
A Frame-Aggregation-Based Approach for Link

Congestion Prediction in WiFi Video Streaming

Shangyue Zhu, Alamin Mohammed, Aaron Striegel

Department of Computer Science and Engineering

University of Notre Dame, U.S.A

{szhu7,amohamm2,striegel}@nd.edu

Abstract—Video streaming using WiFi networks poses the
challenge of variable network performance when multiple clients
are present. Hence, it is important to continuously monitor
and predict the network changes in order to ensure a higher
user quality of experience (QoE) for video streaming. Existing
approaches that aim to detect such network changes have
several disadvantages. For example, active probing approaches
are expensive so that generate more additional traffic flow during
the testing. To overcome its shortcomings, we propose a passive,
lightweight approach, CP-DASH, whereby queuing effects present
in frame aggregation are leveraged to predict link congestion
in the WiFi network. This approach allows the early detection
which can be used to adapt our video appropriately. We conduct
experiments simulating a WiFi network with multiple clients
and compare CP-DASH with five contemporary rate selection
mechanisms. We found that our proposed method significantly
reduces the switch rates and stall rates from 22% to 5% and
from 38% to 25% compared with an existing throughput-based
algorithm, respectively.

Index Terms—Video Streaming, Frame Aggregation, link Con-
gestion

I. INTRODUCTION

The proliferation of devices using WiFi has led to increased

network traffic bringing increased network congestion and

significant variations in network performance. With this in-

creasing number of devices competing for limited network re-

sources, significant strains emerge with the the most dominant

traffic type, namely video. Per a recent forecast [1], IP video

traffic represented 75% of all traffic in 2017 and is slated to

continue to grow to over 82% of all IP traffic (both business

and consumer) by 2022. An on-going and critical challenge

is how to handle one of the most temperamental video traffic,

the need for uninterrupted, high-quality video streaming in the

presence of rapidly shifting, overloaded network dynamics.

Methods for adaptive video streaming generally aim to

set the video bit-rate appropriate for the current network

conditions. A very conservative approach [2] can be used

wherein the lowest bit-rate is chosen but this approach has

the drawback of providing a low bit-rate video even during

the times when the network is less congested. There are also

approaches that aim to detect the throughput, for example,

via chunk download performance [3]. Unfortunately, while

measuring intermediate download speed can prove useful,

such information can often be quite late (e.g. one misses

the rapidly-occurring network changes), and/or noisy (e.g.

captured rate changes requires smoothing or filtering). These

negative effects will potential degrade the video quality even

cause economic losses.

Monitoring the network performance, especially when the

network is unstable, can be nontrivial. Active probing is

one approach for establishing connections and observing the

status of the channel [4]. Active probing is considered to be

an effective method for monitoring the network status and

uses conventional network measurements, such as available

bandwidth and link congestion, potentially without the delayed

reporting associated with block download speeds. However,

when channel resources are already limited, excessive (active)

probing can cause more network congestion, making a bad

problem even worse [5].

Given the above drawbacks of existing approaches, in this

paper, we propose a novel approach that detects link conges-

tion in an accurate, timely but passive manner to deliver a

better rate adaptation mechanism for adaptive video streaming.

We leverage the aggregate MAC protocol data unit (A-MPDU)

information provided by Block Acknowledgement aggregate

control packets to allow a WiFi device passively predict link

congestion. We take advantage of queuing effects present

in frame aggregation to get an early warning signal which

provides an accurate estimation of network performance that

we in turn use to adapt our video rate appropriately.

In this paper, we propose an algorithm, Congestion

Prediction-DASH (CP-DASH), building on the DASH tech-

nique of Fuzzy DASH (F-DASH) [6] which also uses a buffer-

based method to reduce video stalling and to provide high-

quality streaming. The main contributions of this paper are as

follows:

• A passive, lightweight approach for predicting link con-

gestion: To detect link congestion for video streaming,

we designed a novel method that only captures con-

trol packets or Block Acknowledgement (Block Acks).

