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Abstract—Video streaming using WiFi networks poses the
challenge of variable network performance when multiple clients
are present. Hence, it is important to continuously monitor
and predict the network changes in order to ensure a higher
user quality of experience (QoE) for video streaming. Existing
approaches that aim to detect such network changes have
several disadvantages. For example, active probing approaches
are expensive so that generate more additional traffic flow during
the testing. To overcome its shortcomings, we propose a passive,
lightweight approach, CP-DASH, whereby queuing effects present
in frame aggregation are leveraged to predict link congestion
in the WiFi network. This approach allows the early detection
which can be used to adapt our video appropriately. We conduct
experiments simulating a WiFi network with multiple clients
and compare CP-DASH with five contemporary rate selection
mechanisms. We found that our proposed method significantly
reduces the switch rates and stall rates from 22% to 5% and
from 38% to 25% compared with an existing throughput-based
algorithm, respectively.

Index Terms—Video Streaming, Frame Aggregation, link Con-
gestion

I. INTRODUCTION

The proliferation of devices using WiFi has led to increased
network traffic bringing increased network congestion and
significant variations in network performance. With this in-
creasing number of devices competing for limited network re-
sources, significant strains emerge with the the most dominant
traffic type, namely video. Per a recent forecast [1], IP video
traffic represented 75% of all traffic in 2017 and is slated to
continue to grow to over 82% of all IP traffic (both business
and consumer) by 2022. An on-going and critical challenge
is how to handle one of the most temperamental video traffic,
the need for uninterrupted, high-quality video streaming in the
presence of rapidly shifting, overloaded network dynamics.

Methods for adaptive video streaming generally aim to
set the video bit-rate appropriate for the current network
conditions. A very conservative approach [2] can be used
wherein the lowest bit-rate is chosen but this approach has
the drawback of providing a low bit-rate video even during
the times when the network is less congested. There are also
approaches that aim to detect the throughput, for example,
via chunk download performance [3]. Unfortunately, while
measuring intermediate download speed can prove useful,
such information can often be quite late (e.g. one misses
the rapidly-occurring network changes), and/or noisy (e.g.

captured rate changes requires smoothing or filtering). These
negative effects will potential degrade the video quality even
cause economic losses.

Monitoring the network performance, especially when the
network is unstable, can be nontrivial. Active probing is
one approach for establishing connections and observing the
status of the channel [4]. Active probing is considered to be
an effective method for monitoring the network status and
uses conventional network measurements, such as available
bandwidth and link congestion, potentially without the delayed
reporting associated with block download speeds. However,
when channel resources are already limited, excessive (active)
probing can cause more network congestion, making a bad
problem even worse [5].

Given the above drawbacks of existing approaches, in this
paper, we propose a novel approach that detects link conges-
tion in an accurate, timely but passive manner to deliver a
better rate adaptation mechanism for adaptive video streaming.
We leverage the aggregate MAC protocol data unit (A-MPDU)
information provided by Block Acknowledgement aggregate
control packets to allow a WiFi device passively predict link
congestion. We take advantage of queuing effects present
in frame aggregation to get an early warning signal which
provides an accurate estimation of network performance that
we in turn use to adapt our video rate appropriately.

In this paper, we propose an algorithm, Congestion
Prediction-DASH (CP-DASH), building on the DASH tech-
nique of Fuzzy DASH (F-DASH) [6] which also uses a buffer-
based method to reduce video stalling and to provide high-
quality streaming. The main contributions of this paper are as
follows:

o A passive, lightweight approach for predicting link con-
gestion: To detect link congestion for video streaming,
we designed a novel method that only captures con-
trol packets or Block Acknowledgement (Block Acks).
From extensive performance evaluations, we show that
the network-condition information extracted from Block
Acks can effectively be used for link-congestion predic-
tion.

e CP-DASH algorithm: We combine the above link-
congestion prediction with a buffer-based algorithm for
selecting an appropriate bit-rate for the video. Our al-
gorithm, CP-DASH, is designed to prevent stalling and



to maximize video quality. Furthermore, by being buffer-
based, our approach can effectively prevent bit-rate over-
selection when the buffer space is almost depleted.

o Implementation and Evaluation (presented in Section IV):
We conduct experiments by simulating a WiFi network
with multiple clients (using the NS3 [7] simulator) and
evaluate our proposed algorithm, CP-DASH, by compar-
ing it with five other adaptive video streaming techniques
[3], [6], [8]-[10]. We demonstrate that our proposed
method substantially reduces the switch and stall rates
while maintaining a comparable streaming video resolu-
tion.

