed output y(t)

'\ —Original system
0.3F [\ Reduced system||

AN s \
" \ / “ /
/ \ !
01r | I \ ~

N/
1.5

0 0.5 1
Time(t)

Fig. 2. Time-domain simulations: observed outputs
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In the the time-domain simulation that was performed, the
control input was chosen as u(t) = cos(4t).

Additionally, the deviation between the observed outputs
of the two systems is depicted in Fig. 3.

Magnitude of the error

102F 1
107 1
10° 1
-8 ‘ ‘ ‘

1

0 0 0.5 1 1.5 2

Time(t)
Fig. 3. The magnitude of the error between the two outputs

Finally, since the proposed procedure is iterative, we next
analyze some convergence properties. The stopping tolerance
has chosen to be ¢ = 1070, This resulted in a number
of 25 steps performed by Algorithm 1 (until the deviation
between the eigenvalues of A dropped below ¢). In Fig. 4, we
show how the eigenvalue deviation varied with the number
of iterations.

Deviation of the eigenvalues

A_\

N

S 9 o

IS N )
-

Magnitude

_\
S
1

10-10

5 10 15 20 25
Number of iterations

Fig. 4. The eigenvalue offset from one step to another

VI. CONCLUSION

In this work, we proposed a novel model order reduction
procedure for approximating linear systems with quadratic
output. The method is based on an iteration. At each step, one
needs two solve two Sylvester equations in order to compute
the left and right projection matrices. The method has been
successfully applied to a benchmark example. The numer-
ical simulations that were performed showed the potential
of the new proposed method. Further research topics and
developments include (i) deriving explicit interpolation-based
optimality conditions (similar to the ones in [14]), (ii) study
the convergence properties of the proposed method (related
to the choice of the starting points), and (iii) extending the
procedure for systems with general polynomial output and
with mild nonlinearities (quadratic or bilinear) appearing in
the state equation as well.
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