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SUMMARY

Genome sequences are known for two archaic
hominins—Neanderthals and Denisovans—which
interbred with anatomically modern humans as
they dispersed out of Africa. We identified high-con-
fidence archaic haplotypes in 161 new genomes
spanning 14 island groups in Island Southeast
Asia and New Guinea and found large stretches of
DNA that are inconsistent with a single introgressing
Denisovan origin. Instead, modern Papuans carry
hundreds of gene variants from two deeply diver-
gent Denisovan lineages that separated over 350
thousand years ago. Spatial and temporal structure
among these lineages suggest that introgression
from one of these Denisovan groups predominantly
took place east of the Wallace line and continued
until near the end of the Pleistocene. A third Deni-
sovan lineage occurs in modern East Asians. This
regional mosaic suggests considerable complexity
in archaic contact, with modern humans inter-
breeding with multiple Denisovan groups that were
geographically isolated from each other over deep
evolutionary time.

INTRODUCTION

Contact between modern humans and archaic hominins in the

distant past has left a distinctive genetic signature in all human
1010 Cell 177, 1010–1021, May 2, 2019 ª 2019 Elsevier Inc.
populations alive today. Modern humans interbred with multiple

hominin species in different places around the world, including

Neanderthals (Green et al., 2010), Denisovans (Reich et al.,

2010), and possibly others (Hammer et al., 2011; Mondal

et al., 2016). Examining genome sequences to identify regions

that introgressed from these archaic species has revealed

evolutionarily adaptive variants and extended deserts of intro-

gression (Sankararaman et al., 2016; Vernot et al., 2016).

Recently, analysis of Denisovan ancestry in populations across

Eurasia uncovered introgression from an extra branch on the

Denisovan hominin clade in East Asia (Browning et al., 2018).

However, the center of gravity of Denisovan admixture today

lies >8,000 km south of Denisova Cave in the Papuan popula-

tions of tropical eastern Indonesia and New Guinea, where

the composition of Denisovan introgression remains poorly

understood.

We therefore analyzed archaic introgression in a new dataset

covering Island Southeast Asia (ISEA) and Papua, a maritime

zone of densely inhabited archipelagos larger than Europe.

This culturally and linguistically diverse region remains strikingly

underrepresented in modern genetic surveys, despite its

extraordinary human diversity and is a major missing link for

medical and evolutionary studies (Horton, 2016). Notably, the

area has some of the first traces of anatomically modern humans

in Eurasia (Barker et al., 2007), archaicH. floresiensis likely coex-

isted with modern humans here (Sutikna et al., 2016), and

eastern Indonesians, Papuans, and Philippine ‘‘negritos,’’

together with Siberians and South and East Asians, are among

the few living groups with substantial traces of archaic introgres-

sion from Denisovans (Jinam et al., 2017; Reich et al., 2011;

Tucci et al., 2018).
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Figure 1. Modern and Archaic Ancestry
(A) Sampling locations of groups. Outer rims indicate modern ancestry components: blue, Papuan; dark gray, Asian (Table S2; STAR Methods S6). Inner pie

charts indicate archaic introgression estimates: green, unambiguous Denisovan introgression; yellow, unambiguous Neanderthal introgression; light gray,

introgression consistent with either Neanderthal or Denisovan ancestry (Table S3; STAR Methods S9); the total area of each pie chart corresponds to the total

amount of unambiguous Denisovan introgression signal, with Papua 13.7-fold greater than West Eurasia.

(B) Principal-component analysis (PCA) of the new dataset including non-African reference samples, showing two major axes of variation—a ‘‘Papuan’’ axis

stretching from New Guinea Papuans-New Britain Baining to West Eurasians, with ISEA intermediates, and an ‘‘Asian’’ axis stretching from Papuans-West

Eurasians to East Asian samples (STAR Methods S2).
RESULTS AND DISCUSSION

The Indonesian Genome Diversity Project Fills a Gap in
Regional Coverage
The Indonesian Genome Diversity Project (IGDP) has been run

by the Eijkman Institute of Molecular Biology in Jakarta for over

a decade, with the goal of capturing a representative sample

of genomic diversity across this understudied region. Spanning

a transect of communities across the Indonesian archipelago

and neighboring regions of ISEA, populations chosen for

whole-genome sequencing were selected to reflect the main

axes of genomic variation observed in an earlier population ge-

netic study (Hudjashov et al., 2017). We sequenced complete

genomes to >303 coverage for 161 individuals, from Sumatra

in the west to New Britain in the east (Figure 1). We combined

this new dataset with 317 additional high-coverage human ge-

nomes sampled world-wide, including those few genomes pre-

viously available for ISEA and Oceania (Malaspinas et al.,

2016; Mallick et al., 2016), and three complete archaic hominin

sequences, the Altai and Vindija Neanderthals (Prüfer et al.,

2014, 2017) and the Altai Denisovan (Meyer et al., 2012) (Fig-

ure S1; Table S1; STAR Methods S1–S5).

To confirm that the dataset captures expected genomic pat-

terns, we calculated principal components and determined local

ancestry along the genome (Dias-Alves et al., 2018) (Figure 1;

Table S2; STAR Methods S2 and S6). We observed key features

of population diversity in the region, notably a strong cline in

Asian to Papuan ancestry across the archipelago with an abrupt
transition within the island zone of Wallacea (Cox et al., 2010;

Hudjashov et al., 2017). These signals primarily reflect recent

events of regional history, particularly the agricultural expansion

of Austronesian-speaking populations from ca. 4500 ya. This

cline serves, however, as an important backdrop to facilitate un-

derstanding of regional signals of genetic contact between

anatomically modern humans and archaic hominins.

Combining Methods Identifies High-Confidence
Denisovan Introgression
Because individuals in ISEA carry ancestry from both Neander-

thals and Denisovans, these archaic signals must be disen-

tangled. Assigning clear ancestry is amajor challenge, especially

for single variants or small ancestry blocks with few informative

variants, because of extensive shared polymorphisms between

the two archaic groups as well as incomplete lineage sorting

due to the shared early history of Neanderthals and Denisovans.

One way to overcome this problem is with haplotype methods to

detect longer introgressing blocks, which have more easily as-

signed ancestry and are less likely to result from incomplete line-

age sorting. Examining introgressing haplotypes of Denisovan

ancestry offers further advantages over site-by-site methods

such as D statistics (Patterson et al., 2012), because haplotypes

provide additional information on introgression dates and better

resolution of detailed relationships between introgressing and

archaic genomes.

To obtain a set of high confidence blocks, rather than all

possible stretches of Denisovan introgression, we developed
Cell 177, 1010–1021, May 2, 2019 1011



Papuan ancestry

0.5

0.3

0.1

0.7

0.50.30.1 0.7

Flores Bena

Flores Rampasasa
Flores Cibol

Taiwan

Alor

y = 0.80 x + 0.20
r2 = 0.98

Papuan ancestry
0.50.30.1 0.7

0.5

0.3

0.1

0.7 y = 1.01 x – 0.01
r2 = 0.98

Alor

Flores Bena

Flores Rampasasa

Flores Cibol

Taiwan

D
en

is
ov

an
 in

tro
gr

es
si

on
(%

 o
f P

ap
ua

n 
si

gn
al

)
D

en
is

ov
an

 c
hu

nk
s 

in
P

ap
ua

 (M
b)

60

50

10

30

20

40

0

NA 0.999 0.95 0.50

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
HMM overlap required

S* overlap required:
0.000
0.001

0.500
0.050

0.999

D
en

is
ov

an
 c

hu
nk

s 
in

W
es

t E
ur

as
ia

 (M
b)

10

2

6

4

8

0

NA 0.999 0.95 0.50

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
HMM overlap required

S* overlap required:
0.000
0.001

0.500
0.050

0.999

E
nr

ic
hm

en
t i

n
D

en
is

ov
an

 c
hu

nk
s

S* overlap required:
0.000
0.001

0.500
0.050

0.999

70

60

50

40

30

20

10

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
HMM overlap required

NA 0.999 0.95 0.50

A

B

C

D

Figure 2. Effect of Block Filtering on the Denisovan Signal and the

Correlation of the Denisovan Signal with Papuan Ancestry, Related

to Tables S2 and S3 and STAR Methods

(A and B) Amount of Denisovan signal remaining in Papuans (A) and West

Eurasians (B) following different filtering protocols. ChromoPainter (CP) De-

nisovan blocks are discarded if they lack a minimum overlap with HMM De-

nisovan blocks (x axis) and S* windows (line colors), or if they are coveredmore

than a maximum amount by CP Neanderthal blocks (sub-plots; from left to

right: not applied, 99.9%, 95% or 50%).

(C) Enrichment of Denisovan signal in Papuans versus West Eurasians based

on the same filtering parameters as in (A) and (B).

(D) High correlation of Denisovan signal with Papuan ancestry in ISEA using CP

Denisovan blocks only (left) or the final high-confidence Denisovan block set

(right). The shift in the slope of the line when correlating the CP Denisovan

1012 Cell 177, 1010–1021, May 2, 2019
a protocol to extract archaic regions using the intersection of

three different statistical methods (Table S3; STAR Methods

S7 and S8). Denisovan blocks were classified based on the

overlap of (1) ChromoPainter (CP) (Lawson et al., 2012), which

was used to identify haplotypes that are more similar to the

Denisovan genome than to a panel of sub-Saharan Africans;

(2) an updated Hidden Markov Model (HMM) (Racimo et al.,

2017; Seguin-Orlando et al., 2014) detecting the same signa-

ture; and (3) S* (Vernot et al., 2016), which identifies clusters

of linked non-African variation. These haplotypes were then

filtered, using a range of protocols (Figures 2A–2C; STAR

Methods S9a), to remove blocks that were also similar to the

Altai Neanderthal (Prüfer et al., 2014) and optionally the

Vindija Neanderthal (Prüfer et al., 2017), as measured by CP,

leaving a dataset of high-confidence introgressed Denisovan

regions.

A clear correlation emerged between loci identified by the

three methods. Most archaic introgression was detected in

Papua and East ISEA, with the least in West Eurasia. Our

multi-step filtering approach enriched detectable Denisovan

introgression in Papuans relative to West Eurasians (Figures

2A–2C; STARMethods S9c and S9d), who are thought to harbor

little Denisovan introgression (Mallick et al., 2016). This enrich-

ment rose from 6.4-fold when using CP alone to nearly 50-fold

when combining CP, HMM, and S*. The result is approximately

32.3 Mb of high-confidence Denisovan introgressed blocks

per genome copy for each Papuan individual. For comparison,

just 688 kb of Denisovan blocks were identified in West Eur-

asians, which is consistent with earlier low estimates (Mallick

et al., 2016).

As a further check, we compared the total amount of our

high-confidence haplotypes with Denisovan ancestry propor-

tions calculated with counting statistics as reported for the

Simons Genome Diversity Project (SGDP) samples (Mallick

et al., 2016) (STAR Methods S9b). The total introgression in

West Eurasia estimated by CP alone did not correlate

with genome-wide estimates of Denisovan introgression esti-

mated by D statistics but instead correlated strongly with es-

timates of Neanderthal introgression (extracting 20% of the

signal). Strikingly, however, this signal drops to 2% for our

high-confidence Denisovan blocks, showing that Neanderthal

spillover has been almost entirely removed from the high-con-

fidence Denisovan block set by our multi-step filtering

approach.

A strong correlation between Denisovan and Papuan

ancestry (r2 = 0.98, p = 2.6 3 10�20) confirms that these two

components have interconnected histories (Figure 2D; STAR

Methods S9d). In this correlation, a gradient close to 1 and a

correspondingly low intercept of –0.01 is observed for the

high-confidence Denisovan blocks, consistent with the infer-

ence that Denisovan introgression is largely confined to Pap-

uans. Low levels of Papuan ancestry in West ISEA (<5%) match

the limited Denisovan introgression observed in the region

(Figure 1A).
blocks (left) is due to spillover signal from non-Denisovan archaic introgression

(i.e., Neanderthal introgression incorrectly assigned as Denisovan). This is not

observed in the high-confidence Denisovan block set (right).
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Figure 3. Mismatch Distributions by Block Size

(A) Heatmap showing the mismatch distribution of high-confidence Denisovan

introgressed blocks against the Altai Denisovan (x axis; expressed as a per-

centage of the average genome-wide mismatch between the Denisovan

genome and West Eurasians, mD (STAR Methods S10a) given different mini-

mum block lengths (y axis). The columns to the right indicate the total number

of blocks and the number of entirely non-overlapping (i.e., unambiguously

unique) blocks, respectively. As expected (see STAR Methods 10a for

explanation), the two mismatch peaks are not visible for small block lengths

(<50 kb), and only become clear for blocks of length aroundR130 kb. The two

mismatch peaks are stable in their location after this point.

(B) Heatmap as in (A), this time showing the mismatch distribution when

analyzing Siberian and East Asian samples together. Note the absence of the

first peak observed in Papuans in (A) and the presence of the less diverged

peak identified previously (Browning et al., 2018).

(C) Mismatch mD of the 2000 longest high-confidence Denisovan blocks for

different continental groups. Circle area corresponds to the average amount

per individual (Mb) of high-confidence Denisovan sequence identified in each

population.

See also Figures S2 and S3.
Denisovan Populations Introgressed into
Papuans Twice
To determine whether there is structure within the Denisovan se-

quences, we calculated mismatch distributions between our

high-confidence Denisovan blocks and the high-coverage Altai

Denisovan genome (STAR Methods S10). Small ancestry blocks
can be a problem for mismatch analysis, because the mis-

matches of individual haplotypes have an imprecise correspon-

dence to genetic divergence caused by the low resolution

offered by a small number of stochastic, discrete polymorphisms

(STAR Methods S10a) and because small blocks are more often

affected by incomplete lineage sorting. We therefore profiled

mismatches across a range of block lengths in Papuans, the

population in our dataset with the highest Denisovan introgres-

sion. Intriguingly, we observe two clearly separate mismatch

peaks in Papuans (Figure 3A; STAR Methods S10a). This sug-

gests that Papuans carry lineages from two genetically different

Denisovan populations that had been separated from each other

for a very long time. These peaks are also observed when

using just the CP blocks or just the HMM blocks alone (STAR

Methods 10b). Resolution of the two peaks (here called D1 and

D2) improves with block sizes greater than approximately 130

kb, with much less resolution for blocks <50 kb as expected

for small block sizes (STAR Methods S10a).

We also confirm the signal previously reported in East Asians

(Browning et al., 2018), but again only for longer block lengths

(Figures 3B and 3C). Themismatch peak (here called D0) is addi-

tionally seen not just in East Asian populations, where it was orig-

inally detected, but also in Siberians, indigenous Americans and

at very low frequency elsewhere across Asia (Figures 3B and 3C;

STAR Methods S10a). The blocks in this predominantly East

Asian mismatch peak have relatively low divergence to the Altai

Denisovan, suggesting that modern humans in Asia mixed with a

Denisovan population that was closely related to the Denisovan

reference individual.

As longer blocks are better able to capture demographic

complexity from mismatch distributions, we profiled mismatch

patterns using the 2,000 longest blocks to maximize the signal

in each population. Regional patterns are apparent: D1 is

restricted to Papuans, while D2 has a wider geographical distri-

bution spanning much of Asia and Oceania (Figure 3C; STAR

Methods S10a; Figure S2).

Gaussian mixture model testing strongly supports the pres-

ence of two peaks in Papuans (Figure 4A, AIC = �5,809 versus

unimodal �5,583, STAR Methods S10d). In Papuans, blocks of

length >180 kb were assigned to one or the other peak based

on >80% support from the mixture model. We confirmed that

D1 (less divergent from Altai Denisovan) and D2 (more divergent)

blocks do not differ in a wide range of molecular genetic and bio-

informatic parameters, including GC content, genotype call

quality of the archaic reference allele, alignability, recombination

rate, sequencing batch effects, and levels of background selec-

tion (B values; McVicker et al., 2009) (STAR Methods 10e

and 10f). We also checked whether variants within the D1

and D2 blocks have the same tree topologies. Both peaks

show a strong signal of an origin within the Denisovan clade

rather than branching from deeper points in the hominin tree

(Table S4; STAR Methods S10g).

We further verified that the observed bimodal mismatch distri-

bution in our high-confidence Denisovan blocks is not due to

misclassification of Neanderthal blocks. The polymorphic sites

of both peaks predominantly show theDenisovan-specific topol-

ogy, with the Neanderthal-specific topology observed only at

low levels (STAR Methods S10g). Further, if one of the peaks
Cell 177, 1010–1021, May 2, 2019 1013



A B Figure 4. Multiple Denisovan Ancestries in

Papuans

(A) Bimodal distribution and simulation fitting for

long (>180 kb) high-confidence Denisovan blocks in

Papuans (STAR Methods S10a and S10d).

(B) Schematic model of the relationships of archaic

hominin and modern human groups. We detect

introgression from three Denisovan-like pop-

ulations: the previously reported D0 lineage (gray)

into East Asians (Browning et al., 2018) and Si-

berians with a likely recent introgression date, and

the D1 (green) and D2 (magenta) lineages into

Papuans that are detected here. The tree topol-

ogies of D1 and D2 haplotypes indicate that they

branch from the Denisovan clade, albeit deeply for

D2, and their bimodal mismatch indicates that they

are not sister clades. Note the different timescales

of the two orthogonal trees. Shaded circles on

archaic tree branches indicate introgression time

estimates. The details of these estimates (STAR

Methods S10h) are shown on the modern human

tree; the 95% CIs of introgression dates are

shaded with color proportional to probability

density, with bootstrapped values showing the

center of gravity lies toward younger dates. No

time estimates were reported for D0 in the original

publication and its divergence from the Altai Denisovan and introgression date are arbitrarily placed as indicated by dashed lines. The open diamond indicates

the temporal sampling point of the Altai Denisovan genome sequence. See also Figures S3, S4, and S5 and Table S5.
were caused byNeanderthal introgressionmisclassified asDeni-

sovan, that peak should be seen in West Eurasians, who have

substantial Neanderthal but no Denisovan admixture. However,

West Eurasians have neither of the two Denisovan mismatch

peaks. To additionally check whether some portion of the Nean-

derthal introgression signal could have been missed by only

using the Altai Neanderthal reference, we repeated several ana-

lyses using CP and the Vindija Neanderthal (Prüfer et al., 2017).

This approach yields highly consistent results with the original

analysis (Figure S3; STAR Methods S10c). Finally, we identified

Neanderthal-specific blocks in Papuans using the same meth-

odology as for the high-confidence Denisovan blocks. These

do not show a bimodal mismatch distribution to the Altai Nean-

derthal (Figure S3; STAR Methods S10c), suggesting that the

history of Denisovan introgression in Papua differed markedly

from modern human interactions with Neanderthals.

Deep Divergence between Denisovan Populations
Next, we sought to retrieve dates of divergence between D1, D2,

and the Altai Denisovan genome through coalescent modeling

(Tables S5A and S5B; STAR Methods S10i). After extending an

archaic demographic model (Malaspinas et al., 2016) to encom-

pass two deeply divergent Denisovan-related components, our

best fitting model indicates that D1 and D2 split from the Altai

Denisovan approximately 283 kya (9,750 generations, 95% con-

fidence interval [CI] 261–297 kya) and 363 kya (12,500 genera-

tions, 95% CI 334–377 kya), respectively (Figure 4B). While

clearly branching off the Denisovan line, D2 diverged so closely

to the Neanderthal-Denisovan split that it is perhaps better

considered as a third sister group (STAR Methods S10i). For

context, even the youngest of these divergence times is similar

to the evolutionary age of anatomically modern humans (earliest
1014 Cell 177, 1010–1021, May 2, 2019
known fossils, with varied morphologies, date to 198 kya

(McDougall et al., 2005) and 315 kya (Hublin et al., 2017)). Our

model implies substantial reproductive separation of multiple

Denisovan-like populations over a period of hundreds of thou-

sands of years.

The Two Denisovan Lineages Introgressed at
Different Times
The distribution of block lengths retains a signal of introgression

time, with longer blocks expected from more recent introgres-

sion events. In general, block length is expected to decay over

time approximately as an exponential distribution (Gravel,

2012). We confirmed the accuracy of introgression dating by

exponential fitting of the block length distribution through exten-

sive simulation, incorporating different introgression times over

the time period of interest (0–2,000 generations), and consid-

ering the impact of using only long blocks rather than the entire

distribution of block lengths, substantial block length estimation

errors, and the consequences if introgression occurred as an

extended process rather than a single pulse (Figure S4; STAR

Methods S10h). We observed a slight tendency to infer overly

recent dates under some of these conditions, but never by

more than 10%–15%. Filtering to longer block lengths and fitting

an exponential with a larger location parameter help to reduce

even these biases in date estimates.

