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Abstract. Let G be a simple, simply connected algebraic group over an algebraically
closed field of prime characteristic p > 0. Recent work of Kildetoft and Nakano and of
Sobaje has shown close connections between two long-standing conjectures of Donkin:
one on tilting modules and the lifting of projective modules for Frobenius kernels of G
and another on the existence of certain filtrations of G-modules. A key question related
to these conjectures is whether the tensor product of the rth Steinberg module with a
simple module with prth restricted highest weight admits a good filtration. In this paper
we verify this statement (i) when p ≥ 2h− 4 (h is the Coxeter number), (ii) for all rank
two groups, (iii) for p ≥ 3 when the simple module corresponds to a fundamental weight
and (iv) for a number of cases when the rank is less than or equal to five.

1. Introduction

1.1. Representations and filtrations

Let G be a simple, simply connected algebraic group scheme over the algebraically
closed field k of characteristic p > 0. Let X be the set of integral weights and
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X+ denote the dominant integral weights (relative to a fixed choice of a Borel
subgroup). For any λ ∈ X+, one can construct a non-zero module ∇(λ) = indGBλ
and the Weyl module ∆(λ). The character of these modules is given by Weyl’s
character formula. The finite-dimensional simple modules L(λ) are indexed by
dominant integral weights X+ and can be realized as the socle of ∇(λ) (and the
head of ∆(λ)).

A central idea in this area has been the concept of good and Weyl filtrations. A
G-module admits a good filtration (resp. Weyl filtration) if and only if it admits a
G-filtration with sections of the form ∇(µ) (resp. ∆(µ)) where µ ∈ X+. Cohomo-
logical criteria have been proved by Donkin and Scott which give necessary and
sufficient conditions for a module to admit a good filtration (resp. Weyl filtration).
A module which admits both a good and Weyl filtration is called a tilting module.
Ringel [Rin] and Donkin [Don2] proved that (i) for every λ ∈ X+, there is an
indecomposable tilting module T (λ) of highest weight λ and (ii) every tilting
module is a direct sum of these indecomposable tilting modules.

Determining the characters of simple modules and tilting modules remains a
central problem. In 2013, Williamson [W] produced families of counterexamples
to the Lusztig conjecture for G = SLn and showed that the Lusztig Character
Formula (LCF) in this case cannot hold for any linear bound on p relative to h
(the associated Coxeter number). It is now evident that the character formula for
simple modules will be highly dependent on the prime p. Therefore, this makes
the understanding of the behavior of various G-filtrations even more crucial. A
new approach has been introduced by Riche and Williamson [RW] in which they
conjecture (and prove for the general linear group) that the characters of tilting
modules and simple modules are given by p-Kazhdan–Lusztig polynomials that
are constructed using p-Kazhdan–Lusztig bases.

1.2. Donkin’s conjectures

Let λ ∈ X+ with unique decomposition λ = λ0+prλ1 with λ0 ∈ Xr (p
rth restricted

weights) and λ1 ∈ X+. One can define ∇(p,r)(λ) = L(λ0) ⊗ ∇(λ1)
(r) where (r)

denotes the twisting of the module action by the rth Frobenius morphism. A G-
module M has a good (p, r)-filtration if and only if M has a filtration with factors
of the form ∇(p,r)(µ) for suitable µ ∈ X+. Let Str = L((pr − 1)ρ) (which is also
isomorphic to ∇((pr − 1)ρ) and ∆((pr − 1)ρ)) be the rth Steinberg module, where
ρ is the sum of the fundamental weights.

The following conjecture, introduced by Donkin at MSRI in 1990, interrelates
good filtrations with good (p, r)-filtrations via the Steinberg module.

Conjecture 1.2.1. Let M be a finite-dimensional G-module. Then M has a good

(p, r)-filtration if and only if Str ⊗M has a good filtration.

At the same meeting, Donkin presented another conjecture that realizes the
injective hull, Qr(λ), for L(λ) over Gr as a tilting module, where Gr denotes the
rth Frobenius kernel of G.

Conjecture 1.2.2. For all λ ∈ Xr, T (2(p
r − 1)ρ + w0λ)|Gr

= Qr(λ) where w0

denotes the long element in the Weyl group W .

In exciting recent developments, it has been shown how these conjectures are
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related. Kildetoft and Nakano [KN] proved that Conjecture 1.2.2 implies the
forward direction (i.e., the only if portion) of Conjecture 1.2.1 (which we will
denote by “Conjecture 1.2.1(⇒)”). Sobaje [So] has proved that Conjecture 1.2.1
implies Conjecture 1.2.2. It is well known that Conjecture 1.2.1(⇒) is equivalent
to Str ⊗L(λ) having a good filtration for all λ ∈ Xr. Note that, since the module
Str ⊗ L(λ) is contravariantly self-dual, having a good filtration is equivalent to
Str⊗L(λ) being a tilting module. Combining these results, the following hierarchy
of conjectures has now been established:

Conjecture 1.2.1 ⇒ Conjecture 1.2.2 ⇒ Conjecture 1.2.1(⇒).

Using different approaches, Andersen [And3] and later Kildetoft and Nakano [KN]
verified Conjecture 1.2.1(⇒) when p ≥ 2h− 2.

In this paper we prove that Str ⊗L(λ) has a good filtration in many new cases.
The reader should note that the connections to these various conjectures are both
useful and striking. For example, if one discovers an example when Str ⊗ L(λ)
does not have a good filtration for some λ ∈ Xr then Conjecture 1.2.2 would be
false.

It also should be mentioned that the verification of Conjecture 1.2.2 would prove
the 40-year-old Humphreys–Verma Conjecture about the existence of G-structures
on injective indecomposable Gr-modules. Conjecture 1.2.2 holds for p ≥ 2h − 2
and the proof under this bound entails locating one particular G-summand of
Str ⊗ L(λ). It has become evident that, in order to prove either conjecture for all
p, one needs to analyze all G-summands of Str ⊗ L(λ).

1.3. Outline

The paper is organized as follows. In Section 2, we summarize the basic definitions
and fundamental results on good (resp. good (p, r)-) filtrations. The following
section, Section 3, is devoted to developing sufficient conditions to guarantee
that Str ⊗ M has a good filtration for a rational G-module M . These sufficient
conditions involve the mysterious Frobenius contraction functor studied by Gros
and Kaneda [GK] and Andersen [And4]. These results are used in Section 4 to
prove that Str ⊗ L(λ) where λ ∈ Xr has a good filtration for (i) p ≥ 2h − 4 and
(ii) for all rank two groups. The reader should note that Donkin’s Tilting Module
Conjecture (i.e., Conjecture 1.2.2) is not known for all rank 2 groups. Later in
this section, Str⊗L(λ) is shown to have a good filtration when λ is a fundamental
weight as long as one is not in the cases of E7 and E8 when p = 2.

Section 5 is devoted to verifying Conjecture 1.2.1(⇒) for many cases when the
rank of G is less than or equal to 5. In Section 6, we carefully analyze the type A5,
p = 2 situation and verify the conjecture using new and detailed information. This
is an important case because it is indicative of the cases of fundamental weights
for E7 and E8 when p = 2, where the conjecture is not yet verified. At the end of
the paper in Section 7, we consider the question of whether Str ⊗k[Gr] has a good
filtration, where k[Gr] is regarded as a G-module by the conjugation action.

Acknowledgements. The authors would like to thank Henning Andersen, Ste-
phen Donkin and James Humphreys for their comments on an earlier version of this
manuscript. The authors would also like to thank the referees for their observations
and suggestions.
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2. Preliminaries

2.1. Notation

Throughout this paper, the following basic notation will be used. See [Jan3] for a
general overview of terminology.

(1) k: an algebraically closed field of characteristic p > 0.
(2) G: a simple, simply connected algebraic group scheme over k, defined over

Fp (the assumption of G being simple is for convenience and the results
easily generalize to G reductive).

(3) Dist(G): the distribution algebra of G.
(4) g = Lie(G): the Lie algebra of G.
(5) T : a maximal split torus in G.
(6) Φ: the corresponding (irreducible) root system associated to (G,T ). When

referring to short and long roots, when a root system has roots of only one
length, all roots shall be considered as both short and long.

(7) Φ
±: the positive (respectively, negative) roots.

(8) S = {α1,α2, . . . ,αn}: an ordering of the simple roots.
(9) B: the Borel subgroup containing T corresponding to the negative roots.
(10) U : the unipotent radical of B.
(11) E: the Euclidean space spanned by Φ with inner product ⟨ , ⟩ normalized

so that ⟨α,α⟩ = 2 for α ∈ Φ any short root.
(12) α∨ = 2α/⟨α,α⟩: the coroot of α ∈ Φ.
(13) X = X(T ) = Zϖ1 ⊕ · · ·⊕ Zϖn: the weight lattice, where the fundamental

dominant weights ϖi ∈ E are defined by ⟨ϖi,α
∨
j ⟩ = δij , 1 ≤ i, j ≤ n.

(14) X+ = X(T )+ = Nϖ1 + · · ·+ Nϖn: the dominant weights.
(15) Xr = Xr(T ) = {λ ∈ X(T )+ : 0 ≤ ⟨λ,α∨⟩ < pr, ∀α ∈ S}: the set of

pr-restricted dominant weights.
(16) F : G → G: the Frobenius morphism.
(17) Gr = ker F r: the rth Frobenius kernel of G. Similarly, Br, Tr, and Ur

denote the kernels of the restriction of F r to B, T , and U respectively.
(18) Set G(r) = G/Gr and B(r) = B/Br.
(19) W : the Weyl group of Φ.
(20) w0: the longest element of the Weyl group.
(21) ρ: the Weyl weight defined by ρ = 1

2

∑
α∈Φ+ α.

(22) α0: the maximal short root.
(23) h: the Coxeter number of Φ, given by h = ⟨ρ,α∨

0 ⟩+ 1.
(24) ≤ on X(T ): a partial ordering of weights, for λ, µ ∈ X(T ), µ ≤ λ if and only

if λ − µ is a linear combination of simple roots with non-negative integral
coefficients.