From extensive performance evaluations, we show that

the network-condition information extracted from Block

Acks can effectively be used for link-congestion predic-

tion.

• CP-DASH algorithm: We combine the above link-

congestion prediction with a buffer-based algorithm for

selecting an appropriate bit-rate for the video. Our al-

gorithm, CP-DASH, is designed to prevent stalling and



to maximize video quality. Furthermore, by being buffer-

based, our approach can effectively prevent bit-rate over-

selection when the buffer space is almost depleted.

• Implementation and Evaluation (presented in Section IV):

We conduct experiments by simulating a WiFi network

with multiple clients (using the NS3 [7] simulator) and

evaluate our proposed algorithm, CP-DASH, by compar-

ing it with five other adaptive video streaming techniques

[3], [6], [8]–[10]. We demonstrate that our proposed

method substantially reduces the switch and stall rates

while maintaining a comparable streaming video resolu-

tion.

II. BACKGROUND AND MOTIVATION

We begin by presenting a broad discussion of the work on

HTTP-based adaptive video streaming. A brief principle of bit-

rate adaptation algorithms is given to introduce the contem-

porary technology and our focused point. Then, we present

an overview of frame aggregation and the fundamentals of

aggregated control packets.

A. Dynamic Adaptive Video Streaming over HTTP

Dynamic Adaptive Video Streaming over HTTP (DASH) is

an adaptive bit-rate streaming technique. DASH is used for

streaming media content via an HTTP web server, such as

Adobe’s HDS and MPEG-DASH. Intrinsically, a video stream

is encoded into multiple discrete bit-rate segments or chunks

and stored on the server side. According to the perceived

network conditions, such as broadcast buffers or throughput,

client side attempt to optimize the various indicators that

constitute user’s QoE, which including video quality, stall rate

and stability. The client can switch to a low-quality video

version to avoid insufficient traffic during temporary network

congestion and switch back to a higher quality after the

network conditions improve. For a specific instance, a bit-rate

stream is broken into multiple two to ten seconds segments.

To provide smoothly video, when bit-rate is decreased to

lower resolution at ith seconds, the lower resolution video

segment of corresponding time point will be load to buffer.

So that, buffer could retention at least one video segment to

play continuous video streaming [8]. Finally, a video player

fetches each segment independently with smooth video quality

while the servers do not have to keep track of any playback

session states. Those technology have been widely deployed

in commercial systems, including Netflix, Microsoft Smooth

Streaming, Apple HTTP Live Streaming (HLS), and HTTP-

based Dynamic Adaptive Streaming (DASH) [11].

Algorithms for bit-rate selection in DASH include buffer-

based [6], [12] and throughput-based algorithms [10], [13].

Buffer level algorithms indirectly reflect historical throughput

and avoids video stalling due to an empty buffer, which lever-

age the historical average utilization of buffer levels to drive

the selection of video bit-rate. In contrast, throughput-based

algorithms monitor the incoming bit-rate to select higher-

resolution segments. From monitoring throughput directly, the

adaptation algorithms could effectively choose the bit-rate

levels for future chunks to deliver the highest possible QoE

[14]. However, due to most these adaptation algorithms require

additional time to calculate the buffer level or use history data

to predict throughput, various events can directly decreased

user’s QoE such as start-up latency, rebufferings or bit-rate

changes. Thus, we believe that lightweight monitoring network

conditions in time could provide a better quality online video

for viewers.

