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Abstract—WiFi has emerged as a pivotal technology for deliver-
ing Quality of Experience (QoE) to mobile devices. Unfortunately,
exploding numbers of competing devices, potential encroachment
by cellular technology, and dramatic increases in content richness
deliver a more variable QoE than desired. Moreover, such
variance tends to occur both across time and space making it
a difficult problem to debug. Existing active approaches tend to
be expensive or impractical while existing passive approaches
tend to suffer from accuracy issues. In our paper, we propose a
novel passive client-side approach that provides an efficient and
accurate characterization by taking advantage of the properties
of Frame Aggregation (FA) and Block Acknowledgements (BA).
We show in the paper that one can accurately derive important
metrics such as airtime and throughput with only a minimal
amount of observed BAs. We show through extensive experiments
the validity of our approach and conduct validation studies in
the dense environment of a campus tailgate.

I. INTRODUCTION

Since the advent of the modern smartphone, WiFi has served
as a critical technology in satisfying the Quality of Experience
(QoE) needs for mobile users. For most if not all users, WiFi
is equated with high speed and has become a necessity for
the modern venue. However, as most who have used WiFi at
various public venues can attest, the actual QoE tends to vary
considerably. While new standards seek to deliver a “better”
WiFi, the increasing density of devices, richness of content,
and encroachment on WiFi by cellular [1] make performance
variance a likely normal for the foreseeable future.

For nearly all involved parties, such variance is incredibly
frustrating. Performance is usually good enough, once in
a while great, occasionally bad, and sometimes positively
terrible. Moreover, debugging is difficult as the variance oc-
curs across both time and space. The situation while tenable
requires action but unfortunately much of the prior work tends
to be ill-suited to solve the problem.

Traditionally, the common solution is for mobile device
becomes an active sensor to actively determine end-to-end
performance at the network and transport layers [2]–[4].
Examples such as Speedtest.net, iperf3, and Mobiperf [5]
embody this approach whereby the currently connected WiFi
is actively probed to determine peak network performance.
Critically, the cost of such probing is often quite high both
in terms of time and energy relegating such tests often to be
reactive rather than longitudinal. Furthermore, such tests also

have a negative impact on other users as the probe traffic
can be intrusive to existing traffic. The net result is that
active probing often misses the broader picture of the WiFi
environment including the influence of other mobile nodes,
channel airtime, transmission speed, queuing effects, and other
subtle link properties1.

In contrast to the mobile node as an active sensor, other
work has operated from the perspective of the access point
(AP) to afford a broader view of the wireless network [6]–[8].
By deploying well-equipped APs with coordination through a
back-end controller, a rich set of WiFi characterization details
can be gathered. Existing network performance can be gleaned
from connected clients which in turn provides a wealth of
performance data for the deployed network. As would be
expected, such services tend to be expensive but often essential
to any large-scale WiFi deployment. Notably, a key weakness
of the AP-centric focus is that while APs can ably sense,
the entire collection of APs represent a limited and stationary
spatial distribution. Thus, such systems tend to focus largely
from the perspective of the provided network, potentially
missing client-side issues at the edge of the network.

Finally, the last set of approaches is to view the mobile client
itself as a capable but purely passive wireless sensor [9]–[12].
In contrast to the AP-side approach, the client-side method
acts exclusively as a “sniffer” on the WiFi network without
AP-side information (queue length, transmission rates, etc.).
The client-side approach provides increased flexibility with
mobile nodes crowdsourcing the state of the WiFi network.
Unfortunately, while interesting conceptually, the actual packet
capture capabilities of most mobile devices tend to fare quite
poorly. Packet capture is often inaccessible absent significant
modifications by the device owner and as will be discussed
later, packet capture often suffers severe losses when monitor-
ing data packets. Critically, the mobile-centric approach does
offer one highly desirable property, namely that of offering
longitudinal data across the entirety of the potential client
connection area.