(25) M (r): the module obtained by composing the underlying representation for
a rational G-module M with F r.

(26) M∗: the k-linear dual module for a rational G-module M .
(27) λ∗ := −w0λ, λ ∈ X: the dual weight.
(28) τM : the contravariant dual module, i.e., the dual module M∗ of a rational

G-module M with action composed with the anti-automorphism τ : G → G
that interchanges positive and negative root subgroups.
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(29) ∇(λ) := indGB λ, λ ∈ X+: the induced module whose character is provided
by Weyl’s character formula.

(30) ∆(λ), λ ∈ X+: the Weyl module of highest weight λ. Here ∆(λ) ∼=
∇(−w0(λ))

∗.
(31) L(λ), λ∈X+: the simple finite-dimensional G-module with highest weight λ.
(32) T (λ), λ ∈ X+: the indecomposable finite-dimensional tilting G-module with

highest weight λ.
(33) ∇(p,r)(λ) := L(λ0)⊗∇(λ1)

(r), λ ∈ X+, where λ = λ0 + prλ1 with λ0 ∈ Xr

and λ1 ∈ X+.

(34) ∆
(p,r)(λ) := T (λ̂0)⊗∆(λ1)

(r), λ ∈ X+, where λ = λ0 + prλ1 with λ0 ∈ Xr

and λ1 ∈ X+. Here λ̂0 = 2(pr − 1)ρ+ w0λ0.
(35) Str := L((pr − 1)ρ): the rth Steinberg module.
(36) Qr(λ), λ ∈ Xr: the injective hull (or equivalently, projective cover) of

L(λ)|Gr
as a Gr-module.

2.2. Important G-filtrations

Let M be a rational G-module. In this paper a G-filtration for M is an increasing
sequence of G-submodules of M : 0 = M0 ⊆ M1 ⊆ · · · ⊆ M such that ∪iMi = M .
We now present the definition of a good filtration and a good (p, r)-filtration.

Definition 2.2.1. Let M be a G-module.

(a) M has a good filtration if and only if it has a G-filtration such that for each
i, Mi+1/Mi

∼= ∇(λi) where λi ∈ X+.
(b) M has a good (p, r)-filtration if and only if it has a G-filtration such that

for each i, Mi+1/Mi
∼= ∇(p,r)(λi) where λi ∈ X+.

(c) If M has a good (p, 1)-filtration, then we say that M has a good p-filtration.

2.3. Good filtrations: cohomological criterion

The following well-known result due to Donkin [Don1, Cor. 1.3] and Scott [Sc]
(cf. [Jan3, Prop. II.4.16]) gives a very useful criterion to prove the existence of
good filtrations.

Theorem 2.3.1. Let M be a G-module with dimHomG(∆(λ),M) < ∞ for all

λ ∈ X+. The following are equivalent:

(a) M has a good filtration.

(b) Ext1G(∆(µ),M) = 0 for all µ ∈ X+.

(c) ExtnG(∆(µ),M) = 0 for all µ ∈ X+, n ≥ 1.

2.4. Good filtrations: tensoring with the Steinberg

Kildetoft and Nakano [KN, Thm. 9.2.3] gave necessary and sufficient conditions
for Str ⊗M to admit a good filtration (cf. [And3, Prop. 2.7]).

Theorem 2.4.1. Let M be a G-module with dimHomG(∆
(p,r)(λ),M) < ∞ for

all λ ∈ X+. The following are equivalent:

(a) Str ⊗M has a good filtration.

(b) HomGr
(T (µ̂),M)(−r) has a good filtration for all µ ∈ Xr.

(c) ExtnG(∆
(p,r)(λ),M) = 0 for all λ ∈ X+, n ≥ 1.
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(d) Ext1G(∆
(p,r)(λ),M) = 0 for all λ ∈ X+.

Observe that if Conjecture 1.2.1 holds then Theorem 2.4.1 would give cohomo-
logical criteria for a G-module M to admit a good (p, r)-filtration. Also note that,
for a G-module M , the condition dimHomG(∆

(p,r)(λ),M) < ∞ for all λ ∈ X+ is
equivalent to dimHomG(∆(µ), Str ⊗M) < ∞ for all µ ∈ X+.

3. Good filtrations on Str ⊗M

3.1. Frobenius contraction

We will first introduce an important class of functors via the rth-Steinberg module
that sends G-modules to G/Gr-modules. For µ ∈ Xr and a rational G-module M ,
set

Fµ(M) = HomGr
(k, Str ⊗∇(µ)⊗M) ∼= HomGr

(k, indGB(Str ⊗µ⊗M)), (1)

where the latter isomorphism follows from the tensor identity. The functor Fµ

is an exact functor from Mod(G) → Mod(G/Gr). Exactness of Fµ follows from
the fact that Str is injective over Gr, and so ExtiGr

(k, Str ⊗∇(µ) ⊗ M) = 0 for
i > 0. We will call these functors generalized Frobenius contraction functors. When
µ = (pr − 1)ρ these functors were introduced by Gros and Kaneda [GK] and later
investigated by Andersen [And4].

3.2. Applications to induced modules

The following theorem demonstrates that the functor Fµ can be expressed in terms

of induction from B/Br to G/Gr. Note that Str ∼= indBr

Tr
(−(pr − 1)ρ) as Br-

modules (cf. [Jan3, II.3.7 (4)]). From this along with the tensor identity and
Frobenius reciprocity, we get the following isomorphism of B/Br-modules (for
µ ∈ X+ and a G-module M):

HomBr
(k, Str ⊗µ⊗M) ∼= HomBr

(k, indBr

Tr
(−(pr − 1)ρ)⊗ µ⊗M)

∼= HomBr

(
k, indBr

Tr
(−(pr − 1)ρ+ µ⊗M)

)

∼= HomTr
(k, µ− (pr − 1)ρ⊗M) ∼= [µ− (pr − 1)ρ⊗M ]Tr .

Theorem 3.2.1. Let µ ∈ X+. Then

(a) Fµ(M)=HomGr
(k, indGB(Str ⊗µ⊗M)) ∼= ind

G/Gr

B/Br

(
[µ− (pr − 1)ρ⊗M ]Tr

)
.

(b) Ri ind
G/Gr

B/Br

(
[µ− (pr − 1)ρ⊗M ]Tr

)
= 0 for i > 0.

The B/Br-structures are given by the isomorphism

[µ− (pr − 1)ρ⊗M ]Tr ∼= HomBr
(k, Str ⊗µ⊗M).

Proof. Consider the following isomorphic functors:

F1(−) =
(
indGB(−)

)Gr
,

F2(−) = ind
G/Gr

B/Br

(
(−)Br

)
.
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As each arises as a composition, we obtain two spectral sequences, whose abut-
ments agree (since the functors are isomorphic, cf. [AJ, Prop. 3.1]):

Êi,j
2 = ExtiGr

(k,Rj indGB(Str ⊗µ⊗M)) ⇒ (Ri+jF1)(Str ⊗µ⊗M),

Ei,j
2 = Riind

G/Gr

B/Br
ExtjBr

(Str, µ⊗M) ⇒ (Ri+jF2)(Str ⊗µ⊗M).

By the generalized tensor identity, Rj indGB(Str ⊗µ⊗M) ∼= Str ⊗Rj indGB(µ⊗M),
which is injective over Gr, since Str is. Hence, the first spectral sequence collapses.
Precisely, Êi,j

2 = 0 for i > 0. One can then identify the abutment and combine
this with the second spectral sequence to obtain

Ei,j
2 = Riind

G/Gr

B/Br
ExtjBr

(Str, µ⊗M) ⇒ HomGr
(k,Ri+j indGB(Str ⊗µ⊗M)).

This spectral sequence collapses and yields

Riind
G/Gr

B/Br
HomBr

(Str, µ⊗M) ∼= HomGr
(k,RiindGB(Str ⊗µ⊗M)).

The statement of (a) follows by setting i = 0. From the generalized tensor identity
and Kempf’s Vanishing Theorem, one has

RiindGB(Str ⊗µ⊗M) ∼= [RiindGB µ]⊗ Str ⊗M = 0

when i > 0, which proves (b). !

From Theorem 3.2.1, it is interesting to note that, for any µ ∈ Xr, the B/Br-
module

[µ− (pr − 1)ρ⊗M ]Tr ∼= HomBr
(k, Str ⊗µ⊗M)

is acyclic with respect to the induction functor indG(r)

B(r)(−).

3.3. Good filtration criteria for Str ⊗M

Given µ ∈ Xr, let µ(r) := (pr − 1)ρ − µ ∈ Xr. Note that the correspondence µ
with µ(r) gives a bijection on Xr. In particular, in Theorem 2.4.1(b), µ may be
replaced with µ(r).

Following [Jan3, II.10.4], let er be the functor that sends a rational G-module
V to erV = HomGr

(Str, V ) ⊗ Str, the summand of V whose composition factors
are Gr-linked to the rth Steinberg module. The next result gives conditions on
using the projection and generalized Frobenius contraction functors to ensure that
Str ⊗M has a good filtration.

Theorem 3.3.1. Let M be a rational G-module with dimHomG(∆
(p,r)(λ),M) <

∞ for all λ ∈ X+.

(a) If er(L(µ) ⊗M) has a good filtration for all µ ∈ Xr with the property that

µ(r) is Gr-linked to some composition factor of M, then Str ⊗M has a good

filtration.

(b) If Fµ(M) = ind
G/Gr

B/Br

(
[µ− (pr − 1)ρ⊗M ]Tr

)
has a good filtration for all

µ ∈ Xr with the property that µ(r) is Gr-linked to some composition factor

of M , where the B/Br-structure is given by the isomorphism

[µ− (pr − 1)ρ⊗M ]Tr ∼= HomBr
(k, Str ⊗µ⊗M),

then Str ⊗M has a good filtration.
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Proof. For both parts, if it can be shown that HomGr
(T (µ̂(r)),M) has a G/Gr-

good filtration for all µ ∈ Xr, then the conclusion will follow from Theorem 2.4.1.
Note that HomGr

(T (µ̂(r)),M) = 0 unless µ(r) is Gr-linked to some composition
factor of M . Hence, one only has to consider weights µ that satisfy the above
linkage condition.