B. Frame Aggregation Overview

A-MPDUPHYHDR
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Fig. 1: Examples for frame format of A-MPDU

Frame aggregation was proposed in 802.11e for increasing

WiFi throughput by allowing multiple data units with the same

destination to be assembled and sent out as one frame. A Block

Acknowledgment (Block Ack) is associated with every few

aggregated frames which effectively reduces the overhead of

the physical header [15]. The aggregated frames can work on

two levels that included the MAC service data unit (A-MSDU),

and MAC protocol data unit (A-MPDU) aggregation. As a

specific example, Fig. 1 illustrates the components of an A-

MPDU frame. The A-MSDU scheme can assemble different

units (MSDU) into one aggregated frame as sub-frames. These

two aggregation mechanisms are operated at different levels,

where A-MSDU works on top of MAC layer and A-MPDU

works on bottom. The key difference between them is that A-

MPDU function could effectively direct the target destination

after the MAC header encapsulation process. When available

channel width is narrow, more incoming packet units will be

aggregated together so that increased each A-MPDU size. In

this paper, we focus on the A-MPDU level. Through analyzing

the received packet characteristics with the corresponding the

send packet, we can get the key characters of the current

network conditions, included link congestion.

In this research, we investigate the method of congestion

prediction that has the potential approaches for improving user

QoE. Meanwhile, we propose our algorithm via congestion

prediction in order to provide high-quality and reduce video-

stalling. In the next section, we will introduce our proposed

method for predicting link congestion and algorithm for se-

lecting video bit-rate.

III. SYSTEM DESIGN

In this section, we present the Congestion Predication

DASH algorithm (CP-DASH) which is buffer-based and es-

timates link congestion. First, we describe our method for

approximating link congestion using frame aggregation. Then,



we present our proposed CP-DASH algorithm that achieves

significant improvements in quality by congestion prediction.

Finally, a brief description of QoE classes that are used to

classify video streaming quality is presented.

A. Link Congestion Prediction

Our method for predicting link congestion is based on

observing the A-MPDU Characterization. Fig.2 presents a

specific example to illustrate video clients randomly receiving

packets from a WiFi link. Then, A-MPDU aggregated same

destination packet units and send to the target client buffer.

The Ai, Bi, and Ci packets denote the i-th packet to be sent

to clients A, B, and C respectively. Due to aggregated frames,

all of packets will be sent in order as an A-MPDU, i.e., all of

A’s packets will be aggregated together and delivered before B

and so on. Following different video resolution demands, the

size of the chunks are potentially different. Higher resolution

chunks require filling more packets as client A in the example.

Client B and C represent medium, and lower respectively.

When clients are competing for the channel resource, video

stalling usually occurs on higher resolutions since the packets

cannot be supplied in time. At same time, due to packet

latency, more packets are aggregated together in an A-MPDU.

Our method is detecting changes in the number of packets unit

to predict the current network condition.

The number of packet unit (MPDUs) in each A-MPDU is

defined as the Aggregation Intensity (AI). Through observing

the AI changes, we can potential predict network conditions.

The experimental verification is presented at Section IV. Our

method for predicting link congestion is based on observing

the A-MPDU Characterization. AI mean is defined as the

average value of AI that is extracted from the block acks in a

time window ω. We define the aggregation baseline, AI base,

as the condition when no competing traffic is present. The

difference between AI mean and AI base is defined as the

AI change, ∆AI , which can be used to distinguish between

the congested and uncongested cases. When the WiFi link

is uncongested, most packets can be delivered without delay.

However, if the link is in a congested state, then the incoming

packets may wait in the queue list. Thus the delay causes more

packets to be aggregated and AI will change appropriately.

From experimental observations, we find that AI changes

dynamically when the network is congested. Thus, we

assume ∆AI increases over than a certain threshold (Λ) that

could infer the current wireless channel is potential congested,

described as Equation 1.