While the median block lengths of D1 and D2 are similar in

Papuans (238 and 236 kb), their distributions are significantly

different (Kolmogorov-Smirnov statistic = 0.15, p = 2.2 3

10�6). Exponential fitting of D1 and D2 haplotype lengths yields

introgression dates of 29.8 kya (95% CI 14.4–50.4) and 45.7

kya (95%CI 31.9–60.7), respectively, which are younger, though

overlapping with, previously suggested estimates for Denisovan



Figure 5. Geographic Patterns of D1 and D2 Ancestry

(A) Comparison of the total identified amounts of D1 and D2 sequence in Baining and mainland Papuan individuals. The difference in D1 between the groups is

statistically significant, while the D2 difference is not. Average and 95% CIs obtained using resampling are shown next to each box (STAR Methods S10h).

(B) Interpolated map of D1 signal across sampled populations in mainland Papua and New Britain.

(C) SMC++ model of the (diploid) population sizes and split time of Baining and mainland Papua samples (STAR Methods 10j).

(D) Simulated distributions of the ratio of D1 in mainland Papua to D1 in Baining, and of D2 in mainland Papua to D2 in Baining, under three conservative de-

mographic models simulating high levels of drift between the two populations (Figure S6; STAR Methods S10j). The observed ratios are indicated as vertical

dashed lines. The observed D1 ratio is above the 95th percentile of the distribution (i.e., statistically significant) under all three models, while there is no

difference for D2.

(E) Model for regional details of Denisovan introgression. D2 (magenta arrow) introgressed into the common ancestor of mainland Papuans and Baining about 46

kya. D1 (green arrow) introgression occurred later, closer to the separation of the two Papuan groups. The 95% CIs of introgression dates are shaded with color

proportional to probability density (STAR Methods S10h). The split time between mainland Papuans and Baining (16 kya) estimated by SMC++ is an effective

genetic parameter describing a divergence date without subsequent migration and hence is a lower bound with actual separation likely occurring somewhat

earlier (indicated by alternative gray split paths). Our modeling shows that genetic drift alone (indicated by jittered branches) is insufficient to explain the observed

higher D1 frequency in mainland New Guinea (bar charts on right) and instead requires additional D1 introgression into mainland Papuans after their separation

from the Baining (small green arrows).
introgression (Figure 4B; STAR Methods S10h) (Malaspinas

et al., 2016). The maximum likelihood introgression date for D2

introgression is 50% more ancient than the date for D1. Based

on simulations, and given the greater statistical challenge of

identifying shorter introgression blocks, we consider these dates

to be probable lower bounds on introgression times, but with

true dates no more than 15% more ancient.

Geographical Patterns of Denisovan Admixture in Papua
D1 andD2 introgression times that overlap the timescale ofmod-

ern human arrival and their variable dispersal across Papua raise

the possibility that Denisovan introgression occurred after local

populations of modern humans had differentiated. We find

geographic structure associated with the D1 variation between

mainland New Guinea and the Baining, a population on the

offshore island of NewBritain.We observe slightly less high-con-

fidence Denisovan introgression in the Baining than in mainland

Papuans (31.5 Mb versus 33.1 Mb per haploid genome, Welch’s
t test T = �3.4, p = 0.001), despite extremely similar population

histories (Hudjashov et al., 2017), including similar levels of Asian

ancestry (Figure 1A). However, there is less D1 sequence in the

Baining than in mainland Papuans (1.33 Mb versus 1.82 Mb

per haploid genome, Welch’s t test T = �3.9, p < 0.01), although

both carry similar levels of D2 sequence (1.28 Mb versus

1.37 Mb, T = �0.8, p = 0.41) (Figures 5A and 5B; STAR Methods

S10h).

To determine whether this difference in D1 sequence could be

due to random drift in the two populations or to different Deniso-

van introgression histories, we extended the simulation model

(Malaspinas et al., 2016) to incorporate population structure rep-

resenting both New Guinea mainlanders and Baining, in addition

to the two introgressing Denisovan populations (D1 and D2) (Fig-

ure S5; STARMethods S10j). To test a conservative model offer-

ing maximum opportunity for isolation and drift, we did not

include any migration between Papuans and Baining after their

population split. Archeological evidence suggests that New
Cell 177, 1010–1021, May 2, 2019 1015



Britain was settled by at least 35 kya (Pavlides and Gosden,

1994), and from the genomic data, SMC++ (Terhorst et al.,

2017) infers a genetic split time between mainland Papuans

and Baining of 15.7 kya (Figure 5C). We therefore implemented

three alternative demographicmodels: using the SMC++ genetic

split times and population sizes (M1); using the SMC++ split time

and more conservative (smaller) population sizes, thus gener-

ating more drift (M2); and a model with a more conservative

(older) genetic split time of 23.2 ky (800 generations), also gener-

ating more drift (M3) (Figure S6; STAR Methods S10j). As ex-

pected, the observed difference in rates of D2 introgression

between Baining and mainland Papuans are within the distribu-

tions predicted by the simulations. However, in all three cases,

the observed ratio of D1 in mainland Papuans to Baining lies

outside simulated values (Figure 5D).

Together, these coalescent simulations suggest that the

reduced frequency of D1 blocks among the Baining is unlikely

to result from shared D1 introgression into a common ancestral

Papuan population, followed by drift as each population subse-

quently diverged into the modern Baining and mainland groups.

Instead, the difference in D1 levels more likely reflects different

amounts of introgression from Denisovan populations into main-

land New Guinea and the islands to the northeast, which

occurred after the separation of the two Papuan populations

(Figure 5E). The overall genetic similarity and relatively recent

divergence of these Papuan groups (Figures 1 and 5C; STAR

Methods S10h, S10j) have implications for the past distribution

of D1 Denisovan populations and the process of archaic

introgression.

First, our data suggest that the D1 Denisovans, in contrast to

D2, contributed additional DNA to the mainland New Guinea

population after the mainland and Baining populations diverged

from their common Papuan ancestor (Figure 5E). This, together

with the nearly complete absence of D1 in continental Asia, is

most consistent with the scenario that D1 Denisovans were pre-

sent in New Guinea or East ISEA (e.g., Wallacea). In turn, this

would imply that at least some Denisovan populations had the

ability to cross large bodies of water, such as the one repre-

sented by theWallace Line. This idea does not seem implausible

given archaeological evidence of archaic hominin dispersals—

notably, the discovery of stone tools in the Philippines dating

to 700 kya (Ingicco et al., 2018) and the related finding of

H. floresiensis on the island of Flores (Brown et al., 2004), both

across substantial water boundaries that persisted throughout

the Pleistocene. Such geographical barriers would limit gene

flow and might help to explain the extent of divergence between

the D1 Denisovan population and other Denisovan groups.

Second, the late date for the D1 introgression and geographic

structure in modern populations suggests that Denisovans sur-

vived until 30 kya, and perhaps as recently as 14.5 kya. This is

longer than Neanderthals, who died out around 40 kya (Higham

et al., 2014), or H. floresiensis, which recent dating suggests did

not persist on Flores beyond 50–60 kya (Sutikna et al., 2016). The

implication is that Denisovans living in ISEA may have been

among the last of all the archaic hominins to survive. This pro-

vides an argument to screen for Denisovan remains possibly

misclassified as other hominins in existing archaeological collec-

tions and encouragesmore archaeological research in the poorly
1016 Cell 177, 1010–1021, May 2, 2019
accessible and hence incredibly understudied New Guinea

region.

Third, the combined evidence of geographic structure and a

recent D1 introgression date suggest that Denisovan introgres-

sion did not occur immediately following the first modern human

settlement in the region (45–50 kya) (O’Connell et al., 2018). This

implies that introgression with archaic hominins may not be an

inevitable and immediate result of joint occupation of the same

territory.

High-Frequency Denisovan Blocks Include Many
Archaic Gene Variants
We also investigated whether the Denisovan DNA that entered

modern Papuans could have included regions with adaptive

benefits (Table S6; STAR Methods S11). We initially focused

on genes introgressed from D1 and D2. As we could only assign

long blocks to D1 or D2 ancestry, we can only partly describe di-

versity contributed by specific Denisovan groups. However,

we did identify 412 unique genes in introgressed blocks as-

signed to D1 and D2, including high-frequency blocks. The hap-

lotypes with highest frequency in either lineage included the

linked genes FAM178B/FAHD2B/ANKRD36 (65% frequency),

ZNF280D (38%), and FBXL20/MED1/CDK12 (28%) from D1,

and ANKRD28 (30%), a region 15 kb downstream of CENPW

(29%) and NFAT5/NQO1 (22%) from D2 (STAR Methods S11d).

To explore adaptive introgression from Denisovans more

broadly, we profiled the frequency of all >20 kb introgressing

haplotypes in East ISEA and Papua (Figure 6; STAR Methods

S11a), an approach that considers the actual introgressing hap-

lotypes rather than being window based and thus offers greater

precision in identifying genes that may have contributed to adap-

tation. We first searched for evidence of ontology enrichment

(Kuleshov et al., 2016) in genes found in the top 1% most

frequent Denisovan haplotypes (STAR Methods S11c). Enrich-

ment was observed in categories related to smooth muscle

cell proliferation, immunity, and adipogenesis in both Papuans

and East ISEA.

Focusing on the 10 highest-frequency introgressed haplo-

types (STAR Methods S11a), we replicated several previously

known signals—WARS2 in East ISEA but not Papua (Racimo

et al., 2017), introgression in TNFAIP3 in both East ISEA and

Papua (Gittelman et al., 2016), and FAM178B (Ilardo et al.,

2018) but seen here more in Papuans than in East ISEA. We

additionally observe two previously unknown high-frequency

introgression signals in both regions, centered around the

TMPO, IKBIP, and APAF1 genes, as well as in a single gene,

WDFY2. The latter has been identified as a focus of acceler-

ated evolution in humans since the Neanderthal-Denisovan

split (Racimo et al., 2014) and is involved in endocytosis (Hay-

akawa et al., 2006) and adipogenesis through regulation of

PPARG (Fritzius and Moelling, 2008), which is also a high fre-

quency Denisovan introgressed gene in Papua and East ISEA.

Depletion of WDFY2 in 3T3-L1 adipocytes is associated with

reduced insulin-stimulated glucose uptake (Walz et al.,

2010), indicating a role in both the differentiation and func-

tioning of adipoctyes.

To determine whether Denisovan gene variants in modern

humans may have experienced recent positive selection, we
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(A and B) Manhattan plots of Denisovan block frequencies are shown for Papuans (A) and East ISEA (B). A selection of outlier genes are noted. See Table S6 and

STAR Methods S11 for details.
calculated nSL (Ferrer-Admetlla et al., 2014) in 200 kb windows

across the genome for mainland Papuan samples, the Baining,

and East ISEA separately. Several top 1% high-frequency Deni-

sovan introgressed genes were in the top 5% of nSL windows

(STAR Methods S11b). Overlapping hits in the Baining included

TNFAIP3 (nSL window percentile 3.6%) and WDFY2 (2.2%).

The possibility of adaptive introgression at TNFAIP3 has been

raised previously in the context of selection on immunity (Gittel-

man et al., 2016). The function of WDFY2 has been discussed

above.We also note the top 1%nSL signals in genes with impor-

tant roles in both lipid metabolism (FASN in Baining, mainland

Papua, and East ISEA, and a window containing both FADS1

and FADS2 in Baining only) and carbohydrate metabolism

(most notably AGL in both Baining and mainland Papua). Taken

together, it appears that Denisovan introgression may have been

an important source of diversity for recent adaptation, both in the

context of immunity and, potentially, dietary adaptation.

Limited Evidence of Further Introgression Complexity in
East ISEA and Papua
Given the recent presence ofHomo floresiensis in our study area

(Brown et al., 2004; Sutikna et al., 2016), and the possibility that

late Homo erectus was contemporary with the earliest anatomi-

cally modern humans in ISEA (Yokoyama et al., 2008), we inves-

tigated whether there might be any hints of archaic hominin

ancestry, other than Denisovan or Neanderthal, in the dataset.

We attempted to detect such signals by analyzing S* windows

that exhibit minimal overlap with Denisovan or Neanderthal
blocks as identified by CP and HMM (residual S*, STARMethods

S12).

We first note a pronounced excess in total S* signal in our

Papuan samples (97.2 Mb) compared to East Asians (50.9 Mb),

South Asians (48.3 Mb), and West Eurasians (40.8 Mb). After

confirming that this excess was primarily driven by introgressing

Denisovan ancestry, we estimate that any additional introgres-

sion from outside the Human-Neanderthal-Denisovan clade

was limited with an upper bound of about 1% (STAR Methods

S12a). Next, by profiling residual S* among different continental

groups, we detect a slight excess of unique variation that is not

shared with other humans, the Altai Denisovan or the Altai Nean-

derthal in East ISEA and Papua (Figure S7; STAR Methods

S12b). The signal is not strong, and the difference in total residual

S* between different global populations is small, suggesting at

most little introgression from outside the Human-Neanderthal-

Denisovan lineage in these two populations. This could hint at

a more complex introgression history involving unknown archaic

hominins in ISEA and Papua, such as H. erectus, as has been

recently suggested for other Asian populations (Mondal et al.,

2016). For instance, the Altai Denisovan is also thought to have

some H. erectus ancestry (Lipson and Reich, 2017; Mallick

et al., 2016; McColl et al., 2018; Prüfer et al., 2017; Skoglund

et al., 2016), although it is not yet clear whether this is also true

for introgressing Denisovan populations. Equally, however,

these genomic signals could arise without further introgression

events, notably through balancing selection or incomplete line-

age sorting, and so warrant careful further study.
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Finally, our dataset includes Rampasasa, a village on Flores

that is close to the cave site where the H. floresiensis bones

were found (Sutikna et al., 2016), and whose inhabitants were

the subject of a recent genetic study (Tucci et al., 2018) The pro-

portion of Neanderthal and Denisovan introgression, and the

amount of residual S* in this village is comparable to neighboring

populations (Figure 7; STAR Methods S13), suggesting the

absence of unusual archaic admixture in Rampasasa villagers

relative to other people in East ISEA.

Conclusions
The discovery and characterization of archaic hominins has typi-

cally begun with the analysis of fossil remains (Meyer et al., 2012;

Prüfer et al., 2014, 2017; Slon et al., 2018). However, as Deniso-

van admixture has its center of gravity in ISEA and Papua where

DNA rarely survivesmore than a few thousand years in the humid

tropical environment (Lipson et al., 2018; McColl et al., 2018),

studying the genetic record from modern humans remains the

sole way to shed light on the substructure and phylogeography

of archaic hominins in this important but understudied region.

Here, we use a statistical approach on new genomes

from ISEA and Papua to identify two new Denisovan groups

(D1 and D2) and describe the relationships between these

archaic hominins long before they first interacted with anatomi-

cally modern humans. Both groups branched off early from the

Altai Denisovan clade at 283 and 363 kya and were reproduc-

tively isolated from the individuals at Denisova cave in Siberia
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and from each other. Yet both groups bredwithmodern humans,

contributing around 4% of the genomes of Papuans, including

over 400 gene variants enriched for traits involving immunity

and diet. Some of this introgression is restricted to modern

New Guinea and its surrounding islands and may have occurred

as late as the very end of the Pleistocene, making the admixing

D1 Denisovan population among the last surviving archaic hom-

inins in the world.

The genetic diversity within the Denisovan clade is consistent

with their deep divergence and separation into at least three

geographically disparate branches, with one contributing an

introgression signal in Oceania and to a lesser extent across

Asia (D2), another apparently restricted to New Guinea and

nearby islands (D1), and a third in East Asia and Siberia (D0).

This suggests that Denisovans were capable of crossing major

geographical barriers, including the persistent sea lanes that

separated Asia from Wallacea and New Guinea. They therefore

spanned an incredible diversity of environments, from temperate

continental steppes to tropical equatorial islands. The emerging

picture suggests that far from moving into sparsely inhabited

country, modern humans experienced repeated and persistent

interactions as they expanded out of Africa into this highly struc-

tured archaic landscape across Eurasia. This genetic contact

yielded a rich legacy, including hundreds of gene variants that

continue to contribute to the adaptive success of anatomically

modern humans today.
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bourne), Nicolas Brucato (Université de Toulouse Midi-Pyrénées), Jeff Wall

(University of California San Francisco), and Vitor Sousa (University of Bern)

for helpful comments. We also thank Anto Aasa (University of Tartu) for help

with preparing the geographical map of the D1 distribution, and Jonathan

Friedlaender (Temple University) for providing New Britain samples as part

of the GenomeAsia 100K project. We especially thank all of our study partici-

pants. This study was supported by National Science Foundation Grant SES

0725470 and Singapore Ministry of Education Tier II Grant MOE2015-T2-1-

127 to J.S.L., an NTU Presidential Postdoctoral Fellowship to G.S.J., an

NTU Complexity Institute Individual Fellowship to P.K., a French ANR grant

ANR-14-CE31-0013-01 to F.-X.R., a European Union grant through the Euro-

pean Regional Development Fund (Project No. 2014-2020.4.01.15-0012) to M.

Metspalu, and a Royal Society of New Zealand Marsden Grant 17-MAU-040

and a German Alexander von Humboldt Foundation fellowship to M.P.C.

Computational resources were provided by a Microsoft research grant for

Azure cloud computing and the High Performance Computing Center, Univer-

sity of Tartu, Estonia.

AUTHOR CONTRIBUTIONS

G.S.J. and G.H. performed the primary analyses; L.S. performed SNP calling

and validation; P.K. analyzed the genes; C.C.D. provided laboratory support;

M. Mondal, D.J.L., and L.P. advised on ancestry detection; F.-X.R., M.S.,

and M. Metspalu advised on analyses and interpretation; G.S.J., G.H., H.S.,

J.S.L., and M.P.C. designed the project; G.S.J., G.H., and M.P.C. wrote the

manuscript based on input from all the other authors. The sequence data

are available from the European Genome-phenome Archive (accession

EGAS00001003054). Variant files are available from the Estonian Biocenter

data archive (http://evolbio.ut.ee).

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 5, 2018

Revised: January 7, 2019

Accepted: February 21, 2019

Published: April 11, 2019

REFERENCES

1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M.,

Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean,

G.A., and Abecasis, G.R. (2015). A global reference for human genetic varia-

tion. Nature 526, 68–74.

Abi-Rached, L., Jobin, M.J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L.,

Babrzadeh, F., Gharizadeh, B., Luo, M., Plummer, F.A., et al. (2011). The

shaping of modern human immune systems by multiregional admixture with

archaic humans. Science 334, 89–94.

Barker, G., Barton, H., Bird, M., Daly, P., Datan, I., Dykes, A., Farr, L., Gilbert-

son, D., Harrisson, B., Hunt, C., et al. (2007). The ‘human revolution’ in lowland

tropical Southeast Asia: the antiquity and behavior of anatomically modern hu-

mans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261.

Bergström, A., Oppenheimer, S.J., Mentzer, A.J., Auckland, K., Robson, K.,

Attenborough, R., Alpers, M.P., Koki, G., Pomat, W., Siba, P., et al. (2017).

A Neolithic expansion, but strong genetic structure, in the independent history

of New Guinea. Science 357, 1160–1163.

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

Brown, P., Sutikna, T., Morwood, M.J., Soejono, R.P., Jatmiko, Saptomo,

E.W., and Due, R.A. (2004). A new small-bodied hominin from the Late Pleis-

tocene of Flores, Indonesia. Nature 431, 1055–1061.
Browning, S.R., Browning, B.L., Zhou, Y., Tucci, S., and Akey, J.M. (2018).

Analysis of human sequence data reveals two pulses of archaic Denisovan

admixture. Cell 173, 53–61.

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J.

(2015). Second-generation PLINK: rising to the challenge of larger and richer

datasets. Gigascience 4, 7.

Cox, M.P., Karafet, T.M., Lansing, J.S., Sudoyo, H., and Hammer, M.F. (2010).

Autosomal and X-linked single nucleotide polymorphisms reveal a steep

Asian-Melanesian ancestry cline in eastern Indonesia and a sex bias in admix-

ture rates. Proc. Biol. Sci. 277, 1589–1596.

Delaneau, O., Howie, B., Cox, A.J., Zagury, J.F., and Marchini, J. (2013).

Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93,

687–696.

Dias-Alves, T., Mairal, J., and Blum, M.G.B. (2018). Loter: a software package

to infer local ancestry for a wide range of species. Mol. Biol. Evol. 35,

2318–2326.

Ferrer-Admetlla, A., Liang, M., Korneliussen, T., and Nielsen, R. (2014). On de-

tecting incomplete soft or hard selective sweeps using haplotype structure.

Mol. Biol. Evol. 31, 1275–1291.

Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A.,

Belmont, J.W., Boudreau, A., Hardenbol, P., Leal, S.M., et al.; International

HapMap Consortium (2007). A second generation human haplotype map of

over 3.1 million SNPs. Nature 449, 851–861.

Friedlaender, J.S., Friedlaender, F.R., Reed, F.A., Kidd, K.K., Kidd, J.R.,

Chambers, G.K., Lea, R.A., Loo, J.-H., Koki, G., Hodgson, J.A., et al. (2008).