II. BACKGROUND AND MOTIVATION

We begin by presenting a broad discussion of the work on
HTTP-based adaptive video streaming. A brief principle of bit-
rate adaptation algorithms is given to introduce the contem-
porary technology and our focused point. Then, we present
an overview of frame aggregation and the fundamentals of
aggregated control packets.

A. Dynamic Adaptive Video Streaming over HTTP

Dynamic Adaptive Video Streaming over HTTP (DASH) is
an adaptive bit-rate streaming technique. DASH is used for
streaming media content via an HTTP web server, such as
Adobe’s HDS and MPEG-DASH. Intrinsically, a video stream
is encoded into multiple discrete bit-rate segments or chunks
and stored on the server side. According to the perceived
network conditions, such as broadcast buffers or throughput,
client side attempt to optimize the various indicators that
constitute user’s QoE, which including video quality, stall rate
and stability. The client can switch to a low-quality video
version to avoid insufficient traffic during temporary network
congestion and switch back to a higher quality after the
network conditions improve. For a specific instance, a bit-rate
stream is broken into multiple two to ten seconds segments.
To provide smoothly video, when bit-rate is decreased to
lower resolution at i*® seconds, the lower resolution video
segment of corresponding time point will be load to buffer.
So that, buffer could retention at least one video segment to
play continuous video streaming [8]. Finally, a video player
fetches each segment independently with smooth video quality
while the servers do not have to keep track of any playback
session states. Those technology have been widely deployed
in commercial systems, including Netflix, Microsoft Smooth
Streaming, Apple HTTP Live Streaming (HLS), and HTTP-
based Dynamic Adaptive Streaming (DASH) [11].

Algorithms for bit-rate selection in DASH include buffer-
based [6], [12] and throughput-based algorithms [10], [13].
Buffer level algorithms indirectly reflect historical throughput
and avoids video stalling due to an empty buffer, which lever-
age the historical average utilization of buffer levels to drive
the selection of video bit-rate. In contrast, throughput-based
algorithms monitor the incoming bit-rate to select higher-
resolution segments. From monitoring throughput directly, the
adaptation algorithms could effectively choose the bit-rate

levels for future chunks to deliver the highest possible QoE
[14]. However, due to most these adaptation algorithms require
additional time to calculate the buffer level or use history data
to predict throughput, various events can directly decreased
user’s QoE such as start-up latency, rebufferings or bit-rate
changes. Thus, we believe that lightweight monitoring network
conditions in time could provide a better quality online video
for viewers.

B. Frame Aggregation Overview
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Fig. 1: Examples for frame format of A-MPDU
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Frame aggregation was proposed in 802.11e for increasing
WiFi throughput by allowing multiple data units with the same
destination to be assembled and sent out as one frame. A Block
Acknowledgment (Block Ack) is associated with every few
aggregated frames which effectively reduces the overhead of
the physical header [15]. The aggregated frames can work on
two levels that included the MAC service data unit (A-MSDU),
and MAC protocol data unit (A-MPDU) aggregation. As a
specific example, Fig. 1 illustrates the components of an A-
MPDU frame. The A-MSDU scheme can assemble different
units (MSDU) into one aggregated frame as sub-frames. These
two aggregation mechanisms are operated at different levels,
where A-MSDU works on top of MAC layer and A-MPDU
works on bottom. The key difference between them is that A-
MPDU function could effectively direct the target destination
after the MAC header encapsulation process. When available
channel width is narrow, more incoming packet units will be
aggregated together so that increased each A-MPDU size. In
this paper, we focus on the A-MPDU level. Through analyzing
the received packet characteristics with the corresponding the
send packet, we can get the key characters of the current
network conditions, included link congestion.

In this research, we investigate the method of congestion
prediction that has the potential approaches for improving user
QoE. Meanwhile, we propose our algorithm via congestion
prediction in order to provide high-quality and reduce video-
stalling. In the next section, we will introduce our proposed
method for predicting link congestion and algorithm for se-
lecting video bit-rate.