Thus, the questions that we pose in this paper are: How
could we could radically improve the ability of a mobile client

1In fairness to prior work, active end-to-end techniques were never intended
to capture link properties.
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to observe the network knowing the capture limitations of exist-
ing mobile devices? In particular, are there certain packets that
are more easily observable but yet contain rich information to
help characterize the network? In this paper, we propose a new
technique that builds on the properties of frame aggregation
and show how passively observable Block Acknowledgements
map to a rich set of link characterization metrics such as
airtime and throughput through extensive experimental studies.
Although we believe other characterization metrics e.g, trans-
mission rate and queuing information could also be derived,
we only focus on airtime and throughput as their ground truth
data can be easily obtained. The contributions of this paper
are:

• Sensing with Control Packets: We show how Block Ac-
knowledgements (BA) can be used to extract a rich set of
WiFi characteristics. We define two metrics - Aggregation
Intensity (AI) and BA Time Gap and show how these two
metrics can be used to compute airtime and throughput.
We demonstrate the accuracy, efficiency, and robustness
of these mappings through extensive empirical studies
across a wide variety of scenarios.

• Real-World Data Validation: We validate our approach
and its accuracy by conducting experiments on a real-
world dataset captured during a tailgate involving mul-
tiple 802.11ac access points. We conduct trace-driven
experiments and show that the designed characterization
can achieve a high correlation (0.8) with the observed
ground truth for airtime and throughput.

II. BACKGROUND & MOTIVATION

Before diving into the details of our system, we discuss
several key background concepts. First, in Section II-A, we
discuss the need for using control packets followed by a basic
primer on frame aggregation and block acknowledgement.

A. Why Control Packets?

The goal of a client-side characterization model is to provide
traffic characterization by capturing most if not all traffic going
on the channel(s). Unfortunately, the assumption of capturing
all traffic is often impossible in practice. Eavesdropping on
a WiFi channel tends to suffer from severe loss for several
reasons. First, the data packets with high transmission rate
usually have a limited communication range to be captured.
Second, the different bandwidth capacities of devices impede
capture as low capacity devices (e.g., low bandwidth, low
supported rate) cannot collect traffic transmitted with high
rates. In addition, with beamforming in advanced WiFi (i.e.,
802.11ac wave-2 [13]), a device is not able to hear traffic
from the directional antenna if it is not on the transmission
path. These difficulties hinder a client from capturing the full
picture of traffic on channel.

Fortunately, control packets tend not to suffer from the
same issues with respect to capture. Since control packets are
designed to be acknowledged by all nearby devices, they are
set to be transmitted at the lowest rate in a non-directional,
unencrypted manner. Further, the volume of the control packets

is much sparser than of the data packets. From a capture
standpoint, this implies that the mobile device is unlikely to
be overwhelmed and could potentially ignore data packets
for energy efficiency. The key aspect for a mobile device is
that while data packets can lose in excess of 75% of packets
when attempting to log all packets (from our experiments on
802.11n/2.4 GHz with signal -70 dBm or worse), it is quite
rare to lose control packets while attempting to capture only
control packets (success rate of 75% even with 802.11ac on 5
GHz with -85 dBm power).
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Fig. 1: Illustration of frame aggregation.

B. Why Frame Aggregation?

The general principle of frame aggregation is to assemble
multiple data units to transmit as one aggregated frame2.
The aggregated frame is created at two levels: the aggregate
MAC protocol service unit (A-MSDU) and the aggregate MAC
protocol data unit (A-MPDU). The A-MSDU is on the upper
MAC layer which is further aggregated into the A-MPDU
when pushed down to the physical layer. In this paper, we
focus on leveraging the A-MPDU. As shown in Fig 1, each A-
MPDU only requires a single Block Acknowledgment (BA) for
notification of the receipt of multiple MPDUs (i.e., packets3).
In order to support this one-to-many acknowledgement, the BA
uses a bitmap field to explicitly indicate the failure or success
of delivery of each MPDU.

As frame aggregation has become the default manner of
sending data on modern WiFi, data transmission typically
involve the exchange of a BA. These acknowledgements
potentially provide opportunities to infer the data transmissions
that have occurred. In particular, the information stored in BA
frame allows one to know more about the data transmission
beyond the number of packets. Particularly, we find that the
information of how many MPDUs in an A-MPDU, dubbed
Aggregation Intensity (AI), can embody a rich suite of infor-
mation about the attributes of data traffic, e.g., queue length
and transmission rate. In addition, we note that the time gap of
BAs can also reveal other attributes about data transmission,
e.g., transmission time of a packet. In next section (Sec. III),
we discuss the technical details about how we can extract
this information to achieve accurate characterization based on
control packets.

