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ABSTRACT

With the rapid growth and prevalence of social network applica-
tions (Apps) in recent years, understanding user engagement has
become increasingly important, to provide useful insights for fu-
ture App design and development. While several promising neural
modeling approaches were recently pioneered for accurate user
engagement prediction, their black-box designs are unfortunately
limited in model explainability. In this paper, we study a novel prob-
lem of explainable user engagement prediction for social network
Apps. First, we propose a flexible definition of user engagement
for various business scenarios, based on future metric expectations.
Next, we design an end-to-end neural framework, FATE, which
incorporates three key factors that we identify to influence user en-
gagement, namely friendships, user actions, and temporal dynamics
to achieve explainable engagement predictions. FATE is based on a
tensor-based graph neural network (GNN), LSTM and a mixture
attention mechanism, which allows for (a) predictive explanations
based on learned weights across different feature categories, (b)
reduced network complexity, and (c) improved performance in both
prediction accuracy and training/inference time. We conduct exten-
sive experiments on two large-scale datasets from Snapchat, where
FATE outperforms state-of-the-art approaches by ~10% error and
~20% runtime reduction. We also evaluate explanations from FATE,
showing strong quantitative and qualitative performance.
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1 INTRODUCTION

With rapid recent developments in web and mobile infrastructure,
social networks and applications (Apps) such as Snapchat and Face-
book have risen to prominence. The first priority of development
of most social Apps is to attract and maintain a large userbase. Un-
derstanding user engagement plays an important role for retaining
and activating users. Prior studies try to understand the return of
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existing users using different metrics, such as churn rate prediction
[38] and lifespan analysis [39]. Others model user engagement with
macroscopic features (e.g., demographic information) [1] and his-
torical statistic features (e.g., user activities) [19]. Recently, Liu et al.
[20] propose using dynamic action graphs, where nodes are in-App
actions, and edges are transitions between actions, to predict future
activity using a neural model.

Despite some success, existing methods generally suffer from the
following: (1) They fail to model friendship dependencies or ignore
user-user interactions when modeling user engagement. As users
are connected in social Apps, their engagement affects each other
[32]. For example, active users may keep posting new contents,
which attract his/her friends and elevate their engagement. Thus,
it is essential to capture friendship dependencies and user interac-
tions when modeling user engagement. (2) Engagement objectives
may differ across Apps and even across features. For example, an
advertising team may target prediction of click-through-rate, while
a growth-focused team may care about usage trends in different
in-App functions. Therefore, the definition of user engagement
must be flexible to satisfy different scenarios. (3) Existing methods
focus on the predicting user engagement accurately, but fail to
answer why a user engages (or not). Explaining user engagement
is especially desirable, since it provides valuable insights to practi-
tioners on user priorities and informs mechanism and intervention
design for managing different factors motivating different users’
engagement. However, to our knowledge, there are no explainable
models for understanding user engagement.

To tackle the aforementioned limitations, we aim to use three key
factors: friendship, in-App user actions, and temporal dynamics, to
derive explanations for user engagement. Firstly, since users do not
engage in a vacuum, but rather with each other, we consider friend-
ships to be key in engagement. For example, many users may be
drawn to use an App because of their family and friends’ continued
use. Secondly, user actions dictate how a user uses different in-App
features, and hints at their reasons for using the App. Thirdly, user
behavior changes over time, and often obey temporal periodicity
[24]. Incorporating periodicity and recency effects can improve
predictive performance.

In this work, we first propose measurement of user engagement
based on the expectation of metric(s) of interests in the future, which
flexibly handles different business scenarios. Next, we formulate a
prediction task to forecast engagement score, based on heteroge-
neous features identified from friendship structure, user actions,
and temporal dynamics. Finally, to accurately predict future engage-
ment while also obtaining meaningful explanations, we propose
an end-to-end neural model called FATE (Friendship, Action and
Temporal Explanations). In particular, our model is powered by (a)
a friendship module which uses a tensor-based graph convolutional
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network to capture the influence of network structure and user
interactions, and (b) a tensor-based LSTM [9] to model temporal
dynamics while also capturing exclusive information from differ-
ent user actions. FATE’s tensor-based design not only improves
explainablity aspects by deriving both local (user-level) and global
(App-level) importance vectors for each of the three factors using
attention and Expectation-Maximization, but is also more efficient
compared to classical versions. We show that FATE significantly
outperforms existing methods in both accuracy and runtime on
two large-scale real-world datasets collected from Snapchat, while
also deriving high-quality explanations. To summarize, our contri-
butions are:

e We study the novel problem of explainable user engagement
prediction for social network applications;

o We design a flexible definition for user engagement satisfying
different business scenarios;

e We propose an end-to-end self-explainable neural framework,
FATE, to jointly predict user engagement scores and derive ex-
planations for friendships, user actions, and temporal dynamics
from both local and global perspectives; and

e We evaluate FATE on two real-world datasets from Snapchat,
showing ~10% error reduction and ~20% runtime improvement
against state-of-the-art approaches.

2 RELATED WORK
2.1 User Behaviour Modeling

Various prior studies model user behaviours for social network
Apps. Typical objectives include churn rate prediction, return rate
analysis, intent prediction, etc [2, 3, 13, 14, 17, 20, 21, 38] and anom-
aly detection [18, 29, 30]. Conventional approaches rely on feature-
based models to predict user behaviours. They usually apply learn-
ing methods on handcrafted features. For example, Kapoor et al.[13]
introduces a hazard based prediction model to predict user return
time from the perspective of survival analysis; Lo et al.[21] extract
long-term and short-term signals from user activities to predict
purchase intent; Trouleau et al.[35] introduce a statistical mixture
model for viewer consumption behavior prediction based on video
playback data. Recently, neural models have shown promising re-
sults in many areas such as computer vision and natural language
processing, and have been successfully applied for user modeling
tasks [7, 20, 38]. Yang et al.[38] utilize LSTMs [11] to predict churn
rate based on historical user activities. Liu et al.[20] introduce a
GNN-LSTM model to analyze user engagement, where GNNs are
applied on user action graphs, and an LSTM is used to capture
temporal dynamics. Although these neural methods show superior
performance, their black-box designs hinder interpretability, making
them unable to summarize the reasons for their predictions, even when
their inputs are meaningful user activities features.