∆AI

{

>Λ Network Congestion,

<Λ otherwise.
(1)

Align-AI Algorithm. We designed an Align-AI Algorithm,

presented in Algorithm 1, to find the threshold, Λ. We define

N to be the size of the number of bit-rate options, R; Q

is the number of the AIs in a time window, ω; and Bi is

the buffer occupancy under the current bit-rate, i. Suppose

we set the probe link input rate to the first bit-rate R0 and

we assume that there are 10 Block Acks captured in the

A

A3A-MPDU

AP Queue

A2 A1

A3 A2 A1B3A4 B2C2 B1C1

B3 B2 B1 C1C2

Client A Client B Client C

Buffer

Chunks

AAA

AAA

AAAA

A

BB

BB

BB C C

C C

C C

Free Space Free Space Free Space

B

B

B

A4

Fig. 2: Examples for scheduling of frame aggregation to client

buffer

time window ω. The AIs from these Block Acks are denoted

as (AI0
0
, AI1

0
, AI2

0
, ..., AI9

0
), where the subscript denotes the

current bit-rate index and the superscript denotes the AI index.

The algorithm starts by calculating both the AI base and the

initial AI mean0 as the mean of the AIs for the lowest bit-

rate, R0. The algorithm tries to find the threshold Λ by iterat-

ing through the bit-rate options. We check if buffer occupancy

is safe for next chunk, the bit-rate could be increased until

we reach a point where the buffer occupancy is less than the

chunk size. This point is where link congestion occurs and

we estimate the value of Λ by subtracting AI base from the

corresponding AI mean.

Algorithm 1 Align-AI Algorithm

Input: R - Bit-rate options (e.g., 2134 Kbps, 2884 Kbps, ...)
N - Size of R
B - Buffer occupancy
ω - Window size
Q - number of AI in ω

Output: Λ - Threshold of AI changed

1: AI base = AI mean0

2: for i = 1 to N do

3: if (Bi −B i− 1) < Chunk size then

4: AI meani =
∑

(AI0i , AI1i , AI2i , ..., AIQi )/Q
5: Λ = AI meani - AI base
6: break
7: Return Λ

B. CP: Congestion Prediction DASH Algorithm

Since we convert the problem of estimating congestion

into finding the maximum flow without link congestion, we

can accurately get the congestion signal via control packet

parameter AI. Our algorithm leverages congestion prediction

and buffer occupancy to provide a stabilized bit-rate selection.

The goal of proposed algorithm is to avoid video stalling and

dynamic bit-rate switch under the congested WiFi channel.

Thus, there are two significant conditions for bit-rate selection:



1) congestion status, observed via AI; 2) buffer occupancy,

avoid to run out of buffer.

In our algorithm, the essential dominant parameter is the

buffer occupation, which is divided into three zones including

ample, normal, and danger. Based on two buffer boundary

thresholds; Bample is set as 60% of buffer size; Bnormal is

set as 25% of buffer size; and Bdanger is set as a single chunk

size. Since we do not want to miss any chunk deadline, Bample

will keep enough chunks to play videos, Bnormal provides

smoothly bit-rate switch, and Bdanger avoids video stalling

due to run out of the buffer. We defined our Congestion Predic-

tion DASH Algorithm (CP-DASH) shown on the Algorithm

2. For each video chunk, it takes the following metrics as

input: cur rate, the current video bit-rate; Λ, the threshold of

AI extracted from Algorithm 1; ∆AI , denotes the values of

average AI change during the time window ω; B, the buffer

occupancy; R, the set of bit-rate options for all levels of rate

Ri(i = 0,1, ..., N). In addition, we need two parameters θ, α

to control buffer occupation.

Algorithm 2 CP-DASH Algorithm

Input: cur rate - Current Video Rate
∆AI - AI changed (AI mean - AI base)
Λ - Threshold of AI changed
B - Buffer occupancy
R - Set of bit-rate options
θ, α - Parameters for controlling buffer size

Output: next rate, - Next Video Rate

1: ref = max{ i: Ri == cur rate }
2: if ∆AI > Λ and B > Bample then
3: ref = min{ ref+1, refmax}
4: else if B < θ ∗Bample and ref > refmax/2 then
5: ref = min{ ref -1, refmin}
6: if B < α ∗Bnormal then
7: ref = max{ ref -1, refmin}
8: if B < Bdanger or ∆AI < Λ
9: ref = max{ ref -2, refmin}

10: else
11: ref = max{ ref , cur rate}
12: next rate = Rref

13: Return next rate

As described in Algorithm 2, the reference video rate ref is

initialized as index of current video rate. Then, we check the

buffer occupancy B and AI change ∆AI . If there is ample

buffer space and the channel stays in an uncongested level,

we increase one level reference video rate. Otherwise, if the

buffer level is less than θ percent of Bample and ref is greater

than half of rate options, the bit-rate is decreased one level.