(a) Suppose that er(L(µ) ⊗ M) has a good filtration. Since Str ⊗∆(σ)(r) ∼=
∆((pr − 1)ρ+ prσ) (dual to [Jan3, Prop. II.3.19]),

Ext1G(Str ⊗∆(σ)(r), L(µ)⊗M) = 0

for all µ ∈ Xr and σ ∈ X+. The Lyndon–Hochschild–Serre spectral sequence

Ei,j
2 = ExtiG/Gr

(∆(σ)(r),ExtjGr
(Str ⊗L(µ∗),M))

⇒ Exti+j
G (Str ⊗∆(σ)(r), L(µ)⊗M)

collapses because Str is projective as a Gr-module and yields the isomorphism:

Ext1G(Str ⊗∆(σ)(r), L(µ)⊗M) ∼= Ext1G/Gr
(∆(σ)(r),HomGr

(Str ⊗L(µ∗),M)).

Therefore, HomGr
(Str ⊗L(µ∗),M)) has a good filtration as a G/Gr-module. The

G/Gr-module HomGr
(T (µ̂(r)),M) is a direct summand of HomGr

(Str ⊗L(µ∗),M),
because T (µ̂(r)) is a G-direct summand of Str ⊗L(µ∗) by [Pil, Sect. 2, Cor. A].
Therefore, HomGr

(T (µ̂(r)),M) has a G/Gr-good filtration. It follows now by
Theorem 2.4.1 that Str ⊗M has a good filtration.

(b) By duality and Theorem 3.2.1, we have

HomGr
(Str ⊗∆(µ∗),M) ∼= HomGr

(k, Str ⊗∇(µ)⊗M)

∼= ind
G/Gr

B/Br

(
[µ− (pr − 1)ρ⊗M ]Tr

)
.

Following [Pil, Sect. 2, Cor. A] (see [So, Rem. 4.1.4]) , T (µ̂(r)) is also a G-direct

summand of Str ⊗∆(µ∗) for µ ∈ Xr. So, if ind
G/Gr

B/Br

(
[µ− (pr − 1)ρ,⊗M ]Tr

)
has a

good filtration as a G/Gr-module for all µ ∈ Xr, then, by Theorem 2.4.1, Str ⊗M
has a good filtration. !

Note that in part (a) of the previous theorem the module L(µ) could be replaced
by any of the following: ∇(µ), ∆(µ) or T (µ).

4. Applications: tensoring with simple modules

4.1. Reduction to r = 1

In this section we will apply the results from the previous section to verify cases
when Str ⊗L(λ) has a good filtration. In order to do so, the following result of
Kildetoft and Nakano shows that it suffices to focus on the case when r = 1.

Theorem 4.1.1 ([KN, Prop. 4.4.1]). If St1 ⊗L(λ) has a good filtration for all λ ∈
X1(T ), then Str ⊗L(λ) has a good filtration for all λ ∈ Xr, r ≥ 1.
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4.2. General bound on p

In [KN, Thm. 5.3.1, Thm. 9.4.1] [And3, Prop. 2.1], it was shown that Str ⊗L(λ)
has a good filtration for p ≥ 2h − 2. This bound agrees with the present state
of Donkin’s Tilting Module Conjecture. The following result lowers the general
bound for Conjecture 1.2.1(⇒) to hold. This fact will be later used for our analysis
of low rank groups.

Theorem 4.2.1. Let λ ∈ Xr and p ≥ 2h−4. Then Str ⊗L(λ) has a good filtration.

Proof. By Theorem 4.1.1, it suffices to prove this for r = 1, and we will do so
by using the characterization given in Theorem 3.3.1(a) applied to M = L(λ).
Suppose that µ,λ ∈ X1(T ) and that St1 ⊗ L(γ)(1) is a composition factor of
L(µ)⊗ L(λ). Since (p− 1)ρ+ pγ ≤ µ+ λ,

⟨(p− 1)ρ+ pγ,α∨
0 ⟩ ≤ ⟨µ+ λ,α∨

0 ⟩

≤ 2(p− 1)(h− 1).

Thus

⟨γ,α∨
0 ⟩ ≤

(p− 1)

p
(h− 1) < h− 1.

From this, we have
⟨γ + ρ,α∨

0 ⟩ < 2(h− 1),

so that
⟨γ + ρ,α∨

0 ⟩ ≤ 2h− 3.

If p ≥ 2h − 3, then γ is contained in the closure of the fundamental alcove, and
L(γ) ∼= ∇(γ). This proves the result for p ≥ 2h−3. The case when p = 2h−4 only
occurs if p = 2 and h = 3. But this result (indeed, the Tilting Module Conjecture
as well) is known to hold for SL3 in characteristic 2, as the four restricted simple
modules are all tilting in this case. Therefore, the result holds when p ≥ 2h − 4.
!

4.3. General bound on λ

One can also give a general upper bound on λ that will ensure that tensoring the
rth-Steinberg with a simple Gr-module will have a good filtration.

Proposition 4.3.1. If λ ∈ X+ and ⟨λ,α∨
0 ⟩ ≤ 2pr − 1, then Str ⊗L(λ) has a good

filtration.

Proof. We work again with the characterization in Theorem 3.3.1(a). Suppose
that Str ⊗L(γ)(r) is a composition factor of L(µ) ⊗ L(λ) for some µ ∈ Xr. One
has

⟨µ,α∨
0 ⟩ ≤ ⟨(pr − 1)ρ,α∨

0 ⟩,

so it follows that
pr⟨γ,α∨

0 ⟩ ≤ ⟨λ,α∨
0 ⟩ ≤ 2pr − 1.

Thus
⟨γ,α∨

0 ⟩ ≤ 2− 1/pr < 2,

forcing γ to be minuscule and therefore L(γ) ∼= ∇(γ). !
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4.4. Rank 2 groups

The following theorem completes work on rank two groups initiated in [KN, Sect. 8].

Theorem 4.4.1. Assume the Lie rank of G is less than or equal to two. Then

Str ⊗L(λ) has a good filtration for all λ ∈ Xr.

Proof. Again, we use Theorem 4.1.1 to reduce to the case that r = 1. In [KN,
8.5], the claim was shown in all cases except for when Φ is of type G2 and p = 7,
so we consider this case. Here h = 6 and α∨

0 = 2α∨
1 + 3α∨

2 . Set λ = aϖ1 + bϖ2

with 0 ≤ a, b ≤ 6. We may assume that λ ̸= 6ρ, so at least one of a or b is strictly
less than 6.

We make use of Theorem 3.3.1(a). Suppose now that µ ∈ X1(T ) is such that
µ(1) = (p− 1)ρ− µ is G1-linked to λ. Our goal is to show that, if St1 ⊗L(γ)(1) is
a composition factor of L(µ)⊗ L(λ), then L(γ) = ∇(γ). Now

7⟨γ,α∨
0 ⟩ ≤ 2a+ 3b ≤ 10 + 18 = 28,

with equality occurring only if λ = 5ϖ1+6ϖ2. So ⟨γ,α∨
0 ⟩ ≤ 4. Let γ = cϖ1+dϖ2

with 0 ≤ c, d ≤ 6. Then 2c + 3d = ⟨γ,α∨
0 ⟩ ≤ 4. So c ≤ 2, d ≤ 1, and at most one

of c or d may be non-zero.

Case I. γ = 0: Then L(γ) = L(0) = k = ∇(0).

Case II. γ = ϖ1: This lies in closure of the bottom alcove, and so L(ϖ1) = ∇(ϖ1).

Case III. γ = ϖ2: Similarly, this does not lie in the bottom alcove, however, there
is nothing lower linked to it, and so L(ϖ2) = ∇(ϖ2).

Case IV. γ = 2ϖ1 = 2α0: Note that this is the same weight observed in [KN,
8.5.4] to be problematic. Here L(2ϖ1) ̸= ∇(2ϖ1). However, this situation occurs
only if µ = (p − 1)ρ and λ = 5ϖ1 + 6ϖ2. This case can be dismissed because
µ(1) = 0 is not G1-linked to λ. !

Although we rely on [KN, Sect. 8.2] to remove most of the cases, the results
in this paper could have been used in other type G2 cases and lead to very short
proofs for the other rank ≤ 2 groups. For example, Theorem 4.2.1 (and its proof)
establish the result for SL2 and SL3 in all characteristics. For type B2, we have
h = 4, so that the result holds for all p ≥ 4 by Theorem 4.2.1, leaving only
p = 2, 3 to check. If p = 2 and λ ∈ X1(T ), then ⟨λ,α∨

0 ⟩ ≤ 3 = 2p − 1. If p = 3
and λ ∈ X1(T ) is not the Steinberg weight (for which the result is clear), then
⟨λ,α∨

0 ⟩ ≤ 5 = 2p− 1. Thus, in both of these cases, the result holds by Proposition
4.3.1.

4.5. Fundamental weights

We now consider the case of a restricted irreducible G-module where the highest
weight is a fundamental weight. To do this, we need to extend the usual partial
order on weights to a partial ordering ≤Q relative to the rational numbers. For
µ,λ ∈ X, we say that µ ≤Q λ if

λ− µ =
∑

α∈S

qαα

for qα ∈ Q with qα ≥ 0. Note that µ ≤ λ implies µ ≤Q λ.
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Theorem 4.5.1. Let the Lie rank of G be n. Then

(a) Str ⊗L(ϖj) has a good filtration for j = 1, 2, . . . , n and r ≥ 2.

(b) St1 ⊗L(ϖj) has a good filtration for j = 1, 2, . . . , n, except possibly when

p = 2 and Φ = E7, E8.

(c) In the case when p = 2 and Φ = E7 or E8,

(i) St1 ⊗L(ϖj) has a good filtration for j ̸= 4 when Φ = E7.

(ii) St1 ⊗L(ϖj) has a good filtration for j ̸= 4, 5 when Φ = E8.