The genetic structure of Pacific Islanders. PLoS Genet. 4, e19.

Fritzius, T., and Moelling, K. (2008). Akt- and Foxo1-interacting WD-repeat-

FYVE protein promotes adipogenesis. EMBO J. 27, 1399–1410.

Gittelman, R.M., Schraiber, J.G., Vernot, B., Mikacenic, C., Wurfel, M.M., and

Akey, J.M. (2016). Archaic hominin admixture facilitated adaptation to Out-of-

Africa environments. Curr. Biol. 26, 3375–3382.

Gravel, S. (2012). Population genetics models of local ancestry. Genetics 191,

607–619.

Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Pat-

terson, N., Li, H., Zhai, W., Fritz, M.H., et al. (2010). A draft sequence of the

Neandertal genome. Science 328, 710–722.

Hammer, M.F., Woerner, A.E., Mendez, F.L., Watkins, J.C., and Wall, J.D.

(2011). Genetic evidence for archaic admixture in Africa. Proc. Natl. Acad.

Sci. USA 108, 15123–15128.

Hayakawa, A., Leonard, D., Murphy, S., Hayes, S., Soto, M., Fogarty, K.,

Standley, C., Bellve, K., Lambright, D., Mello, C., and Corvera, S. (2006). The

WD40 and FYVE domain containing protein 2 defines a class of early endo-

somes necessary for endocytosis. Proc. Natl. Acad. Sci. USA 103,

11928–11933.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

161 human samples from

Island Southeast Asia

Eijkman Institute for Molecular

Biology, Jakarta, Indonesia

Table S1

Deposited Data

FASTQ sequence files European Genome-phenome Archive

(EGA; https://www.ebi.ac.uk/ega/home)

Accession number: EGAS00001003054

Variant files The Estonian Biocenter data archive

(http://evolbio.ut.ee)

N/A

Software and Algorithms

The new HMM model This study https://github.com/guysjacobs/archHMM

Topology counting code This study https://github.com/guysjacobs/archTopoCount

Code to combine BED-format

introgressed windows

This study https://github.com/guysjacobs/archBedCombine

BCFtools 1.4 Li (2011) https://samtools.github.io/bcftools/

BEDtools 27 Quinlan and Hall (2010) https://github.com/arq5x/bedtools2

bwa 0.7.16a Li (2013) https://github.com/lh3/bwa/releases

ChromoPainter 2 Lawson et al. (2012) https://people.maths.bris.ac.uk/�madjl/

finestructure/index.html

EIGENSOFT 7.2.0 Patterson et al. (2006); Price et al. (2006) https://github.com/DReichLab/EIG

GATK 3.5 Poplin et al. (2017) https://software.broadinstitute.org/gatk/

KING 2.1 Manichaikul et al. (2010) http://people.virginia.edu/�wc9c/KING/

manual.html

LOTER Dias-Alves et al. (2018) https://github.com/bcm-uga/Loter

ms Hudson (2002) http://home.uchicago.edu/rhudson1/source/

mksamples.html

msprime 0.6.1 Kelleher et al. (2013) https://github.com/tskit-dev/msprime/releases

nSL Ferrer-Admetlla et al. (2014) http://www.nielsenlab.org/wp-content/uploads/

2011/05/nSL1.zip

picard-tools 2.12.0 Broad Institute http://broadinstitute.github.io/picard

PLINK 1.9 Chang et al. (2015) https://www.cog-genomics.org/plink2

SHAPEIT 2.r837 Delaneau et al. (2013) https://mathgen.stats.ox.ac.uk/genetics_software/

shapeit/shapeit.html

SMC++ 1.9.3 Terhorst et al. (2017) https://github.com/popgenmethods/smcpp
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Murray

Cox (m.p.cox@massey.ac.nz).

For consistency of process, all requests to access the sequences presented in this work are managed through the Data Access

Committee of the official data repository (accession EGAS00001003054) at the European Genome-phenome Archive (EGA; https://

www.ebi.ac.uk/ega/home).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
All samples were obtained from adult human subjects. For full information about the new and published samples used in this study,

refer to Table S1 – Sample and combined dataset list.
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Ethical approvals and dataset description
Herewe report a new genomic dataset, the Indonesian GenomeDiversity Project (IGDP), which includes 161 high coverage genomes

from 14 islands and a wide variety of ethnic groups from Island Southeast Asia (ISEA), spanning the Indonesian archipelago and

stretching into Island Melanesia (Table S1). The samples used in this study were collected by J. Stephen Lansing, Herawati Sudoyo

and an Indonesian team from the Eijkman Institute for Molecular Biology, with the assistance of Indonesian Public Health clinic staff,

and also byMark Stoneking (see Stoneking et al., 1990) and Jonathan Friedlander (see Friedlaender et al., 2008), in collaboration with

the Institute for Medical Research of Papua NewGuinea. A subset of the samples have also been incorporated into the Genome Asia

100K Project (http://www.genomeasia100k.com).

All collections followed protocols for the protection of human subjects established by institutional review boards at the Eijkman

Institute, Nanyang Technological University and the University of Arizona. All individuals gave their informed consent for participation

in the study. The study as a whole, including the generation of whole genome sequencing data for the samples, was approved by the

institutional review board at the Eijkman Institute (EIREC#90). Full ethical approval and oversight of consenting processes was also

granted by the Nanyang Technological University institutional review board (IRB-2014-12-011).

Permission to conduct research in Indonesia was granted by the State Ministry of Research and Technology (RISTEK).

METHOD DETAILS

A schematic overview of the analytical pipeline presented here is shown in Figure S1A (STAR Methods S1–5) and Figure S1B

(STAR Methods S6–13). Datasets used are shaded in green; analyses and inferences in yellow; and key steps are outlined in bold.

S1 - Sequencing and SNP calling
Sequencing libraries were prepared using TruSeq DNA PCR-Free and TruSeq Nano DNAHT kits depending on DNA quantity. 150 bp

paired-end sequencing was performed on the Illumina HiSeq X sequencer.

Individuals were sequenced to expected mean depth of 30x, with an achieved median depth of raw reads across samples of 43x.

These newly generated whole genome sequences were combined with the following published genomes (raw reads):

a) 292 genomes from the Simons Genome Diversity Project (SGDP) (Mallick et al., 2016)

b) 25 Papuan genomes from the Malaspinas et al. (2016) study

SNP calling was performed on the combined dataset, with published genomes analyzed from raw reads exactly as for the new

sequence data.

Trimmomatic v. 0.38 (Bolger et al., 2014) was used to cut adapters and low-quality sequences from the reads. After trimming, the

vast majority of reads were longer than 145 bp; those below 60 bp were excluded. We aligned the reads to the ‘decoy’ version of the

GRCh37 human reference sequence (hs37d5) using BWA MEM (Li, 2013). We removed duplicate reads with picard-tools v. 2.12.0

(http://broadinstitute.github.io/picard) and performed local realignment around indels with GATK v. 3.5 (Poplin et al., 2017).

After alignment, and keeping only properly paired reads that mapped to the same chromosome, the sequencing depth across the

samples used in downstream analyses was as follows: min = 18x, Q1 = 35x, median = 38x, Q3 = 43x, max = 48x. Only three samples

had median coverage rates below 30x: CBL34, RAM005 and RAM067.

Base calling was undertaken with GATK v. 3.5 following GATK best practices. Per-sample gVCF files were generated using GATK

HaplotypeCaller (using only reads with mapping quality R 20). Single sample gVCFs were combined into multisample files using

CombineGVCFs, and joint genotyping was performed using GATK GenotypeGVCFs, outputting all sites to a multisample VCF.

Exactly the same base calling steps were applied to new and published samples, and the joint genotyping included all samples in

this study.

Using BCFtools v. 1.4 (Li, 2011), the following filters were applied to each genotype call: base depth (DP) R 8x and % 400x, and

genotype quality (GQ)R 30. We then kept only biallelic SNPs and invariable reference sites. For themajority of our analyses, we kept

only sites that had high quality variant calls in at least 99% of samples. (Specifically, all analyses in STAR Methods S5-S9 and S11,

and all analyses in S10, apart from two result robustness checks that assessed phasing and archaic haplotype topologies. Addition-

ally, we did not apply the call rate filter in themotif-counting analysis in STARMethods S12). Applying this 99%call-rate filter yielded a

total of 36,462,963 SNPs in the combined dataset. We removed sites within segmental duplications, repeats and low complexity re-

gions. These masks were downloaded from the UCSC and Broad Institute genome resources:

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/genomicSuperDups.txt.gz

http://software.broadinstitute.org/software/genomestrip/node_ReferenceMetadata.html

In the filtered and masked VCF files, we examined several statistics across the samples: the percentages of no-calls and single-

tons; the average depth; transition/transversion ratio; the number of variants; and heterozygosity. One highly heterozygous sample

from the SGDP (LP6005441-DNA_A09, Naxi-2) was excluded based on thesemetrics, as well as on the basis that the original authors

determined that this sample had been contaminated (Mallick et al., 2016).
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S2 - Kinship and outlier analysis
We performed sample kinship analysis using KING v. 2.1 (Manichaikul et al., 2010). Of the 161 new genomes, 6 were excluded due to

the presence of a first-degree relative in the dataset, leaving a total of 155 genomes for downstream analysis. This relatedness is a

consequence of the village-scale sampling strategy employed in this study. In addition, 7 sample pairs display second-degree relat-

edness (BNA05 / BNA12-F, BNA21-F / BNA26-F, CBL018 / CBL019, RAM045-F / RAM067, RAM022 / RAM039-F, NIAS08 / NIAS12,

NIAS01 / NIAS10). These samples were kept for further analyses, and the final dataset comprised 471 genomes: 155 newly generated

complete genomes, 25 genomes from the Malaspinas et al. (2016) study and 291 genomes from SGDP.

Principal component analysis (PC) was used to detect sample outliers and characterize regional diversity. First, we applied LD

pruning of our SNP set using PLINK v. 1.9 (Chang et al., 2015). Pruning was performed in 1 Kb sliding windows with a step size of

100 bp, and SNPs with R2 > 0.1 were removed. Next, PCA was performed in EIGENSOFT v. 7.2.0 (Patterson et al., 2006; Price

et al., 2006) without the outlier removal step. The results of a PCA without African samples (N = 429) is shown in Main Text Figure 1B.

S3 - Adding archaic data and ancestral information
The combined primary dataset of 471 modern human genomes was merged with two high-coverage archaic hominin genomes:

a) Denisovan (Meyer et al., 2012). Downloaded from

http://cdna.eva.mpg.de/denisova/VCF/hg19_1000g/

b) Neanderthal (Prüfer et al., 2014). Downloaded from http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/

Positions with missing or low-quality calls (marked as ‘LowQual’ in the original VCF files) in one of the archaic samples were

excluded during the merging procedure. In addition, heterozygous archaic SNPs were also removed to improve phasing quality

(but see later analyses). Both types of SNPs were masked for both archaic and modern individuals. These additional filters resulted

in a dataset comprising 35,395,615 SNPs.

A second merged dataset was produced by excluding missing and low-quality archaic calls but retaining SNPs that were hetero-

zygous in archaic individuals. This dataset was used to cross validate our results and assess potential bias (if any) introduced by trim-

ming archaic heterozygous positions.

A third dataset was produced by merging the primary dataset containing 471 modern and 2 archaic genomes without heterozy-

gous archaic SNPs with the Vindija Neanderthal genome data (Vindija33.19, downloaded from http://cdna.eva.mpg.de/neandertal/

Vindija/VCF/Vindija33.19/). Aswith themain dataset, positions that weremissing, low-quality or heterozygous in the Vindija individual

were masked for all archaic and modern individuals.

We added ancestral allele information to our dataset using the Ensembl Compara 71 database (ensembl_compara_71@ens-

staging2:3306, MethodLinkSpeciesSet: 6 primates EPO (548)).

S4 - Phasing and phasing assessment
The combined dataset comprising both modern and archaic samples was phased using read aware phasing with SHAPEIT v. 2.r837

(Delaneau et al., 2013). Phase informative reads (PIRs) were extracted using software guidelines from both modern and archaic BAM

files. The HapMap phase II b37 recombination map (Frazer et al., 2007) was used and the phasing was performed using the following

arguments: –states 400 –window 0.5 –states-random 200.

We assessed the performance of our phasing approach, which incorporated phase informative reads, by comparing our phased

haplotypes to two experimentally phased individuals (Prüfer et al., 2014) that overlap with the Simons Genome Diversity Project ge-

nomes included in our dataset –WON,M (corresponding to sample B_Australian-4 in the Simons dataset, Illumina ID SS6004477) and

BUR,E (corresponding to sample B_Australian-3 in the Simons dataset, Illumina ID SS6004478). These two samples come from

Aboriginal Australians with unknown geographic origin, but containing no genetic signals of recent admixture with Papuan or Euro-

pean populations.

For each of the two individuals, we applied the following procedure:

d Divide the genome into 8 Kb windows that are non-overlapping and at least 50 bp from any chunk masked by the alignabil-

ity mask

d Retrieve the corresponding SNPs from the experimentally phased FASTA files and our computationally phased VCFs. The BWA

algorithm (v0.7.16a) (Li, 2013) was used to confirm that the windows aligned correctly.

d Mask sites that disagree or are missing in the 8 Kb chunks (due to different SNP calling procedures)

d Discard chunks that contain % 1 heterozygote site.

d Count the number of heterozygous sites and the number of switch errors in the remaining chunks, and divide the totals to obtain

a switch error rate.

This approach accounts for the impact of solitary heterozygote sites and the alignability mask, which can hide switch errors

(if an even number of switch errors occur within a masked region).

Based on 11164 8 Kb windows for WON,M and 11245 windows for BUR,E, we calculated switch error rates of 3.7% and 4%

respectively. These are expected rates (see supplementary text S9 in the Mallick et al. (2016) study). Note that singletons
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are randomly placed in our phasing procedure, unless they are part of a phase informative read, and will also act to disrupt

haplotypes.

QUANTIFICATION AND STATISTICAL ANALYSIS

S5 - Dataset genetic diversity and SNP novelty
As an exploratory analysis of our phased dataset, we retrieved lists of SNPs in the 1000 Genomes Project (Phase 3) (1000 Genomes

Project Consortium et al., 2015), dbSNP (Build 150), ESP (ESP6500SI-V2-SSA137) (Tennessen et al., 2012) and ExAc (ExAcRelease

1.0) (Lek et al., 2016). We counted the number of SNPs defined when considering each population group separately, and determined

howmany were observed in one or more of these datasets, and howmany were not observed. Across all of our newly reported sam-

ples, we observed 11,859,578 SNPs, of which 21% (2,525,213) were novel. Existing datasets are better able to capture variation in

West ISEA (9.3% SNPs novel) than East ISEA (14.3%) or Papua (21.1%), likely because previously published datasets incorporate a

large number of mainland Asian samples.

S6 - Estimating Asian-Papuan admixture proportions
To estimate Asian-Papuan admixture proportions in ISEA and Papua, we used local ancestry inference implemented in LOTER (Dias-

Alves et al., 2018). LOTER has been shown to outperform similar methods, such as HAPMIX (Price et al., 2009) and RFMix (Maples

et al., 2013), and its accuracy is greatest when admixture ismore ancient than 150 generations. This time frame (ca 4500 ya) is directly

relevant for Indonesian prehistory – linguistic, archaeological and genetic evidence all point to the spread of Austronesian speakers

beginning 4000–4500 ya from Taiwan, reaching eastern Indonesia 3500–3000 ya (Hudjashov et al., 2017).

We specified two reference datasets: Papuans from the current study (N = 72; see Table S1) and East Asians (N = 293). The East

Asian reference dataset included 293 geographically diverse samples, specifically 43 samples from the Simons Genome Diversity

Project, and 50 random samples from each of the five East Asian populations in the 1000 Genomes Project (CDX – Chinese Dai,

CHS – Southern Chinese Han, CHB – Northern Chinese Han, KHV – Vietnamese Kihn and JPT – Japan).

Samples from ISEA were analyzed separately using the Papuan and East Asian reference datasets. To infer local ancestry tracts in

Papuan samples, we created an individual Papuan reference dataset for every single target genome by excluding the individual sam-

ple from the full Papuan reference set to avoid self-copying. Results are reported in Main Text Figure 1A and Table S2.

S7 - Archaic block identification
a. ChromoPainter

We used ChromoPainter v.2 (CP) (Lawson et al., 2012) to detect archaic ancestry in the genomes of our present-day individuals. This

method relies on phased haplotype data and describes each individual recipient chromosome as amixture of genetic blocks from the

set of predefined donor individuals. This process, known as chromosome ‘painting’, generates a matrix of copying vectors, which

can be analyzed further. For each recipient haplotype, CP also outputs the expected probability of copying from each donor popu-

lation at each SNP. CP uses an Expectation-Maximization (EM) algorithm to re-estimate the proportion of genetic material copied

from each donor by using the previous estimates as a new prior under the model, and then iterating.

We painted each of our modern non-African human genomes individually using a set of 35 sub-Saharan African genomes from

SGDP, which represents modern non-Eurasian human ancestry, and each of the archaic samples separately. We used a two-

step approach:

1. The initial run was performed with 10 EM steps to estimate prior copying probabilities for each individual and chromosome

separately using the following command line arguments: -i 10 -in -iM.

2. Next, estimated prior copying probabilities were averaged across the genome for each individual. Themain run was performed

with a recombination scaling constant, global mutation (emission) probability and genome-wide average prior copying prob-

ability from the first step using the following command line arguments: -n Ne -M mu -p prior_copying_probability.

Either archaic or modern ancestry was then assigned to individual SNPs using a probability threshold of 0.85. Unknown ancestry

was assigned to SNPs with intermediate copying probability.

b. Hidden Markov Model

To explore the behavior of the CP approach, we additionally implemented a hidden Markov model (HMM, https://github.com/

guysjacobs/archHMM). Our approach is inspired by that of Racimo and colleagues (Racimo et al., 2017; Seguin-Orlando et al.,

2014), and we follow their notation where possible.

The problem is to partition the genome into blocks of DNA that have introgressed from an archaic hominin and non-introgressed

DNA. To do this, we consider a test haplotype vector of SNPs h= ðh1;.;hkÞ˛0; 1 of length k, with each SNP indicated by either a
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0 (if ancestral) or 1 (if derived). The SNPs have an associated genetic map vector R= ðr1;.; rkÞ where rjRri if j > i. We assume that

each SNP has one of two hidden states (human, 0, or archaic, 1), which form the ancestry vector z = ðz1;.;zkÞ˛0;1. We also define

an observation vector y = ðy1;.; ykÞ˛0; 1 with

1. yi = 1 if hi = 1 and farchaici > 0 and fafri %h

2. yi = 0 otherwise

where fafri denotes the frequency of the derived state in a panel of comparative African populations and farchaici is the frequency of the

derived state in a panel of archaic hominins. In our case, the panel of archaic hominins is the single Altai Denisovan individual and our

condition farchaici > 0 simply requires that the derived state is observed, whether in the homozygous or heterozygous state. We apply a

non-0 h of 1=2nafr such that the observed state 1 may still be assigned if a single African individual is heterozygous at a site. This

guards against sequencing errors given the moderately large panel of sub-Saharan Africans nafr = 35ð Þ, and importantly, also pro-

vides some robustness against low levels of recent back migration into Africa from populations with archaic introgression.

We only consider the subset of SNPs that have known ancestral state and are notmissing in the test haplotype or archaic panel.We

also chose to exclude SNPs that are variable only in the African panel as these are prone to bias the density of observations depend-

ing on local African diversity patterns. Local African diversity may be impacted by complex molecular (e.g., mutation rate variation)

and evolutionary processes (e.g., purifying selection).

We want to identify blocks of the test haplotype that have elevated observed state yi = 1 corresponding to derived alleles that are

shared with the archaic hominin and are rare in Africa. To do this, we define a two-state, time-homogeneous HMM, with four param-

eters – the emission probability of the two observed states for each hidden state: p10 =Pðy = 1 j z= 0Þ and p11 = Pðy = 1 j z = 1Þ, which

also define p00 = 1� p10 and p01 = 1� p11; and asymmetric transition rates between the two hidden states pi
0/1 =Pðzi = 1 j zi�1 = 0Þ

and pi
1/0 = Pðzi = 0 j zi�1 = 1Þ, which define pi

0/0 and pi
1/1in a similar manner. We seek to estimate these parameters and retrieve a

most likely ancestry vector z given them, and use a Viterbi algorithm and expectation maximization procedure to do so (see also Lu

et al. (2016)).

We first assume transition probabilities that are linear with genetic distance with a maximum cut-off,

pi
0/1 =minðk1ri;i�1;0:5Þ
and
pi
1/0 =minðk2ri;i�1;0:5Þ;
where ri;i�1 = ri � ri�1and k and k are rates to be fitted. The m
1 2 aximum cut-off is to ensure realistic behavior when ri;i�1is large,

although SNPs are rarely sufficiently separated for this to be required. Note that we do not constrain k2 to be a function of k1 as in

the Racimo approach, which can be used to include an assumption of a simple introgression model. Our intention is to identify

the most plausible archaic blocks, but we purposely make no assumptions about the introgression history where possible.