III. WIFI CHARACTERIZATION VIA CONTROL PACKETS

In order to characterize the WiFi channel, we define two
base metrics: 1) the Aggregation Intensity (AI) and 2) the
Block Ack (BA) Time Gap. Based on these two measurements,

2Noted that the term packet speaks to MAC and upper layers, while frame
refers to PHY layer.

3Packet and MPDU are used interchangeably for the rest of the paper.
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Fig. 2: Format of Block ACK frame.
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Fig. 3: Data transmission under frame aggregation. The se-
quence number (SSN) and bitmap (64 bits) are indicated.

we can further derive various important characterization met-
rics, e.g., channel airtime and throughput.

A. Aggregation Intensity (AI)

As noted earlier, frame aggregation allows multiple data
units to be assembled into one aggregated frame (A-MPDU)
for transmission. We describe the degree of aggregation using
a metric called Aggregation Intensity (AI) that counts the
number of MPDUs (e.g., packets) within one aggregated
frame. Figure 1 shows an example where the three A-MPDUs
have AIs of 3, 4, and 2, respectively.

Fundamentally, the value of AI is decided by several factors.
When forming an A-MPDU, the scheduler looks into the queue
and batches all the packets tagged with same TID (traffic
identification) into a frame where the TID usually indicates the
packets destined to the same address. Thus, the more packets
with the same TID that are held in the queue, the larger the
AI should potentially be with the maximum AI allowed in one
A-MPDU is capped by 1) a maximum size and 2) a maximum
transmission time Tmax. Since the size limit is large (65,535
bytes), the AI is usually limited by the transmission time. For
a certain packet size P , we have Tmax ≤ AI·P

R where R is the
transmission rate. Thus the maximum AI can expressed as:

AImax =
R · Tmax

P
(1)

Extracting AI from BA: The computation of AI relies on
two important fields in the BA frame: the Starting Sequence
Control (SSC) and the Bitmap as shown in Figure 2. Each bit
in the bitmap represents the receiving status (success/failure)
of a MPDU. The SSC includes a sub-field called the Starting
Sequence Number (SSN) which indicates the sequence number
of the MPDU denoted by the first bit in the bitmap. Given a
pair of consecutive BAs (sent from A to B), we can compute
the AI and the loss of the corresponding A-MPDU (sent from
B to A). For example, in Fig 3, we re-plot the case of Fig 1 to
label the field information. For the first A-MPDU and its BA,
since the last bit denotes the 1118 MPDU, the first bit should
correspond to 1055 (1118 - 63) which is exactly the SSN of the
BA. Combining the first and second BA, by subtracting their
SSN, the AI of the A-MPDU between them can be computed
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Fig. 4: (a) AI estimation error; (b) The maximum AI and loss
rate across different transmission rate.

as 4 (1059 - 1055). When loss occurs as shown in the third A-
MPDU, the zero in the bitmap indicates the miss of the 1123
MPDU. Thus, the loss count can be computed by the number
of zeros in the bitmap.

Experimental Evaluation: We set up lab experiment to
evaluate the performance of the proposed method. The general
setting is as follows: we connected a server (HP ProBook) to
a mobile client (HP ProBook equipped with EdiMax AC WiFi
adapter) via an WiFi AP (TP-Link Archer c7 v.2). The AP
is 802.11ac capable and configured to run OpenWrt which
allows to adjust various settings, e.g., bandwidth (20/40/80
MHz), transmission rate, operating channel and so on. We
generated traffic on WiFi by sending TCP flows (via rsync)
from the server to the client. By using a third laptop (Lenovo
P50 with Intel AC adapter) as the passive monitor node, we
eavesdropped on traffic in the WiFi channel. In order to get the
AI ground truth, we set the AP to run at a lower speed (802.11n
2.4GHz with 20MHz bandwidth) to allow us to capture most of
the data packets. The ground truth for AI can be obtained from
A-MPDU reference number in the radiotap header. Overall, we
collected over 25,000 A-MPDUs and their BAs. In Fig 4a, we
plot the CDF and the frequency of the absolute AI estimation
error (|groundtruth − estimated|). It shows the designed
method can achieve 81% of a perfect estimation of AI. For
97% of the estimations, the absolute error can be controlled
within 5%.