Proof. We want to consider ind
G/Gr

B/Br

(
[µ− (pr − 1)ρ⊗ L(ϖj)]

Tr
)
for µ ∈ Xr and

show it has a good filtration. This will occur if all the dominant weights in [µ −
(pr − 1)ρ⊗ L(ϖj)]

Tr are of the form prδ with the property that ∇(δ) = L(δ).

Let prδ be a dominant weight of [µ − (pr − 1)ρ ⊗ L(ϖj)]
Tr . Then prδ = µ −

(pr − 1)ρ+ γ where γ is a weight of L(ϖj). Since µ ≤Q (pr − 1)ρ, it follows that

prδ ≤Q γ. (2)

By taking the inner product with α∨
0 , one obtains

0 ≤ ⟨δ,α∨
0 ⟩ ≤

1

pr
⟨ϖj ,α

∨
0 ⟩. (3)

Set h(j, r, p) = ⟨ϖj ,α
∨
0 ⟩/p

r.

For types An, Bn, Cn, Dn, E6 and G2, one has h(j, r, p) < 2 for all j, r. In these
cases this implies that δ is either zero or minuscule and ∇(δ) = L(δ).

For type F4, one can repeat this argument, but replacing α∨
0 with the coroot of

the highest root α∨
h = 2α∨

1 +3α∨
2 +2α∨

3 +α∨
4 . In this case, one obtains h(j, r, p) =

⟨ϖj ,α
∨
h ⟩/p

r < 2. This implies that δ = 0 or ω4 (with p = 2, 3). The only solution
to prω4 ≤Q ωj occurs when p = 2, r = 1 and j = 2. However, ∇(ω4) = L(ω4)
when p = 2 (cf. [Jan2, p. 299]).

In the case when Φ = E7, one has h(j, r, p) < 2 unless j = 4, r = 1 and p = 2.
For Φ = E8, one has h(j, r, p) < 2 unless

(i) j = ϖ3, r = 1, p = 2;

(ii) j = ϖ6, r = 1, p = 2;

(iii) j = ϖ5, r = 1, p = 2;

(iv) j = ϖ4, r = 1, p = 2;

(v) j = ϖ4, r = 1, p = 3.

For type E8, the root lattice and the weight lattice coincide, so in this case

prδ ≤ γ ≤ ϖj .

Suppose δ ̸= 0. Using [UGA, Fig. 3], in cases (i), (ii), (v) it follows that δ = ϖ8,
and one has ∇(δ) = L(δ) by [GGN, Thm. 1.1]. One is left with cases (iii), (iv) for
type E8. !
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5. Higher rank cases

5.1. The strategy

In this section, we consider the question of whether Str ⊗L(λ) has a good filtration
for some higher rank groups over small primes. Here the results are less complete,
and we will focus on the r = 1 situation. For those cases where we can show that

St1 ⊗L(λ) has a good filtration for all λ ∈ X1, (4)

it will then follow from Theorem 4.1.1 that Str ⊗L(λ) has a good filtration for all
λ ∈ Xr for r > 1.

Note that L((p− 1)ρ) ≃ St1, and the claim (4) always holds for this particular
weight. For a given λ ∈ X1, we may therefore assume throughout that λ ̸=
(p − 1)ρ. We again make use of Theorem 3.3.1(a). Suppose that St1 ⊗L(γ)(1)

is a composition factor of L(µ) ⊗ L(λ) for γ ∈ X+ and µ ∈ X1. Our goal is to
show that either no such γ and µ exist or that L(γ) = ∇(γ). Recall the notation
µ(1) := (p− 1)ρ− µ. As in the proof of Theorem 4.2.1, we must have

pγ ≤ λ− µ(1), (5)

from which we may conclude that

p⟨γ,α∨
0 ⟩ ≤ ⟨λ,α∨

0 ⟩ and p⟨γ, α̃∨⟩ ≤ ⟨λ, α̃∨⟩, (6)

where α̃ denotes the highest root. These inequalities are often sufficient to elimi-
nate options, but further reductions can also be made by noting that we only have
to consider those µ with µ(1) being G1-linked to λ.

5.2. Use of computer algebra systems and online data

In the following, due to the complexity of some calculations, we make repeated use
of the computer algebra systems LiE [LiE] and Magma [Magma]. The systems are
used to

(a) find the formal characters of tensor products of induced modules (LiE),
(b) find the weight space multiplicities of induced modules (LiE),
(c) find the W -orbits of certain weights (LiE, Magma).

The last item allows for the calculation of G- and G1-linkage classes, either by
hand or via computer. In addition, we make use of Frank Lübeck’s online tables of
weight multiplicities of small degree representations in defining characteristic [L].

5.3. Rank 3 groups

For rank three groups, the claim (4) holds in almost all cases (cf. also [KN, §8.3]).

Theorem 5.3.1. Let G be of type A3, B3, or C3 and λ ∈ X1. Then St1 ⊗L(λ)
has a good filtration except possibly for the following cases:

• Type B3 with p = 7: λ = (6, 5, 5), (6, 4, 5), (6, 5, 4), (5, 5, 5), (5, 5, 4), (5, 5, 4),
(5, 4, 5), (4, 5, 5), (4, 5, 4), or (3, 5, 5),

• Type C3 with p = 3: λ = (2, 1, 2) or (2, 2, 1),
• Type C3 with p = 7: λ = (6, 5, 5), (6, 4, 5), (6, 5, 4), (5, 5, 5), or (4, 5, 5).
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Proof. The case of type A3 was shown by Kildetoft and Nakano [KN, §8.3], but
also follows from our previous results. By Theorem 4.2.1, we are reduced to p = 2
or 3. But those cases follow from Proposition 4.3.1.

For type B3, h = 6. By Theorem 4.2.1, we are done if p > 7. Note that
α∨
0 = 2α∨

1 +2α∨
2 +α∨

3 and α̃∨ = α∨
1 +2α∨

2 +α∨
3 , from which we see that ⟨ρ,α∨

0 ⟩ = 5
and ⟨ρ, α̃∨⟩ = 4.

For p = 2, Proposition 4.3.1 reduces us to λ = ϖ1 + ϖ2. The only γ and
µ satisfying (5) are γ = ϖ1 and µ = ρ (so L(µ) = St1). We will show that
St1 ⊗L(ϖ1)

(1) does not appear as a composition factor of St1 ⊗L(ϖ1 +ϖ2). First,
note that St1 ⊗∇(ϖ1)

(1) appears exactly once as a factor in a good filtration of
St1 ⊗∇(ϖ1 + ϖ2) [LiE]. Moreover, ρ + 2ϖ1 is the unique highest weight in the
Steinberg linkage class inside this tensor product. That implies that St1 ⊗L(ϖ1)

(1)

appears exactly once as a composition factor of St⊗∇(ϖ1 + ϖ2). On the other
hand, Lübeck’s calculations [L] show that the weight 2ϖ1 does not appear in the
simple module L(ϖ1 + ϖ2). It does, however, appear with multiplicity one in
∇(ϖ1 + ϖ2). This implies that L(ϖ1)

(1) is a composition factor of ∇(ϖ1 + ϖ2).
Hence, St1 ⊗L(ϖ1)

(1) is a composition factor of St1 ⊗(∇(ϖ1 +ϖ2)/L(ϖ1 +ϖ2))
and not of St1 ⊗L(ϖ1 +ϖ2).

For p = 3, applying both inequalities in (6), we are reduced to the following
options for γ: ϖ1, ϖ2, ϖ3, 2ϖ3, or ϖ1 +ϖ3. Applying (5) to γ = 2ϖ3, we would
need 6ϖ3 ≤ λ − µ(1) <Q 2ρ, which fails to hold. That leaves us with γ = ϖi or
ϖ1+ϖ3. For p ̸= 2, each ∇(ϖi) is simple (cf. [Jan3, II.8.21]). Further, ∇(ϖ1+ϖ3)
is also known to be simple, except when p = 7 (cf. [GGN]).

For p = 5, (6) reduces us to γ = ϖ1, ϖ2, ϖ3, 2ϖ3, 3ϖ3, ϖ1 +ϖ3, or ϖ2 +ϖ3.
From (5), one has 5γ ≤ λ − δ <Q 4ρ. This fails to hold for γ = 3ϖ3. While it
is true that 5(ϖ2 + ϖ3) <Q 4ρ, there is no λ ̸= 4ρ with 5(ϖ2 + ϖ3) ≤ λ − µ(1).
So this reduces us to γ = ϖi, ϖ1 +ϖ3, or 2ϖ3. As noted above, each ∇(ϖi) and
∇(ϖ1 +ϖ3) is simple. Lastly, by explicit dimension computations of Lübeck [L],
∇(2ϖ3) is simple for all odd primes.

For p = 7, from (6), we are reduced to the following options for γ: ϖ1, ϖ2, ϖ3,
2ϖ1, 2ϖ3, 3ϖ3, ϖ1 +ϖ2, ϖ1 +ϖ3, ϖ2 +ϖ3, ϖ1 + 2ϖ3. Using known facts and
dimension computations of Lübeck [L], the only cases where ∇(γ) is not simple
are γ = 2ϖ1 or ϖ1 +ϖ3. Both can satisfy (5). In particular, for γ = 2ϖ1, we can
have λ−µ(1) = 6ρ−ϖ1, 6ρ−ϖ2, or 6ρ−2ϖ3. One can check that, in each case, λ
is not G1-linked to µ(1). So this leaves only the second case of γ = ϖ1+ϖ3, which
admits a large number of options for λ (and µ(1)). However G1-linkage holds only
in the following cases:

λ (6,5,5) (6,4,5) (6,5,4) (5,5,5) (5,5,4) (5,5,4)
µ(1) (3,0,0) (1,1,0) (2,0,1) (0,0,0) (0,0,1) (1,0,1)

λ (5,5,5) (5,4,5) (4,5,5) (4,5,4) (3,5,5)
µ(1) (2,0,0) (0,1,0) (1,0,0) (0,0,1) (0,0,0)

For type C3, we are again done if p > 7. In this case α∨
0 = α∨

1 +2α∨
2 +2α∨

3 and
α̃∨ = α∨

1 + α∨
2 + α∨

3 , from which we see that ⟨ρ,α∨
0 ⟩ = 5 and ⟨ρ, α̃∨⟩ = 3.
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For p = 2, Proposition 4.3.1 reduces us to λ = ϖ2 + ϖ3. The only weight γ

satisfying (5) is γ = ϖ1, which is miniscule. Hence, ∇(ϖ1) is simple.
For p = 3, (6) reduces us to γ = ϖi for some 1 ≤ i ≤ 3. Again, ∇(ϖ1) is simple.