2.2 Explainable Machine Learning

Explainable machine learning has gain increasing attention in re-
cent years [8]. We overview recent research on explainable GNN/RNN
models, as they relate to our model design. We group existing solu-
tions into two categories. The first category focuses on post-hoc
interpretation for trained deep neural networks. One kind of model-
agnostic approach learns approximations around the predictions,
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Figure 1: User graphs are temporal, and capture friendship
structure, user actions (node features), and user-user inter-
actions (edge features) over various in-App functions.

such as linear proxy model [27] and decision trees [28, 43]. Re-
cently, Ying et al.[41] introduce a post-hoc explainable graph neu-
ral network to analyze correlations between graph topology, node
attributes and predicted labels by optimizing a compact subgraph
structure indicating important nodes and edges. However, post-
analyzing interpretations are computationally inefficient, making it
difficult to deploy on large systems. Besides, these methods do not help
predictive performance. The second group leverages attention meth-
ods to generate explanations on-the-fly, and gained tremendous
popularity due to their efficiency [6, 9, 25, 31, 37]. For example,
Pope et al.[25] extend explainability methods for convolutional
neural networks (CNNs) to cover GNNs; Guo et al.[9] propose an
interpretable LSTM architecture that distinguishes the contribution
of different input variables to the prediction. Despite these attention
methods successfully provides useful explanations, they are typically
designed for one specific deep learning architecture (e.g., LSTMs or
CNNs). How to provide attentive explanations for hierarchical deep
learning frameworks with heterogeneous input is yet under-explored.

3 PRELIMINARIES

First, we define notations for a general social network App. We
begin with the user as the base unit of an App. Each user represents
a registered individual. We use u to denote a user. We split the
whole time period (e.g., two weeks) into equal-length continuous
time intervals. The length of time intervals can vary from hours to
days. The past T time intervals in chronological order are denoted
as 1,2,---,T. Users are connected by friendship, which is an undi-
rected relationship. Namely, if u is a friend of v, v is also a friend of
u. Note that friendship is time aware, users can add new friends or
remove existing friends at any given time. Users can also use multi-
ple in-App features, like posting a video, chatting with a friend, or
liking a post on Facebook; we call these various user actions. We use
a time-aware feature vector to represent the user action for each
specific user. A typical feature of social network Apps is in-App
communication. By sending and receiving messages, photos, and
videos, users share information and influence each other. We call
these user interactions.

User graph: To jointly model user activities and social network
structures, we define a temporal user graph for every user at time
tas G} = (VH, &8¢, X}, E}). Here V¥ = {u} U N;(u) denotes the
nodes in G}, where N;(u) is a group of users related to u, the set
of edges &} represents friendships, nodal features X}’ characterize
user actions, and features on edges EY describe user interactions.
Note that we split nodal features into K categories, so that each
category of features is aligned with a specific user action, respec-
tively. Thus, both the topological structure and the features of user
graphs are temporal. In particular, for any given node u, its feature
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Figure 2: Overall framework of FATE: tGCN-based friend-
ship modules capture local network structure and user in-
teractions at each timestep, and tLSTM captures temporal
dynamics for distinct user actions. Finally, an attention mix-
ture mechanism governs user engagement prediction.

vector (i.e., a row of X;) is represented by x} = [x

U xY ]
, tK
where xlt‘ € R% is the k-th category of features, and [-] denotes
concatenation alongside the row. There are many ways to define
the graph structure. One example of selecting G is based on ego-
networks, as shown in Figure 1; here, N;(u) is the set of friends of
u, which reduces the size of graph sharply compared to using the
whole social network. Each individual can take different actions in
every time interval to control and use in-App functions.
Defining user engagement: Because of the dynamism of user
activities, social network structure, and the development of the
App itself, the user engagement definition should be specified for
every user and every time interval. Besides, the primary focus of
user engagement varies widely depending on the specific business
scenario. For example, Facebook may utilize login frequency to
measure engagement, while Snapchat may use the number of mes-
sages sent. Thus, user engagement requires a flexible definition
which can meet different needs. To tackle above challenges, we
define user engagement score using the expectation of a metric of
interest in the future, as: e} = E(M(u,7)|r € [t,t+At])), where M
is the metric of interest, and At denotes a future time period. Both
the metric and the time interval can be adjusted by scenario.
Explaining user engagement: We identify three key factors
that highly impact the user engagement, including user action,
temporal dynamics, and friendship. The interpretation is to derive
importance/influence of these three factors for user engagement.
In particular, we aim at interpreting user engagement from both
local (i.e., for individual users) and global (i.e., for the whole group
of people, or even the entire App) perspectives. The local interpre-
tations for individual users are formulated as following vectors:
(1) User action importance A% € Rlio, Zle Az = 1, which as-
signs each user action a score that reflects its contribution to user
engagement. (2) Temporal importance T € R?&K , Zthl =1
for k = 1,---, K, which identifies the importance of user actions
over every time interval for the engagement; (3) Friendship im-
portance F* € RL%N’(") l, YoeN,(u) Ffy = 1fort = 1,---,T,
which characterizes the contributions of friends to user engage-
ment of u over time. For user action and temporal dynamics, we
also derive explanations from a global view since they are shared
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based GCN with neighbor attention to generate user graph
embeddings jointly from ego-networks and interactions.

by all users. Specifically, we formulate (1) global user action impor-

tance A* € Rlz(o’ Zle A = 1and (2) global temporal importance
T € RTXK

>0 > Zthl ?k =1fork =1,---,K. Compared to local ex-
planations which help understand individual user behaviors, global
explanations inform overall App-level user behaviors.

We pose the following problem formalization:

PROBLEM (EXPLAINABLE ENGAGEMENT PREDICTION). Build a frame-
work that (a) for every user u, predicts the engagement score e
with explanations A%, T* and F“ based on the historical user graphs
Gll‘, e ,GI}, and (b) generates global explanations A* and T*.

4 OUR APPROACH: FATE

We next introduce our proposed approach for explainable engage-
ment prediction, FATE. Firstly, FATE leverages specific designed
friendship modules (bottom of Figure 2) to model the non-linear
social network correlations and user interactions from user graphs
of a given user as input. The friendship modules aggregate user
graphs and generate representations for user graphs accordingly.
These graph representations preserve exclusive information for
every time interval and every user action. Next, a temporal module
based on tensor-based LSTM [9] (tLSTM, middle part of Figure 2)
is utilized to capture temporal correlations from graph representa-
tions. Finally, a mixture of attention mechanisms (top of Figure 2) is
deployed to govern the prediction of user engagement based on the
output of tLSTM, while also jointly deriving importance vectors as
explanations. An illustration of the framework is given in Figure 2.
We discuss FATE in detail in the following text.

4.1 Friendship Module

As shown in Figure 3, the goal of the friendship module is to model
the non-linear correlation of social network structure and user in-
teractions in every user graph G¥. Naturally, graph neural networks
(GNNGs) [12, 22, 23, 33] can be applied to capture the dependencies
of users. We choose the popular graph convolutional networks
(GCNs) [16] as our base GNN model. A GCN takes a graph as input,
and encodes each node into an embedding vector. The embedding
for each node is updated using its neighbor information on each

layer of a GCN as:
=0 Z XUW),
veN(v)

where x and X denote input feature and output embedding of the
layer, respectively, W is a feature transformation matrix, and o(-)
denotes a non-linear activation.