Our block estimation and parameter estimation algorithm is as follows:

1. Initialize parameters ½p10ðt = 0Þ;p11ðt = 0Þ; k1ðt = 0Þ; k2ðt = 0Þ� to ½0:1; 0:25;100:0; 100:0�: The probability of z1 = 1 must also be

initialised and is set to 0.01.

2. Apply the Viterbi algorithm to estimate z, given y and the model parameters at iteration t.

3. Re-estimate the model parameters based on the estimated ancestry vector z. p10ðt + 1Þ = Pk
1yið1� ziÞ=k, p11ðt + 1Þ = x,

k1ðt + 1Þ=Pk
2ð1 � zi�1Þziri;i�1=

Pk
2ð1� zi�1Þri;i�1 and k2ðt + 1Þ = Pk

2zi�1ð1� ziÞri;i�1=
Pk

2zi�1ri;i�1.

4. Repeat steps 2 and 3 until either the ancestry vectors at t and t – 1 are identical or t = 50, and output the ancestry vector and

parameter estimates.

Note that parameter p11is fixed during the estimation procedure. This is to ensure that the model is inferring archaic blocks with

similar properties when the model is run on different chromosomes and different individuals, while still offering flexibility in the timing

of introgression (by re-estimating transition parameters) and human diversity patterns (by re-estimating p10). We fixed parameter

p11by running a free estimation, where p11is re-estimated in a manner analogous to p10, for a set of 10 Papuans, who have a well-

established history of Denisovan introgression, and 10 West Eurasians, who do not. We found that setting p11 = 0:25 was successful

in detecting Denisovan blocks in Papuans, while limiting the false positive rate in West Eurasians.

Our approach differs from the Racimo method in its parameter estimation procedure and the transition probabilities. It also pur-

posely ignores African-specific diversity. However, the principle of applying anHMM to detect tracts enriched for non-African derived

alleles shared with an archaic hominin has been widely applied in several slight variations (e.g., Lu et al., 2016; Prüfer et al., 2014;

Racimo et al., 2017; Seguin-Orlando et al., 2014 and others) and as such is a standard approach in archaic introgression block

estimation.

c. S*

We used the S* method (Plagnol andWall, 2006; Vernot et al., 2016; Wall et al., 2009), which seeks to detect introgressed haplotypes

from archaic hominins without using an archaic reference genome, following the implementation of Vernot et al. (2016). S* is sensitive
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toward highly diverged sequences with high LD, and thus is adequate to detect hominin introgressed haplotypes without having a

reference sequence of the hominin in question.

To calculate empirical S* in our non-African samples, we used 35 sub-Saharan Africans as a reference population and analyzed

one non-African sample at a time. We removed any non-segregating sites from our data. We used the HapMap phase II b37 recom-

bination map (Frazer et al., 2007), and ancestral information from the Ensembl Compara 6 primates EPO (548) database. Empirical S*

values were estimated in 50 Kb genomic windows.

After calculating the S* value from the real dataset, we used simulations to assign statistical significance to our empirical estimates.

We performed simulations using different combinations of the number of segregating sites and recombination rates from the previous

step. We simulated a previously described demographic model (Henn et al., 2015) with the simulator ms (Hudson, 2002). For non-

West Eurasians samples, we performed simulations with the East Asian demographic model as presented in the Vernot et al. (2016)

study.We obtained a neutral distribution of S* without hominin introgression for 50 Kb regions using 60000 simulations for every com-

bination of the number of segregating sites and recombination rate. The following ms command line was used:

ms <Total_N> 60000 -I 3 <Africa_N> <WEurasia_N> <EAsia_N> -s <SegSites> -r 38.7* <recombination_rate> 50001 -n 1 2.20 -n

2 4.47 -n 3 6.53 -g 2 101.69 -g 3 146.31 -m 1 2 1.49 -m 2 1 1.49 -m 1 3 0.46 -m 3 1 0.46 -m 2 3 1.85 -m 2 3 1.85 -ej 0.029 3 2 -

en 0.029 2 0.29 -em 0.029 1 2 8.93 -em 0.029 2 1 8.93 -ej 0.087 2 1 -en 0.23 1 1 -p 5

We then used the computationally efficient strategy employed to estimate the S* value for every region as in Vernot et al. (2016).

Finally, we assigned a p value for each 50 Kb genomic window in every individual sample in our non-African dataset using the neutral

distribution of S* from the simulations without archaic introgression. Genomic windows with a recombination rate less than 0.005 or

more than 20.01 and/or a number of segregating sites less than 20 or more than 511 were excluded. To assess the overall fit of the

neutral demographic simulations to the data, we built General Additive Models (GAM) of the 95th and 99th percentiles of simulated

neutral S* as a function of the number of segregating sites and recombination rate.

We established two thresholds of significance:

1. To estimate the overlap between CP, HMM and S*, and define high confidence Denisovan blocks, we identified regions as

introgressed if the S* in the real data is more than the 95th percentile of the simulated data distribution.

2. In addition, for the residual S* analysis, we identified a region as introgressed if the S* in the real data is more than the 99th

percentile of the simulated data distribution. This yields a more conservative, high confidence S* set, which allows for more

robust inferences of residual S* signal (see below).
S8 - Introgression results from the three methods
Details of the amount of introgression based on the different methods, and profiling of the methods, are shown in Table S3.

The total amount of introgression detected by the three methods, per phased haploid genome, is shown in Table S3A. There is a

clear correlation between the methods, with most archaic introgression detected by all three methods in Papua and East ISEA, and

with least inWest Eurasia. The total amount of archaic introgression detected by CPwas slightly less than that detected by the HMM,

which was in turn considerably less than that detected by S* with 95% confidence. We note that different methods are expected to

extract different amounts of introgression signal (see e.g., Skov et al., 2018 Table 1 for a recent comparison). The relative enrichment

of Denisovan signal in Papua over West Eurasia was greater for CP (6.4-fold) than the HMM (5.0-fold), based on all pairwise Papuan/

West Eurasian comparisons (paired t test, T = 280.5, pz 0.0; Cohen’s D = 1.49). As Denisovan introgression is not expected in West

Eurasia, the clear excess in enrichment seen in CP over the widely applied HMM approach strongly supports CP – when used in the

manner described above – as an effective method for detecting archaic hominin introgression. Nevertheless, as Table S3A shows, a

substantial amount of Denisovan introgression was detected by both methods in West Eurasia, suggesting that the three methods

are individually detecting a number of false positive introgressed blocks.

We hypothesize that this phenomenon is driven by ‘spillover’ signal from Neanderthal introgression. Indeed, incomplete lineage

sorting could lead Neanderthal-introgressed blocks to have greater genetic similarity to the Altai Denisovan than Altai Neanderthal;

and even blocks that coalesce with the Altai Neanderthal before the Denisovan/Neanderthal common ancestor will often show

greater similarity to the Altai Denisovan than humans due to Denisovan/Neanderthal common ancestry. As an initial check on this

hypothesis, we categorized the genome into regions that only had evidence for Denisovan or Neanderthal introgression (from one

or both of the HMM and CP methods); regions that had conflicting evidence for both Denisovan and Neanderthal introgression

from the two methods; and regions with an unknown signal arising from S* (> 95% confidence), thus identifying a region as intro-

gressed but with no support from the HMM and CP methods (Table S3B). As predicted, discounting ambiguous signal, there is

now 12.5 times as much Denisovan introgression in Papua compared to West Eurasia.

We used these observations – that higher confidence Denisovan blocks are supported by multiple methods, and that unexpected

signal can be driven by spillover fromNeanderthal introgressed blocks – to refine our Denisovan block set (STARMethods S9 below).
Cell 177, 1010–1021.e1–e24, May 2, 2019 e6



S9 - Refining archaic block sets
a. Iterated filtering improves specificity

Both CP and the HMM were run using the Denisovan and Neanderthal genomes independently. However, Neanderthals and Deni-

sovans are believed to share common ancestry more recently than the human/Neanderthal/Denisovan common ancestor (e.g., 495

versus 657 kya inMalaspinas et al. (2016)), increasing the probability of introgressing archaic blocks showing greater similarity to both

Neanderthals and Denisovans thanmodern humans. Table S3B profiles the degree to which the archaic portion of genomes overlaps

in different continental groups. Importantly, we note that while only very little of the West Eurasian genome is assessed as unambig-

uously Denisovan (that is, identified by at least one of the CP or HMM methods as Denisovan, but as Neanderthal by neither), a

considerable amount is ambiguous – that is, identified by different methods as both Neanderthal and Denisovan.

This suggests that looking at the overlap of methods, and actively removing ambiguous blocks, may be a promising way to obtain a

high confidence set of Denisovan blocks. A logical approach to this is to iteratively discard Denisovan CP blocks that are either i) not

supported by the othermethods (Denisovan HMMandS*) or ii) also identified asNeanderthal by CP.We can do this by requiringmore

than a minimum overlap between each Denisovan CP block and the supporting methods, or less than a maximum overlap with a

Neanderthal CP block. However, it is not clear how much overlap is appropriate to ensure that ambiguous or weakly supported

Denisovan introgression blocks are removed, but that sufficient signal remains for further analysis.

We therefore sought parameters for an incremental filtering procedure that maximizes the excess Denisovan signal in Papuans

against West Eurasians, the two samples expected to have highest and lowest Denisovan introgression, respectively (Main Text Fig-

ures 2A–2C). For each Denisovan CP block on a chromosome copy of an individual, the procedure progresses in three steps:

1. Discard the block if the proportion of its length that is overlapped by Denisovan HMM blocks on that chromosome copy of the

individual is under IDeniHMM˛½1:0;0:75;0:5;0:25;0:1;0:05;0:001�.
2. If the block survived (1), discard it if the proportion of its length overlapped by S* windows for the individual is under IS�˛½0:999;

0:75;0:5;0:25;0:1;0:05;0:001;0:0�.
3. If the block survived (1) and (2), discard it if the proportion of its length overlapped by Neanderthal CP blocks on the chromo-

some copy of the individual is over INeanCP ˛½0:999;0:95;0:75;0:5;0:25;0:1�.

Here, IDeniHMM = 1:0 indicates a requirement that the entire CP Denisovan block is entirely covered by a single HMM Denisovan block,

or by the union of multiple HMMDenisovan blocks, while IDeniHMM = 0:001 indicates that only 0.1% of the block needs to be covered. We

specifically chose to use CPNeanderthal blocks to exclude ambiguous signal, rather than HMMNeanderthal blocks, in order to addi-

tionally exclude any regions that might be readily, and perhaps falsely, identified as non-human specifically by the CP method; for

instance, due to local patterns of African variation. We used the bedtools suite v.2.27.0 (Quinlan and Hall, 2010) with the subtract

command and -N flag and -f flags to perform this procedure.

We sought to retrieve high confidence Denisovan blocks while still retaining enough Denisovan signal for further analysis. Noting

that the total genome inferred as Denisovan in Papua relative to West Eurasia (Main Text Figure 2C) increases greatly even with min-

imal overlap requirements (IDeniHMM = 0:001, IS� = 0:001 and INeanCP = 0:999), we chose these to define our high confidence Denisovan

block set. Thus, the refinement procedure is:

1. Starting with the Denisovan CP output, remove any block that is less than 0.1% overlapped by Denisovan HMM output. For

example, for a 100 Kb Denisovan block identified by CP to be kept, we require at least 100 bp to be covered by Denisovan

HMM output in the same chromosome copy of the individual as well.

2. Of the remaining blocks, remove any block that is less than 0.1% overlapped by S* output.

3. Of the remaining blocks, remove any block that is over 99.9% overlapped by Neanderthal CP output.

After applying these filters, we are left with approximately 32.3 Mb of high-confidence Denisovan introgressed blocks per genome

copy for a Papuan individual, from our original set of 59.2 Mb. For a West Eurasian, we are left with just 688 Kb, down from 9.5 Mb.

There is now nearly 50 times as much Denisovan signal in Papuans, a profound enrichment from the 6 times in the original method

output. Some genuinely Denisovan-like blocks may be found in West Eurasians due to a) introgressing blocks from a Neanderthal

population that randomly coalesce with the sampled Denisovan before the sampled Neanderthal, b) incomplete lineage sorting

dating to the common ancestor of modern humans and Denisovans, and c) limited migration between populations with known De-

nisovan ancestry (e.g., East and South Asians) and West Eurasians since introgression occurred.

b. Filtering supported by SGDP introgression values

The substantial increase in the enrichment of Denisovan signal in Papuans over West Eurasians following our iterated filtering

approach is a strong indication that we are successful in removing spillover signal from Neanderthal introgression. This increased

accuracy comes at the cost of decreased power to detect true Denisovan introgression. While the filtering method reduces the De-

nisovan signal in West Eurasia from 9.5 to 0.7 Mb (93%), the signal halves in Papua from 59.2 to 32.3 Mb, which is a greater signal

depletion in absolute terms despite broadly similar proposed levels of Neanderthal introgression in both regions (Mallick et al., 2016).

To profile this behavior in real data, we turn to genome-wide estimates of Denisovan andNeanderthal introgression reported for the

SGDP samples in our dataset, calculated using counting statistics (Mallick et al., 2016). Genome-wide estimates of introgression

have a benefit over haplotype inference in that they measure the average signal of introgression over the entire genome rather
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than pulling out small chunks; as a result, they are better able to estimate the overall level of introgression, and necessarily yield

genome-wide proportions that are greater than the sum of excavated archaic sequence haplotypes. The SGDP samples represent

global populations, including groups thought to harbor just Neanderthal introgression (West Eurasian), but also Asian and Oceanian

groups with both Neanderthal and Denisovan ancestry, and so are ideally suited for a comparison of methods.

We performedmultiple linear regression using the Python statsmodels v.0.8.0 package (Seabold and Perktold, 2010) on the SGDP

genome-wide estimates of Denisovan (SGDPDeni) and Neanderthal (SGDPNean) introgression (Table S1 in Mallick et al., 2016) as in-

dependent variables, and either the total Denisovan sequence identified for each sample by CP alone or our high confidence Deni-

sovan introgressed sequence as the dependent variable.

In this analysis, our introgression estimates are expressed as a proportion of introgressed sequence per individual genome, such

that the units are the same in the two datasets. Given the high correlation coefficients, the factors in Table S3C provide an indication

of the amount of spillover signal (significant correlations of our Denisovan introgression estimates with SGDPNean, or of our Neander-

thal estimates with SGDPDeni) and the relative power of our methods to detect overall levels of introgression. We assume that the

published introgression estimates from the SGDP data are accurate, which is supported by the strong consistency of their results

with other published findings (e.g., the Denisovan introgression peak in Papua; more Neanderthal introgression in East Asians

than West Eurasians as in Wall et al. (2013)).

We find evidence of considerable ‘spillover’ signal in the raw CP results. On a worldwide scale, SGDPNean significantly predicts CP

Denisovan signal (factor 0.15), while SGDPDeni predicts CP Neanderthal signal (factor 0.19). In West Eurasia, where SGDPDeni is min-

imal (highest 0.2%, in populations with some Asian ancestry like the Saami), levels of SGDPNean alone are sufficient to predict our CP

Denisovan signal with high accuracy (factor 0.21, r2 = 0.99); the spillover effect accounts for the entire signal.

Studying the Denisovan CP signal in Papuans only – a population with high levels of both Denisovan and Neanderthal ancestry – is

especially informative about the amount of spillover signal, with a SGDPNean factor of 0.28 only marginally smaller than the SGDPDeni

factor of 0.36. Note, however, that the substantially greater amount of Denisovan thanNeanderthal introgression in Papuans (4%–6%

compared to�2%)means that the CPDenisovan signal is still largely composed of Denisovan introgression. The high spillover rate in

the CP Denisovan signal and generally lower power to detect Denisovan than Neanderthal introgression reflect the more distant rela-

tionship between the Alai Denisovan and the introgressing Denisovan population, compared to the Altai Neanderthal and introgress-

ing Neanderthal population.

Spillover largely disappears when using the high confidence blocks. Worldwide, while SGDPNean and SGDPDeni remain significant

predictors of our high confidence Denisovan and Neanderthal introgression signals, their factors drop from 0.15 to�0.01 and 0.19 to

0.04, respectively. There is minimal spillover when estimating our high confidence Denisovan signal inWest Eurasia (SGDPNean factor

falls from 0.21 to 0.03), and both SGDPNean and SGDPDeni are now only significant predictors of the high confidence signal for their

corresponding archaic species.

Our high confidence intersection method thus substantially reduces the false positive rate as reflected in the spillover signal when

estimating genome-wide levels of introgression. There is also a substantial decrease in relative power – at a worldwide scale, from

about 41% to 28%when searching for Denisovan introgression, and 56% to 39%when searching for Neanderthal introgression. The

low overall power of methods that detect introgression blocks compared to genome-wide statistics is expected, as is the higher po-

wer to detect Neanderthal introgression due to the more recent ancestry between the Altai and introgressing Neanderthal than the

Altai and introgressing Denisovan. The reduction in power when using the more conservative high-confidence signal is also ex-

pected – it reflects the cost of higher specificity. We note that in cases where Denisovan introgression is essentially absent (West

Eurasia), a reduction in relative power is still observed for our high confidence Neanderthal signal due to spillover of Neanderthal

introgression signal into the CP Denisovan block set. Thus, when there is strong evidence of only one introgression source, it may

be better to avoid stringent block filtering.

c. Distribution of high confidence introgression

Table S3D shows the amount of remaining Denisovan signal after removing Neanderthal spillover per haploid phased genome. The

results are particularly interesting because our trimming method leads to substantial depletion of the signal in Asian populations, as

well as in West Eurasia. Previous work has suggested approximately 0.5% Denisovan introgression into South and East Asians, as

compared to a 4%–6% contribution to Papuans (Browning et al., 2018; Mallick et al., 2016; Reich et al., 2010). The relatively small

amount of Denisovan signal in non-Papuans strongly implies either that previous work has overestimated the Denisovan contribution

outside of Papua, likely due to ambiguous Neanderthal spillover, or that the amount of Denisovan introgression into Papua is higher

than previously thought. If the former is the case, a rough calculation based on a linear additional contribution from the introgression

percentage, and assuming West Eurasia has 0% introgression and Papua 4%–6%, implies continent average Denisovan introgres-

sion levels of 0.17%–0.33% in mainland Asia.

Performing a similar trimming procedure using Neanderthal, rather than Denisovan, blocks similarly yields estimates of Neander-

thal introgression levels (Table S3E). We are also able to clearly detect the known excess Neanderthal signal in East Asians overWest

Eurasians, with East Asians, Siberians, Americans and Southeast Asians having about 45% more Neanderthal introgressed

sequence thanWest Eurasians. This is highly consistent with previous estimates of a 40% increase (Wall et al., 2013), as is the place-

ment of South Asians as intermediate between the groups.

The standard deviation of the amount of archaic introgression within continental groups reflects variation in introgression levels

both within and between continental subpopulations, which in turn reflect patterns of introgression into ancestral populations and
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more recent demography. We note that the variation in Neanderthal ancestry is greatest, and that the coefficient of variation is great-

est, among West Eurasians compared to other groups. There is a higher coefficient of variation for Denisovan ancestry among East

Asians and Siberians compared to Papuans. The highest coefficient of variation is in West ISEA, where it is driven by the inclusion of

the Sulawesi population, which has relatively higher Papuan ancestry (13.4%, Table S2) and greater high-confidence Denisovan

introgression (�4.2 Mb) than more westerly groups.

d. Denisovan signal follows Papuan ancestry

We assessed the correlation between Papuan ancestry and Denisovan introgression in southeast Asia using the LOTER output and

various measures of archaic introgression. Models were fit using Ordinary Least-squares and the Python package statsmodels

v.0.8.0.We fitted the gradient of a linearmodel with point [1,1] fixed to ensure that a 100%Papuan individual has 100% theDenisovan

introgression observed in Papua. We fitted both the raw CP Denisovan output (Main Text Figure 2D, left pane) and the high-confi-

dence Denisovan blocks (Main Text Figure 2D, right pane). In each case, the correlation was strong (r2 = 0.98) and the linear fitting

highly significant (p < 1 3 10�30). The linear fitting of the raw CP Denisovan blocks against Papuan ancestry had a gradient of 0.8

[0.79-0.81] implying an intercept of 0.20 [0.19-0.21]. A gradient close to 1, 1.01 [1.0-1.03], and a correspondingly low intercept

of�0.01 [0.03-0.0] is observed for the high-confidence Denisovan blocks, consistent with the signal of Denisovan introgression being

primarily related to Papuan ancestry in ISEA. Note that LOTER tends to predict a small proportion (< 5%) of Papuan ancestry in West

ISEA, which matches the limited Denisovan introgression in the region (Table S2). This may imply that a considerable portion of De-

nisovan signal in East Asia more broadly is due to very low levels of Papuan ancestry, despite some additional introgression known to

be specific to the region (see Browning et al., 2018 and our Main Text Figure 3).