Premet and Suprunenko [PrSu] showed that ∇(ϖ2) is simple if and only if p ̸= 3
and ∇(ϖ3) is simple if and only if p ̸= 2. So we are reduced to the case γ = ϖ2,
which does satisfy (5) for many values of λ−µ(1). The following table summarizes
the possible cases where λ is G1-linked to µ(1).

λ (2,1,2) (2,1,2) (2,2,1) (2,0,2)
µ(1) (0,0,0) (0,1,0) (1,0,0) (0,0,0)

With some further investigation, we can eliminate two of those four options. For
ν ∈ X1, set Z1(ν) := coindG1T

B+
1 T

(ν). First, suppose that λ = (2, 0, 2) and µ(1) =

(0, 0, 0) (the last case). Then µ = (p − 1)ρ and L(µ) ∼= St1. We are reduced
to showing that e1(St1 ⊗L(λ)) has a good filtration or, equivalently, that N :=
HomG1(St1, St1 ⊗L(λ))(−1) has a good filtration. This can only fail if L(ϖ2) is a
composition factor of N . The weight-space multiplicity of 5ϖ2 in St1 is one. It
follows that Z1(2ρ + 5ϖ2) = Z1(2(p − 1)ρ − λ + pϖ2) appears exactly once as a
section of the G1T -module St1 ⊗ St1. Moreover, the only weights in St1 ⊗ St1 that
are higher than 2(p− 1)ρ− λ+ pϖ2 = 4ρ− α1 − α3 are 4ρ, 4ρ− α1, and 4ρ− α3.
The weight 2(p−1)ρ−λ+pϖ2 = 4ρ−α1−α3 is not strongly linked to any of these
because the reflections sα1,p and sα3,p are elements of its stabilizer in the affine
Weyl group. Hence, 2(p− 1)ρ− λ+ pϖ2 is a maximal weight inside St1 ⊗ St1. It
follows that Q1(λ+ pϖ2) appears exactly once as a summand of the G1T -module
St1 ⊗ St1 and that L(ϖ2) appears exactly once as a composition factor of N .

By the same argument we can conclude that the induced module ∇(2(p−1)ρ−
λ + pϖ2) also appears exactly once as a section in the good filtration of the G-
module St1 ⊗ St1. The fact that 2(p−1)ρ−λ+pϖ2 is a maximal weight in St1 ⊗ St1
says that the tilting module T (2(p− 1)ρ−λ+ pϖ2) ∼= T (2(p− 1)ρ−λ)⊗T (ϖ2)

(1)

is a summand of the tilting module St1 ⊗ St1. This implies that the tilting module
T (ϖ2) is a summand of N . Since the multiplicity of L(ϖ2) in N is one, it appears
inside this summand. All other composition factors L(η) of N satisfy L(η) ∼= ∇(η).
One concludes that N is tilting, and thus has a good filtration, eliminating the
weight (2, 0, 2) from the above list.

Consider now the second case in the above list: λ = (2, 1, 2) and µ(1) = (0, 1, 0).
Then µ = (p − 1)ρ − µ(1) = λ. An argument similar to the preceding case shows
that e1(T (λ) ⊗ L(λ)) has a good filtration, which eliminates this case as well,
leaving only the following unknown cases:

λ (2,1,2) (2,2,1)
µ(1) (0,0,0) (1,0,0)

For p = 5, (6) reduces us to the following options for γ: ϖ1, ϖ2, ϖ3, 2ϖ1,
ϖ1 + ϖ2, or ϖ1 + ϖ3. Here we know the simplicity of ∇(ϖi) for each i. From
dimension computations of Lübeck [L], ∇(2ϖ1) is simple for p > 2, ∇(ϖ1 +ϖ2)
is simple if and only if p ̸= 3 or 7, and ∇(ϖ1 +ϖ3) is simple if and only if p > 3.
In particular, all are simple for p = 5.
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For p = 7, (6) reduces us to the following options for γ: ϖ1, ϖ2, ϖ3, 2ϖ1, 2ϖ2,
2ϖ3, ϖ1+ϖ2, ϖ1+ϖ3, ϖ2+ϖ3. From previous discussions, the only cases where
∇(γ) is not simple are γ = 2ϖ2,ϖ1+ϖ2. Both can satisfy (5). For γ = 2ϖ2, there
are three options for λ : 6ϖ1+5ϖ2+6ϖ3 (with µ(1) = 0); 4ϖ1+6ϖ2+6ϖ3 (with
µ(1) = 0); and 5ϖ1+6ϖ2+6ϖ3 (with µ(1) = ϖ1). However, one can directly check
that in each case λ and µ(1) are not G1-linked. In the second case (γ = ϖ1 +ϖ2),
there are numerous values of λ that satisfy (5), however G1-linkage holds only in
the following cases:

λ (6,5,5) (6,4,5) (6,5,4) (5,5,5) (4,5,5)
µ(1) (0,0,0) (0,1,0) (0,0,1) (1,0,0) (0,0,0)

!

5.4. Rank 4 groups

In types A4 and D4, the claim also holds in almost all cases. While potentially
problematic weights are not listed explicitly in the following theorem, some infor-
mation is provided in the proof.

Theorem 5.4.1. Assume G is of type A4 or D4 and λ ∈ X1. Then St1 ⊗L(λ) has
a good filtration except possibly for the following cases:

• Type A4 with p = 5,

• Type D4 with p = 7.

Proof. We first consider type A4, where h = 5. By Theorem 4.2.1, we are done for
p > 5. For p = 2, the result follows from Proposition 4.3.1.

For p = 3, one could again eliminate many λ via Proposition 4.3.1. However,
we more directly focus on the weight γ. First, (6) reduces us to γ = ϖi + ϖj

for i, j ∈ {1, 2, 3, 4}. Of those, the only weights potentially satisfying (5) are
γ = ϖ1 + ϖ3, ϖ2 + ϖ4, or ϖ1 + ϖ4. However, in each case ∇(γ) is simple, as
can be seen by using Jantzen’s algorithm [Jan1, Satz 9] (cf. also [Jan3, II.8.21])
for checking the simplicity of a standard induced module in type An.

For p = 5, using (6), (5), and Jantzen’s algorithm for simplicity, one can reduce
the problem to just one possible value of γ: ϖ1 +ϖ4 = α0. We have the following
values of λ and µ(1) which are G1-linked and satisfy (5).

λ (4,3,3,4) (4,3,3,3) (3,3,3,4) (4,3,2,4) (4,2,3,4)
µ(1) (2,0,0,2) (2,0,0,1) (1,0,0,2) (1,1,0,1) (1,0,1,1)

λ (3,3,2,4) (3,2,3,4) (4,3,2,3) (4,2,3,3) (3,3,3,3)
µ(1) (0,1,0,1) (0,0,1,1) (1,1,0,0) (1,0,1,0) (1,0,0,1)

λ (2,3,3,4) (4,3,3,2) (4,3,1,4) (4,1,3,4) (4,2,2,4)
µ(1) (0,0,0,2) (2,0,0,0) (0,2,0,0) (0,0,2,0) (0,1,1,0)

λ (3,3,3,3) (2,3,3,3) (3,2,3,3) (3,3,2,3) (3,3,3,2) (2,3,3,2)
µ(1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0) (0,0,0,0)
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For type D4, h = 6. By Theorem 4.2.1, we are done if p > 7. We have
α∨
0 = α̃∨ = α∨

1 + 2α∨
2 + α∨

3 + α∨
4 , and so ⟨ρ,α∨

0 ⟩ = 5.

For p = 2, using (6) and (5), we are reduced to γ = ϖ1, ϖ3, or ϖ4. But all
those weights are miniscule, giving a simple ∇(γ).

For p = 3, many values of γ satisfy (6). Using dimension computations of
Lübeck [L], one finds that the only cases where ∇(γ) is not simple are as follows:
3ϖ1, 3ϖ3, 3ϖ4, ϖ1 + ϖ2, ϖ2 + ϖ3, ϖ2 + ϖ4, and ϖ1 + ϖ3 + ϖ4. By direct
verification, none of these can satisfy (5).

For p = 5, similarly, (6) and dimension computations of Lübeck [L] reduce us
to the following options for γ: 3ϖi, i ∈ {1, 3, 4}; 4ϖi, i ∈ {1, 3, 4}; 2ϖi + ϖj ,
i, j ∈ {1, 3, 4}, i ̸= j; 3ϖi +ϖj , i, j ∈ {1, 3, 4}, i ̸= j; 2ϖi + 2ϖj , i, j ∈ {1, 3, 4},
i ̸= j; ϖi + 2ϖ2, i ∈ {1, 3, 4}; and ϖ2 +ϖi +ϖj , i, j ∈ {1, 3, 4}, i ̸= j. One then
checks that (5) fails to hold in all cases.

For p = 7, as above, (6) and Lübeck’s computations reduce us to the following
options for γ: ϖi + ϖ2, i ∈ {1, 3, 4}, 2ϖ2. Unfortunately, (5) can hold here. In
the case γ = 2ϖ2, the only values of λ and µ(1) that work are as follows:

λ (6,5,6,6) (4,6,6,6) (6,6,4,6) (6,6,6,4)
µ(1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

λ (5,6,6,6) (6,6,5,6) (6,6,6,5)
µ(1) (1,0,0,0) (0,0,1,0) (0,0,0,1)

One can check that in each case λ is not G1-linked to µ(1). So that case is
eliminated.