However, adopting vanilla GCN in our case is not ideal, because
matrix multiplication in GCN mixes all features together. It is dif-
ficult to distinguish the importance of input features by looking

iu

1)
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Figure 4: Most users communicate frequently only with a
subset (<20%) of their friends, making careful aggregation
important when considering influence from neighbors.

at the output of a GCN layer. To tackle this limitation, we pro-
pose a tensor-based GCN (tGCN), which uses a tensor of learnable
parameters. The updating rule of one tGCN layer is:

=0 Z
veN (o)

where W = {Wy,--- Wk}, Wy € R4’ s 3 set of K parameter
matrices corresponding to each group of features, and x° @ W =
[X{W1, -, xg Wk] € REKXd', x; Wy € R4 maps each category
of features from the input to the output space separately (as illus-
trated by different matrices in the middle part of Figure 3). Note
that each element (e.g. row) of the hidden matrix in a tGCN layer
encapsulates information exclusively from a certain category of the
input, so that the following mixture attention can distinguish the
importance of different user actions and mix exclusive information
to improve prediction accuracy. A tGCN layer can be treated as
multiple parallel vanilla GCN layers, where each layer is corre-
sponding to one category of features that characterizes one user
action. Given a user graph input, We adopt a two-layer tGCN to
encode the friendship dependencies into node embedding:

x’® W), (2)

X=o(Ac(Ax o W) @ W), 3
where A is the symmetric normalized adjacency matrix derived
from the input user graph, X are nodal features, and W are param-
eters. As input features describe user actions, their exclusive infor-
mation is preserved in the output of tGCN as X = [Xy,--- ,Xg] €
REXdX(IN(@)1+1) ' which will be used later for generating engage-
ment predictions and explanations.

The learned node embedding vectors from the tGCN can be
aggregated as a representation for the graph, such as using mean-
pooling to average embedding vectors on all nodes. However, there
is a significant disadvantage to such simple solution: namely, the
closeness of friends is ignored. In reality, most users only have a few
close friends; users with many friends may only frequently engage
with one or few of them. To validate, we compute the friend commu-
nication rate of all Snapchat users from a selected city (obscured for
privacy reasons). Specifically, we compute the percentage of friends
that a user has directly communicated (Chat/Snap) with at least
once in a two-week span. As Figure 4 shows, most users mainly
communicate with a small percentage (10-20%) of their friends, and
don’t frequently contact the remaining ones. Therefore, friendship
activeness is key in precisely modeling the closeness of users. To
this end, we propose a friendship attention mechanism [36] to quan-
tify the importance of each friend. Formally, a normalized attention
score is assigned for each friend v € N (u):

_ exp (¢ (X° @ e?))
Yven(u) exp (¢ (XV @eY))’

©

Ay
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where X is the embedding vector of node v from the tensor-based
GCN, €? is the edge feature on edge between u and v, ® denotes
concatenation, and ¢(-) is a mapping function (e.g., a feed-forward
neural network). Both user actions (preserved by node embedding
vectors) and user interactions are considered by the friendship
attention mechanism. To obtain graph representations, we first
get the averaged embedding from all friend users weighted by the
friendship attention score:

%= Z AR

veEN (u)

©)

Then we concatenate it with the embedding vectors on node u
alongside each feature category to get the graph embedding:

(6)
as shown in the right part of Figure 3. Note that X} &%y is specifically
Kx(2d")

gi=x"ox=[xo%, - X @ %x],

learned from user action k, and g € R preserves exclusive
information for every user action. Given g, - - - g7 from T historical
user graphs, the next step is to capture temporal dynamics using
the temporal module.

4.2 Temporal Module

As user activities and interactions evolve over time, modeling its
temporal dynamics is a key factor of an accurate prediction for user
engagement. Inspired by the success of prior studies for modeling
sequential behavior data [20, 34, 38, 40] with recurrent neural net-
works, we utilize LSTM [11] to capture the evolvement of dynamic
user graphs. Specifically, we adopt tLSTM following Guo et al.[9].
Mathematically, the transformation at each layer of the tLSTM is
as follows:

fr=o(gf ® Up+hiy ® U +by),
il:G(g?®Wi+ht71 ®W}1+bi),
ot:G(gt“®110+h,_1 ®'ug+bo),

ct:ftoct,lﬂt@tanh(gy®wc+ht,1 ®ﬂ§‘+bc),

h; = 0oy ©tanh (¢;), (7)

where © denotes element-wise multiplication, UL, ’ZI,E‘ and b, are
parameters. Similar to tGCN, tLSTM can also be considered as a set
of parallelized LSTMs, where each LSTM is responsible for a specific
feature group corresponding to its user action. Because the input
graph embedding vectors g{, - - -, g to tLSTM are specific to each
feature category (user action), tLSTM can capture the exclusive
temporal dependencies of each user action separately. Similar to
x, we define the hidden states of tLSTM as h; = [hy, -+, h; g]
where h, . is exclusively learned for user action k. We further use
the hidden states to generate the engagement scores.

4.3 User Engagement Score Generation

As aforementioned, user action, temporal dynamics, and friendship
are key factors to characterize and predict user engagement. We in-
troduce three latent variables as z4, z, z to represent different user
actions (feature category), time intervals, and friends, respectively
so that we can distinguish the influence of specific actions, time
intervals, and friends. For example, different friends may contribute
unequally to user engagement; and certain in-App functions could
have higher contributions. Introducing latent variables also bridges
the gap between learning explanations and predicting engagement.
The desired explanations are importance vectors that constrain the
posteriors of latent variables, and further govern the generating
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of user engagement scores (introduced in Section 4.4). Specifically,
FATE generates user engagement predictions as follows:

K T IN@WI
plerl{G) =>'>" > plerza=kz =t,21 = 0|{G.})
k=11t=1 o=1
NG|

P(eleA =kzy =tz =0;%°)

node embedding
p (Z] = UlZ] =t,zp4 = k,Gt) p (ZJ =tlza =k, {h*k})

friendship attention

P (za = k|{h.}),

[ —

temporal attention

®)

user action attention

where {h.} denotes {h; ...hr}, and {h, s} denotes {hy ...

h7 ;. }. The joint probability distribution is further estimated us-
ing the conditional probability of latent variables zj, zj, z4, which
characterize how user engagement scores are affected by the friend-
ship, temporal dynamics, and user actions accordingly. We keep
designing FATE in accordance with the generation process in Eqn.
8. In particular, node embeddings are first computed exclusively for
every friend, time interval, and user action with proposed tGCN.
Next, friendship attention p(z; = v|z 7 =tza=k, Gy) is estimated
using Eqn. 4. The summation over v in Eqn. 8 is derived by graph
representations from friendship modules. Then tLSTM encapsu-
lates temporal dynamics of graph representation. The conditional
probability of z; is given as a temporal attention over {h, }:

exp (¢k (hrk))
Sr-rexp (ok (hek))
where ¢ (+) is a neural network function specified for user action

type k. Using temporal attention, each user action is represented
by its exclusive summarization over all past time intervals as

Bk =p(zy=tlza =k {h.r}) = ©

T

a = Z Brihek (10)
=1

Finally, we approximate p(z4 = k|{h.}) as the user action attention

with another softmax function:

X] h
p(ea = kifh)) = o2 Bk O b))

x=1 &P (¢ (ax ® hr))
where ¢(+) is parameterized by a neural network.