Comparing the linear regressions in Main Text Figure 2D, the predicted amount of Denisovan ancestry for a fully Asian population

falls when using the high-confidence blocks in which the Neanderthal spillover signal has been removed. This emphasizes that Nean-

derthal introgression needs to be carefully controlled for when asking questions about Denisovan-specific ancestry. The village of

Rampasasa, near the Liang Bua cave site at whichHomo floresiensis (Brown et al., 2004) remains were found, and the island of Flores

on which the site is located, do not emerge as regional anomalies; the Denisovan signal observed is closely predicted by their level of

Papuan ancestry. This suggests that any introgression specific to this part of East ISEA would not be contributed by an archaic hom-

inin on the Denisovan clade; we study the possibility of other local introgression signals from alternative hominin species below

(e.g., S*, STAR Methods S12 and S13, and Main Text Figure 7).

S10 - Archaic mismatch analysis
a. Mismatch against the Altai Denisovan genome

An informative way of assessing the relationship of our high confidence Denisovan blocks to the Altai Denisovan genome, which was

used to extract them, is by mismatch analysis. As longer blocks are better able to resolve a mismatch distribution (explored in Fig-

ure S2 and below), we extracted the 2000 longest blocks from each continental population. For each block with > 50 Kb of total un-

masked sequence data (counts in Table S3F), we calculated the number of differences compared to the Denisovan reference (with

Denisovan and Neanderthal heterozygous positions masked; see STAR Methods S3). We then calculated the effective block length

by subtracting the portion of each block covered by the alignability mask from the total block length, and converted these values into

a mismatch (difference/bp). As the number of differences per bp will be impacted by our masking of low quality and heterozygous

archaic sites, quality control decisions (e.g., call rate > 99% filter) and the SNP calling protocol, it is not possible to directly translate

mismatch distance into times based on a standard human genome mutation rate. We therefore chose to scale the observed mis-

matches by dividing the mismatches of each block by the average genome-wide mismatch rate between the Altai Denisovan and

West Eurasian samples, mD. We chose West Eurasians as our baseline mismatch rate because that population has the lowest

amount of Denisovan introgression. Note that the average genome-wide mismatch rate between Altai Denisovans and West Eur-

asians, assuming 0% Denisovan ancestry in West Eurasians, reflects both the divergence time of humans and the Neanderthal/

Denisovan clade, and the ancestral population size of the common ancestor of humans, Neanderthals and Denisovans. We calcu-

lated the scale factor by summing the total number of mismatches between each of the 75 samples3 2 = 150West Eurasian haploid

genomes and the Altai Denisovan, and dividing this by 150 times the total length of unmasked sequence in the dataset.

Plotting these mismatches by continent yields the distribution pictured in Main Text Figure 3C. The variation in the number of

blocks > 50 Kb between continental groups reflects varying sample size, as well as the total amount of Denisovan introgression

and the time since Denisovan introgression in different groups.

Two primary patterns emerge. First, we replicate the results of Browning et al. (2018) in identifying a mainland Asian-specific peak

with relatively low divergence to the Altai Denisovan. This peak is not limited to East Asian populations (in whom it was originally de-

tected), but also extends into Siberia and the Americas. Interestingly, our American populations show some reduction in the extent of

this peak, potentially suggesting that introgression was ongoing more recently than the divergence of American and East Asian

populations.

Second, there is a clear dual mismatch peak in the Papuan population that is not apparent in other groups, which instead show a

single divergent mismatch peak with some fluctuation in its exact placement. Given these fluctuations, we sought to confirm that the

twin Papuan peaks were not a result of a very small number of common blocks being overrepresented due to high frequency in the
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sample, which could emphasize stochasticity in the coalescent and mutation processes. For example, in an extreme case, if a set of

2000 blocks consists of just 14 blocks near fixation then only a few independent coalescent histories might be represented in the

mismatch distribution.

Focusing on the full set of 2000 largest Papuan blocks, we instead observed 226 entirely disjoint regions using the bedtools ‘merge’

function. Of these, 151 were > 0.5 Mb from any other region. Although the top ten most introgressed regions contributed 515 blocks,

this leaves 216 disjoint regions with an average frequency of 4.8% in Papuans. The two highest frequency blocks, at 94/144 and

57/144 in the 72 (diploid) Papuan samples, lie outside both of the Papuan-specific mismatch peaks, the former having an interme-

diate mismatch and the latter an unusually large mismatch versus the Altai Denisovan.

To assess the impact of using a different minimum block length cut-off, we determined the mismatch using thresholds from 0 to

260 Kb (Main Text Figure 3A). To ensure mismatch accuracy is not being impacted by the alignability mask, we additionally required

that blocks contained total called sequence over the minimum cut-off. We did not calculate the mismatch when less than 50 entirely

non-overlapping blocks are involved in the analysis. The twin peaks obtain resolution at approximately 130 Kb (based on 3556

blocks). As expected for small block sizes, the overall resolution is poor below 50 Kb.We also explored the role of theminimum block

length cut-off for our combined Siberia and East Asia sample (Main Text Figure 3B) and East ISEA continental groups (Figure S2).

Again, the East Asian and Siberian specific peak only resolves when a minimum block length cut off R 50 Kb is applied. The two

peaks observed in Papua do not clearly resolve for East ISEA, due to the reduced sample size and small Papuan ancestry leading

to fewer observed blocks in this region.

We hypothesize that the challenge in resolving mismatch peaks using short blocks is related to two factors. First, mutations are

discrete. In our analysis, it might be typical to observe 0 or 1 mismatching base pairs in a small 1 Kb block, corresponding, respec-

tively, to extremely low and extremely high mismatch compared to the average mismatch of larger, ‘higher resolution’ blocks. Equiv-

alently, it is not possible to observe a theoretically expected mismatch of, for example, 0.0005 in a 1 Kb block as 1/1000 = 0.001 and

0/1000 = 0.0; a better approximation of the expected value is possible with larger blocks. Second, the ratio of stochasticity in the

mutation process along the branches of a coalescent tree versus the difference in coalescent times driving two mismatch peaks

is also an important variable.

To explore these phenomena, we performed a simple simulation of expected mismatch for two populations diverging from a

source population at two fixed times, t1 and t2. The distribution of mismatches corresponds to a Poisson with mean 2mlc where

m = 1.45 3 10�8 and is the mutation rate per base pair per generation, l is the block length and c is a coalescent time. The values

of c are repeatedly drawn from the distribution of coalescence times – either an exponential distribution with location parameter

t1 and mean t1 + 2Ne, or with location parameter t2 and mean t2 + 2Ne . In this way, we are able to incorporate random coalescence

andmutation. Using the values of t1 = 9750, t2 = 12500 andNe = 100 from our simulation fitting (see below) for the two Denisovan-like

populations contributing to Papua, and t1 = 5000, t2 = 12500 andNe = 100 for the two Denisovan-like populations contributing to East

Asia, we confirm that longer blocks are required to detect two signals of divergence (Figure S2C). This is particularly true when the

divergence times are less widely separated, as is the case for Papua. The value used here for the divergence time of t1 = 5000 gen-

erations for the Asian-specific Denisovan introgression signal is an approximation based on the location of that mismatch peak and

not based on explicit modeling.

This phenomenon also explains why we are able to detect the multiple peaks in East Asia and Siberia, despite having considerably

shorter blocks in these populations. For example, the 2000 longest blocks in these populations have an average length of just 43 Kb

and 35 Kb respectively, yet we are still able to detect two Denisovan mismatch peaks due to the probable difference in population

divergence driving these of 7500 generations (5000 versus 12500). In contrast, the longest 2000 blocks have an average length of 263

Kb in Papuans, and such long blocks appear necessary to capture two populations diverging from the Altai Denisovan in a narrower

time frame, approximately 2750 generations apart (9750 versus 12500). Among East ISEA, the longest 2000 blocks have an average

length of 152 Kb; Figure S2C implies that this lack of resolution may be hiding the two peaks that we detect in Papua.

We further assessed the hypothesis that the lack of a clearly bimodal East ISEAmismatch distribution could be related to our power

to resolve the true mismatch distribution. To address this, we re-sampled Papuan blocks to mimic the distribution of block lengths in

East ISEA based on rejection sampling (with replacement). We sampled 1000 sets of 2000 blocks, and generated mismatches

against the Altai Denisovan. Plotting these mismatch distributions against the observed Papuan and East ISEA mismatch distribu-

tions (Figure S2B) demonstrates that the signal of a dual mismatch peak would be expected to be weak in our East ISEA sample

based on the smaller number of long blocks available.

b. Confirming the dual Denisovan mismatch signal

Before proceeding to analyze possible causes of the dual Denisovan mismatch signal in Papuans, we sought to confirm that it is

observed in block sets retrieved using a variety of methods. We first confirmed that the signal is apparent both in the raw CP Deni-

sovan and HMMDenisovan output (Figures S3A and S3B) to verify that our iterative trimming approach is not causing the signal. The

HMM tends to detect longer archaic blocks than CP, which incorporates sequence with greater divergence from the Altai Denisovan,

consistent with its lower specificity (higher West Eurasian Denisovan signal in Table S3A). The signal remains (Figure S3B) when per-

forming a similar trimming procedure to that described above on our HMM block set (see STAR Methods S9a), this time removing

blocks that were i) less than 50%overlapped by CPDenisovan blocks, ii) less than 0.1%overlapped by S* windows, or iii) over 99.9%

covered by Neanderthal HMM output. These criteria were chosen to obtain a high level of enrichment of Papuan Denisovan signal

over West Eurasian Denisovan signal.
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We next considered the possibility that our masking of heterozygous sites in the archaic genomes to simplify phasing was causing

the double peak. Briefly, in a tree of a single introgressing haplotype X and two haplotypes of the Altai Denisovan, Da andDb, there are

two possible coalescent topologies – either the first coalescent event is between two Altai Denisovan haplotypes, (X,(Da,Db)), or be-

tween an Altai Denisovan haplotype and the introgressing haplotype, (Da,(Db,X)) or (Db,(Da,X)). As more homozygote mismatches are

expected in the former case, our masking of sites that are heterozygous in one of the archaic genomes could generate a complex

mismatch signal. To confirm that the masking of heterozygotes was not causing the multiple peaks, we re-phased the data retaining

loci with archaic heterozygotes, and performed the CP and mismatch analysis on this data. This time, we trimmed the CP Denisovan

set by simply removing blocks that were more than 99.9% overlapped by CP Neanderthal blocks. As before, the twin peaks are

clearly visible (Figure S3A).

c. No dual mismatch signal in Neanderthal blocks

To better understand the potential demographic implications of the dual mismatch peaks observed in introgressed Denisovan blocks

among Papuans, we generated similar mismatch distributions based on our 2000 longest high-confidence Neanderthal-specific in-

trogressed blocks for each continental group. These were generated using the same trimming protocol described above (STAR

Methods S9a), but starting with CP Neanderthal blocks and requiring overlap with both the Neanderthal HMM output and S*, and

only allowing limited overlap with CP Denisovan blocks (see Table S3E for continental distributions of these blocks). As before,

we only used blocks with > 50 Kb of unmasked sequence data. A large number of blocks remained for all continental groups

(1978–1999 blocks), and the average block length ranged from 168 Kb (America, with 27 samples) to 287 Kb (Papua, with 72 sam-

ples). As with the Denisovan introgressed chunks, the average length of the 2000 longest blocks reflects both sample size and

introgression history; the higher levels of Neanderthal introgression in the continental groups translates to longer chunks being suc-

cessfully extracted. The mismatch for each continental group is shown in Figure S3D. For ease of comparison, the curves are again

scaled to the genome-wide average mismatch between West Eurasians and the Altai Denisovan.

Interestingly, despite slight fluctuations, a single dominant Neanderthal peak is observed for all populations. This strongly suggests

a) that any demographic cause of the dual mismatch peak relates to events occurring in the Denisovan population, rather than among

Neanderthals or the Denisovan/Neanderthal common ancestor, and b) that the dual peak is not caused by a bioinformatic error or

property of our methods (see further discussion below) that might give rise to a bimodal mismatch distribution against any archaic

hominin.

We confirmed the single mismatch peak using the HMM Neanderthal block set, removing blocks that were i) less than 50% over-

lapped by CP Neanderthal blocks, ii) less than 0.1% overlapped by S* windows, or iii) over 99.9% covered by Denisovan HMM

output. This confirmed the unimodal mismatch distribution of Neanderthal introgressing blocks against the Altai Neanderthal

(Figure S3E).

As a final consistency check, we sought to make use of a second ancient Neanderthal genome, the Vindija Neanderthal (Prüfer

et al., 2017). This sequence is known to be more closely related to the Neanderthal that introgressed into modern humans than

the Altai Neanderthal, and thusmay be better suited for extracting introgressed Neanderthal blocks (a 10%–20% increase is reported

by Prüfer et al. (2017)). We used CP to extract introgressing blocks from Papuan and East ISEA individuals, this time with either the

Vindija Neanderthal genome or both Neanderthal genomes as our Neanderthal group. Themismatch of these blocks against the Altai

Neanderthal again shows a unimodal distribution (Figure S3F). We additionally repeated our trimming procedure of the CPDenisovan

blocks to create high-confidence block sets, now with CP Vindija blocks or blocks identified by CP as affiliated with either Vindija or

the Altai Neanderthal removed. Again, the bimodal mismatch distribution is observed (Figure S3C). If the more divergent peak were

Neanderthal spillover signal, then we would expect it to be reduced by removing more Neanderthal introgressed sequence; such

behavior is not apparent.

d. Assigning blocks to Denisovan ancestries

To statistically confirm the bimodal distribution, we fitted aGaussian andGaussianmixture to themismatch distribution of long (> 180

Kb;Main Text Figure 3A) Denisovan introgressed blocks identified in Papuans for 0.1 <MD < 0.23 using the Python package sklearn v.

0.19.1 (function sklearn.mixture.GaussianMixture; Pedregosa et al., 2011). We used blocks > 180 Kb because i) large blocks are

needed to resolve a complex mismatch distribution (Figure S2C); ii) the mismatch distribution is relatively stable with a minimum

block length of 180 Kb or more (Figure 3A); and iii) sufficient Papuan blocks (n = 1683) remain for downstream analysis using this

minimum block length. The bimodal distribution was strongly supported (AIC = –5808.85, versus unimodal –5582.72). Note that

the negative AIC values occur due to the high probability density in the range of mismatch values observed, with the probability den-

sity function of the Gaussian mixture model concentrated over a mismatch range less than 1; and that the difference between AIC

scores rather than their values are relevant here. The Gaussians are distributed according toN(0.146, 0.018) andN(0.199, 0.015), and

are weighted [58%, 42%] respectively, where N(m,s) indicates a Normal distribution with mean m and standard deviation s (Main Text

Figure 4A).

We additionally statistically confirmed that a bimodal mismatch distribution was supported for unique chunks > 180kb in Papuans.

Here, we recorded the mismatch of sets of exactly overlapping chunks as their average mismatch, to limit the impact of high fre-

quency chunks on the distribution. The bimodal distribution remains strongly supported (AIC = �2158.53, versus

unimodal �2076.80). This confirms that the bimodal mismatch distribution is unlikely to be an artifact due to selection (i.e., a small

number of introgressed regions with high frequency) or sampling effects.
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We used the Gaussian mixture model to assign blocks to either the less-divergent Denisovan component (D1) or the more diver-

gent Denisovan component (D2), classifying as ambiguous any block with less than 80% support for one model over the other (i.e.,

0.2 < p(D1) < 0.8). We were able to classify 1538 of 1683 blocks in this manner, 718 to D1 and 508 to D2; we did not classify blocks

outside the 0.1 < mD < 0.23 bounds. These block sets were used in most subsequent analyses. When studying the demographic

implications of the bimodal mismatch distribution, we studied either the full mismatch distribution (when retrieving split dates of De-

nisovan populations), or the entire set of high-confidence Denisovan blocks, classifying blocks withmD < 0.1 to D1 and blocksmD >

0.23 to D2. This allows us to maximize the information in those analyses. Spillover from D0 or Neanderthal – into D1 or D2 respec-

tively – will be minimal as those introgression sources are extremely limited in our high confidence Denisovan block set.

In total, only 6 blocks were assigned to both D1 and D2 in 6 different genomic regions. We suspected that these cases reflect oc-

casional misclassification due to the stochasticity of the mutation process; most blocks in a region are consistent with the D1 or D2

classification, but some spill over to the other peak. We expect a negative correlation between block frequencies in this case. Calcu-

lating the frequency as in described in STARMethods S12, we compared the correlation between D1 and D2 frequencies in our small

sample of 6 overlapping blocks with 1000 randomly selected sets of 6 non-overlapping block pairs. We observed a weak negative

correlation trend in the set of overlapping blocks (gradient =�1.15, lower than 92%of resampled sets), consistent with the probability

of occasional block misclassification.

A simple way to achieve a bimodality in a mismatch distribution is through a demographic model involving multiple sources of

archaic introgression. Browning et al. (2018) recently inferred that two Denisovan-like ancestries introgressed into East Asians on

the basis of a bimodal mismatch distribution. Before proceeding to analyze the mismatch distribution of Denisovan introgressed

blocks in Papuans in this context, we sought to exclude other factors, including bioinformatic bias, and to confirm that the driving

signal is consistent with introgression from two source populations on the Denisovan clade and not potential confounders.

e. D1/D2 signal is not a bioinformatic bias

The set of Papuan samples that we study come from three different sources – 30 newly generated sequences, 25 samples from

Malaspinas et al. (2016) and 17 samples from Mallick et al. (2016). We used exactly the same pipeline for mapping and base calling

on all three datasets, and while we did not observe any obvious differences between data from the three sources during our quality

control steps, we thought it possible that the bimodal distribution could conceivably be caused by this batch effect. However, blocks

assigned to D1 and D2 were common over all three sample sources, and the number of blocks assigned to D1 and D2 in sequences

from the three sources showed no significant deviation from random expectations (c2 = 0.0997; p = 0.95).

While the high coverage of the Altai Denisovan genome argues for high confidence in SNP calls, a bimodal distribution of mismatch

distances could be generated by certain quality biases. To rule this out, we performed two checks. First, a well-documented form of

ancient DNA damage is cytosine deamination leading to C-to-T substitution (Hofreiter et al., 2001). If there were a strong bias in GC

content in the genomic regions of the two block sets, with higher GC content in the D2 regions, then deamination of the ancient Altai

Denisovan genome could increase the D2 mismatch between the modern (introgressing blocks) and ancient sequences. We there-

fore assessedGCcontent in the twoDenisovan block sets using theUCSCTable Browser (GRCh37/hg19,Mapping andSequencing,

GC percent, gc5Base). The average GC content is very similar in both sets (39.75% for D1 and 38.75% for D2) and the distributions

clearly overlap.

Second, we confirmed that the number of Denisovan low-quality alleles does not differ greatly between the D1 and D2 blocks sets

(D1: 0.122%, D2: 0.124%; of the 23.1 Mb and 19.2 Mb of D1 and D2 sequence identified, respectively). While low-quality SNP calls

weremasked in the dataset used to identify the two block sets (see STARMethods S3), a strong bias in the amount of low-quality calls

in the genomic regions covered by one block set could imply relevant biases in region quality. We did not observe this.

These checks, along with the lack of a bimodal mismatch distribution when comparing introgressing blocks retrieved using the

Altai Neanderthal genome against the Altai Neanderthal (Figures S3C–S3E) and the fact that our filtering process to retrieve high con-

fidence Denisovan blocks requires that blocks overlap S* output (which does not use a reference archaic genome), suggest that ge-

netic properties of the Altai Denisovan genome do not substantially contribute to themismatch difference between D1 andD2 blocks.

We then sought to determine whether the mismatch seen in the two block sets might reflect challenges related to alignability. The

overall proportion of coverage by the alignability mask was extremely similar in the genomic regions covered by the two block sets

(median: D1 = 6.55%, D2 = 6.52%), indicating that alignability challenges are unlikely to be leading to biases in sequence diversity.