III. SYSTEM DESIGN

In this section, we present the Congestion Predication
DASH algorithm (CP-DASH) which is buffer-based and es-
timates link congestion. First, we describe our method for
approximating link congestion using frame aggregation. Then,



we present our proposed CP-DASH algorithm that achieves
significant improvements in quality by congestion prediction.
Finally, a brief description of QoE classes that are used to
classify video streaming quality is presented.

A. Link Congestion Prediction

Our method for predicting link congestion is based on
observing the A-MPDU Characterization. Fig.2 presents a
specific example to illustrate video clients randomly receiving
packets from a WiFi link. Then, A-MPDU aggregated same
destination packet units and send to the target client buffer.
The A;, B;, and C; packets denote the i-th packet to be sent
to clients A, B, and C respectively. Due to aggregated frames,
all of packets will be sent in order as an A-MPDU, i.e., all of
A’s packets will be aggregated together and delivered before B
and so on. Following different video resolution demands, the
size of the chunks are potentially different. Higher resolution
chunks require filling more packets as client A in the example.
Client B and C represent medium, and lower respectively.
When clients are competing for the channel resource, video
stalling usually occurs on higher resolutions since the packets
cannot be supplied in time. At same time, due to packet
latency, more packets are aggregated together in an A-MPDU.
Our method is detecting changes in the number of packets unit
to predict the current network condition.

The number of packet unit (MPDUs) in each A-MPDU is
defined as the Aggregation Intensity (AI). Through observing
the AI changes, we can potential predict network conditions.
The experimental verification is presented at Section IV. Our
method for predicting link congestion is based on observing
the A-MPDU Characterization. AI _mean is defined as the
average value of Al that is extracted from the block acks in a
time window w. We define the aggregation baseline, AI_base,
as the condition when no competing traffic is present. The
difference between AI _mean and AI base is defined as the
Al change, AAI, which can be used to distinguish between
the congested and uncongested cases. When the WiFi link
is uncongested, most packets can be delivered without delay.
However, if the link is in a congested state, then the incoming
packets may wait in the queue list. Thus the delay causes more
packets to be aggregated and Al will change appropriately.
From experimental observations, we find that AI changes
dynamically when the network is congested. Thus, we
assume A AT increases over than a certain threshold (A) that
could infer the current wireless channel is potential congested,
described as Equation 1.

(D

>A Network Congestion,
AAT .
<A otherwise.

Align-Al Algorithm. We designed an Align-Al Algorithm,
presented in Algorithm 1, to find the threshold, A. We define
N to be the size of the number of bit-rate options, R; @
is the number of the Als in a time window, w; and B; is
the buffer occupancy under the current bit-rate, . Suppose
we set the probe link input rate to the first bit-rate Ry and
we assume that there are 10 Block Acks captured in the
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Fig. 2: Examples for scheduling of frame aggregation to client
buffer

time window w. The Als from these Block Acks are denoted
as (AIQ, AI}, AIZ, ..., AI§), where the subscript denotes the
current bit-rate index and the superscript denotes the Al index.
The algorithm starts by calculating both the AI_base and the
initial AI_meang as the mean of the Als for the lowest bit-
rate, Rg. The algorithm tries to find the threshold A by iterat-
ing through the bit-rate options. We check if buffer occupancy
is safe for next chunk, the bit-rate could be increased until
we reach a point where the buffer occupancy is less than the
chunk size. This point is where link congestion occurs and
we estimate the value of A by subtracting Al _base from the
corresponding AI_mean.

Algorithm 1 Align-Al Algorithm

R - Bit-rate options (e.g., 2134 Kbps, 2884 Kbps, ...)
N - Size of R

B - Buffer occupancy

w - Window size

Q@ - number of Al in w

Output: A - Threshold of AI changed

Input:

1: AI_base = AI_meang
2: fori=1to N do
3:  if (B; — B_i — 1) < Chunk_size then

4 Al_mean; = Y (AIO, AT} AI2, ..., AIR)/Q
5: A = AI_mean; - AI_base

6: break

7: Return A

B. CP: Congestion Prediction DASH Algorithm

Since we convert the problem of estimating congestion
into finding the maximum flow without link congestion, we
can accurately get the congestion signal via control packet
parameter AI. Our algorithm leverages congestion prediction
and buffer occupancy to provide a stabilized bit-rate selection.
The goal of proposed algorithm is to avoid video stalling and
dynamic bit-rate switch under the congested WiFi channel.
Thus, there are two significant conditions for bit-rate selection:



1) congestion status, observed via Al; 2) buffer occupancy,
avoid to run out of buffer.