To approximate the summation over all time intervals (¢
1,---,T)in Eqn. 8, we use Gaussian distributions to estimate the
contribution of every user action to user engagement. Specifically,
we use N (pi, sdi) = Ui (ag © hy i) to parameterize the Gaussian
distribution for user action k. Here ¢4 (-) is also a neural network.
By integrating over all user actions, the user engagement score is
derived as:

. (11)

K
pler) = )N (e, sdi) - p (za = kl{h.}). (12)

k=1

4.4 Explainable User Engagement

To interpret the predicted user engagement, FATE learns the impor-
tance vectors as explanations. Similar to many previous studies (e.g.,
[6,9, 26, 37]), the local explanations for individual users are directly
derived from proposed mixture attentions. Specifically, the friend-
ship attention, temporal attention and user action attention are
acquired as importance vectors for friendship, temporal and user
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action, respectively. Because the computation of these attention
scores are included by FATE, it takes no extra cost to derive local
explanations. Local explanations reflect specific characteristics and
preferences for individual users, which can change dynamically for
certain users.

However, local explanations could only help us understand user
engagement from individual level. Taking user action as an example,
the distribution of its importance vector could vary a lot among
different users (see experiments in Section 5.5.1 as an example).
Because some functions of the App cannot be personalized for
every user, it is necessary to interpret their contributions from
a global view. For example, when distributing a new feature in
an A/B test, it is more reasonable to understand the impact of
the feature globally. Under such circumstances, we formulate the
global interpretation of user engagement as a learning problem,
where the global importance vectors are jointly learned with the
model. Taking the global importance vector for user action A* as
an example, we adopt the Expectation-Maximization (EM) method
to learn A* jointly with the optimization of model parameters 6:

LO.AY) == ) E [log p (€} |24:{G¥)]
ueS 9a

- B [logp (z41{hi'})] - E [log p (z41A7)].  (13)
qA qa

where the summation ) is applied over all training samples S, and

q; denotes the posterior distribution for z4":

qx =p (Z41{G ) e7. 0) < p (e124. {GX'}) - p (41{G:})

~p (eflzh aff @Dl ) - p (41 {BYY). (14)

The last term in Eqn. 13 serves as a regularization term over the
posterior of 2%} . Note that the posterior of z!§ governs the user action
attention. Consequently, the regularization term encourages the
action importance vectors of individual users to follow the global
pattern parameterized by A*. Moreover, we can derive the following

closed-form solution of A* as:

1
A*:i u’
S| ;ﬁ*

(15)

which takes both user action attention and the prediction of user
engagement into consideration. The learning of user action impor-
tance relies on the estimation of posterior g% . During training stage,
network parameters ¢ and the posterior g% are estimated alterna-
tively. Namely, we first freeze all parameters 0 to evaluate g4 over
the batch of samples, then use the updated gy with gradient descent
to update 6 by minimizing 13. Similarly for the global temporal
importance, we derive the following closed-form solution:

. 1
The= T3] > Bk

ueS

(16)

4.5 Complexity Analysis

The proposed tGCN and adopted tLSTM [9] are more efficient than
their vanilla versions. Specifically, we have:

THEOREM 4.1. Letd;y and doy; denote input and output dimensions
of a layer. The tensor-based designs for GCN and LSTM reduce network
complexity by (1 — 1/K)din - doyr and 4(1 — 1/K)(din + dout)dout
trainable parameters, and reduce the computational complexity by
O (din - dout) and O ((din + dout) dout), respectively.

Proor. We provide the proof in Appendix A.1.



Applied Data Science Track Paper

As a result, the proposed designs accelerate the training and
inference of FATE, and produce a more compact model. Appendix
A.2 shows that FATE’s tensor-based design reduces training and
inference time by ~20% compared to using the vanilla version
(GCN/LSTM).

5 EVALUATION
In this section, we aim to answer the following research questions:

e RQ1: Can FATE outperform state-of-the-art alternatives in the
user engagement prediction task?

e RQ2: How does each part/module in FATE affect performance?

e RQ3: Can FATE derive meaningful explanations for friendships,
user actions, and temporal dynamics?

e RQ4: Can FATE flexibly model different engagement metrics?

5.1 Datasets and Experiment Setup

We obtain two large-scale datasets from Snapchat. Each dataset
is constructed from all users that live in a different city (on two
different continents), we filter out inactive/already churned users.
We follow previous studies on Snapchat [20] and collect 13 repre-
sentative features for user actions on Snapchat, normalizing to zero
mean and unit variance independently before training. Table 5 in
Appendix provides explains each feature. We consider 1-day time
intervals over 6 weeks. We use the 3 weeks for training, and the
rest for testing. We use 2 weeks of user graphs as input to predict
engagement in the following week (i.e., At = 7d).

To show that FATE is general for multiple prediction scenarios,
we evaluate on two notions of user engagement. The first metric
considers user session time in hours (winsorized to remove extreme
outliers). The second metric considers snap related activities, which
are core functions of Snapchat. We aggregate and average four
normalized snap related features, including send, view, create and
save, as the measurement for user engagement. The prediction of
user engagement scores based on two different metrics is denoted
by Task 1 and Task 2, respectively. We choose root mean square
error (RMSE), mean absolute percentage error (MAPE), and mean
absolute error (MAE) as our evaluation metrics. We run all exper-
iments 10 times and report the averaged results. Other technical
details are discussed in Appendix B. Our code is publicly available
on Github!.

5.2 Compared Methods

To validate the accuracy of user engagement prediction, we compare
FATE with the following state-of-the-art methods:

e Linear Regression (LR): we utilize the averaged feature vectors
of each node in G; as a representation for time interval ¢, and
concatenate the vectors over all past time intervals as the input.

e XGBoost (XGB) [4]: We adopt the same prepossessing steps of
LR as input for XGBoost.

e MLP [10]: We experiment on a two-layer MLP with the same
input features to LR and XGBoost.

e LSTM [11]: LSTM is a popular RNN model for various sequential
prediction tasks. We implement a two-layer LSTM which iterates
over historical user action features. The final output is fed into a
fully-connected layer to generate prediction.

!https://github.com/tangxianfeng/FATE
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Table 1: FATE consistently outperforms alternative models
in prediction error metrics on both Task 1 and Task 2, and
both datasets Region 1 and Region 2.