We then considered whether phasing errors might be higher in one block set than the other. For example, if a considerable amount

of human sequence were erroneously incorporated into D2 blocks but not D1 blocks, this could drive up the D2mismatch versus the

Altai Denisovan. A simple calculation based on the Malaspinas et al. (2016) model of hominin evolution, with a split between a single

introgressing Denisovan clade and the Altai Denisovan tD,DI = 11998 generations ago (ND = 13249) and the Denisovan/Human split

tH,D = 20225 generations ago (NHA = 32671), suggests a considerable human input would be required for D2 blocks to be approx-

imately 30% more divergent from the Altai Denisovan than D1 blocks. The approximate human component required is h where:

ð1� hÞð2ðtD;DI + 2NDÞÞ+ hð2ðtH;D + 2NHAÞÞ
2ðtD;DI + 2NDÞ = 1:3
such that hz0.25. This can be considered a conservative lower b
ound, in that many introgressed Denisovan haplotypes will survive

into the larger Ne regime and hence have greater mismatch versus the Altai Denisovan.
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Such a pronounced phasing error is unexpected, andwould be easily observed. As a check, we askedwhether the average recom-

bination rate differs between D1 and D2 genomic regions. A higher recombination rate in one set of blocks would be expected to lead

to faster recombination between human and introgressing haplotypes and could complicate phasing. Additionally, recombination

rate is expected to generally impact local genetic variation as it determines the linkage of neutral regions to any nearby selected vari-

ation. We compressed the sets of blocks in the two components to their respective overlapping subsets using the bedtools function

‘merge’, leaving 86 D1 regions and 68 D2 regions. For each region we calculated the average recombination rate using the same

combined HapMap phase II b37 genetic map as used for phasing (Frazer et al., 2007); the distribution of recombination rate between

the two chunk sets was not significantly different (standardized 2-sample Anderson-Darling test statistic –0.60, asymptotic p = 0.71).

Ideally, we would directly profile switch point errors by comparing our Denisovan introgressed blocks to those retrieved using

experimentally phased haplotypes. However, experimentally phased data are only available for two Australian samples in our data-

set, and given the low Australian sample size, we only called D1 and D2 blocks in Papuans. We therefore searched for local variation

in the mismatch within D1 and D2 blocks. For CP to call a block as Denisovan that has human sequence data incorporated into it, we

expect that the human sequence data would need to be closely surrounded by real introgressing Denisovan sequence. If this were

not the case, then CP is expected to simply bisect the Denisovan block. A Denisovan block containing human sequence is therefore

expected to have a sharp increase in the mismatch against the Altai Denisovan and a sharp dip in the mismatch against a human

genome toward the center of the block. We assessed this signal by dividing D1 and D2 blocks into thirds, and calculating the

mismatch of each third against the Altai Denisovan and a West Eurasian sample. For this analysis, we used a minimally masked

version of the dataset where the main phased data was combined with unphased data in which archaic heterozygous/low quality

sites were not masked, and the call rate filter was not applied; heterozygote/homozygote mismatches in unphased regions were

half-weighted to reflect the average 50% probability of applying to the block, and heterozygote-heterozygote mismatches were

not counted. The West Eurasian was chosen to be sample LP6005441-DNA_G10, a Russian with approximately average high con-

fidence Denisovan-specific introgression as compared to other West Eurasian samples.

We second counted the number of blocks showing a pattern indicative of potential incorporation of human sequence – lower

mismatch against the human sample and higher mismatch against the Altai Denisovan in the middle third. 3.2% of blocks were

consistent with this pattern in D1, compared to 5.0% of blocks in D2 (non-significant Chi square statistic 1.87, p = 0.17). The patterns

ofmismatches over individual blocks suggest that incorporation of human sequence due to phasing errors is rare, and similarly rare in

D1 and D2.

We additionally confirmed that the tendency for Denisovan blocks to be called on both chromosome copies of an individual –

the Denisovan haplotype homozygosity within that individual – was similar between D1 and D2 blocks (10.9% and 10.2%, corrected

c2 = 0.066, p = 0.80).

Based on these consistency checks, we do not interpret the mismatch difference between D1 and D2 as being bioinformatic in

origin.

f. D1/D2 signal is not caused by selection

We second considered the possibility that the two peaks represented differential selection. Under this explanation, we might expect

D1 blocks to be under strong purifying selection, reducing variation and mismatch, with D2 blocks evolving under neutrality.

Purifying selection is expected to be focused on genic regions. We therefore assessed whether D1 blocks have more overlap with

genes than D2 blocks. As when assessing recombination rate differences, we compressed the sets of blocks in the two components

to their respective overlapping subsets using the bedtools function ‘merge’, leaving 86 D1 regions and 68 D2 regions. 79 and 60 re-

gions overlapped genes (Ensemble 91 GRCh37) respectively (non-significant c2, p = 0.63).

As an additional test for differing levels of purifying selection, we asked whether D1 and D2 genomic regions differed in their

B values. B values are measures of background selection over the genome based on observed diversity in an alignment of human,

chimp, gorilla, orangutan and macaque (McVicker et al., 2009). After converting original B values to GRCh37/hg19 genome coordi-

nates, we calculated the average B value over each D1 and D2 region. The distributions of average B values in D1 and D2 regions

were not significantly different (standardized 2-sample Anderson-Darling test statistic�0.87, asymptotic p = 0.91). The total average

and standard deviation for all D1 and D2 regions were 0.48 ± 0.24 and 0.50 ± 0.23, respectively, and hence statistically overlapping.

As D1 bocks have lowermismatch estimates compared to D2, they could have been under strong purifying selection since the time

of introgression and might show a more pronounced skew toward rare blocks. We therefore performed a Mann-Whitney U test to

assess whether the frequency distribution of blocks in D1 and D2 are different in our Papuan samples. There was a significant sta-

tistical difference in the frequency distributions (U = 3304, two-tailed p = 0.031), but summary statistics describing the distributions

were similar (mean D1: 0.048, D2: 0.049; median D1: 0.028, D2: 0.021; standard deviation D1: 0.062, D2: 0.069). Importantly, the

proportion of rare blocks with frequency < 5% was in fact lower in D1 (70%) than D2 (76%), which is consistent with neutrality.

Based on the lack of a clear genic/non-genic division between D1 and D2 blocks, their similar B values, and no pronounced fre-

quency skew toward rarer D1 blocks, we do not interpret the mismatch difference between D1 and D2 as being driven by selection.

g. The topology of D1/D2 blocks

The network of interacting hominin populations in theMiddle Pleistocene is becoming increasingly complex. One phenomenon that is

included in some models (Lipson and Reich, 2017; Mallick et al., 2016; McColl et al., 2018; Prüfer et al., 2014; Skoglund et al., 2016),

but not others (such as the main model in the Malaspinas et al. (2016) study) is a usually small Homo erectus component in the

Altai Denisovan. Our approach does not allow us to identify genomic regions derived from H. erectus that may have introgressed
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into modern humans only, but not into the Altai Denisovan (but see STAR Methods S12). However, if the genetic contact between

H. erectus and Denisovans occurred before the divergence of the Altai Denisovan and the Denisovan population that introgressed

into humans, our D1 and/or D2 blocks could include regions with H. erectus ancestry, which were introduced into modern humans

by a Denisovan population that was already pre-admixed with H. erectus. If so, there would be two categories of blocks identified as

introgressed in the modern human – those derived from the Denisovan clade and those with an H. erectus origin – which could have

different mismatch distributions and create a bimodal signal. While this phenomenon is likely to be rare if the proportion of H. erectus

in Altai Denisovan is small (2–14%), some models incorporate a surprisingly large contribution (e.g., 66% in Figure 3 of Skoglund

et al. (2016)).

We therefore attempted to assign D1 and D2 blocks to specific coalescent topologies by counting mutation sharing patterns and

assessing consistency with the fifteen possible topologies implied by the four leaves of the tree (the block, Altai Denisovan, Altai

Neanderthal, and human). For this analysis, we followed the phasing assessment (see STAR Methods S10e above) in using the

Russian LP6005441-DNA_G10 to represent humans and a minimally masked dataset. We counted the number of mutations in

the 16 possible sharing categories. For example, with notation 0 indicating the ancestral allele and 1 indicating the derived allele

and in order [Human, Neanderthal, Denisovan, Block], a derived mutation that is unique to the block would contribute to mutation

motif 0001, a derived mutation shared between the block and the Altai Denisovan would contribute to motif 0011, and a fixed derived

mutation would contribute tomutationmotif 1111.When counting, we downweighed the contribution of variants in unphased regions

such that all possible mutation motifs represented were counted, in proportion to their probability given an equal chance of each

variant being on each haplotype. The approach we take – studying the frequency of ancestral and derived variants in a set of samples

of interest, and assessing the consistency of these with different phylogenetic tree topologies – is allied to that taken in recent work

investigating the different demographic models of modern human history (Wall, 2017).

We note that relating topologies to demographic histories is complex; for example, given a sufficiently large ancestral population

size, each coalescent topology would have an approximately equal probability even if all blocks are Denisovan-introgressed. Never-

theless, studying the difference in topology proportions in D1 and D2 to clarify the history of these block sets can be useful.

We categorized the topologies of the blocks based on four heuristic criteria (see inset in Table S4):

I. Mismatch order. For a block to be consistent with a given topology in terms of Mismatch order, the order of the mismatches

between its leaves must be consistent with that topology. For example, given topology (H,(N,(D,X))) and withmij indicating the

mismatch between leaves i and j, the mismatch order is required to be mDX <mDN%mXN <mDH%mXH%mNH. For topology

((H,N),(D,X)), there are two mismatch order conditions, mDX <mDN%mDH%mXN%mXH and mHN <mHD%mHX%mND%mNX .

The specific cause of inconsistency in the Table S4 inset is mDN <mDX .

II. Branch length order. The Mismatch order requirement above does not consider ancestral or derived status. This makes it

robust to multiple hit mutations and incorrect ancestral state inference, but may reduce accuracy if such phenomena are

rare. For a block to be consistent with a given topology in terms ofBranch length order, the order of the average branch lengths,

measured in shared derived alleles, between its leaves must be consistent with that topology. For example, given

topology (H,(N,(D,X))), and keeping mutation motif notation order [H,N,D,X], the branch length order constraints

are h0001;0010i< 0100 and h0001 + 0011;0010 + 0011;0100i< 1000, where e.g., h0001; 0010i denotes the average of

mutation motif counts 0001 and 0010. For topology ((H,N),(D,X)), there are two mismatch order conditions,

h1000;0100i< h0010+ 1100;0001+ 1100i and h0001; 0010i< h0100 + 1100; 1000 + 1100i. The specific cause of inconsis-

tency in the Table S4 inset is h0001 + 0011;0010 + 0011;0100i> h1000i.
III. Consistency threshold. For a block to be consistent with a given topology in terms of Consistency threshold, the ratio of the

number of topology-inconsistent mutation motifs (ignoring multiple hits and ancestry errors) to the number of topology-

consistent mutation motifs should be under some threshold, Tc. For example, given topology (H,(N,(D,X))), and keeping

mutation motif notation order [H,N,D,X], ðð0101 + 1001 + 0110 + 1010 + 1100 + 1011 + 1101 + 1110Þ=ð1000 + 0100 +

0010 + 0001 + 0011 + 0111ÞÞ<Tc. For topology ((H,N),(D,X)), ðð0101 + 1001 + 0110 + 1010 + 1110 + 1101 + 1011 +

0111Þ=ð1000 + 0100 + 0010 + 0001 + 1100 + 0011ÞÞ<Tc. The specific cause of inconsistency in the Table S4 inset is

ðð0110Þ=ð1000+ 0100+ 0010+ 0001+ 0011+ 0111ÞÞ>Tc .

IV. Subtree balance threshold. For a block to be consistent with a given topology in terms of the Subtree balance threshold, the

absolute log-ratio of two tree branches that are predicted to be equal under that topology should be under some threshold,

Ts. For example, given topology (H,(N,(D,X))), and keeping mutation motif notation order [H,N,D,X], we have six

conditions jlnð0001=0010Þ j <Ts, jlnðð0001 + 0011Þ=0100Þ j <Ts, jlnðð0010 + 0011Þ=0100Þ j <Ts, jlnðð0001 + 0011 +

0111Þ=1000Þ j <Ts,jlnðð0010 + 0011 + 0111Þ=1000Þ j <Ts, jlnðð0100 + 0111Þ=1000Þ j <Ts. For topology ((H,N),(D,X)) there

are six conditions jlnð1000=0100Þ j <Ts,jlnð0001=0010Þ j <Ts, jlnðð1000 + 1100Þ=ð0001 + 0011ÞÞ j <Ts, jlnðð0100 +

1100Þ=ð0001 + 0011ÞÞ j <Ts, jlnðð1000 + 1100Þ=ð0010 + 0011ÞÞ j <Ts, jlnðð0100 + 1100Þ=ð0010 + 0011ÞÞ j <Ts. The

specific cause of inconsistency in the Table S4 inset is jlnðð0001 + 0011 + 0111Þ=1000Þ j >Ts.

Assessing support for different topologies using each of these constraints independently with Tc = 0.10 and Ts = ln(1.5) (Table S4)

reveals support for only five topologies – (H,(N,(D,X))), (H,(D,(N,X))), (H,(X,(D,N))), (N,(H,(D,X))) and ((H,N),(D,X)). These topologies reveal

a strong signal of human as an outgroup to Neanderthal, Denisovan and the block sequence, and/or the Denisovan and block
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sequence forming a clade. Support is substantially greater for the (H,(N,(D,X))) topology, which follows the proposed population tree

and suggests that incomplete lineage sorting is not driving the signal of the long blocks we have identified. Importantly, topology

(H,(D,(N,X))) is similarly infrequent in both D1 and D2 blocks. This topology is consistent with the introgressing block being placed

as most similar to the Altai Neanderthal and is expected to bemore common in the D2 block set if the excess divergence were driven

by spillover signal from Neanderthal introgression. We further note that we do not observe a D2 peak in all non-African populations,

and especially that we do not see this peak in West Eurasians, despite each having considerable Neanderthal introgression – again

arguing against this explanation of the D2 mismatch.

Topologies with either the Altai Denisovan or D1/D2 block acting as an outgroup to other genomes – which are consistent with

H. erectus introgression into blocks or into the Denisovan – are extremely uncommon. While it is helpful to confirm the absence of

such topologies, they are not expected given our block identification methodology as they do not allow for excess similarity between

blocks and the Denisovan genome. In this context, the ((H,N),(D,X)) topology is interesting. This topology is consistent with, but

certainly not unambiguous evidence for, shared H. erectus introgression into both an introgressing block and the Altai Denisovan

genome. While the topology is common, importantly we do not see clear evidence that the frequency of this topology is substantially

different in D1 and D2. Thismay imply either that theH. erectus introgression identified in the Altai Denisovan genome in other studies

(see above) occurred earlier than the divergence of D2 from Altai Denisovan or later than the divergence of D1 such that it is Altai

Denisovan-specific.

Other frequency differences in topologies are observed and can be informative regarding the demographic drivers of the D1 andD2

block sets. In particular, three topologies show prevalence differences – an increase in the prevalence of (H,(N,(D,X))) in D1 versus D2,

and decreases in D1 versus D2 in both (H,(X,(D,N))) and (N,(H,(D,X))) (Table S4, column < D2 > / < D1 > ). The increased frequency of

(H,(N,(D,X))) in D1 is consistent with D1 originating from a less divergent Denisovan clade, as the D1 blocks join the Altai Denisovan

ancestor more recently and hencewill bemore likely to coalescewith the Altai Denisovan genome before other events. A similar argu-

ment applies to the (H,(X,(D,N))) topology – here, proportionally more of the D1 blocks have coalesced with the Altai Denisovan

already by the time the Altai Denisovan and Altai Neanderthal share common ancestry, such that (H,(X,(D,N))) should be under-rep-

resented in D1 versus D2. Again, this is observed. The increased prevalence of (N,(H,(D,X))) in D2 is not clearly expected and may be

associated with detection bias; the greater distance of D2 chunks from the Altai Denisovan render them harder to differentiate from

Neanderthal introgression, such that there is a tendency to retrieve topologies in which the Altai Neanderthal is placed deeper in

the tree.

The (H,(N,(D,X))) topology is consistent with a series of coalescent events that mirror the proposed population model – with an in-

trogressing population showing greatest affinity to the Altai Denisovan, then the Altai Neanderthal, and then humans. As such, the

hypothesis that D1 and D2 represent two divergent populations on the Denisovan clademakes clear predictions about the frequency

of different mutation motifs, conditioned on a block showing this topology. Specifically, recalling the mutation motif notation

[H,N,D,X], the counts should substantially reflect the branch lengths, as the block- and Altai Denisovan-specific branches are shorter

for D1, the motifs 0001 and 0010 are expected to be rarer in D1 than in D2. Given an identical position of the Denisovan/Neanderthal

common ancestor for D1 and D2, any shortening of these branches will lead to a corresponding lengthening of the common ancestral

branch of D1 and the Altai Denisovan, such that the 0011 motif is expected to be more common in D1. We sought to confirm this

pattern. Without conditioning on topologies, the Denisovan-specific motif 0010 was 23% more common in D2 than D1, and the in-

trogressing block-specific motif 0001 was 33% more common. Conditioning on the (H,(N,(D,X))) topology using the mismatch order

criteria, for example, places these motifs as 28% and 33%more common in D2 than D1, respectively. Providing further evidence of

consistency, the Denisovan/block shared motif 0011 is appropriately shortened when conditioning on the (H,(N,(D,X))), such that it is

20% less common in D2. The frequency of this motif is approximately equal when we do not condition on the topology (3% more

frequent in D2).

To summarize, the topology proportions in D1 and D2 blocks do not support the idea that D1/D2 mismatch differences are driven

by H. erectus introgression into the Altai Denisovan, into D1 or D2 blocks independently, or both. The prevalence of the (H,(N,(D,X)))

topology, and the topology differences between D1 and D2, are consistent with Denisovan-like introgression in Papuans originating

from two populations on the Denisovan clade.

The analysis above is useful in teasing apart the proportions and qualities of coalescent topologies represented in D1 and D2, and

can help to rule out specific causes of their mismatch distributions. However, especially given the complexity of block identification,

we emphasize that the topologies show consistency with a demographic scenario of interest rather than discounting all other sce-

narios. The topology differences between D1 and D2 could be consistent with other scenarios, including introgression from a Nean-

derthal/Denisovan sister-clade or extremely complex bottlenecks on the Denisovan clade.

Having established the likely cause of D1 and D2 mismatches as complexity in archaic hominin introgression, we sought to further

explore differences between the two block sets. We proceed by assessing evidence for different introgression dates based on block

lengths, and by asking whether a model with introgression from two deeply divergent Denisovan-clade populations is supported by

simulations.

h. D1/D2 Denisovan lineages introgressed at different dates

Given the likely demographic origin of the D1 and D2 haplotypes, the question of whether D1 and D2 have different introgression

dates is of particular interest. We therefore sought to estimate introgression dates based on haplotype lengths, which are expected

to follow an exponential distribution with its decay parameter depending on the introgression date and the amount of introgression
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(Equation 1 in Gravel, 2012). The accuracy of this approach depends on the power of our methods to detect haplotypes of different

lengths. Two factors are relevant. First, shorter haplotypes are expected to be harder to detect as signals of introgression may be

mistaken for noise. Second, haplotypes are expected to be broken up by phasing errors; while the incidence of switch point errors

is low in our data (see STARMethods S4), and while our use of archaic genomes in phasing is expected to substantially reduce errors

in introgressed regions, some errors are probable. The haplotypes that we assign to D1 and D2 are extremely long (> 180 Kb), such

that the signal of introgression is clear, and the power of our methods is expected to be consistently high. Nevertheless, we caution

that date estimates derived from this method may be better considered as relative rather than absolute dates.

We sought to use simulations to profile the potential of date estimation through the distribution of block lengths using a set of long

introgressing blocks, and to confirm that fitting dates using longer blocks only does not lead to substantial biases. We first note that

deviations from the exponential distribution are known to occur under certain combinations of introgression parameters (especially

smaller population sizes and larger admixture proportions; see Figure 3 in Liang and Nielsen (2014)). We therefore assessed the cor-

respondence between simulations and the exponential expectation for our parameter range of interest.

The results of 200 replicates of a Wright-Fisher forward-time simulation of 5 Mb chunks, with recombination rate 1.27 3 10�8

(average rate from the HapMap combined genetic map) and the chromosome discretized into 1 Kb segments for computational

simplicity, using an introgression proportion of 0.04, haploid Ne of 8334 (Australian Ne in Malaspinas et al. (2016)), and introgression

times from 50 to 2950 generations in steps of 50 generations, show that the exponential fit is close but not exact (Figures S4A and

S4B), even when all individuals in the population are sampled.We attempted to fit each simulation both bymaximum likelihood (using

the scipy.stats.expon.fit function), using either all blocks, thosewithminimum length 50 Kb, or thosewithminimum length 180Kb.We

were able to retrieve accurate introgression dates (Figure S4C), although there is a tendency to underestimate the introgression

date for more ancient introgression times. In the regime of interest (introgression times < 1800 generations), the deviation is at

most 10%–15%. These fittings confirm that it is possible to fit dates using longer block lengths only.