In our algorithm, the essential dominant parameter is the
buffer occupation, which is divided into three zones including
ample, normal, and danger. Based on two buffer boundary
thresholds; Bgppie is set as 60% of buffer size; Byormar 1S
set as 25% of buffer size; and Byanger 18 set as a single chunk
size. Since we do not want to miss any chunk deadline, By pie
will keep enough chunks to play videos, B;,ormqr provides
smoothly bit-rate switch, and Bganger avoids video stalling
due to run out of the buffer. We defined our Congestion Predic-
tion DASH Algorithm (CP-DASH) shown on the Algorithm
2. For each video chunk, it takes the following metrics as
input: cur_rate, the current video bit-rate; A, the threshold of
Al extracted from Algorithm 1; AAI, denotes the values of
average Al change during the time window w; B, the buffer
occupancy; R, the set of bit-rate options for all levels of rate
R;(i = 0,1, ..., N). In addition, we need two parameters 6, «
to control buffer occupation.

Algorithm 2 CP-DASH Algorithm

Input: cur_rate - Current Video Rate
AAI - Al changed (AI_mean - AI_base)
A - Threshold of AI changed
B - Buffer occupancy
R - Set of bit-rate options
0, o - Parameters for controlling buffer size
Output: next_rate, - Next Video Rate

ref = max{ i: R; == cur_rate }
1 if AAI > A and B > Bgppie then
ref = min{ ref+1, refmaz}
: else if B < 6 x Bypypie and ref > refmaz /2 then
ref = min{ ref-1, refmin}
: if B < a* Bhormar then
ref = max{ ref-1, refmin}
if B < Bianger 0r AAI < A
ref = max{ ref-2, refmin}

VRN R WD

10: else

11:  ref = max{ ref, cur_rate}
12: next_rate = Rycy

13: Return next_rate

As described in Algorithm 2, the reference video rate ref is
initialized as index of current video rate. Then, we check the
buffer occupancy B and Al change AAI. If there is ample
buffer space and the channel stays in an uncongested level,
we increase one level reference video rate. Otherwise, if the
buffer level is less than 6 percent of By, and ref is greater
than half of rate options, the bit-rate is decreased one level.
The reason is because there is the potential to run out of buffer
space due to the high bit-rate. The normal zone and danger
zone like Fire-Walls to prevent video stalls and replenish the
buffer. At first, if buffer level is less than « percent of B, ormais
reduce the ref by one level. Once the Al change AAIT is
detected to less than threshold A or buffer level is less than
Baanger, the ref is decreased by two levels. Since the Al
change reflected the current channel utilization, if there only
are a few channel resources, the bit-rate is requested to rapidly
decline. However, to provide smoothing for quality changes in
video streaming, each time we only reduce two levels instead

QoE Classes R_bit R_switch R_stall
High >4Mb/s <0.2 <0.1
Medium >2Mb/s <0.5 <0.4
Low <2Mb/s >0.5 >0.4

TABLE I: QoE Classification.

of reducing to the minimum. For other cases, to pursue higher
quality video, we take a more aggressive method to select the
higher rate between ref and cur_rate.

C. QoF Indicators

Previous researches have showed that QoE of video stream-
ing depends on several factors: buffer occupation, bit-rate
adoption, download rate, and number of stalling events [8],
[9]. In our work, since the key aim of buffer occupation is
preventing frequent video stall events caused by running out
of buffer space, and over download chunks to wash network
bandwidth. The stall rate will be more considered as significant
indicator. As well the smoothly of video revealed the switch
rate of download bit-rate, which usually has a negative impact
on QoE of video streaming. Thus, switch rate is considered as
one of QoE indicator in our work. Furthermore, download rate,
which is a crucial factor determines the video resolution and
quality to provide a better QoE, is also considered as our video
indicator. Therefore, we define the QoE classes following three
factors (as shown on Eq:2) to indirect the QoE of video:
download bit-rate(Ry;;), switch rate(Rg,itcn), and stall rate
(Rstall)-

QOE = min{Rbih stitchz Rstall} (2)