In the first (symmetric) cases for γ, there are options for λ and µ(1) where
linkage holds. For example, for γ = ϖ1 + ϖ2, one has the following cases where
G1-linkage holds between λ and µ(1):

λ (6,4,5,5) (4,5,5,5) (5,5,5,5) (6,5,5,5)
µ(1) (0,1,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0)

Similar cases would exist for µ1 = ϖ2 +ϖ3 and µ1 = ϖ2 +ϖ4. Additional cases
may also exist, as a complete list has not been computed. !

For types B4 and C4, h = 8, and the claim holds for p > 7. No investigation
has been made for small primes.

For type F4, h = 12, and we are done if p > 17. We make some observations for
p = 2. We have α∨

0 = 2α∨
1 + 4α∨

2 + 3α∨
3 + 2α∨

4 and α̃∨ = 2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 .
So ⟨ρ,α∨

0 ⟩ = 11 and ⟨ρ, α̃∨⟩ = 8. The inequalities in (6) force ⟨γ,α∨
0 ⟩ ≤ 5 and

⟨γ, α̃∨⟩ ≤ 3. One has the following options: γ = ϖ1, ϖ2, ϖ3, ϖ4, 2ϖ4, ϖ1 +ϖ4,
or ϖ3 +ϖ4. The case γ = ϖ3 +ϖ4 may be eliminated as it does not satisfy (5),
and the case case γ = ϖ4 may be eliminated as ∇(ϖ4) is simple (for p = 2) by
[Jan2]. One finds the following possibilities where (5) holds and λ is G1-linked to
µ(1):
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λ µ(1)

(1,1,0,1) (0,0,0,0), (0,0,1,0), (0,0,0,1), (0,0,0,2)
(1,1,1,0) (0,0,0,0), (1,0,0,0), (0,0,1,0), (0,0,0,1), (1,0,0,1)
(0,1,1,0) (0,0,0,1)
(1,1,0,0) (0,0,0,1)

5.5. Type A5

For type A5, h = 6. By Theorem 4.2.1, we are done for p > 7. In contrast to the
smaller rank cases, even for p = 2, our earlier methods do not completely resolve
the issue. Using (6), (5), and Jantzen’s simplicity algorithm, one is reduced to
one case: λ = ϖ1 +ϖ2 +ϖ4 +ϖ5 with µ(1) = 0 and γ = ϖ1 +ϖ5. Note that λ
is indeed G1-linked to the zero weight. However, through an intricate analysis of
the modules involved, in Section 6, we are able to address this case. See Theorem
6.4.4. For p = 3, 5, or 7, there will be many more options for λ that cannot be
dealt with by the above methods.

5.6. Summary

For λ ∈ X1, St1 ⊗L(λ) has a good filtration in the following cases:

• Type An: p > 2n− 3.
• Type A2: all primes.
• Type A3: all primes.
• Type A4: p ̸= 5.
• Type A5: p ̸= 3, 5, 7.

• Type Bn: p > 4n− 5.
• Type B2 (equivalently C2): all primes.
• Type B3: p ̸= 7.
• p = 7 case, all except λ = (6, 5, 5), (6, 4, 5), (6, 5, 4), (5, 5, 5),
(5, 5, 4), (5, 4, 5), (4, 5, 5), (4, 5, 4), (3, 5, 5).

• Type Cn: p > 4n− 5.
• Type C3: p ̸= 3, 7.
• p = 3 case, all except λ = (2, 1, 2) or (2, 2, 1).
• p = 7 case, all except λ = (6, 5, 5), (6, 4, 5), (6, 5, 4), (5, 5, 5), (4, 5, 5).

• Type Dn: p ≥ 4n− 9.
• Type D4: p ̸= 7.

• Type E6: p > 19.
• Type E7: p > 31.
• Type E8: p > 53.
• Type F4: p > 19

• p = 2 case, reduced to λ = (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 0), (1, 1, 0, 0).
• Type G2: all primes.

6. A detailed analysis in characteristic 2

In this section we investigate two very similar situations in which a proof that
St1 ⊗L(λ) has a good filtration is beyond the reach of our earlier arguments. In
particular, basic weight combinatorics are not conclusive, and thus it becomes
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necessary to better understand the submodule structure of a tensor product of G-
modules. We show in one of the two cases that we are able to verify that St1 ⊗L(λ)
does have a good filtration, which allows us to conclude that Conjecture 1.2.1 (⇒)
holds. That this holds in such a nontrivial setting could be viewed as the strongest
evidence yet for its truth in arbitrary characteristic. However, if this is indeed true,
one will need to find the underlying reason why it holds in situations similar to
those considered here.

6.1. Composition factors of the form St1 ⊗L(α0)

Unless otherwise noted, we assume throughout this section that p = 2. Further,
we assume that (i) G = SL6 (type A5) and λ = ϖ1 + ϖ2 + ϖ4 + ϖ5 or (ii) G
is of type E7 and λ = ϖ4. In either case, 2α0 appears as a weight in L(λ). For
SL6, α0 = ϖ1 + ϖ5, and one verifies the multiplicity of 2α0 directly from the
tables provided by [L]. For E7, L(λ) has dimension outside the range for modules
appearing in these tables. This can be overcome by observing here that α0 = ϖ1,
and that

λ− 2α0 = 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7.

We may then work over the Levi subgroup LJ ≤ E7 with J = {α2, . . . ,α7}, a group
of type D6, and observe that the multiplicity of 2ϖ1 in L(ϖ4) (for E7) is the same
as the multiplicity of 0 in the D6-module whose highest weight is the fundamental
weight corresponding to the triality node in the Dynkin diagram. According to the
orientation of the Dynkin diagrams in [L], this is the module L(ϖ3) for the group
D6. This module has dimension 364 (for p = 2), and the 0 weight occurs with
multiplicity 4.

Since ρ+2α0 is a highest weight, belonging to the Steinberg linkage class, inside
St1 ⊗L(λ), the multiplicity of St1 ⊗L(α0)

(1) as a composition factor of St1 ⊗L(λ)
equals the multiplicity of 2α0 as a weight in L(λ). At the same time, ∆(α0) ∼= g

(the adjoint representation), and L(α0) ∼= g/z(g), with z(g) denoting the one-
dimensional center of g. Since L(α0)

(1) ! ∇(α0)
(1), by [Jan3, Prop. II.3.19],

St1 ⊗L(α0)
(1) ! St1 ⊗∇(α0)

(1) ∼= ∇(ρ+ 2α0),

and so the composition factor St1 ⊗L(α0)
(1) does not have a good filtration. We

note that G is simply-laced, so that α0 is the highest root.
For G = SL6, the other dominant weights γ such that 2γ is a weight of ∆(λ)

are

γ = 0,ϖ3.

For G of type E7, they are

γ = 0,ϖ7.

For G = SL6, we have L(ϖ3) ∼= ∇(ϖ3), and for G of type E7, we have L(ϖ7) ∼=
∇(ϖ7). Neither module (for the given G) extends nor can be extended by L(α0).
Furthermore, we have in both cases that

Ext1G(k, L(α0)) ∼= Ext1G(L(α0), k) ∼= k.
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These one-dimensional extension groups are accounted for by the indecomposable
modules∆(α0) and∇(α0). One may further check by standard long exact sequence
computations that

Ext1G(∇(α0), L(α0)) = 0; Ext1G(L(α0),∇(α0)) = 0;

Ext1G(k,∇(α0)) = 0; Ext1G(∇(α0), k) ∼= k.

Applying the contravariant dual τ -functor, (28) in Section 2.1, which interchanges
Weyl and induced modules, while preserving simple (and tilting) modules, we
obtain all extensions involving∆(α0), k, and L(α0). Summarizing, the collection of
indecomposable G-modules having composition factors coming from the collection
{k, L(α0)} are (up to isomorphism)

{k, L(α0), ∇(α0), ∆(α0), T (α0)}.

The structure of the tilting module T (α0) is given by the exact sequence

0 → k → T (α0) → ∇(α0) → 0.

Via the equivalence of categories between G-mod and its Steinberg block, it follows
that an indecomposable summand of St1 ⊗L(λ) that contains St1 ⊗L(α0)

(1) as a
composition factor must be isomorphic to one of the following:

{St1 ⊗L(α0)
(1), St1 ⊗∇(α0)

(1), St1 ⊗∆(α0)
(1), St1 ⊗T (α0)

(1)}.

Note that, if we instead work with St1 ⊗∆(λ), the only possibilities from this list
are the two involving the Weyl module or the tilting module. One can also make
the deduction about the module structures above by working with the truncated
category obtained by looking at the full subcategory of rational G-modules having
composition factors with highest weight less than or equal to α0 (and linked to
α0). This category has finite representation type.

Lemma 6.1.1. Assume p = 2. Let G be of type A5 with λ = ϖ1 +ϖ2 +ϖ4 +ϖ5

or G be of type E7 with λ = ϖ4. The summands of St1 ⊗L(λ) containing the

composition factor St1 ⊗L(α0)
(1) all have a good filtration if and only if

HomG(St1 ⊗L(α0)
(1), St1 ⊗L(λ)) = 0.

Proof. By the previous discussion, if HomG(St1 ⊗L(α0)
(1), St1 ⊗L(λ)) = 0, then

the only relevant summands that can appear in St1 ⊗L(λ) are of the form
St1 ⊗T (α0)

(1) and St1 ⊗∆(α0)
(1), thus these summands have a Weyl filtration.

Now, St1 ⊗L(λ) is τ -invariant. Further, if M is a summand of St1 ⊗L(λ), then
τM is isomorphic to a summand of St1 ⊗L(λ) having the same composition factors.
It follows then that a summand containing the factor St1 ⊗L(α0)

(1) also has a good
filtration.

The converse is established by the reverse implication of each step in the argu-
ment. !
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6.2. Analysis of tensor products

In order to analyze this situation further, we need to establish some basic
facts about tensor products of modules. Note that the results in this subsecti-
on hold under our general assumption on G, and Lemmas 6.2.1 and 6.2.2 hold
for arbitrary primes p. Recall that for a B-module M , there is an “evaluation
map” εM : indGBM → M which induces one direction of the Frobenius reciprocity
bijection [Jan3, I.3.4].