Region 1 Region 2
RMSE MAPE MAE RMSE MAPE MAE

LR .188+.001 .443+.001 .153+.000 .183+.000 .375+.001 .151+.000
XGB  .141+.000 .260+.000 .101+.000 .140+.000 .224+.001 .098+.000

— MLP .139+.003 .233+.007 .094+.004 .125+.005 .238+.011 .095+.004
% GCN .131+.012 .228+.019 .094+.007 .128+.008 .242+.010 .101+.003
|‘—“ LSTM .121+.005 .221+.003 .093+.003 .122+.002 .213+.005 .095+.004
TGLSTM .114+.002 .215+.005 .088+.000 .122+.005 .201+.004 .093+.002

FATE .109+.003.204+.001.081+.001.118+.002.196+.003.088+.000

LR .201£.000 .674+.001 .160+.000 .190+.000 .553+.000 .151+.000
XGB  .100+.000 .347+.000 .078+.001 .134£.000 .337+.000 .089+.001

~ MLP  .088+.003 .288+.006 .066+.003 .101+.002 .261+.005 .075+.000
% GCN  .094+.006 .294+.008 .069+.004 .100+.002 .257+.013 .072+.003
£ LSTM  .080+.002 .249+.005 .059+.002 .097+.002 .235+.003 .070+.002
TGLSTM .079+.001 .241+.006 .058+.000 .095+.001 .239+.003 .070+.001

FATE .072+.001.213+.003.053+.000.093+.000.224+.002.066+.000

GCN [16]: We combine all historical dynamic friendship graphs
into a single graph. For each user, we concatenate action features
over the observed time period into a new nodal feature vector.

Temporal GCN-LSTM (TGLSTM) [20]: TGLSTM is designed to
predict future engagement of users, and can be treated as current
state-of-the-art baseline. TGLSTM first applies GCN on action
graph at each time interval, then leverage LSTM to capture tem-
poral dynamics. We adopt the same design following Liu et al.[20]
and train TGLSTM on our data to predict the engagement score.

To measure the explainability of FATE, we compare with the fea-
ture importance of XGB, and LSTM with temporal attention. After
the boosted trees of XGB are constructed, the importance scores
for input features are retrieved and reshaped as an explanation for
temporal importance. For LSTM, we compute attention scores over
all hidden states as an explanation for time intervals.

5.3 User Engagement Prediction Performance

To answer the first research question, we report user engagement
prediction accuracy of above methods in Table 1. As we can see,
FATE achieves best performance in both tasks. As expected, FATE
significantly out-performs two feature-based methods LR and XGB
since it captures friendship relation and temporal dynamics. Deep-
learning based methods MLP, GCN, and LSTM achieves similar per-
formance. However, FATE surpasses them with tremendous error
reduction. Moreover, FATE outperforms state-of-the-art approach
TGLSTM, by at most 10%. There are two potential reasons. First,
FATE additionally captures friendship relation by explicitly mod-
eling user-user interaction. Secondly, tGCN and tLSTM maintain
independent parameters to capture exclusive information for every
user actions, which enhances the predicting accuracy.

5.4 Ablation Study

To answer the second question, we design four variations of FATE
as follow: (1) FATE;s: We first evaluate the contribution of tensor-
based design. To this end, we employ the original GCN [16] and
LSTM [11] to create the first ablation FATE;s. We use the last output
from LSTM to predict user engagement score. (2) FATE 7,5: We then
study the effectiveness of the friendship module. We apply tLSTM
on raw features to create FATE fy,4. (3) FATE;mp: Next we study the
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Table 2: All components help FATE: Removing (a)
tGCN/tLSTM, (b) friendship module, (¢) temporal mod-
ule or (d) user interactions hurts performance.

Region 1 Region 2
RMSE MAPE MAE RMSE MAPE MAE

FATE;s; .112+.002 .213+.004 .085+.001 .120+.000 .199+.001 .093+.000
~ FATE fq .119£.002 .218+.002 .089+.002 .121+.000 .199+.001 .090+.001
% FATE;pp .126+.001 .221+£.003 .097+.002 .123+.002 .220.002 .097+.000
< FATE;;,; .112+.001 .208+.001 .086+.002 .119+.002 .198+.002 .091+.000

FATE .109+.003.204+.001.081+.001.118+.002.196+.003.088+.000

FATE;s .078+.001 .233+.004 .057+.002 .095+.001 .238+.003 .070+.002
« FATE 4 .076+.003 .228+.002 .057+.002 .094+.002 .231+.001 .068+.000
“FATEemp .083+.004 .240+.005 .061+.002 .102+.003 .253+.003 .071+.001
£ FATE;,; .075+.000 .219+.001 .055.000 .094:+.001 .227+.002 .068+.002
FATE .072+.001.213+.003.053+.000.093+.000.224+.002.066+.000

Task 1 Task 2
snap send { Y Yoot
snap view {E— ——

snap create | E—C —
snap save | E— T

chat send | E—o e
chat view | E— —G 074
story post | E— 057 — 074
story view | — s — 074
story view time | E— s — 07
fnd. disc. view | E— s — 07
pub. disc. view | E—— e — 075
disc. view time | E— — 7 . Region 1

0166 ooss M Region 2

sess. time 0,164
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Action importance score

Figure 5: FATE’s global user action importances derived on
Task 1 and Task 2 correctly infer past session time and snap-

related actions as the most important for prediction.

contribution from the temporal module. FATE;p,, first concatenate
outputs from all friendship modules, then apply a fully-connected
layer to generate user engagement score. (4) FATE;p;: To analyze
the contribution of explicitly modeling user interactions, we remove
this part to create the last ablation FATE;;;. The performance of all
variations are reported in Table 2. FATE;s performs worse when
compared to FATE because it fails to extract exclusive information
from each user action. However, it still outperforms TGLSTM, since
user interactions enhance the modeling of friendship relation. The
comparisons among FATE ¢4, FATE;p and FATE indicate the ef-
fectiveness of modeling friendship and temporal dependency for
predicting user engagement. The comparison between FATE;;; and
FATE highlights the contribution of user interactions, which help
FATE filter inactive friends and pinpoint influential users.

5.5 Explainability Evaluation

To answer the third research question, we first analyze the ex-
planations derived from FATE. Then we compare the results with
explanations from baseline methods.

5.5.1 User Action Importance. We first study the global user action
importance A*. Figure 5 illustrates the importance score of different
user actions, where a larger value indicates higher importance for
user engagement.

Since the objective of Task 11is to predict a session time-based
engagement score, the importance of historical app usage length is
significantly higher. This indicates that historical session time is
the key factor for user engagement (defined by the expectation of
session time in the future), as user activities usually follow strong
temporal periodicity. Remaining user actions play similar roles in
extending session time, which is intuitive, because on the entire
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Figure 6: Two sample local user action importances: Users
with different dominating engagement behaviors exhibit
different user action importances.

App level, all the represented in-App functions are heavily con-
sumed. However, we see that Snap-related actions are relatively
more important than others. A potential reason is that sending and
receiving Snaps (images/videos) are core functions which distin-
guish Snapchat from other Apps and define product value.

For predicting user engagement defined on normalized Snap-
related actions in Task 2, we see that SnapSend, SnapView,
and SnapCreate play the most important role. SnapSend con-
tributes more to user engagement comparing with Snapview, as
sending is an active generation activity while viewing is passively
receiving information. Similarly, SnapCreate is more important
than SnapSave, for the reason that creating a Snap is the founda-
tion of many content generation activities, whereas Snap-saving is
infrequent. Besides Snap-related actions, Chat Send is the most
important, which makes sense given that private Chat messaging is
the next most common usecase after Snaps on Snapchat, and users
often respond to Snaps with Chats and vice-versa.