The reason is because there is the potential to run out of buffer

space due to the high bit-rate. The normal zone and danger

zone like Fire-Walls to prevent video stalls and replenish the

buffer. At first, if buffer level is less than α percent of Bnormal,

reduce the ref by one level. Once the AI change ∆AI is

detected to less than threshold Λ or buffer level is less than

Bdanger, the ref is decreased by two levels. Since the AI

change reflected the current channel utilization, if there only

are a few channel resources, the bit-rate is requested to rapidly

decline. However, to provide smoothing for quality changes in

video streaming, each time we only reduce two levels instead

QoE Classes R bit R switch R stall

High >4Mb/s <0.2 <0.1

Medium >2Mb/s <0.5 <0.4

Low <2Mb/s >0.5 >0.4

TABLE I: QoE Classification.

of reducing to the minimum. For other cases, to pursue higher

quality video, we take a more aggressive method to select the

higher rate between ref and cur rate.

C. QoE Indicators

Previous researches have showed that QoE of video stream-

ing depends on several factors: buffer occupation, bit-rate

adoption, download rate, and number of stalling events [8],

[9]. In our work, since the key aim of buffer occupation is

preventing frequent video stall events caused by running out

of buffer space, and over download chunks to wash network

bandwidth. The stall rate will be more considered as significant

indicator. As well the smoothly of video revealed the switch

rate of download bit-rate, which usually has a negative impact

on QoE of video streaming. Thus, switch rate is considered as

one of QoE indicator in our work. Furthermore, download rate,

which is a crucial factor determines the video resolution and

quality to provide a better QoE, is also considered as our video

indicator. Therefore, we define the QoE classes following three

factors (as shown on Eq:2) to indirect the QoE of video:

download bit-rate(Rbit), switch rate(Rswitch), and stall rate

(Rstall).

QoE = min{Rbit, Rswitch, Rstall} (2)

To provide high quality experience for video streaming,

we believe the lowest plank determines the overall height.

The QoE of video is used for classification purposes as the

following three classes: “high”, “medium”, and “low”, which

are determined by the minimum of these three factors. As

shown on Table I, we present the QoE classification with three

factors. For bit rate, in order to watch clear and smoothly

single video, the clients need a minimum download speed of

2 Megabits per second for 480p resolution videos, where the

speed is used to determine the low and median level. Finally,

for watching HD video streaming, the clients require at least

4 Mb/s, which is identified as a high QoE level. According

to QoE matter analysis [8], if resolution switch rate is over

50% or stall rate over 40%, people will drop or turn off this

video. For high quality video, the switch and stall rate will

stay lower at least 20% and 10%, respectively.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we will first validate our design of link-

congestion prediction. Then, we evaluate the proposed algo-

rithms results with other five state-of-the-art approaches. We

focus on evaluate the average bit-rate selection, switch rate and

video stalling rate under different network conditions. Since

block acks cannot come from free on a smartphone or mobile

devices, which requires rooting to be able to “watch” for



block ACKs. Thus, we set up experiments using the NS3 [7]

simulation software, which is based on the platform proposed

by Vergados et al. [6].