Additional challenges in inferring introgression dates arise from errors in blocks length estimation. We profiled these using the

forward-time simulations and fittings as above, but nowmodified the introgressing block lengths to Berror = B + Laplace(m, b) on sam-

pling, where B is the error-free simulated block length and the Laplace distribution location parameter m = 0, while scale parameter

b = 20000. Choosing the Laplace distribution as our error model assumes equal probability to over and under-estimate block length

with a constant probability of error per base pair. If Berror < 0, the block was discarded, capturing the difficulty in correctly identifying

short blocks. The Laplace(0,20000) distribution has a cumulative density function at 2.5% and 97.5% of �59915 and 59915 bp,

respectively, capturing very substantial errors in block sizes. Under thesemodels, we are still able to achieve accurate fitting of dates

(Figures S4B and S4D), although bigger biases arise when including smaller blocks in the fitting. Again, there is a slight tendency to

underestimate introgression dates by 10%–15% when using longer blocks.

Introgression may well have occurred over many generations rather than as a single event, and we considered it probable that

fitting using block lengths would emphasize the most recent introgression time. For example, if very weak introgression were (hypo-

thetically) to occur up to the present and even a small number of very long introgressing blockswere sampled, this could lead to a very

recent inferred introgression date, likely depending on the fitting procedure. We therefore repeated the forward-time simulations, this

time simulating introgression over 520 generations (15080 years with a generation time of 29 years) at a rate 0.04/520 = 7.693 10�5.

Note that the effective introgression rate is onlymarginally reduced compared to the single-event introgressionmodel due to replace-

ment of haplotypes that are already partially introgressed under this model, and the expected correction when there is relatively low

total introgression (as in our case) is minimal. Measuring the simulated introgression date as the mid-point in the introgression pro-

cess (e.g., weak introgression from 1090 to 1610 generations ago corresponds to a mid-point of 1350 generations), there is again a

slight bias to infer more recent introgression dates (Figure S4E). For the introgression times of interest, this bias is again nomore than

10%–15%.

Finally, we fitted the output of coalescent simulations generated in STAR Methods S10i, which builds on the Malaspinas et al.

(2016) model with Denisovan introgression at 1353 generations ago. A slight bias toward inferring more recent introgression dates

was observed, of approximately 5%. Adding errors to the sampled block lengths as above did not change the inference when using

long blocks > 180 Kb.

The simulations above suggest that introgression date fitting based on block lengths is effective given our demographic param-

eters and our use of larger block lengths, even under a strong block length estimation error model or introgression occurring over

many generations rather than as a single event. Nevertheless, in each case there is a slight bias toward recent dates, that is greatest

when introgression is more ancient. The downward bias in date estimation is limited to 10%–15% for the times most likely corre-

sponding to archaic introgression in humans, and is likely closer to 5%. Based on these simulations, we consider the dates we report

to be probable lower bounds on introgression dates, with true dates up to 15% more ancient than our fitting suggest.

We proceeded to perform exponential fittings on the lengths of blocks in the D1 and D2 sets (Figures S4F and S4G) using the

Python package statsmodels v.0.8.0 (Seabold and Perktold, 2010) and maximum likelihood fitting, assuming either a constant

recombination rate or the combined HapMap genetic map (Frazer et al., 2007). We confirmed 95% CIs through a block-bootstrap

procedure, whereby the genome was divided into 2 Mb chunks, consecutive chunks were combined if blocks spanned boundaries,

and artificial samples were generated by sampling the same chunks over all individuals with probability proportional to chunk length

(usually 2 Mb, but sometimes 4 Mb or more) until the total observed number of blocks corresponded to that expected from the data.

When calculating the date of introgression, we assumed an introgression proportion of 2% for each of D1 and D2, such that half of a
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proposed total of 4% Denisovan introgression (Malaspinas et al., 2016) entered from each ancestry into Papuans, and a generation

time of 29 years.

The results of the block length fittings are consistent with relatively recent introgression times. Under a constant recombination

rate, we estimate dates of D1 introgression as 17.9 kya (95%CI 8.7–29.4) and D2 as 32.9 kya (95%CI 22.9–44.2). While there is

no Papuan recombination map, we also sought to incorporate local recombination rates into the fitting by scaling block lengths

by the average combined HapMap genetic map recombination rate over all blocks in the D1 or D2 sets, respectively. This maintains

the approximately exponential distribution of block lengths. Under this model, we retrieved date estimates of D1 introgression at 29.8

(95%CI 14.4–50.4) and D2 at 45.7 (95%CI 31.9–60.7). The weight of probability supports younger dates within this range (Main Text

Figures 4B and 5E). On average, D2 introgression is relatively older than D1 introgression, by 1.84 and 1.53 times for the two recom-

bination models above, respectively.

To assess the robustness of this finding, we repeated the fitting after removing replicates of haplotypes observed in multiple in-

dividuals. In this way, we are seeking to observe recombination histories that are independent, and to limit the impact of haplotypes

at higher frequency due to selection. Under a constant recombination rate and using unique haplotypes (Figures S4F and S4G), we

estimate dates of D1 introgression as 20.2 kya (95%CI 10.4–33.5) and D2 as 29.5 kya (95%CI 23.2–36.1); under the HapMap scaled

recombination rate, we estimate dates of D1 introgression as 33.7 kya (95%CI 16.8–57.7) and D2 as 44.3 kya (95%CI 34.4–55.4). The

D2 average introgression date is now estimated as 1.46 or 1.31 times as ancient as D1, depending on the recombination model. The

various block length fittings all suggest that D1 introgression was relatively more recent than D2 introgression.

Several other lines of evidence are consistent with D1 having amore recent introgression date. First, the variance in the frequencies

of non-overlapping D1 blocks is less than that observed for D2 blocks (Fligner’s test for equal variance = 7.1, p = 0.008). After a pulse

of introgression, we expect the variance in haplotype frequencies to increase as haplotypes drift away from their initial frequency.

Second, there is structure in the geographic distribution of D1 and D2 introgression (Main Text Figures 5A and 5B). The amount

of identified sequence in the D1 block set (including blocks with mD < 0.1) is significantly lower in Baining samples as compared

to mainland Papuans (1.33 Mb per phased haploid genome versus 1.82 Mb on Papua; Welch’s t test T = –3.9, p = 4 3 10�4), while

there is no evidence of a different amount of D2 (including blocks with mD > 0.23) sequence (1.28 Mb versus 1.37 Mb, T = –0.8,

p = 0.41). To account for sampling differences between New Guinea (N = 52) and Baining (N = 16) and to estimate CIs around the

observedmean, we resampled onemillion times (with replacement) 16 samples from each of two islands.While the average amounts

of D2 per individual in both populations overlap (NG: 2.75, 95%CI 2.36–3.12; Baining 2.37, 95%CI 1.96–2.79), Baining has

significantly fewer D1 chunks (NG: 3.64, 95%CI 3.10–4.19; Baining 2.60, 95%CI 2.19–2.99). To additionally assess whether the ratio

of D1 between mainland Papuans and Baining is greater than the ratio of D2 between mainland Papuans and Baining, we resampled

sets of mainland Papuan (N = 52) and Baining (N = 16) individuals with replacement one million times, recording whether the median

pairwise D1 ratio was greater than the median pairwise D2 ratio. D1[Papuaresample]/D1[Bainingresample] was greater than

D2[Papuaresample]/D2[Bainingresample] in 95.7% of resampling iterations.

Together, these geographical patterns raise the intriguing possibility that the D1 component ismore typical of mainland Papua, and

introgression may even have been ongoing in the time-frame of the split between Baining and Papuan populations. Similarly, there is

a tendency for populations outside ISEA to show a Denisovan signal more consistent with D2 (Main Text Figure 3C), although the

limited amount of Denisovan introgression means that the blocks contributing to the mismatches are shorter, and hence there is

less resolution in the mismatch distributions. While it is possible that the reduced D1 signal in Baining samples is caused by weak

Asian admixture (given the lack of evidence for the D1 signal in mainland Asia), this would additionally be expected to reduce the

Baining D2 signal compared to mainland Papuans (not observed, see above) and generate an excess signal of Asian ancestry in

the Baining as compared to mainland Papuans (not apparent in LOTER results, Main Text Figure 1A and Table S2; or in the PCA,

Main Text Figure 1B, where the Baining cluster toward Australians rather than with the Asian-admixed Bougainville samples). We

additionally note the detailed demographic analyses in Hudjashov et al. (2017), which strongly place the Baining as a recently sepa-

rated Papuan population that does not harbor additional admixture signals from a wide range of other regional populations.

i. Assessing the multiple-ancestry hypothesis

Three lines of evidence support the probability that D1 and D2 represent introgression from two different archaic populations, likely

both on the Denisovan clade. First, our approach to identifying D1 and D2 blocks, and the coalescent topologies that they represent,

are consistent with both sets of blocks showing clear affinity to the Altai Denisovan over the Altai Neanderthal genomes, and clear

divergence frommost modern humans. Second, there is spatial variation in the prevalence of D1 in populations with someDenisovan

introgression (e.g., mismatches consistent with D1 are underrepresented in Baining versus mainland Papua, Main Text Figures 5A

and 5B, and may also be rarer in East ISEA, West ISEA and mainland Asia compared to D2, Main Text Figure 3C, although resolution

is limited, Figure S2). This supports the likelihood of D1 and D2 arising from different source populations rather than a single popu-

lation of composite ancestry. Third, and supporting the same conclusion, there is some evidence that the introgression dates of D1

and D2 blocks are different (STAR Methods S10h) and that there is spatial heterogeneity in the frequency of D1 chunks within Near

Oceania. We therefore sought to determine whether a model with two pulses of introgression from archaic populations on the De-

nisovan clade could generate the mismatch distribution observed in modern Papuans using coalescent modeling.

We used the msprime v.0.6.1 program (Kelleher et al., 2013) to simulate a modified version of the highest-likelihood demographic

model inferred by the Malaspinas et al. (2016) study, using Australians as a proxy for our Papuans. We first translated the original

fastsimcoal2 model (provided by the authors) into msprime. We then modified the model as shown in Figures S4A and S4B, allowing
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two pulses of introgression from populations on the Denisovan clade. We did not incorporate reported inbreeding in the Altai Nean-

derthal. Apart from this modification, the structure of the model remains unchanged. As in that model, sampling times of the Altai

Denisovan and Altai Neanderthal are 2058 and 2612 generations respectively. Parameters of the model are also unchanged and

are given in Table S5 and Figures S5A and S5B, except:

1. The single time of divergence between the Altai Denisovan and the introgressing Denisovan is replaced by two times, t1 and t2

indicating the divergence between the Altai Denisovan and branch D1, and the divergence between the Altai Denisovan/D1

common ancestor and D2

2. The population size of all internal Denisovan-clade branches (Altai Denisovan/D1 common ancestor and Altai Denisovan/

D1/D2 common ancestor) is set to NDeniAnc.

3. Instead of a single Denisovan introgression into Australians 1353 generations ago of 4%, there are two introgressions 1353

generations ago into Papuans, one from D1 and one from D2. These are in proportion p1 3 0.04 and (1.0 – p1) 3 0.04.

To determine whether our modifiedmodel can return the two observed peaks, and to propose demographic parameters, we simu-

lated genetic data using themodifiedmodel and studied themismatch distribution. Specifically, we simulated 5Mb of sequence data

for a sample of 144 Papuan haplotypes, two Altai Denisovan haplotypes and two Altai Neanderthal haplotypes. As in the Malaspinas

et al. (2016) study, themutation rate was set to 1.43 10�8 per base pair per generation. The recombination rate was constant and set

to 1 3 10�8 per base pair per year. To mimic our own data, we masked all sites that were heterozygote in either the two Altai Deni-

sovan haplotypes or the two Altai Neanderthal haplotypes. We extracted introgressed blocks from each Papuan haplotype in the

simulation (using custom scripts and the detailed migration tables recorded by msprime) and recorded the mismatch between these

blocks and the Altai Denisovan. The process was repeated 240 times for each parameter set, yielding a total of 1200 Mb simu-

lated data.

The simulated data output by msprime is ‘perfect’ – there is no SNP calling process that might miss variation, and no missing data

that would be masked by QC filters. As we want to avoid consequent biases in model inference, we sought to express the mismatch

between introgressed blocks (simulated and real) and the Altai Denisovan genome as a proportion of the average mismatch to the

Altai Denisovan observed in a population lacking introgression. We therefore converted the observed mismatch against Denisovan

for each block in the real data into a fraction of the genome-wide average mismatch of our 75 West Eurasian samples. For the simu-

lated data, we generated 1200 Mb of data for 150 West Eurasian chromosomes sampled with two chromosomes from the Altai De-

nisovan and Altai Neanderthal, using the unmodified model from the Malaspinas et al. (2016) study. As before, we masked archaic

heterozygote sites, but this time calculated the mismatch over the entire dataset to obtain a population-average mismatch between

simulated humans andDenisovan.When fitting themodel, we expressed themismatch distribution in introgressing Denisovan blocks

found in simulated Papuans as a fraction of this simulated West Eurasian genome-wide average.

Wefirst explored theparametersona coarsegridwith t1˛½7000;8000;9000; 10000;11000�, t2˛½10000; 11000;12000; 13000;14000�,
NDeniAnc˛½100; 200;500;1000;2000;3000; 4000�and p1˛½0:4;0:5;0:6�. For each parameter set, we retrieved the mismatch distribution

based on the 2000 longest introgressing blocks in the real and simulated data and calculated the sum of squared difference. Based

on the output of this coarse fitting, we were able to localize the region of the parameter space showing a close fit to the data, and fitted

a finer grid in this region with t1 ˛½8750;9000;9250;9500;9750; 10000;10250;10500�, t2 ˛½11500; 11750;12000; 12250;12500;
12750;13000; 13250;13500�, NDeniAnc ˛½50; 100;150;200; 250;300; 350;400� and p1˛½0:45;0:50;0:55;0:60;0:65;0:70�. Assessing the

mismatch fit using sumof squared differences yielded our final parameter values of t1 = 9750, t2 = 12500,NDeniAnc = 100 andp1 = 0:55.

To cross-validate our methodology, we simulated 5Mb of sequence data 24000 times using our final parameter set. We resampled

400 of these 5 Mb simulations (representing the introgression ideally observed from 2000 Mb of total data) from this pool, with

replacement, 100 times. We then repeated our fitting procedure using the previously defined parameter space grid, yielding time es-

timates of t1 [9000–10250], t2 [11500–13000], N < 350, p1 = [0.45–0.7]. The distribution of cross-validation mismatches is shown in

Figure S5C.

Our simulations support the probability that the D1 and D2 mismatch peaks reflect archaic ancestry in modern Papuans that de-

rives from two populations on the Denisovan clade. Both of these populations were very distantly related to the Altai Denisovan, and

more divergent that than the East Asian- (and Siberian-, in our data; Main Text Figure 3C) specific Denisovan introgression (D0 inMain

Text Figure 4B). Based on a mutation rate of 1.43 10�8 and a generation time of 29 years, simulations suggests that the population

contributing D1 chunks split from the Altai Denisovan approximately 261–297 kya, while the population contributing D2 chunks split

from the Altai Denisovan approximately 334–377 kya. These dates are population split times, measured in years before present. In

order to fit the sharp peaks we observed in the data, a small population size of the ancestral Denisovan population (< 350) is required.

The model we explore is extremely simple, and we do not consider our results as proving that an ancestral Denisovan population of

this size necessarily persisted for > 100 ky; a low population size or population bottlenecks, however, are strongly implied.

Our results suggest that Denisovans were highly structured whenmodern humans encountered them, consisting of multiple, highly

diverged populations that remained sufficiently separate for hundreds of thousands of years to show distinct signatures when their

genes are identified in modern humans. This raises the intriguing possibility that biogeographical barriers, and possibly islands,

played an important role in maintaining Denisovan population structure. While the absence of the D1 signal in East ISEA and else-

where may reflect a lack of resolution (Figure S2), the different amounts of D1 in our mainland Papua and Baining samples
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(Main Text Figures 5A and 5B) hints at geographic variation, potentially indicating different introgression histories in these populations

(Main Text Figure 5E). We therefore sought to modify our simulation protocol to directly assess the probability of drift and sampling

error generating the difference in D1 observed between mainland Papuans and Baining.

j. Less D1 signal in New Britain than New Guinea

We furthermodified theMalaspinas et al. (2016) simulationmodel with two introgressing Denisovan populations to incorporate a pop-

ulation representing the Baining. We sought to construct this model such that it incorporates an amount of drift between the Baining

and Papuan population on the high end of realistic values, in order to generate a very conservative estimate of the model distribution

of ratios of D1 signal between the two groups. Our model follows the demographic analyses presented above, which indicate that the

Baining have no excess Asian admixture compared to mainland Papuans (LOTER; Figure 1A; Table S2) and are closely related to

Papuans (PCA; Figure 1B), and additional analyses in Hudjashov et al. (2017), which show that the Baining cluster with Papuans

and have no additional admixture signals when analyzed together with an even broader set of regional populations. The structure

of the model involves the Baining budding from the Papuan population at a time tB, after Denisovan introgression into their common

ancestor. The haploid population size of the ancestral Papuan/Baining population before the split is 8834 (see Figure S5B). After

budding, the Baining have a population size of NBaining and the mainland Papuans have a population size of NPapua; these are either

constant or functions of time (see discussion below). The two populations aremodeled as entirely isolated after budding, tomaximize

drift and ensure that the model is conservative. Based on the extremely similar levels of Asian ancestry in Baining and Papuans

(LOTER, Main Text Figure 1A; Table S2) and the similar placement of Baining and Papuans by PCA (Figure 1B), the migration rate

between Baining and Asians was set to the same rate as between Papuans and Asians. The Baining and Papuan populations

have the same introgression history in the simulations, such that both D1 and D2 introgress at 1353 generations ago into the

Papuan/Baining ancestral population. The sample sizes of the Baining and Papuans were set to 32 and 104 haploid chromosomes,

respectively, corresponding to the 16 and 52 individuals in our Baining and mainland Papuan samples.

To determine the split time between the mainland Papuan and Baining population, we used the SMC++ v1.9.3 split option, which

analyses pairs of populations simultaneously to infer genetic divergence times jointly with population size histories (Terhorst et al.,

2017). These split times are effective split times, based on a hard split model without migration after populations diverge. These es-

timates do not depend on phasing. We used unphased data with the 99% call-rate filter applied, which yielded a split time between

mainland Papuan and Baining populations at 15680 years BP with split time diploid Ne = 4620 (Main Text Figure 5C). Using genomic

data without the call-rate filter resulted in a very similar estimate (split time = 16280 years BP, Ne = 4940). The mutation rate was fixed

to 1.453 10�8 (Narasimhan et al., 2017) and generation time to 29 years; chromosome 6, which contains the hypervariable HLA re-

gion, was excluded from the analysis.

We used these SMC++ results to implement Model 1, with tB = 540 generations ago and the population sizes for Baining andmain-

land Papuans after tB as inferred by SMC++ (incorporating a recent population bottleneck among the Baining and recent population

growth for mainland Papuans). We simulated 40 Gb of data using the model as 8000 independent 5 Mb simulations using msprime,

recording the total amount of D1 and D2 introgression observed in the mainland Papuan and Baining samples using the migration

tables in msprime. We used this information to construct a simulated null distribution of the ratio of D1 (and D2) sequence in mainland

Papuans relative to the Baining. We performed 5000 resampling iterations whereby we drew 5 Mb simulations from the set of 8000

simulations until the average total amount of introgressing D1 and D2 sequence in a simulated individual was equal to or just greater

than the average amount observed in our Papuan and Baining samples (3.05 Mb). On average, this led to us using just eighteen 5Mb

simulations totaling 90 Mb of simulated data per resampling iteration. The observed median D1[Papua]/D1[Baining] pairwise ratio

(1.36) is placed on the 98.5th percentile of the simulated distribution (Main Text Figure 5D), indicating that the excess D1 found in

mainland Papuans compared to Baining is highly unlikely to be explained by drift alone. In contrast, the observed median

D2[Papua]/D2[Baining] pairwise ratio (1.06) is placed on the 65.3th percentile of the simulated D2 ratio distribution, indicating that drift

alone is sufficient to explain the excess D2 in mainland Papuans.

Given that we use population sizes inferred based on two different methods (SMC++ for recent times and the joint site frequency

spectrum for times before tB and non-Papuan/Baining populations), we sought to confirm that the model correctly captures the drift

observed in mainland Papuans and the Baining, and the average divergence of these populations. The observed average heterozy-

gosity of the Papuan and Baining samples was 6.433 10�4 and 6.003 10�4 respectively, and the weighted FST (Equation 10 in Weir

and Cockerham, 1984) calculated using all sites that were variable between the samples was 0.0934. We used the simulation model

described above to generate null distributions of these values by performing the same calculations on 5000 resampling iterations of

four hundred 5Mb simulations (totaling 2Gb simulated data per iteration). The observed heterozygosity of themainland Papuanswas

at the 0.2th percentile of the simulated distribution and the heterozygosity of the Baining was 98th percentile of the distribution, while

the observed FST was well over the range generated by the simulations (Figure S6A). This suggests that the simulated Papuans have

insufficient drift and that the two populations are insufficiently diverged, such that the SMC++ informed model may simulate Papuan

and Baining samples that are more similar in their D1 ratios than would be expected based on observed drift and divergence.