Lemma 6.2.1. Let M be a B-module and N,N ′ be G-modules. Composition with

the B-module homomorphism εM ⊗ id defines a bijection

HomG(N
′, (indGBM)⊗N)

∼
−→ HomB(N

′,M ⊗N).

Proof. As recalled above, composition with εM⊗N defines a bijection

HomG(N
′, indGB(M ⊗N))

∼
−→ HomB(N

′,M ⊗N).

The “tensor identity” in [Jan3, I.3.6] is established by a canonical isomorphism

indGB(M ⊗N)
∼
−→ (indGBM)⊗N.

This isomorphism is specified via canonical embeddings

indGB(M ⊗N) →֒ M ⊗N ⊗ k[G] ←֓ (indGBM)⊗N,

together with an automorphism of M ⊗N ⊗k[G] that sends the embedding on the
left isomorphically onto the embedding on the right. Now, the morphisms εM ⊗ id
and εM⊗N both come from these embeddings, by restricting the map

id⊗ id⊗ εG : M ⊗N ⊗ k[G] → M ⊗N ⊗ k,

where εG is the counit map on k[G], to each embedded subgroup. This proves the
claim. !

Lemma 6.2.2. Let µ,λ ∈ X+, and let vµ and zλ denote highest weight vectors of

the modules ∆(µ) and L(λ) respectively. Let M be any G-module. If

φ : ∆(µ) → M ⊗ L(λ)

is a non-zero homomorphism of G-modules, then there is some 0 ̸= m ∈ M such

that

φ(vµ) = (m⊗ zλ) + y, with y ∈ M ⊗

(∑

σ<λ

L(λ)σ

)
.

Proof. There is a canonical inclusion

HomG(∆(µ),M ⊗ L(λ)) →֒ HomG(∆(µ),M ⊗∇(λ)).
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By Lemma 6.2.1, the B-module homomorphism

M ⊗∇(λ)
id⊗ελ−−−−→ M ⊗ λ

induces a bijection

HomG(∆(µ),M ⊗∇(λ)) ∼= HomB(∆(µ),M ⊗ λ).

As a B-module, ∆(µ) is generated by vµ, thus a non-zero B-homomorphism from
∆(µ) to any B-module must send vµ to a non-zero element. We have a vector
space decomposition

M ⊗∇(λ) = M ⊗ zλ +M ⊗

(∑

σ<λ

∇(λ)σ

)
.

The result then follows by noting that id ⊗ ελ sends

M ⊗

(∑

σ<λ

∇(λ)σ

)
→ 0. !

Lemma 6.2.3. Assume p = 2. Let wρ+2α0
be a highest weight vector of the

module St1 ⊗∆(α0)
(1) and wρ be a maximal vector generating the simple submodule

St1 ⊗k ≤ St1 ⊗∆(α0)
(1). There is some X ∈ Dist(U) of weight −2α0 such that

X.wρ+2α0 = wρ.

The comultiplication of X in Dist(U) is given by

∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′
i ⊗X ′′

i ,

where for each i
−2α0 < wt(X ′

i),wt(X
′′
i ) < 0.

Proof. The Weyl module ∆(ρ + 2α0) ∼= St1 ⊗∆(α0)
(1) is generated over B, and

over U , by any highest weight vector. The same is true over Dist(B) and Dist(U),
thus there is some X ∈ Dist(U) that gives the required action. Moreover, it is
clear that we can choose X to be a T -weight vector of weight −2α0 (indeed, any
X such that X.wρ+2α0

= wρ will be a sum of weight vectors, and any elements in
the sum not having weight −2α0 must then act as zero, so we can modify X by
subtracting off if necessary such terms).

The augmentation ideal of Dist(U ) is the vector subspace spanned by all T -
weight vectors of weight ̸= 0, hence X is in this ideal. The claim about ∆(X)
then follows from a general fact about the comultiplication of elements in the
augmentation ideal of a Hopf algebra, together with the fact that the terms in
∆(X) must have total weight −2α0. !
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6.3. Reductions

Returning to our special assumptions on G, p, and λ, we now give a series of
reductions toward proving that any summand of St1⊗L(λ) containing St1⊗L(α0)

(1)

as a composition factor is tilting.

Reduction 1: By Lemma 6.1.1, this is equivalent to showing that St1 ⊗L(α0)
(1)

does not appear as a submodule of St1 ⊗L(λ).

Reduction 2: This is equivalent to showing that any maximal vector in St1 ⊗L(λ)
of weight ρ+ 2α0 generates a submodule isomorphic to St1 ⊗∆(α0)

(1).

Reduction 3: By Lemma 6.2.3, this is equivalent to showing that if vρ+2α0
is any

such maximal vector of St1 ⊗L(λ) and X ∈ Dist(U) is chosen as in the lemma,
then X.vρ+2α0

̸= 0.

6.4. Type A5

For this subsection, we restrict ourselves to the case G = SL6 and λ = ϖ1 +ϖ2 +
ϖ4 +ϖ5. Fix, for each positive root β, the usual negative and positive Chevalley
basis elements fβ and eβ of g coming from the natural representation, and let
hβ = [eβ , fβ ]. We view these as elements inside Dist(G).

We have [eαi
, fαj

] = 0 if i ̸= j. Because p = 2, we also have

[hαi
, eαj

] = eαj
and [hαi

, fαj
] = fαj

if |i− j| = 1,

otherwise

[hαi
, eαj

] = 0 = [hαi
, fαj

].

One computes that

λ− 2α0 = α2 + α3 + α4.

Let J = {α2,α3,α4}. By [Jan3, II.2.11] (see [GGN, Prop. 3.3] for a more thorough
discussion), the LJ -Weyl module ∆J(λ) is a direct summand of ∆(λ), considered
as an LJ -module. More specifically

∆J(λ) ∼=
∑

λ−µ∈ZJ

∆(λ)µ,

with the LJ -complement to ∆J(λ) consisting of the sum of the remaining weight
spaces. If we further restrict our attention to the weight spaces from 2α0 to λ, it
follows (by weight considerations) that there is an isomorphism of B+-modules

∑

µ≥2α0

∆(λ)µ ∼=
∑

µ≥2α0

∆J(λ)µ.

The derived subgroup (LJ , LJ) is isomorphic to SL4, the restriction of ∆J(λ)
to (LJ , LJ) is the adjoint representation, and 2α0 restricts to the zero weight
for T ∩ (LJ , LJ). Using the structure of Lie(SL4), one readily computes the B+

structure of
∑

µ≥2α0
∆(λ)µ.
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In particular, given a maximal weight vector zλ of ∆(λ), the following is a
T -basis for ∆(λ)2α0

:

{fα2
fα3

fα4
.zλ, fα4

fα3
fα2

.zλ, fα3
fα4

fα2
.zλ}.

We also have (fα2fα3fα4 .zλ + fα4fα3fα2 .zλ) as a U+-fixed vector, and

L(λ)2α0
∼= ∆(λ)2α0

/(fα2
fα3

fα4
.zλ + fα4

fα3
fα2

.zλ). (7)

Let wρ be a highest weight vector in St1. Any T -basis {yi} for Dist(U1) yields
a T -basis {yi.wρ} for St1. While a standard choice is to take a PBW-basis after
choosing an ordering of roots, one can alternatively take a basis consisting of
products of the various fαi

for αi a simple root. While it is in general harder to
list all such basis elements in this manner, we will find it more convenient in our
limited consideration.

Lemma 6.4.1. Assume G is SL6 and p = 2. Let wρ be a a highest weight vector

in St1. Let αi1 , . . . ,αim be an ordered collection of simple roots without repetition

(so 1 ≤ m ≤ 5). For any simple root α,

eαfαi1
· · · fαim

.wρ = 0

if αij ̸= α for all ij. Otherwise, if some αij = α, then

eαfαi1
· · · fαim

.wρ = (s+ 1)fαi1
· · · fαij−1

fαij+1
· · · fαim

.wρ,

where s is the number of ik such that k > j and |ij − ik| = 1.

Proof. If no αij = α, then eα commutes past each fαij
in Dist(G1), and since eα

annihilates wρ, the first statement follows.
Otherwise, if α = αij for some j, then eα commutes past each fαiℓ

, ℓ < j. One
then applies the commutation relations above. We have

eαfαi1
· · · fαim

.wρ = fαi1
· · · fαij−1

eαfαij
fαij+1

· · · fαim
.wρ

= fαi1
· · · fαij−1

(fαij
eα + hαij

)fαij+1
· · · fαim

.wρ

= fαi1
· · · fαij−1

fαij
eαfαij+1

· · · fαim
.wρ

+ fαi1
· · · fαij−1

hαij
fαij+1

· · · fαim
.wρ

= fαi1
· · · fαij−1

hαij
fαij+1

· · · fαim
.wρ,

since the first term is seen to be zero, by commuting the eα past the remaining
terms. We now use the fact that

hαij
fαik

= fαik
hαij

+ fαik
= fαik

(hαij
+ 1)

if |ij − ik| = 1, otherwise
hαij

fαik
= fαik

hαij
.

Repeatedly applying this we obtain

eαfαi1
· · · fαim

.wρ = fαi1
· · · fαij−1

fαij+1
· · · fαim

(hαij
+ s).wρ,

and as hαij
.wρ = wρ, the result follows. !
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Lemma 6.4.2. Assume G is SL6 and p = 2. The following vectors form a basis

of maximal vectors in St1 ⊗∆(λ) having weight ρ+ 2α0:

v1 = wρ ⊗ fα3
fα2

fα4
.zλ + fα2

.wρ ⊗ fα3
fα4

.zλ + fα4
.wρ ⊗ fα3

fα2
.zλ

+ fα2
fα3

.wρ ⊗ fα4
.zλ + fα4

fα3
.wρ ⊗ fα2

.zλ

+ (fα2
fα3

fα4
+ fα4

fα3
fα2

).wρ ⊗ zλ,

v2 = wρ ⊗ fα2
fα3

fα4
.zλ + fα3

.wρ ⊗ fα2
fα4

.zλ + fα3
fα2

.wρ ⊗ fα4
.zλ

+ fα3
fα4

.wρ ⊗ fα2
.zλ + fα3

fα2
fα4

.wρ ⊗ zλ,

v3 = wρ ⊗ (fα2
fα3

fα4
+ fα4

fα3
fα2

).zλ.