A. Design Validation

Experimental Verification. According to a broadband re-

port [16], the average internet speed is 35.36 Mbps in the

US. Hence, we set up a narrow link channel with 35 Mbps

capacity for downloading videos. To easily observe results,

we set the bit-rate for all the video clients at 10 Mbps. To

investigate how link congestion affects AI, we set up three

experiments with 2, 3, and 4 video clients, respectively using

TCP. Varying the number of clients helped us observe the

different network conditions–uncongested, almost congested,

and congested. The traffic flow is generated by sending packets

with a fixed rate (5 Mbps) to create an environment with

competing clients. To observe video stall under dynamic cross-

traffic at WiFi channel, we launched an “On-off” traffic flow

that lasting for 10 seconds and off for 10 seconds. To detect

the points at which link congestion occurs, we plot AI mean

and stall times for the experiments.

Results Analysis. We can see from Fig. 3 and 6 where the

network is uncongested, since the stall rate is less than 5%, and

the AI mean is somewhat stable even with dynamic cross-

traffic flow. The reason because there is still ample bandwidth

to satisfy all streaming flows. For here, we capture AI mean

with a time window of 20 seconds, which included a complete

“On-off” cross-traffic flow roll. When clients increase in Fig.

4, the AI curves fluctuate with values decreasing over certain

time periods. Since the cross-traffic competition, client 1

encounters link congestion such that we observe video stalling

occurred (between 25 to 125s) for client 1 as shown in Fig.

7. This is because as more cross-traffic comes in, AI will

decrease due to increased latency. However, video stall does

not occur on clients 2 and 3, because the available resource

still can support them with the required input rate. We define

this condition as ‘almost congested’ since the link capacity is

exhausted, where the stall rate is less than 40%.

This ‘almost congested’ condition help us investigate the

potential threshold Λ to from the AI change. As shown in

Fig. 4. we observed when the video stalling occurs on client

1, its AI mean is fluctuated. The reason because under a

limited channel resource, the dominant link (i.e., the highest

link rate) will consume more bandwidth. When the AI mean

for any client reaches a certain deviation from the stable value,

it denotes that the link capacity is full. Although at period 20s

to 60s, the AI mean still is consistent since most packets

are aggregated at this period. With latency increased at 80s to

140s, the incoming packets are decreased so that AI mean is

decreased in this period. Compared with the AI mean curves

of clients 2 and 3, we assume that if the AI mean is below

than 25 packet units, the congestion has occurred. In this case,

the threshold Λ is considered as 25.

To verify this assumption, we conduct experiments with

four clients as shown in Fig. 8. Under this condition, all the

video clients experience video stall, because the available

bandwidth is lower than the required bit-rate for each video

client. Furthermore, Fig. 5 shows that the AI mean for

most the video clients is lower than 25. Even AI mean

of client 3 is little higher than 25, the reason it keep a

higher AI mean because most packet are aggregated. The

AI mean for all the clients in the congested case is similar

to the AI mean for client 1 in the ‘almost congested’ case

(as seen in Fig. 4) in that they are all less than 25. These

experiments present that we can infer link congestion by

observing if ∆AI (i.e. change in AI mean) goes above a

certain threshold. We define this threshold as Λ and describe

next how we can determine this threshold for the video clients.

B. Performance Evaluation

Experiment Settings. The goal of the experiment was

to simulate a public WiFi area, which investigates multiple

clients downloading files from a website and watching the live

video streaming at same time. The simulation setup consisted

of several nodes including a few server nodes, Web client

nodes, video client nodes and one access point node. To

simulate background traffic, we required the Web clients,

which included both UDP and TCP clients, to request to

download or visit the website. For video clients, they try to

request download and play a video from the server node using

the assigned DASH algorithms. We set up only one AP in

the simulator because the cross traffic and interference in the

channels have an adverse affect for user QoE. The proposed

algorithm aim to maximize the user QoE in this network-

crowded area.

In the proposed algorithm, the maximum buffer size was

equal to 36 seconds (or equivalently, 18 chunks) and period

window size ω for detecting AI was set as 2 sec. The duration

of each video chunk was fixed as 2 sec. We provide 8 different

video encoding rates from a single video server: 2134, 2884,

3279, 3840, 4220, 4527, 5120, and 5830 Kbps and set constant

bit-rate for each chunk. The experiments focus on higher bit-

rate because high resolution is a significant component of

video QoE. We set α = 0.6 and θ = 0.45 based on empirical

observations.