To provide high quality experience for video streaming,
we believe the lowest plank determines the overall height.
The QoE of video is used for classification purposes as the
following three classes: “high”, “medium”, and “low”, which
are determined by the minimum of these three factors. As
shown on Table I, we present the QoE classification with three
factors. For bit rate, in order to watch clear and smoothly
single video, the clients need a minimum download speed of
2 Megabits per second for 480p resolution videos, where the
speed is used to determine the low and median level. Finally,
for watching HD video streaming, the clients require at least
4 Mb/s, which is identified as a high QoE level. According
to QoE matter analysis [8], if resolution switch rate is over
50% or stall rate over 40%, people will drop or turn off this
video. For high quality video, the switch and stall rate will
stay lower at least 20% and 10%, respectively.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we will first validate our design of link-
congestion prediction. Then, we evaluate the proposed algo-
rithms results with other five state-of-the-art approaches. We
focus on evaluate the average bit-rate selection, switch rate and
video stalling rate under different network conditions. Since
block acks cannot come from free on a smartphone or mobile
devices, which requires rooting to be able to “watch” for



block ACKs. Thus, we set up experiments using the NS3 [7]
simulation software, which is based on the platform proposed
by Vergados et al. [6].

A. Design Validation

Experimental Verification. According to a broadband re-
port [16], the average internet speed is 35.36 Mbps in the
US. Hence, we set up a narrow link channel with 35 Mbps
capacity for downloading videos. To easily observe results,
we set the bit-rate for all the video clients at 10 Mbps. To
investigate how link congestion affects Al, we set up three
experiments with 2, 3, and 4 video clients, respectively using
TCP. Varying the number of clients helped us observe the
different network conditions—uncongested, almost congested,
and congested. The traffic flow is generated by sending packets
with a fixed rate (5 Mbps) to create an environment with
competing clients. To observe video stall under dynamic cross-
traffic at WiFi channel, we launched an “On-off” traffic flow
that lasting for 10 seconds and off for 10 seconds. To detect
the points at which link congestion occurs, we plot AI_mean
and stall times for the experiments.

Results Analysis. We can see from Fig. 3 and 6 where the
network is uncongested, since the stall rate is less than 5%, and
the AI_mean is somewhat stable even with dynamic cross-
traffic flow. The reason because there is still ample bandwidth
to satisfy all streaming flows. For here, we capture AI_mean
with a time window of 20 seconds, which included a complete
“On-off” cross-traffic flow roll. When clients increase in Fig.
4, the Al curves fluctuate with values decreasing over certain
time periods. Since the cross-traffic competition, client 1
encounters link congestion such that we observe video stalling
occurred (between 25 to 125s) for client 1 as shown in Fig.
7. This is because as more cross-traffic comes in, Al will
decrease due to increased latency. However, video stall does
not occur on clients 2 and 3, because the available resource
still can support them with the required input rate. We define
this condition as ‘almost congested’ since the link capacity is
exhausted, where the stall rate is less than 40%.

This ‘almost congested’ condition help us investigate the
potential threshold A to from the AI change. As shown in
Fig. 4. we observed when the video stalling occurs on client
1, its AI_mean is fluctuated. The reason because under a
limited channel resource, the dominant link (i.e., the highest
link rate) will consume more bandwidth. When the AI_mean
for any client reaches a certain deviation from the stable value,
it denotes that the link capacity is full. Although at period 20s
to 60s, the AI_mean still is consistent since most packets
are aggregated at this period. With latency increased at 80s to
140s, the incoming packets are decreased so that AI_mean is
decreased in this period. Compared with the AI_mean curves
of clients 2 and 3, we assume that if the Al _mean is below
than 25 packet units, the congestion has occurred. In this case,
the threshold A is considered as 25.

To verify this assumption, we conduct experiments with
four clients as shown in Fig. 8. Under this condition, all the
video clients experience video stall, because the available

bandwidth is lower than the required bit-rate for each video
client. Furthermore, Fig. 5 shows that the AI_mean for
most the video clients is lower than 25. Even AI mean
of client 3 is little higher than 25, the reason it keep a
higher AI_mean because most packet are aggregated. The
AI_mean for all the clients in the congested case is similar
to the AI_mean for client 1 in the ‘almost congested’ case
(as seen in Fig. 4) in that they are all less than 25. These
experiments present that we can infer link congestion by
observing if AAI (i.e. change in AI_mean) goes above a
certain threshold. We define this threshold as A and describe
next how we can determine this threshold for the video clients.