By using the information extracted from BA, we continue to
validate the relationship in Eq (1). We repeated the experiment
above under different transmission rates with various band-
width settings (20MHz, 40MHz and 80 MHz) on both 2.4GHz
(802.11n) and 5GHz (802.11ac). As the result shown in Fig 4b,
the observation matches Eq (1) well such that for all settings,
the maximum AI linearly increases with the transmission rate
until it reaches the maximum 64. This maximum is decided
by the size of the bitmap used in this case. Moreover, we
also plot the loss rate (number of loss in a time unit) of
80MHz bandwidth on 802.11ac. Given the static setting of
the AP and the client, the channel quality (e.g., Signal-Noise
Ratio) is fixed. When the SNR is inadequate to support the
transmission rate, packet loss starts to occur. In our case, we
see that when the transmission rate exceeds 400 Mbps, the loss
rate starts to increase. Overall, the experiment results show that
the designed method can help accurately capture AI and loss
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across different network settings.

B. Measurement - BA Time Gap

While the AI provides the data packet depth, further un-
derstanding of the other properties of the packets (e.g., their
cost on channel airtime) requires another metric, the BA
time gap, which is the time gap between a BA and its
previously transmitted control packet on a channel. Notably,
any control packet could suffice as nearly all control packets
are unencrypted. Nominally, this previous control packet is
another BA as shown in Fig 1. It can also be other control
packets. For example, with RTS/CTS enabled, a BA usually
follows a CTS (Clear to Send). Once the control packets are
captured, the BA gap can be simply computed by subtracting
the packet timestamps recorded by the network adapter.

Since the BA is designed to follow the A-MPDU transmis-
sion, we argue that this time gap should be proportional to
the airtime consumed by the data transmission. For a certain
transmission rate, the more data assembled in an A-MPDU, the
larger the BA gap should be. The relationship can be expressed
as:

GBA ∝ AI · P
R

(2)

where R is the transmission rate and P denotes the packet
size. AI · P calculates the total size of the A-MPDU. To
further calculate the average time consumed by each MPDU,
we define a new metric — MPDU gap GMPDU such that

GMPDU � GBA

AI
∝ P

R
(3)

Once AI is estimated with the method mentioned above,
GMPDU can be computed. From Eq (2) and Eq (3), we see that
the time gap information has the potential to reveal valuable
attributes about data traffic, e.g., airtime and transmission
rate. In order to validate the relationships in the equations,
we conduct lab experiments to demonstrate the empirical
observation of GBA as well as GMPDU .
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(b) GMPDU

Fig. 5: GBA (a) and GMPDU (b) v.s. AI given certain
transmission rate (i.e., 144.4 Mbps).

Experimental Validation: Using the prior experiment set-
tings, we fixed the transmission rate on 144.4Mbps and re-
peated the TCP traffic on both 802.11ac 5GHz and 802.11n
2.4GHz. Fig 5a and Fig5b plot the GBA and GMPDU as
a function of AI . The markers indicate the raw data, and
the lines are the average for each AI value. As shown in

Fig 5a, GBA linearly increases with AI for all cases except
for AI = 1. With the same transmission rate, the observation
from 2.4GHz is identical to on 5GHz. The curves on Fig 5b
reveal the similar observation: the GMPDU is extremely high
when AI = 1, then it quickly drops and gradually converges
to a constant. Overall, except for when AI = 1, the empirical
observation matches our conjecture in Eq (2), (3). The abnor-
mal case on AI = 1 is mainly due to that the BA time gap can
also be influenced by other factors, e.g., back off, collision and
so on. When data size is small under AI = 1, the BA gap is
seriously disturbed by the other factors. That is why the gap of
regular ACK (which is designed to respond one data packet)
cannot be used to indicate data transmission time. When AI
increases with more data transmitted, the data transmission
becomes the dominant factor to decide the BA gap. The
influence from the other factors is gradually mitigated. That is
why the curves of GMPDU slightly drop while converging to
a consistent value.

C. Deriving Further Metrics

Control packets can give high-level information about the
WiFi environment, such as the number of APs, the number of
clients, and so on. Beyond these metrics, we would argue that
our proposed method can provide an insightful set of metrics
including throughput, loss, and airtime. In this subsection, we
will elaborate how to derive each of these metrics from the
earlier two measurements.

Given the control packets collected during a certain time
window ω, we can estimate the characterization metrics for
this particular window. For throughput and loss, based on the
previous discussion on AI, they are relatively straightforward
to compute. Throughput can be approximated in the form of
packet rate by summing up the AI in the time window (

∑ω AI
ω ).