We evaluate the proposed algorithm by comparing its

performance with five existing video adaptation algorithms

(described below) on the same task sets. We implemented all

the algorithms on the NS3 simulation platform [7].

• minDash: In this algorithm, all video segments are as-

signed the minimum bit-rate.

• FESTIVE: This approach uses the harmonic mean of

throughput history to guide the bit-rate selection [3]. To

avoid bit-rate over-selection, each video segment chooses

the highest bit-rate that is less than the average throughput

of previous 20 video chunks.

• F-DASH: This approach employs fuzzy logic to control

the buffering time and resolutions [6]. It distributes the

best possible resolution of video segments and delivers

undisrupted video playback as a result of buffer under-

flows at the client.
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Fig. 4: AI with 3 clients
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Fig. 5: AI with 4 clients
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Fig. 6: Video Stall with 2 clients
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Fig. 7: Video Stall with 3 clients

0 25 50 75 100 125 150 175 200

Simulation Time (seconds)

0

10

20

30

40

50

S
ta

ll
 t

im
e
 (

s
e
c
o
n
d
s
)

Fig. 8: Video Stall with 4 clients

• PBA: This method chooses the highest bit-rate that is less

than the predicted bandwidth [9], where it is assumed that

available bandwidth is known. To avoid video stalling, the

approach sets a buffer-protect mechanism that reduces the

bit-rate when buffer storage is less than 30% of the buffer

size.

• TOB2: This approach considers a boundary for selecting

the bit-rate for the next video segment [10]. When the

throughput of last incoming segment is greater than a

specific percentage (85%) of previous average segment

throughput, the bit-rate will be increased. This method in-

cludes a buffer-protect mechanism to avoid video stalling.

We evaluate the algorithms under a dynamically cross traffic

flows. In this experiment, we start by streaming a 200-second

video on a clear WiFi channel whose link capacity is 35

Mbps. For stable competing flows, we simulated Web clients

by generating two UDP competing clients and one TCP client

in order to simulate different client types. For each web client,

we set the flow size at a consistent value of 4 Mbps. To

simulate the unstable incoming traffic flows, we generated an

“On-off” traffic flow lasting for 10 seconds and then sleeping

for 10 seconds recursively. The “On-Off” traffic flow took less

than 30% of the link capacity and was selected from a linear

function, flow size(“On−Off”) = (link capacity∗0.3)−
(time ∗ 0.1)− σ, where time is simulator time and σ denotes

a random value between 0 to 2. We evaluated the adaptation

algorithms by varying the number of video clients (set at 1, 3,

and 5) and each number of clients and adaptation algorithm

repeated testing 10 times.

Results Evaluation. We evaluate the experimental perfor-

mance of the algorithms using three metrics: average video

bit-rate, stall rate, and switch rate. Average video bit-rate

represents the average of the bit-rates selected over the entire

video. Switch rate measures the smoothness or the frequency

at which the bit-rate switches per video segment and Stall rate

is the percentage of the time when the video stalls.

Figures. 9, 10, and 11 plot the the average video bit-rate,

switch rate, and stall rate, respectively, for all the evaluated

algorithms and for the different number of competing video

clients. In the figures, the histograms denote the means and

error bars represent the standard deviations. Ideally, good

algorithm performance is determined by higher values for

average video bit-rate and lower values for both switch rate

and stall rate.

The minDash algorithm denotes the baseline of bit-rate

options. In Fig. 9, we can see that our proposed algorithm

performs as well as or better than the algorithms with relatively

higher average bit-rates for each of the different number of

clients. When there is a single video client, there is ample

bandwidth available and hence most of the algorithms perform

well. Our algorithm has a slow start in each case because it

spends time detecting the current network condition via AI.