Proof. The elements

fα3fα2fα4 .zλ, fα2fα3fα4 .zλ, and (fα2fα3fα4 + fα4fα3fα2).zλ

are linearly independent in ∆(λ). From this it follows that the three different sums
of simple tensors listed above are linearly independent in St1 ⊗∆(λ).

To verify maximality, since (ρ + λ) − (ρ + 2α0) = α2 + α3 + α4, we need only
check that each eαi

, 2 ≤ i ≤ 4, annihilates these elements, where the action on a
simple tensor is via eαi

⊗ 1 + 1⊗ eαi
. The verification for v3 is immediate as it is

annihilated both by eαi
⊗ 1 and by 1 ⊗ eαi

. For v1,v2, one applies Lemma 6.4.1
to see that the sum eαi

⊗ 1 + 1⊗ eαi
annihilates each vector. !

Fix a surjective G-module homomorphism f : ∆(λ) → L(λ). Over LJ , f
restricts to a surjective homomorphism ∆J(λ) → LJ(λ). By (7), it follows that

(ker f) ∩∆(λ)2α0
= Span{fα2

fα3
fα4

.zλ + fα4
fα3

fα2
.zλ}.

We obtain from f a surjective G-module homomorphism

id⊗ f : St1 ⊗∆(λ) → St1 ⊗L(λ).

On a simple tensor of the form wρ ⊗ v we have (id ⊗ f)(wρ ⊗ v) = wρ ⊗ f(v).
Given the definition of f on ∆(λ)2α0

, it follows that (id ⊗ f)(v3) = 0, and that
(id⊗ f)(v1) and (id⊗ f)(v2) are linearly independent.

Lemma 6.4.3. Assume G is SL6 and p = 2. Let X ∈ Dist(U) be as in Lemma

6.2.3 and vi be as in Lemma 6.4.2. Then, in St1 ⊗L(λ),

X.(id⊗ f)(v1) ̸= 0, X.(id⊗ f)(v2) ̸= 0,

and these elements are linearly independent. Therefore, (St1 ⊗∆(α0)
(1))⊕2 →֒

St1 ⊗L(λ).

Proof. The module St1 ⊗∆(λ), being the tensor product of two Weyl modules,
has a Weyl filtration. Therefore, the vectors v1,v2, and v3 each generate copies
of St1 ⊗∆(α0)

(1). It follows then that X.vi ̸= 0, for 1 ≤ i ≤ 3. Further, since
the vi are linearly independent, the elements X.vi must be also (the vi must
together generate a submodule isomorphic to (St1 ⊗∆(α0)

(1))⊕3). Thus each X.vi
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is a maximal vector in St1 ⊗∆(λ) of weight ρ (lying within a copy of St1 inside
the G-socle of St1 ⊗∆(λ)). By Lemma 6.2.2, it follows that each X.vi, expressed
as a sum of simple tensors in St1 ⊗∆(λ), necessarily involves a term of the form
wρ ⊗ v0, with 0 ̸= v0 ∈ ∆(λ)0. On the other hand, multiplying the expression for
the comultiplication of X in Lemma 6.2.3 against the explicit computations of the
vi above, for every X.vi to contain a term of this form it must hold that

wρ ⊗Xfα3
fα2

fα4
.zλ ̸= 0, wρ ⊗Xfα2

fα3
fα4

.zλ ̸= 0,

wρ ⊗X(fα2
fα3

fα4
+ fα4

fα3
fα2

).zλ ̸= 0,

and that they are linearly independent elements in St1 ⊗∆(λ) (this last fact follows
by considering the argument just stated applied to X.(av1 + bv2 + cv3) for all
(a, b, c) ̸= (0, 0, 0)). This implies that the collection

{Xfα3
fα2

fα4
.zλ, Xfα2

fα3
fα4

.zλ, X(fα2
fα3

fα4
+ fα4

fα3
fα2

).zλ}

is linearly independent in ∆(λ).

There is a non-zero B-module (composite) homomorphism

St1 → ∆(λ)⊗∇(ρ− λ) → ∆(λ)⊗ (ρ− λ)

which restricts to a surjective U -module homomorphism St1 → ∆(λ) (this holds
more generally). Thus any element in Dist(U) that does not annihilate zλ cannot
annihilate wρ. It follows that

{Xfα3
fα2

fα4
.wρ, Xfα2

fα3
fα4

.wρ, X(fα2
fα3

fα4
+ fα4

fα3
fα2

).wρ}

is linearly independent in St1. In particular

Xfα3
fα2

fα4
.wρ ⊗ zλ and X(fα2

fα3
fα4

+ fα4
fα3

fα2
).wρ ⊗ zλ

and linearly independent in St1 ⊗∆(λ).

Since f(zλ) ̸= 0, it follows that

(id⊗ f)(X.v1) and (id⊗ f)(X.v2)

are linearly independent vectors in St1 ⊗L(λ), proving the claim. !

By our reductions in Section 6.3, it follows that St1 ⊗L(λ) has a good filtration.
As discussed in Section 5.5, this case was the only remaining one to check for SL6,
which proves the following.

Theorem 6.4.4. Assume G = SL6 and p = 2. Then

(a) Str ⊗L(λ) has a good filtration for all λ ∈ Xr, r ≥ 1.

(b) In this case Conjecture 1.2.1(⇒) holds.
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7. Tensoring with k[Gr]

7.1. Filtrations on k[G]

Recall that given any affine scheme X over k and an algebraic action of G on X,
the coordinate ring k[X] becomes a G-module by the action g.f(x) = f(g−1.x)
(such actions are intended to hold functorially, i.e., for every k-algebra A, every
g ∈ G(A), x ∈ X(A), and f ∈ A[XA]). In particular, k[G] becomes a G-module
via the conjugation action of G on itself. Further, since Gr is a normal subgroup
scheme of G, one similarly obtains a G-module structure on k[Gr].

There is a (G×G)-action on G via (g1, g2).h = g1hg
−1
2 . If we take the diagonal

embedding of G into (G×G), then the restriction of this action is the conjugation
action of G on itself. We recall the following result due to Donkin and Koppinen
[Jan3, Prop. II.4.20] (see also [Jan3, Rem. II.4.21]).

Proposition 7.1.1. As a (G × G)-module, k[G] has a good filtration. The good

filtration factors are of the form

∇(λ)⊗∇(λ∗), λ ∈ X+,

each occuring with multiplicity one. In particular, k[G], as a G-module under the

action induced by the conjugation action of G, has a good filtration.

7.2. Filtrations on Str ⊗k[Gr]

In consideration of this result and Conjecture 1.2.1, we ask the following question
that has been answered in the affirmative when p is good by Donkin [Don3].

Question 7.2.1. For each r ≥ 1, does Str ⊗k[Gr] have a good filtration?

We conclude by making the following observation. Let Iε denote the augmenta-
tion ideal of k[G]. Under the conjugation action of G, this ideal is a G-submodule
of k[G], with G-module complement spanned by the subalgebra k · 1 ≤ k[G]. It
follows then that Iε has a good filtration over G. For each r ≥ 1, let Mr denote
the subset of k[G] defined as

Mr = {xpr

| x ∈ Iε}.

Since k is algebraically closed and of characteristic p, this is a subspace of k[G], and
indeed a submodule for G. Further, the ideal defining the closed subgroup scheme
Gr is the ideal generated by Mr. Thus, the algebra homomorphism k[G] → k[Gr]
factors (as G-modules) through k[G]/Mr.

Theorem 7.2.2. The G-module Str ⊗(k[G]/Mr) has a good filtration.

Proof. If X and Y are any two affine schemes with algebraic G-actions, and if
f : X → Y is a G-equivariant homomorphism of schemes, then the comorphism
f∗ : k[Y ] → k[X] is a homomorphism of G-modules (with the induced G-action
on coordinate rings as above).

Now let F : G → G be the Frobenius morphism arising from a chosen split Fp-
structure on G, and let F r denote its r-th iterate. Consider (F r)∗ : k[G] → k[G].
We claim that

(F r)∗(Iε) = Mr.
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To see this, let Fp[G] denote the chosen Fp-structure of k[G] and Iε,Fp
denote the

augmentation ideal of this Hopf algebra. The map (F r)∗ then arises (using this
chosen Fp-structure) as simply the pr-th power map on Fp[G]. If we fix an Fp-basis
{xi} for Iε,Fp

, then {xi ⊗Fp
1} is a k-basis for Iε. We have that

(F r)∗(xi ⊗Fp
1) = xi

pr

⊗Fp
1 = (xi ⊗Fp

1)p
r

.

From this the claim follows. Further, since G is reduced, (F r)∗ is injective, and so
(F r)∗ maps Iε bijectively to Mr.

Now, the homomorphism F r : G → G is G-equivariant, if G acts on the target
via F r. Therefore, the comorphism (F r)∗ is a G-module homomorphism. It

follows then that, as a G-module, Mr
∼= Iε

(r). Applying [Jan3, II.3.19], it follows
that Str ⊗Mr has a good filtration. Since Str ⊗k[G] also has a good filtration, it
then follows from [Jan3, II.4.17] (which is a consequence of Theorem 2.3.1) that
Str ⊗(k[G]/Mr) has a good filtration. !

For each λ ∈ X+, ∇(λ)(r) ⊆ ∇(prλ). In particular,

∇(λ)(r) ⊗∇(λ∗)(r) ⊆ ∇(prλ)⊗∇(prλ∗).

Note that the proof of the preceding result shows that there is a submodule of k[G],
namely Mr, having a filtration over G with sections of the form ∇(λ)(r)⊗∇(λ∗)(r),
0 ̸= λ ∈ X+.
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