Similarly, loss rate can be calculated from the BA bitmap. For
the other more complicated metric (i.e., airtime), it requires
further processes to make an accurate estimation. Next, we will
iterate on the methods to estimate these metrics along with the
experimental evaluation. We also study the robustness of the
different metrics regarding the setting of window size ω.

Note that the characterization can be perceived on different
scales. With traffic captured on different channels, we can
report characterization results on each channel. With the
multiple APs operating on the same channel, we can further
break down the traffic impact onto different APs. For example,
the airtime can be estimated separately on each AP. , for the
traffic between a pair of nodes, we can further divide them into
different links, i.e., uplink and downlink, based on the traffic
direction. In our case, the transmission rate and queue length
characterization will mainly focus on the link level.

Airtime (a.k.a. channel utilization) describes how much time
is occupied by the traffic on a channel. As one of the most
important metrics to understand the load on WiFi channel, it
is widely used for QoE/QoS based services [14]. This metric
can be polled from certain types of AP with special hardware
support. However, it is immensely difficult to estimate from the
client side due to the severe loss when passively capturing the
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data packets as mentioned earlier. Fortunately, exploiting the
primitive measurements can help estimate the airtime without
data packet.

Since control/management traffic is designed to be ultra
light-weight, data transmission usually accounts for the pri-
mary airtime cost. Thus our method explicitly focuses on the
consumption resulted from data transmission. According to the
discuss above, we know that the BA time gap GBA is a good
approximate of the transmission time of the A-MPDU data
frames. Intuitively, given the BAs captured in a time window
ω, summing up the GBA and dividing by ω will give the
percent of time consumed by the data traffic. However, with
the exception case of AI = 1 as discussed, we further filter
out the GBA whose AI is 1. Therefore, airtime can be finally
estimated as

Airtime =

∑ω
GAI>1

BA

ω
(4)

where GAI>1
BA specifically refers to the BA gap where AI > 1.

Experimental Evaluation and Improvement: Using the same
experimental settings from before, we generated different sizes
of TCP flow to cause different airtime costs on the WiFi
channel. We varied the flow size from 20KB to 160MB. For
each flow size, we kept repeating the flow in a back-to-back
manner such that once the flow completes, we restart the flow
immediately. Each flow size ran for 10+ seconds. Ground truth
fir airtime was polled from the AP kernel via iw tool. With
the control packets captured from the monitor node, we sliced
the packets into continuous windows with a window size of
ω. Then, we calculate the airtime for each window according
to Eq (4).
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Fig. 6: Estimated airtime
v.s. flow size w.r.t. window
size ω.

�

���

���

���

���

�

� � � �� �� �� �� ��� ��� ����

�
���

��
��

�
��

��
��

�	

�

�
��

��
��




��
�	�������� ����

����
����

�������	��	���
����	


Fig. 7: Estimation accuracy v.s.
window size ω w.r.t. flow size.

In Fig 6, we plot the estimated airtime under different flow
sizes with respect to two window sizes (ω = 100 ms and
ω = 20 ms). In addition, we also plot the estimated result
without filtering out the case where AI = 1. Note that each
point in the figure is the average over all windows. As shown,
without the filter, the airtime is significantly overestimated,
especially when the flow size is small. After applying the filter,
the result closely matches the ground truth. The result implies
that ruling out the cases of AI = 1 will not harm airtime
estimation. Because the occurrences of AI = 1 is rare, and it
only takes up high percentage when traffic is light. Filtering
out AI = 1 helps effectively relieve the overestimation caused
by the random gaps when AI = 1.

Window compensation: Comparing the results from different
ω, we notice the small window (ω = 20 ms) suffers from
underestimation, especially when flow is heavy. The reason is
that our method requires two consecutive BAs to infer a data
frame in the middle. For each window, we are not able to infer
the A-MPDU associated with the very first BA. Therefore we
always lose one A-MPDU frame when estimating airtime. For
example, in the case of Fig 1, with the three BAs collected,
we can only infer the second and third A-MPDU but not the
first one. When the window size is small and traffic load is
heavy, the one A-MPDU loss becomes significant. In order
to compensate for this loss, we assume the lost A-MPDU is
exactly same as its adjacent A-MPDU inferred from the first
pair of observed BAs. Thus, the airtime estimation will double
count the first BA gap.