Despite this, our algorithm continues to achieve a relatively

higher average bit-rate when the number of clients increases.
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Fig. 9: Average video Bit-rate
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The biggest advantage that our algorithm provides is in

offering consistently lower values for the switch rate leading

to better user QoE, as shown in Fig. 10. When the number

of clients is 5, our proposed method’s switch rate (0.05) is

lower than that of the Festive algorithm (0.22) and Tob2

(0.36) and is comparable to that of PBA (0.06). When the

number of clients increases, the available bandwidth is much

reduced and runs between normal and danger zones leading

some of the adaptation algorithms (e.g., Festive, Fdash, tob2)

to more frequently switch their bit-rates. Since we look at

link congestion, which occurs before the bandwidth enters

the danger zone, our algorithm switches the bit-rate to a

lower value before the bandwidth enters the danger zone and

maintains it at this value without requiring frequent switching.

The PBA algorithm, similarly, leverages available bandwidth

information to determine a precise bit-rate without frequent

switching. Our algorithm also achieves relatively low values

for the stall rate, as shown in Fig. 11. Our algorithm’s stall rate

(0.25) is better than that of FESTIVE (0.38) and PBA (0.32)

but less than that of Fdash (0.17) when there are 5 clients.

Overall, following the QoE classification (Table I), our

method provides a good balance of all the three metrics – it

achieves relatively higher average bit-rates, low switch rates,

as well as low stall rates for the different number of clients,

thereby contributing to a good user QoE.

V. RELATED WORK

WiFi Channel Characterization: WiFi Channel Character-

ization provides valuable information to help resolve various

network problems such as link congestion. Passive client

monitor methods are cheap and flexible choice for monitoring

wireless link performance. [17] leveraged frame aggregation

and developed a light-weight method to estimate throughput

and airtime of a wireless channel by observing a few control

packets. Other prior works[ [5]] focus on estimating available

bandwidth by relying on physical layer observations. Despite

their non-intrusive nature, passive approaches usually suffer

from severe loss that lead to inaccurate measurements due to

client’s limited observation capability

For monitoring current network conditions, Song et al. [18]

proposed AIWC (Aggregation Intensity based Wifi Character-

ization), an active measurement method that induces frame

aggregation by sending probe trains of different rates and

quantifies the response to estimate available bandwidth. While

more capable in their observations as compared to passive

approaches, such methods also fall short since aggressive

WiFi scanning can adversely impact energy and throughput

especially in crowded wireless environments [19] .

Live Video Streaming: Many existing adaptation algo-

rithms rely on throughput history to pick a suitable bit-

rate [10], [13]. FESTIVE [3], for example, is an adaptation

algorithm that uses harmonic mean of the throughput of

previous segments and considers the delay between video bit-

rate updates to minimize the number of rate switches. Most

methods, however, provide inaccurate predictions and incur

high cost on the link. In contrast to throughput prediction,

estimating the available network bandwidth consumes fewer

channel resources and also provides precise observations to

adjust encoding rate. Zou et al. [9] showed that current

streaming adaptation algorithms only achieve 69%-86% of

optimal quality. Therefore, there is still more that should be

done in terms of improving network performance estimation

algorithms that guide rate adaption methods.

VI. CONCLUSION

In this work, we designed a mechanism to predict conges-

tion leveraging frame aggregation at WiFi network. Based on

that, we proposed a video streaming adaptation algorithms

(CP-DASH) that focused on reducing video stalling under

congested WiFi environment. By exploiting a lightweight

passive WiFi channel characterization, we showed our method

can effectively predict link congestion on a WiFi channel. For

target reducing video stalling rate, we show that during startup,

the proposed algorithms promises to deliver a better video

quality compared to throughput-based algorithms. Overall,

we show that CP-DASH algorithms with different stability

functions can trade off stalls and maintain higher bit-rate

selection, which much improved average quality. For future

work, we continue to address some of the open challenges in

bandwidth predictions and other network protocols for video

streaming download in real time.
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