Next, we analyze user action importance for individual users.
We take Task 2 as an example, and select two random users from
Region 1. To help understand user preference and characteristics,
we query an internal labeling service that categorizes users accord-
ing to their preferences for different Snapchat features. The service,
built on domain knowledge, is as independent from FATE. Generally,
a “Snap-er” uses Snap-related functions more frequently, while a
“Story/Discover Viewer” is more active on watching friend/publisher
Story content on Snapchat. As illustrated in Figure 6, the impor-
tance scores of Snap-related user actions of a Snap-er are signif-
icantly higher than that of remained user actions. However, for
Story/Discover Viewers, other actions (StoryView, Public—
DiscoverView) contribute more. This shows the diversity of
action importance for individual users, as the distribution of impor-
tance scores changes according to user characteristics.

5.5.2  Temporal Importance. Figure 7 displays the overall temporal
importance of user actions across time (i.e., past 14 days). Darker
hue indicates higher importance to user engagement. For Task 1,
SessionTime has strong short-term importance in both cities.
Temporally close SessionTime (later days) data contributes to
user engagement more. On the contrary, other user actions show
long-term importance. For example, SnapView and ChatView
show relatively higher importance on the first day. In addition to
long/short-term characteristics, we see the importance of most user
actions showing strong periodicity in a weekly manner. Similar
conclusions can also be drawn from Task 2, where SnapView,
SnapCreate, and SnapSave show longer-term correlation to
user engagement. SnapSend on the other hand demonstrates a
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Figure 7: FATE’s global temporal importances show long and

short-term action importances over time.
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Figure 8: FATE can capture diverse local level temporal im-
portance for users of different persona.

short-term correlation. The periodicity of temporal importance is
also relatively weaker compared to Task 1.

We then study the temporal importance for individual users.
Similar to action importance, we randomly select two users from
Region 1, and plot temporal importance scores when predicting user
engagement score in Task 1. As shown in Figure 8, users with differ-
ent dominant behaviors exhibit different temporal importance score
distributions. The temporal importance scores of Publisher-
DiscoverViewandDiscoverViewTime are relatively higher
for the Story/Discover Watcher, with clear periodicity effects (im-
portance in day 1-2, and then in 7-8, and again in 13-14, which are
likely weekends when the user has more time to watch content).
The Chatter has higher score for Chat-related features, with more
weight on recent ChatViews (days 12-14). Our results suggest that
explanations learned by FATE coincide with past understanding of
temporal influence in these behaviors.

5.5.3  Friendship Importance. We next validate the learned (local)
friendship importance. Figure 9 demonstrates two example users
selected from Region 1, for Task 1. The heatmaps illustrate the
importance scores of their friends. Clearly, friendship importance
scores are not uniformly distributed among all friends. Some friends
hold higher importance scores to the selected user, while others
have relatively lower scores. This is potentially due to low similarity
in user activities, or two friends being independently active (but
not jointly interactive). To verify this assumption and interpret
friendship importance scores, we compare user activeness (session
time) of the selected user with their most important friends and
their least importance friends (measured by the sum of scores over
14 days). As Figure 9 shows, the both users follow a pattern similar
to their most important friends and unlike the least important

2276

KDD '20, August 23-27, 2020, Virtual Event, USA

ones. Moreover, temporal importance (darker hue) of the highest-
importance friend coincides in the temporal heatmaps (left) and
the session time activity plots (right) for both users in (a) and (b).

5.5.4 Baseline comparisons on explainability. Feature importance
from XGBoost can be used as a temporal importance explanation.
As in Figure 10, results from XGBoost are very sparse, where most
user actions receive an unnatural, near-0 importance score, likely
because feature importance is only a byproduct of the training of
XGBoost. Unlike FATE, the XGBoost objective is purely defined
on prediction accuracy, failing to learn explanations for user ac-
tions over time. Figure 10 shows the temporal attention from LSTM.
There are two weakness of using LSTM for explanation: (1) it is
unable to capture the importance of each user action; (2) compared
to FATE, the temporal attention fails to capture periodicity of user
actions, which naive LSTM mixes and cannot separate. Compara-
tively, FATE derives richer and more fine-grained explanations.

5.6 Practical Applications

Our framework is designed with practical applications in mind.
State-of-the-art in engagement prediction improves temporally-
aware estimation of overall demand and key metrics, which offers
flexible use in many forecasting and expectation-setting applica-
tions. Explainability in the model helps quantify both global and
local factors in user engagement, and how they motivate users to
engage with the platform. Moreover, it paves roads for personalized
interventions and nudges to users to realize in-App value, stay in
touch with their best friends and retain. Finally, our choices around
tensor-based modeling improve efficiency by reducing parameters
and decreasing training time. Yet, GNN training/inference is still
a challenge for multi-million/billion-scale workloads, especially
considering dynamism of the underlying data, temporality of pre-
dictions, and frequent model updation needs in practice, though
new work in GNN scalability offers some promising inroads [5, 42].
In the future, we plan to develop automated and recurrent training
and inference workflows which can handle these issues to grace-
fully scale FATE to production workloads larger than those we
experimented on.

6 CONCLUSION

In this paper, we explore the problem of explainable user engage-
ment prediction for social network Apps. Given different notions of
user engagement, we define it generally as the future expectation of
a metric of interest. We then propose an end-to-end neural frame-
work, FATE, which models friendship, user actions and temporal
dynamics, to generate accurate predictions while jointly deriving
local and global explanations for these key factors. Extensive exper-
iments on two datasets and two engagement prediction tasks from
Snapchat demonstrate the efficiency, generality and accuracy of our
approach: FATE improves accuracy compared to state-of-the-art
methods by ~10% while reducing runtime by ~20% owing to its
use of proposed tensor-based GCN and LSTM components. We
hope to continue to improve scaling aspects of FATE to deploy it
for recurrent auto-training and inference at Snapchat. While FATE
is designed with Snapchat in mind, our core ideas of engagement
definition, contributing factors, and technical contribution in neural
architecture design offer clear applications to other social Apps and
online platforms.
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Figure 9: FATE’s local friendship importance captures asymmetric influence of friends: the user has similar session time be-
haviors (right) as their highest-importance friends (blue and orange lines are close); session time spikes coincide with high
temporal importances (left) of those friends (dark hues).

Region 1 Region 2

snap send 0.12 Task 1 ’
snap view _ 150] ~® Region1 !
snap create s ~@- Region2 !
snap save < H
chat send 0.09 g 125 ,‘,’
chat view . l
story post 2 )
story view g °
story view time ~006 § 075 o ,}
fnd. disc. view g N
g 050 &
pub. disc. view E 0.4‘..::‘[./
disc. view time 025 e ey
sess. time m m oo
- © o ¥ - o = 1 5 10 14
Day ID Day ID
(a) XGBoost (b) LSTM

Figure 10: Comparisons of explainability.