After applying the compensation mechanism, we re-plot
the estimation accuracy (1 − | estimated−ground truth

ground truth |) for
different window size ω in Fig 7. To reduce figure clutter,
we selectively plot the cases of flow size 400KB and 160MB.
In addition, we also plot the contrast case without the window
compensation for 160MB flow. Overall, we can see that the
result is unacceptably poor when window size is too small (i.e.,
ω < 20 ms). The reason is that the control packets distribution
in such small scale is too random to be statistically meaningful.
Many windows (10%-30%) in this case fail to capture even
one packet. When the window size increases, this randomness
is gradually smoothed out and the results eventually converge.
With compensation enabled, we can achieve at least a 90% es-
timation accuracy when ω ≥ 20 ms which we note approaches
WiFi scanning intervals.

IV. PERFORMANCE EVALUATION

Trace-Driven WiFi Scan Emulation: Modifying the scan
function to implement the characterization on commodity
devices is impractical, since the functionality of scan is pro-
grammed on the firmware. In this paper, we take the emulation
approach to evaluate proposed system in a large scale setting.
With the real world data captured through the monitor mode,
we can conduct trace-driven evaluation upon the data. In the
captured dataset, we assume that all the devices can perform
such a modified scan function. When a probe request was
sighted when a client was scanning, we assume the client was
also performing the traffic characterization on WiFi channel.
So the control packets collected in the following ω time
window after the probe request will be used to calculate
characterization result. We set ω = 20 ms to satisfy the
realistic setting for dwell time. In addition, we assume there
is a crowdsource server which can gather results from the
devices. So we can combine the results from multiple clients
to have a more complete view of the WiFi channel. With more
clients contributing, the more accurate and complete result we
can get for the WiFi channel.

Settings: Next, we set up a controlled WiFi network to
capture the trace for emulation. This network was deployed
on campus to provide Internet access for a football tailgating
party. The event was hosted in an outdoor tent where several
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Fig. 8: Time series of (a) airtime estimated compared with
ground truth and (b) number of packets captured during dwell
time for each scan.

hundred people gathered for several hours before a football
game. An Aruba 7010 wireless controller to manage multiple
APs with the APs providing connectivity on multiple bands
with one channel on each band: channel 1 for 2.4GHz (20
MHz) and 149 for 5GHz (80 MHz). By using the controller
API, we obtained ground truth information through SNMP
(Simple Network Manage Protocol) by periodically (i.e., ev-
ery 45 seconds in this case) polling the controller with the
SNMP walk command to record network condition, e.g.,
airtime, throughput and so on. To capture the raw data for
characterization, we set up monitoring devices to listen on
the two channels on which APs were operating. The monitor
devices were placed near the APs in order to attempt capture
all traffic on APs and to avoid hidden terminal issues. The
captured traffic was saved into pcap files as the source for
trace-driven emulation and will be made available as part of
this paper publication (initial header bytes only).

TABLE I: Data Statistics Summary
Campus

2.4GHz 5GHz
Time Duration 4+ hrs
Data File Size 1.2GB 7.4GB
# of Sighted Clients 19,116 33,134
# of Active Clients 500 284
# of Block ACK 181,164 2,636,317

Data Summary: The data captured is summarized in Tab I.
Over the four hour data collection, we gathered a total of
8.6GB of pcap files for only control traffic. There were over
51,000 unique devices4 sighted during the study. However,
many devices only showed up for a short time in part largely
inflated by MAC spoofing for anonymization purposes. Among
the devices, 480 clients (350 on 5GHz and 130 on 2.4GHz)
were persistently sighted for over an hour. There were 784
active clients which launched data transmission with BA
exchanges. We find that over 99% of the BA exchange involved
our deployed APs. Therefore, we argue that the SNMP data
should provide a reasonable ground truth about the WiFi
environment.