B. Performance Evaluation

Experiment Settings. The goal of the experiment was
to simulate a public WiFi area, which investigates multiple
clients downloading files from a website and watching the live
video streaming at same time. The simulation setup consisted
of several nodes including a few server nodes, Web client
nodes, video client nodes and one access point node. To
simulate background traffic, we required the Web clients,
which included both UDP and TCP clients, to request to
download or visit the website. For video clients, they try to
request download and play a video from the server node using
the assigned DASH algorithms. We set up only one AP in
the simulator because the cross traffic and interference in the
channels have an adverse affect for user QoE. The proposed
algorithm aim to maximize the user QoE in this network-
crowded area.

In the proposed algorithm, the maximum buffer size was
equal to 36 seconds (or equivalently, 18 chunks) and period
window size w for detecting Al was set as 2 sec. The duration
of each video chunk was fixed as 2 sec. We provide 8 different
video encoding rates from a single video server: 2134, 2884,
3279, 3840, 4220, 4527, 5120, and 5830 Kbps and set constant
bit-rate for each chunk. The experiments focus on higher bit-
rate because high resolution is a significant component of
video QoE. We set a = 0.6 and € = 0.45 based on empirical
observations.

We evaluate the proposed algorithm by comparing its
performance with five existing video adaptation algorithms
(described below) on the same task sets. We implemented all
the algorithms on the NS3 simulation platform [7].

o minDash: In this algorithm, all video segments are as-

signed the minimum bit-rate.

o FESTIVE: This approach uses the harmonic mean of
throughput history to guide the bit-rate selection [3]. To
avoid bit-rate over-selection, each video segment chooses
the highest bit-rate that is less than the average throughput
of previous 20 video chunks.

o F-DASH: This approach employs fuzzy logic to control
the buffering time and resolutions [6]. It distributes the
best possible resolution of video segments and delivers
undisrupted video playback as a result of buffer under-
flows at the client.
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o PBA: This method chooses the highest bit-rate that is less
than the predicted bandwidth [9], where it is assumed that
available bandwidth is known. To avoid video stalling, the
approach sets a buffer-protect mechanism that reduces the
bit-rate when buffer storage is less than 30% of the buffer
size.

o TOB2: This approach considers a boundary for selecting
the bit-rate for the next video segment [10]. When the
throughput of last incoming segment is greater than a
specific percentage (85%) of previous average segment
throughput, the bit-rate will be increased. This method in-
cludes a buffer-protect mechanism to avoid video stalling.

We evaluate the algorithms under a dynamically cross traffic
flows. In this experiment, we start by streaming a 200-second
video on a clear WiFi channel whose link capacity is 35
Mbps. For stable competing flows, we simulated Web clients
by generating two UDP competing clients and one TCP client
in order to simulate different client types. For each web client,
we set the flow size at a consistent value of 4 Mbps. To
simulate the unstable incoming traffic flows, we generated an
“On-off” traffic flow lasting for 10 seconds and then sleeping
for 10 seconds recursively. The “On-Off” traffic flow took less
than 30% of the link capacity and was selected from a linear
function, flow_size(“On—0f f”) = (link_capacity+0.3) —
(time % 0.1) — o, where time is simulator time and o denotes
a random value between 0 to 2. We evaluated the adaptation
algorithms by varying the number of video clients (set at 1, 3,

Simulation Time (seconds)

Fig. 7: Video Stall with 3 clients

Simulation Time (seconds)

Fig. 8: Video Stall with 4 clients

and 5) and each number of clients and adaptation algorithm
repeated testing 10 times.

Results Evaluation. We evaluate the experimental perfor-
mance of the algorithms using three metrics: average video
bit-rate, stall rate, and switch rate. Average video bit-rate
represents the average of the bit-rates selected over the entire
video. Switch rate measures the smoothness or the frequency
at which the bit-rate switches per video segment and Stall rate
is the percentage of the time when the video stalls.

Figures. 9, 10, and 11 plot the the average video bit-rate,
switch rate, and stall rate, respectively, for all the evaluated
algorithms and for the different number of competing video
clients. In the figures, the histograms denote the means and
error bars represent the standard deviations. Ideally, good
algorithm performance is determined by higher values for
average video bit-rate and lower values for both switch rate
and stall rate.