ACKNOWLEDGEMENT

This material is based upon work supported by, or in part by, the
National Science Foundation (NSF) under grant #1909702. Any
opinions, findings, and conclusions in this material are those of the
authors and do not reflect the views of the NSF.

REFERENCES

(1]
(2]

[10]

[11]

[12]

[13]
[14]

[15

[16]

[17]

[18]

Tim Althoff and Jure Leskovec. 2015. Donor retention in online crowdfunding
communities: A case study of donorschoose. org. In WWW. 34-44.

Wai-Ho Au, Keith CC Chan, and Xin Yao. 2003. A novel evolutionary data mining
algorithm with applications to churn prediction. TEC 7, 6 (2003), 532-545.
Austin R Benson, Ravi Kumar, and Andrew Tomkins. 2016. Modeling user
consumption sequences. In WWW. 519-529.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In KDD. ACM, 785-794.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gen: An efficient algorithm for training deep and large graph
convolutional networks. In KDD.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. 2018. Fine-grained attention
mechanism for neural machine translation. Neurocomputing 284 (2018), 171-176.
Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems.
In WWw.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining explanations: An overview of interpretability of
machine learning. In DSAA. IEEE, 80-89.

Tian Guo, Tao Lin, and Nino Antulov-Fantulin. 2019. Exploring Interpretable
LSTM Neural Networks over Multi-Variable Data. arXiv preprint 1905.12034
(2019).

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Springer Science &
Business Media.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph Structure Learning for Robust Graph Neural Networks. arXiv
preprint arXiv:2005.10203 (2020).

Komal Kapoor, Mingxuan Sun, Jaideep Srivastava, and Tao Ye. 2014. A hazard
based approach to user return time prediction. In KDD. ACM, 1719-1728.

Jaya Kawale, Aditya Pal, and Jaideep Srivastava. 2009. Churn prediction in
MMORPGs: A social influence based approach. In ICCSE, Vol. 4. IEEE, 423-428.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Rohan Kumar, Mohit Kumar, Neil Shah, and Christos Faloutsos. 2018. Did We Get
It Right? Predicting Query Performance in E-commerce Search. arXiv preprint
arXiv:1808.00239 (2018).

Hemank Lamba and Neil Shah. 2019. Modeling Dwell Time Engagement on
Visual Multimedia. In KDD. 1104-1113.

Zhiyuan Lin, Tim Althoff, and Jure Leskovec. 2018. T'll Be Back: On the Multiple
Lives of Users of a Mobile Activity Tracking Application. In WWW. 1501-1511.
Yozen Liu, Xiaolin Shi, Lucas Pierce, and Xiang Ren. 2019. Characterizing
and Forecasting User Engagement with In-app Action Graph: A Case Study
of Snapchat. In KDD.

Caroline Lo, Dan Frankowski, and Jure Leskovec. 2016. Understanding behaviors
that lead to purchasing: A case study of pinterest. In KDD. ACM, 531-540.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-
lutional networks with eigenpooling. In KDD.

Yao Ma, Suhang Wang, Chara C Aggarwal, Dawei Yin, and Jiliang Tang. 2019.
Multi-dimensional graph convolutional networks. In SDM.

Panagiotis Papapetrou and George Roussos. 2014. Social context discovery from
temporal app use patterns. In Ubicomp. 397-402.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko
Hoffmann. 2019. Explainability Methods for Graph Convolutional Neural Net-
works. In CVPR. 10772-10781.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison
Cottrell. 2017. A dual-stage attention-based recurrent neural network for time
series prediction. arXiv preprint arXiv:1704.02971 (2017).

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i
trust you?: Explaining the predictions of any classifier. In KDD. ACM, 1135-1144.
Gregor PJ Schmitz, Chris Aldrich, and Francois S Gouws. 1999. ANN-DT: an
algorithm for extraction of decision trees from artificial neural networks. TNN
10, 6 (1999), 1392-1401.

Neil Shah. 2017. Flock: Combating astroturfing on livestreaming platforms. In
WWW. 1083-1091.

Neil Shah, Hemank Lamba, Alex Beutel, and Christos Faloutsos. 2017. The many
faces of link fraud. In ICDM. IEEE, 1069-1074.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. 2019. defend:
Explainable fake news detection. In KDD.

Mani R Subramani and Balaji Rajagopalan. 2003. Knowledge-sharing and influ-
ence in online social networks via viral marketing. CACM (2003).

Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring Robustness for Graph Neural Network Against Poison-
ing Attacks. In WSDM.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and
Suhang Wang. 2020. Joint Modeling of Local and Global Temporal Dynamics for
Multivariate Time Series Forecasting with Missing Values. (2020).

William Trouleau, Azin Ashkan, Weicong Ding, and Brian Eriksson. 2016. Just
one more: Modeling binge watching behavior. In KDD. ACM, 1215-1224.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS. 5998-6008.

Yanbo Xu, Siddharth Biswal, Shriprasad R Deshpande, Kevin O Maher, and Jimeng
Sun. 2018. Raim: Recurrent attentive and intensive model of multimodal patient
monitoring data. In KDD. ACM, 2565-2573.

Carl Yang, Xiaolin Shi, Luo Jie, and Jiawei Han. 2018. I Know You'll Be Back:
Interpretable New User Clustering and Churn Prediction on a Mobile Social
Application. In KDD. ACM, 914-922.

Jiang Yang, Xiao Wei, Mark S Ackerman, and Lada A Adamic. 2010. Activity
lifespan: An analysis of user survival patterns in online knowledge sharing
communities. In ICWSM.

Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019.
Revisiting spatial-temporal similarity: A deep learning framework for traffic
prediction. In AAAL

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks. In
NeurlIPS.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. 974-983.

[43] JanRuben Zilke, Eneldo Loza Mencia, and Frederik Janssen. 2016. DeepRED-Rule

extraction from deep neural networks. In ICDS. Springer, 457-473.



Applied Data Science Track Paper

A COMPLEXITY OF FATE
A.1 Theoretical Analysis

In this section, we analyze the complexity of FATE. In particular, we
focus on the complexity reduction from the tensor-based designs of
GCN and LSTM over the standard ones. Without loss of generality,
we use diy and doy; to denote the dimensions of input and output of
a neural network layer (e.g., GCN, LSTM, etc.). We use the number
of learnable parameters (neurons in the network) to measure the
network complexity as follows:

THEOREM A.1. By replacing the standard GCN and LSTM layers
with corresponding tensor-based versions, the network complexity is
reduced by (1~ 4 )din - dour and 4(1 = ) (din + dous) dour number of
trainable parameters, respectively.