Evaluation with Ground Truth: Among the characterization
metrics derived from our method, the SNMP data provides

4A device is identified with a unique MAC address.
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(b) Normed Throughput
Fig. 9: Correlation between estimated value and ground truth
w.r.t. number of devices used for generating result. All the
results are from 5GHz band.

the ground truth for two metrics: throughput and airtime.
Therefore, we focus our evaluation on these two commonly-
used metrics. Since the SNMP data is sampled every 45
seconds, to create point-to-point matching data, the mean of
the results from our method during the 45-second window is
used to match with SNMP data. First, by assuming all devices
report their characterization results to the crowdsource server,
we exploit all scans to plot the time series in Fig 8. Since
the usage of 2.4GHz band is sparse in this case, only 5GHz
band data is used for this evaluation. In Fig 8a, we see that
the estimated airtime closely follows the ground truth over
time. As the throughput shows the similar pattern, we do not
plot it to save space. Furthermore, in order to understand the
computation cost of the characterization function, we plot the
total number of control packets as well as the BAs captured in
the dwell time during a scan in Fig 8b5. It shows that for each
scan on a channel, the characterization only need to process
20-40 control packets with less than 20 BAs. When the channel
is busy, the number can reach to 140 total packets with 40 BAs.
It implies implementing the characterization onto scan will not
cause significant computation load.

To further evaluate performance, we calculated the Pearson
correlation coefficient6 between the estimated value and the
ground truth. A correlation value is calculated from a 90-
minute window. By sliding this window across the entire time
session, we can obtain over 200 estimation points.

By default, we include all the traffic data from the surround-
ing devices by assuming a perfect scenarios that all devices are
willing to share their data. In addition, we also consider the
impact of data sparsity that we are only able to use data from
a number of voluntary devices (i.e., in a crowdsource manner).
By varying the number of users whose data is used, we try to
find out how many voluntary devices are needed to delivery
accurate characterization. We sort the sighted devices by their
presence time. Thus the x devices means the top x sighted
devices. In Fig 9, we plot the empirical CDF of the correlation
coefficient on both airtime (Fig 9a) and throughput (Fig 9b).
As the results show, with all the available users’ data, we can
achieve the median coefficient of 0.817 for airtime and 0.837
for throughput. With less devices involved, the coefficient

5The figure is plotted after down-sampled to reduce visual clutter.
6The value ranges from -1 to 1, where 1 implies perfect linear relationship

while -1 implies negative linear relationship.
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decreases. Notably, once the client number increases to 10,
the median correlation coefficient can reach up to 0.8 for both
airtime and throughout.

V. RELATED WORK

Notably, WiFi traffic characterization has been approached
from multiple layers of the network stack. At the physical
layer, there are works [15]–[17] that particularly target sensing
the power on WiFi spectrum. For example, Airshark [15] ex-
ploits commodity WiFi device to detect non-WiFi interference
(e.g., microwave oven). In contrast to physical layer works, our
work primarily focus on the MAC layer. Works that focus on
the MAC layer can be generally classified into two groups:
1) AP side approaches and 2) client side approaches. AP
side approaches [6]–[8] usually require deploying controlled
networks which can be expensive in terms of financial cost
as well as human effort. For example, WiSe [8] set up home
WLAN for 30 homes over 6 months to analyze their home
wireless environments. More recently, [6] studied the data
collected from approximately ten thousand radio access points
and 5.6 million clients from one-week periods to provide a
deeper understanding of real world network behaviour.

To avoid the cost of the AP-side approach, client-side
approaches have the advantage of being cost efficient and
flexible. Passive client monitoring works have been extensively
exploited for different purposes. [18] manipulates smartphones
to monitor WiFi traffic in order to infer the human activi-
ties. Another smartphone-based work [19] uses indoor WiFi
monitor fused with mobile crowdsourse to achieve better
localization. With large-scale studies, [20] explicitly seek the
co-location between mobile users via Bluetooth information
combined with WiFi scan. In addition, for security purpose,
[21], [22] attempt to exploit WiFi monitor to detect rogue
AP and potential attack. For the general purpose of traffic
characterization, many prior works [9]–[12] focus on merging
traffic or inferring unobserved traffic. Critically, many assume
that most of the data traffic can be sensed passively which may
not be accurate with more modern, faster WiFi approaches.

VI. CONCLUSION

In this paper, we presented an intriguing new approach for
WiFi traffic characterization. We showed that it is possible to
infer a variety of useful characterization metrics solely through
the observation of Block Acknowledgements and other control
packets. Moreover, we showed that such results tend to be
reasonably stable even at very short time frames allowing for
the potential to conduct such observations during normal WiFi
scanning. We believe the implications for the work are con-
siderable from both the end user standpoint, troubleshooting
standpoint, and analysis / potential of cellular onto WiFi bands
standpoint. We believe the topic is ripe for future work and
plan to explore more extensive datasets including dense urban
centers, newly deployed WiFi at dense environments such as
stadiums, and various public venues.
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