The minDash algorithm denotes the baseline of bit-rate
options. In Fig. 9, we can see that our proposed algorithm
performs as well as or better than the algorithms with relatively
higher average bit-rates for each of the different number of
clients. When there is a single video client, there is ample
bandwidth available and hence most of the algorithms perform
well. Our algorithm has a slow start in each case because it
spends time detecting the current network condition via Al
Despite this, our algorithm continues to achieve a relatively
higher average bit-rate when the number of clients increases.
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The biggest advantage that our algorithm provides is in
offering consistently lower values for the switch rate leading
to better user QoE, as shown in Fig. 10. When the number
of clients is 5, our proposed method’s switch rate (0.05) is
lower than that of the Festive algorithm (0.22) and Tob2
(0.36) and is comparable to that of PBA (0.06). When the
number of clients increases, the available bandwidth is much
reduced and runs between normal and danger zones leading
some of the adaptation algorithms (e.g., Festive, Fdash, tob2)
to more frequently switch their bit-rates. Since we look at
link congestion, which occurs before the bandwidth enters
the danger zone, our algorithm switches the bit-rate to a
lower value before the bandwidth enters the danger zone and
maintains it at this value without requiring frequent switching.
The PBA algorithm, similarly, leverages available bandwidth
information to determine a precise bit-rate without frequent
switching. Our algorithm also achieves relatively low values
for the stall rate, as shown in Fig. 11. Our algorithm’s stall rate
(0.25) is better than that of FESTIVE (0.38) and PBA (0.32)
but less than that of Fdash (0.17) when there are 5 clients.

Overall, following the QoE classification (Table I), our
method provides a good balance of all the three metrics — it
achieves relatively higher average bit-rates, low switch rates,
as well as low stall rates for the different number of clients,
thereby contributing to a good user QoE.

V. RELATED WORK

WiFi Channel Characterization: WiFi Channel Character-
ization provides valuable information to help resolve various
network problems such as link congestion. Passive client
monitor methods are cheap and flexible choice for monitoring
wireless link performance. [17] leveraged frame aggregation
and developed a light-weight method to estimate throughput
and airtime of a wireless channel by observing a few control
packets. Other prior works[ [5]] focus on estimating available
bandwidth by relying on physical layer observations. Despite
their non-intrusive nature, passive approaches usually suffer
from severe loss that lead to inaccurate measurements due to
client’s limited observation capability

For monitoring current network conditions, Song et al. [18]
proposed AIWC (Aggregation Intensity based Wifi Character-
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Fig. 11: Stall Rate

ization), an active measurement method that induces frame
aggregation by sending probe trains of different rates and
quantifies the response to estimate available bandwidth. While
more capable in their observations as compared to passive
approaches, such methods also fall short since aggressive
WiFi scanning can adversely impact energy and throughput
especially in crowded wireless environments [19] .

Live Video Streaming: Many existing adaptation algo-
rithms rely on throughput history to pick a suitable bit-
rate [10], [13]. FESTIVE [3], for example, is an adaptation
algorithm that uses harmonic mean of the throughput of
previous segments and considers the delay between video bit-
rate updates to minimize the number of rate switches. Most
methods, however, provide inaccurate predictions and incur
high cost on the link. In contrast to throughput prediction,
estimating the available network bandwidth consumes fewer
channel resources and also provides precise observations to
adjust encoding rate. Zou et al. [9] showed that current
streaming adaptation algorithms only achieve 69%-86% of
optimal quality. Therefore, there is still more that should be
done in terms of improving network performance estimation
algorithms that guide rate adaption methods.

VI. CONCLUSION

In this work, we designed a mechanism to predict conges-
tion leveraging frame aggregation at WiFi network. Based on
that, we proposed a video streaming adaptation algorithms
(CP-DASH) that focused on reducing video stalling under
congested WiFi environment. By exploiting a lightweight
passive WiFi channel characterization, we showed our method
can effectively predict link congestion on a WiFi channel. For
target reducing video stalling rate, we show that during startup,
the proposed algorithms promises to deliver a better video
quality compared to throughput-based algorithms. Overall,
we show that CP-DASH algorithms with different stability
functions can trade off stalls and maintain higher bit-rate
selection, which much improved average quality. For future
work, we continue to address some of the open challenges in
bandwidth predictions and other network protocols for video
streaming download in real time.
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