ProoF. The number of trainable parameters for the GCN layer
is dip, - dout (see Eqn. 1), and that for the tensor-based GCN layer is
dlﬂ do

out

K- (% . dK ut (see Eqn. 2, assume they are equally divided
into each category of user action features). Therefore, tensor-based
GCN reduces network complexity by (1— %)dm - dout number of pa-
rameters. Similarly, the standard LSTM layer has 4(djy, - dout +dOut +
dout) trainable parameters (corresponding to the input transition,
hidden state transition, and the bias); while the tensor-based LSTM
dindout du

layer only maintains 4( =22 4 —2ut d““‘ + dout) number of parameters
(for U, 71* and b, in Eqn. 7). As a result, the total number of
parameters is reduced by 4(1 — %)(dm + dout)dout when adopting

the tensor-based LSTM over the standard one. O

The computational complexity comes from multiplications. The
reduction of computational complexity is analyzed through Theo-
rem A.2:

THEOREM A.2. The tensor-based GCN and the tensor-based LSTM
reduce the computational complexity by O(dip, - dout) and O ((din +
dout)dout), respectively.

Proor. Let N denote the number of nodes in the ego-network.
Using Eqn. 1 and 2, the computational complexity of a GCN layer
and a tensor-based GCN layer are N? - diy + N - diy - dout and
NZ. d‘“ . , respectively.
The reduction isthen N (1 ® )dln dout = (dm dout). For an LSTM
layer (Eqn. 7), it takes 4(dy, - dout + dgut) + 3doyt multiplications
to update its hidden and gate while the tensor-based LSTM layer
takes only 4( i(‘“ . dout K+ 2. K) +3doyt = 4( oot din: d‘““ + ot °‘“ ) +3dout
multiplications. Thus the reductlon of computatlonal complex1ty
by the tensor-based LSTM is O ((diy + dout)dout)- O

m dout

Note that for FATE, it adopts multiple friendship modules with
the tensor-based LSTM. Therefore, FATE is significantly benefited
from the tensor-based design, reducing both network size and com-
putational complexity sharply. However, the overall improvement
over complexity does not exactly aligned with these tensor-based
designs, due to costs from extra components in FATE such as the
computation of attention scores. Therefore, we also analyze the
real-world running time of FATE quantitatively in the following
experiment section.
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A.2 Experimental Results

We study the runtime complexity of FATE. We compare the run-
time of FATE;s and FATE, to demonstrate the improvement by us-
ing tensor-based designs for FATE over a non tensor-based model
FATE;s Both training and testing (inference) run times are reported
in 3. We can see that training FATE takes significantly less time
then FATE; by an average of 20%. In addition, inference speed of
FATE is also faster. Therefore, it is beneficial to adopt tensor-based
designs when constructing the framework. Note that our imple-
mentation uses PyTorch Geometric? as the underlying message
passing framework.

Table 3: Comparisons of Runtime (min). FATE reduced 20%
of runtime on average comparing with non-tensor-based
FATE ;.

Region 1 Region 2
Train Test Train  Test
Task 1 FATE;s 216.96 148.20  132.25  90.42
FATE 181.35 119.40 117.70 73.43
Task 2 FATE;; 207.23 151.48 137.50  89.61
FATE 172.00 115.10 110.92 69.05

B IMPLEMENTATION DETAILS

B.1 Experimental Environment

Our experiments are conducted on a single machine on Google
Cloud Platform3, with a 16-core CPU, 60GB memory and 2 Nvidia
P100 GPUs.

B.2 Data Preprocessing

We select two geographic regions, one from North America and
the other from Europe, to compile two datasets. We set the time
period from 09/16/2019 to 10/27/2019, with a one-day time interval
length. There are totally 42 days in the time period (6 weeks). For
each dataset, we first query all users whose locations are within
the corresponding region. Users who spend less than one minute
(session time) on a daily average are treated as extremely inactive
and filtered. We then obtain the friendship of these users as our
social network and historical user action records in each day. De-
tailed features and descriptions for user actions are reported in
Table 5. Besides, we also acquire user-user commutation as features
for user interaction, including chat, snap, and story. These features
are constructed from the aggregation of each type of interaction.
Table 4 details both datasets.

2https://github.com/rusty1s/pytorch_geometric
Shttps://cloud.google.com

Table 4: Statistics of Datasets.

Region 1 Region 2

Time period 09/16/2019 - 10/27/2019

Avg. # users 153006 108452
Avg. node degree  51.58 36.95
# node features 13

# edge features
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Table 5: Selected features for user actions on Snapchat.

In-App function Feature name

Description

SnapSend # of snaps sent to friends.
Sna SnapView # of snaps viewed from friends.
P SnapCreate # of snaps created by the user.
SnapSave # of snaps saved to the memory/smartphone.
Chat ChatSend # of text messages sent to friends.
ChatView # of received text messages.
StoryPost # of videos posted to the user’s page
Story StoryView # of watched story videos posted by others.
StoryViewTime Total time spent for watching stories.
FriendDiscoverView # of watched videos posted by friends on Discover page
Discover PublisherDiscoverView # of watched videos posted by publisher on Discover page
DiscoverViewTime Total time spent for watching videos on Discover page.
Misc. SessionTime Total time spent on Snapchat.

B.3 Model Implementations

We implement all compared baseline methods in Python 3.7. Linear
Regression is adopted from scikit-learn*. We use XGBoost[4] from

the official package® with its recommended setting and parameters.

We implement the GCN model with PyTorch Geometric. We set
up a two layer GCN, with the hidden size of 128, using ELU as
the activation function. Similarly, we build the LSTM model as
a two-layer LSTM using PyTorch®. The hidden size is 128. We
set the dropout rate to 0.5 for the second layer. ELU is used as
the activation. We following the original settings for TGLSTM as
introduced in the paper [20]. We implement FATE with PyTorch and

PyTorch Geometric. Friendship modules contain two-layer tGCN.

The dimension of output embedding for all feature categories is set
to 32. The design of tLSTM is inspired by IMV-LSTM’. We use two
layers of tLSTM for FATE. Our code is available on Github?.

For LR and Xgboost, we train until convergence. For neural
network models, we set the batch size to 256 and the max number
of epoch to 10. All models are optimized by Adam algorithm [15],
with a learning rate of 0.001. They are trained until reaching the
max epoch or early-stopped on the validation set. The validation

1
RMSE = [ > (e% = é)?
Visi g

1 le* —é¥|
MAPE = — _—
S| 2, et
ueS
1
MAE = — » [e"—¢Y|, 17)
S| 1;9
where é" denotes the ground truth of predicted user engagement

score e¥.

While RMSE and MAE receive higher penalties from larger val-
ues, MAPE focuses on the prediction error of samples with smaller
engagement scores. Therefore, combining these metrics leads to
more comprehensive conclusions.

set contains 10% samples randomly selected from the training set.
All methods are trained and tested 10 times to get averaged results.

B.4 Evaluation Metrics

Three common metrics Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE)
are used to evaluate the performance of all methods.The detailed
definitions of these metrics are stated as below:

https://scikit-learn.org
Shttps://xgboost.readthedocs.io/
Chttps://pytorch.org/
https://github.com/KurochkinAlexey/IMV_LSTM
8https://github.com/tangxianfeng/FATE
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