We therefore supplemented this model with two additional, more conservative models, to check the robustness of the result that

the difference in D1 between mainland Papua and the Baining is unlikely to be generated by drift. We first assumed that the relatively

low population divergence in simulations was caused by incorrect recent population sizes, and tried to identify a fixed value ofNBaining

that leads to observed heterozygosity and weighted FST values, fixing NPapua = 8834 as in our implementation of the Malaspinas et al.

(2016) model above. We assessed the fit of constant values of NBaining ˛½2000;2500;3000; 3500;4000;4500; 5000� by, as before,
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simulating 40Gb of data using themodel as 8000 independent 5Mb simulations and generating heterozygosity andweighted FST null

distributions by resampling. We found that the new fixed value of NPapua fitted the Papuan heterozygosity extremely well.

NBaining = 3500 yielded a good fit between simulated and observed FST (39
th percentile) and Papuan heterozygosity (43rd percentile);

the observed Baining heterozygosity was marginally greater than the simulated Baining heterozygosity (99th percentile), indicating

that the revised model is conservative with respect to incorporating more drift than is observed (Figure S6B). Thus, our Model 2

used parameters tB = 540 and NBaining = 3500.

We second asked how an older population split time between mainland Papuans and the Baining might impact results. There is

early archaeological evidence of early human occupation on NewBritain from 35.5 kya (Pavlides andGosden, 1994), although impor-

tantly genetic divergence is often expected to be more recent due to migration between two populations after separation, which can

affect SMC++ split time estimates (Terhorst et al., 2017). Transportation of obsidian tools occurs within the Bismarck Archipelago

during the Pleistocene and externally to mainland Papua by the mid-Holocene (Swadling and Hide, 2005). Evidence for post-settle-

ment contact can also be found in the translocation of plant and animal species (Swadling and Hide, 2005), though these appear to

have occurred considerably after initial occupation (O’Connor, 2010), suggesting limited contact over long periods. To assess the

implications of an earlier split date, we re-implemented the model setting tB = 800 (23.3 ky). This is more ancient than the inferred

split times between mainland Papuan populations (10–20 kya; Bergström et al. (2017)) and is of a similar order to the Papuan/

aboriginal Australian split (11–27 kya; Mallick et al. (2016)).

We re-estimated NBaining using the same procedure as above, exploring parameter values NBaining ˛½3000;3500;
4000;4500;5000;5500; 6000�. No parameter value could fit both heterozygosity and weighted FST. We therefore conservatively

chose to explore NBaining = 4500, which yields FST values considerably higher than observed FST (observed 0.0934, 95% CI of simu-

lated FST 0.112–0.115) and places the observed Baining heterozygosity in the 98.9th percentile of the simulated distribution (Fig-

ure S6C), such that ourModel 3 used parameters tB = 800 andNBaining = 4500. As withModel 2, these parameter values are expected

to generate simulated data with more drift in the Baining than is observed in our dataset. Model 3 also simulates substantially greater

divergence between Papuans and the Baining than the observed FST, such that the model will tend to generate more variable D1

ratios and is extremely conservative.

The results from these two additional models are shown in Main Text Figure 5D. As before, the observed D2 excess in mainland

Papua is not outside the distribution expected due to drift. Similarly, in both cases the observed D1 excess in mainland Papua is un-

expected given a model whereby the difference is introgression followed by drift and sampling – for Model 1 the observed D1 ratio is

in the 97.8th percentile of the simulated distribution and for Model 2 the D1 ratio is in the 95.4th percentile of the simulated distribution.

Together, these simulations suggest that the reduced frequency of D1 blocks among the Baining is unlikely to result from drift, and

instead is more likely to reflect a different Denisovan introgression history among Baining compared to mainland Papua.

S11 - Frequency distribution of archaic blocks
The frequency of archaic introgressed blocks are shown in Table S6.

a. High frequency Denisovan blocks

We sought to assess evidence of adaptive introgression from the two Denisovan ancestries, in our high confidence set of Denisovan

introgressing blocks, by calculating the frequency of Denisovan ancestry over the genome. While archaic blocks may drift to high

frequency, they are more likely than low-frequency blocks to have been subject to natural selection – either adaptive introgression

during the initial introgression process or subsequent selection on introgressed variation. We first retrieved all introgressing blocks >

20 Kb from our data, and filtered out the blocks having more mismatch with Denisovan compared to mismatch with Neanderthal. We

then used the bedtools v.2.27.0 ‘multiinter’ command to obtain intersected Denisovan-introgressed regions and frequencies among

all Papuan individuals.We assigned genes from the Ensembl 91 (GRCh37) database to each intersected block, and report the top 1%

frequency regions and the frequency of all introgressed regions in Table S6A. We repeated this procedure for East ISEA individuals

(Table S6B).

A genome-wide map of Denisovan introgression in the Papuan and East ISEA samples (Main Text Figure 6), based on Tables S6A

and S6B, reveals several sharp peaks at known (e.g.,WARS2, Racimo et al. (2017); TNFAIP3, Gittelman et al. (2016); and FAM178B,

Sankararaman et al. (2016) and Ilardo et al. (2018)) and unreported (e.g., WDFY2, the TMPO/IKBIP/APAF1 gene cluster) loci. The

replication of several loci that have previously been proposed to be subject to adaptive introgression strongly supports our approach

to detecting Denisovan introgression and potentially adaptively introgressed regions. Some of our higher frequency blocks overlap

previously identified deserts of introgression (Vernot et al., 2016), but this is not unexpected given the large size of the proposed de-

serts and the small number of Papuans samples they were identified from (N = 35). Specifically, we see high frequency introgressing

Denisovan blocks at the ROBO2 gene in Papuans (chr3:76572330-76634485, 39.6% frequency) overlapping a proposed 14 Mb

desert (chr3:76500000-90500000). Lower frequency Denisovan blocks (maximum 16%) also occur in a proposed 10.9 Mb desert

(chr8:54500000-65400000).

b. Overlap with modern selection signals

High frequency Denisovan introgressed blocks could arise due to two different selective processes – either directly and immediately

on the introgressing haplotypes, leading to longer high frequency haplotypes, or on introgressed diversity some time after the intro-

gression event. We can approximately predict that the former relate primarily to biological differences between humans and the

archaic species, while the latter relate to interactions between humans and their environment (e.g., disease, diet, etc.). In the latter
Cell 177, 1010–1021.e1–e24, May 2, 2019 e20



model, introgression provides a source of genetic variation that is non-random in the sense that it has already been subject to evolu-

tionary forces in the archaic population. This genetic variation may provide novel opportunities for adaptive selection in human

groups with archaic introgression, even many thousands of years after the introgression ended.

To detect signals of recent positive selection in genetic regions with high Denisovan introgression, we calculated nSL (Ferrer-Ad-

metlla et al., 2014) on all SNPs with ancestral information for the Baining of New Britain, mainland Papuan population of New Guinea

and East ISEA continental group.We divided the genome into non-overlapping 200Kbwindows and defined the nSL statistic score of

a window as the proportion of SNPs with jnSLj > 2.0. We discarded windows with fewer than 10 SNPs. We then assessed overlap

between top 5% nSL window scores and top 1% frequency introgressed Denisovan blocks (see above), comparing introgression

signals in Papuans to nSL for the Baining and mainland New Guinea groups, and introgression signals in East ISEA to nSL for the

East ISEA group.

We found that only 3/34 Denisovan introgressed haplotypes that were high frequency in Papua were in nSL top 5%windows in the

Baining group and these were not significant. For completeness, these genes were TNFAIP3 (nSL percentile 3.6%), WDFY2 (2.2%)

and SUMF1 (4.5%).

In mainland Papuans, 2/34 high-frequency Denisovan introgressed haplotypes were top 5% nSL hits – GLT8D2 (1.1%) and

ZNF280D (2.9%). In East ISEA, just 1/39 top 1% high-frequency Denisovan introgressed haplotypes was a top 5% nSL hit –

TMEM131 (nSL percentile 1.7%).

Given the suggested role of WDFY2 in lipid metabolism adaptation, we assessed the mainland Papuan and Baining nSL top 1%

gene lists for enrichment of fat metabolism pathways (method described below). We did not observe enrichment, but did note the

presence of genes important in lipid metabolism and synthesis – most notably windows including FASN in Baining, New Guinea

and East ISEA, and FADS1 and FADS2 in Baining only. We also note the presence of the important carbohydrate metabolism

geneAGL in our top 1%nSL gene list in both the Baining andmainland NewGuinea. Further work is required to determine the precise

role of adaptation and the detailed evolutionary history of these genes in Oceanian populations.

c. Gene ontology enrichment

We tested whether specific sets of genes have significantly elevated frequencies of Denisovan ancestry using the Ontologies tab of

the Enrichr web interface (Kuleshov et al., 2016). Specifically, we retrieved all genes identified as introgressed at high frequency (top

1%, using Tables S6A and S6b) and searched for enrichment in the Gene Ontology lists ‘GO Cellular Component 2018’, ‘GO Biolog-

ical Process 2018’ and ‘GOMolecular Function 2018’, as well as the two phenotype lists ‘MGI Mammalian Phenotype 2017’ and ‘Hu-

man Phenotype Ontology’ and one tissue expression list ‘Jensen TISSUES’. We performed this analysis for both combined Papuan

and East ISEA groups; results that survive multiple hypothesis test corrections and are not driven by clusters of co-located genes are

reported in the Main Text, and include enrichment associated with expression in adipose and uterine tissue and fetus development.

Full results, including categories that either i) had uncorrected p values < 0.005 (the corrected p values using Benjamini-Hochberg

method are also reported) and/or ii) were driven by multiple co-located genes are given in Table S6C. Enrichment was observed in

categories related to smooth muscle cell proliferation, immunity and adipogenesis in both Papuans and East ISEA, e.g., ‘negative

regulation of smooth muscle proliferation’ involving TNFAIP3/PPARG genes (NG: p value = 0.001, corrected p value = 0.1; EISEA:

p = 0.0005, corr-p = 0.049); ‘negative regulation of inflammatory response’ involving TNFAIP3/SAMSN1 genes in Papuans

(p = 0.0005, corr-p = 0.09) and TNFAIP3/PPARG genes in East ISEA (p = 0.003, corr-p = 0.07); and ‘positive regulation of fat cell dif-

ferentiation’ involving PPARG and WDFY2 genes (NG: p = 0.002, corr-p = 0.1; EISEA: p = 0.0009, corr-p = 0.05).

d. High frequency long and D1/D2 blocks

As longer high-frequency introgressing blocks are expected when a Denisovan haplotype rises to high frequency early in the intro-

gression process, we repeated our introgressing block frequency analysis for blocks > 180 Kb that we were able to assign to one of

the two Denisovan ancestries, D1 (Table S6D) and D2 (Table S6E). Analyzing blocks assigned to D1 introgression revealed two re-

gions at high frequency (> 20% in Papua), containing FAM178B/FAHD2B/ANKRD36, ZNF280D and FBXL20/MED1/CDK12.

Analyzing blocks assigned to D2 introgression revealed five regions at high frequency, containing ANKRD28, NFAT5/NQO1,

COG7/GGA2/EARS2/UBFD1/NDUFAB1 and ARID4A/TOMM20L/TIMM9/KIAA0586. A gene-free region 15 Kb downstream of

CENPW was also highly introgressed based on D2 blocks. We observed an extreme nSL signal (nSL percentile 0.2%) in the window

containing CENPW in the Baining group, and note that the window containing ZNF280D (D1) also had a high nSL signal (see above).

As we are only able to assign D1 and D2 ancestry to large blocks > 180 Kb, we additionally explored a concept whereby confident

D1 or D2 blocks might be used as local ‘flags’ for their respective ancestries. In this way, we can adopt an assumption – that short, <

180 Kb, introgressing Denisovan blocks overlapping a > 180 KbD1 (or D2) chunk are also from the D1 (or D2) population – to leverage

off our high confidence Denisovan ancestry dataset. We performed a bootstrapping analysis whereby we repeatedly sampled two

Papuan individuals from our dataset and, using their > 20 Kb high confidence introgressing Denisovan blocks, identified the overlap

between them. We divided the genome into 40 Kb non-overlapping windows and, for each window, recorded whether the pair had

overlapping introgression. We performed this resampling 100000 times, counting the number of observations in each 40 Kb genomic

window. Then, for each > 180 Kb D1 and D2 block, we identified the most commonly observed 40 Kb window, and ranked D1 and

D2 blocks according to this frequency (Tables S6D and S6E, column ‘BOOTSTRAP_RANK_20KB’). While the frequency of D1 andD2

blocks themselves and their ranks according to the above analysis are highly correlated, some rare low-frequency introgressed

blocks assigned to D1 and D2 cover regions that are highly introgressed based on smaller blocks. This may reflect occasional
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misclassification (STAR Methods S10d), such as when a small number of D2 blocks are erroneously identified as D1 leading to an

apparent low-frequency D1 introgression event, or adaptive introgression of primarily smaller Denisovan blocks.

e. High frequency residual S* windows

We additionally determined the frequency of uncommon residual S* windows (see STAR Methods S12, below) found in Papua

(Table S6F) and East ISEA (Table S6G). Residual S* is a signal that would be expected given non-Neanderthal, non-Denisovan

archaic introgression (e.g., it would be consistent with introgression fromH. erectus), but could equally be caused by other processes

including balancing selection or local properties of molecular evolution (e.g., an accelerated mutation rate in non-African popula-

tions). In our combined Papuan sample, top 1% residual S* frequency blocks include a cluster of genes around VN1R1 (Vomero-

nasal 1 Receptor 1), as well as PDE1C (Phosphodiesterase 1C), DPH6 (Diphthamine Biosynthesis 6) and PRKCH (Protein Kinase

C Eta). In our East ISEA sample, top 1% residual S* frequency blocks include a cluster of genes around HLA-A (Major Histocompat-

ibility Complex, Class I, A), and PDE1C and PRKCH. There is considerable correlation between the frequency of residual S* blocks in

Papua and East ISEA, such that theHLA-A region is also found at high frequency in Papuan residual S* data and the VN1R1 region is

at high frequency in East ISEA residual S*. While these two genes are especially intriguing – VN1R1may be involved in the species-

specific pheromone system in other species (Rodriguez and Mombaerts, 2002) and sociosexual behavior in humans (Henningsson

et al., 2017), and the hypervariable HLA-A gene plays a critical role in immunity – further study is required to determine the evolu-

tionary history detected by the residual S* signal in each case. In particular, archaic introgression (Abi-Rached et al., 2011) and

balancing selection masquerading as archaic introgression (Yasukochi and Ohashi, 2017) have both been proposed for the HLA re-

gion, and may likewise play a role in the signal around VN1R1.

S12 - Residual S* signal
The S* method is designed to identify archaic introgression without requiring the introgression to be derived from a population with

similarity to a known, sequenced archaic hominin. As such, studying this signal may reveal otherwise cryptic evidence of introgres-

sion from hominins outside the Neanderthal and Denisovan clades. Additionally, the signal that S* identifies – non-African variation in

high linkage disequilibrium – would be expected to occur due to structure in the Out of African migration(s). Given the known pres-

ence of Homo floresiensis in our study area (Brown et al., 2004; Sutikna et al., 2016), the possibility that late Homo erectus was

contemporary with the earliest anatomically modern humans in ISEA (Yokoyama et al., 2008), and that a proposed early Out of Africa

model may be required to explain genetic diversity patterns in Papuans (Pagani et al., 2016), we sought to further profile the S* signal

(Main Text Figure 7).

a. No more than 1% unexplained archaic introgression

The output of the S* analysis consists of non-overlapping 50 Kb windows reported for each genome (rather than each chromosome

copy). Global patterns of S* (> 99%confidence, i.e., higher confidence signal, see STARMethods S7c) show a sharp peak in Papuans

(Table S3A; Figure S7A). Calculating pairwise sharing of these S* windows (Figure S7B) indicates that the signal is quite broadly

shared, with Papuans again unusual in sharing a lot of signal between each other and with East ISEA. These patterns are consistent

with known patterns of Denisovan introgression, but could also be caused by other demographic or introgression processes. We first

sought to assess to what extent this signal might be driven by Denisovan introgression. We used bedtools to remove S* > 99% con-

fidence windows that were inferred to be caused by Neanderthal introgression, based on > 5% coverage of the merged set of HMM

and CP Neanderthal introgressed blocks over both chromosome copies. We refer to this trimmed dataset as S*NoNean (Figure S7A,

right pane). We observe that S*NoNean retains its sharp peak in Papua, while causing a reduction in the overall introgression signal of

75%–80% in all populations when compared to S*. Repeating this process but instead removing S* windows inferred to be caused by

Denisovan introgression leads to a slight dip in S*NoDeni signal in Papua (Figure S7A, right pane), consistent with Denisovan introgres-

sion explaining the majority of the excess S* Papuan introgression signal. While the overall introgression signal drops by 84% in

Papua compared to S*, there is still a fall of 54% in West Eurasia.

This analysis raises two interesting points. First, it is possible to detect the distinctive introgression signal in Papua using S*. With

only a Neanderthal genome available, we would further be able to classify the source of introgression as non-Neanderthal using

S*NoNean. Alternatively, with only a Denisovan genome available, we would be able to use S*NoDeni to identify the primary driver of

this signal as ‘Denisovan’ introgression, as opposed to early out-of-Africa (OOA) processes involving modern humans, or additional

introgression from an unknown archaic source. This suggests that S* is also well-suited to discovering introgression from unknown

hominins, by studying signal behavior when masking introgression from known hominins.

Second, studying theWest Eurasian signal is particularly informative asWest Eurasians carry minimal known Denisovan introgres-

sion. Two statistical patterns are important. Removing Denisovan introgression blocks from West Eurasian S* might be expected to

cause a minimal reduction in introgression signal. Instead, there is a substantial 54% reduction in introgression signal relative to S*

when studying S*NoDeni, confirming that our CP and HMM Denisovan block sets contain considerable spillover from outside the De-

nisovan clade. This spillover is likely due to Neanderthal introgression (as explored in STARMethods S9a and S9b), but as we do not

study this ambiguous signal in depth, we cannot rule out introgression from Neanderthal/Denisovan sister clades. Conversely,

removing Neanderthal introgression blocks fromWest Eurasian S* might be expected to remove virtually all the introgression signal.

Instead, a considerable 27% of the introgression signal remains. This could be due to false positives in the S* signal; or limited power

of other methods to detect Neanderthal introgression; or a result of hitherto unknown introgression processes detected by S* but not

CP or the HMM. The overlap in the S* signal that is removed when trimming Neanderthal or Denisovan introgression confirms our
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observation in Table S3B – that a great deal of introgressing blocks are ambiguous, showing greater similarity to both theNeanderthal

and Denisovan genomes than human variation, likely due to the more recent common ancestry of the archaic hominins.

Because the excess Papuan S* signal is so completely eliminated by filtering out Denisovan introgression (Figure S7A, right pane),

a very simple calculation puts a tentative upper bound on the amount of introgression into humans from outside the human/Nean-

derthal/Denisovan clade. Papuans have 97.2 Mb S* signal compared to the 40.8 Mb observed in Europeans. Assuming the 56.4 Mb

excess corresponds to 4% Denisovan introgression, we might expect S* to detect 28.2 Mb from 2% Neanderthal introgression –

given that the power of S* to detect introgression from Neanderthals and Denisovans in humans is expected to be similar following

their similar genetic distance from humans and introgression times. This leaves 12.6 Mb of S* signal unaccounted for in West Eur-

asians and Papuans – a combination of false positives, limited power of the CP and HMM, and, potentially, unknown introgression

signals – suggesting a maximum of�1% introgression from outside the human/Neanderthal/Denisovan clade. As such introgression

would be expected to be easier to detect, given a similar introgression date, than Neanderthal or Denisovan introgression due to

greater divergence from humans, this is only intended as an approximate upper bound. The bound is on average additional introgres-

sion in West Eurasia and Papua, but the absence of obvious excess signal in other regions suggests it applies more broadly. Never-

theless, individual populations within continents or isolated groups not captured by our samplingmay have greater amounts of highly

divergent introgression.

b. Profiling the residual S* signal

While the calculation above suggests that if introgression from outside the (Human, Denisovan, Neanderthal) clade occurred, it was

limited; it remains interesting to attempt to identify possible regional peaks in S* that are consistent with such introgression.We there-

fore attempted to remove introgression signals from the (Neanderthal, Denisovan) clade by filtering out both Neanderthal and Deni-

sovan introgressing blocks, as inferred by CP and the HMM. Starting with the S* > 99% confidence output, we now used bedtools to

remove any S* windows with more than 5% cumulative overlap from the union of CP and HMM Neanderthal and Denisovan blocks

(see Figure S7C schematic). We are interested in the remainder, which we call residual S* (RS*).

On average, individuals had 172 residual S* windows. We observed that sharing of residual S* between continental groups is com-

mon. To quantitatively profile this pattern while taking sample size into account, we randomly down sampled each population to 20

individuals 1000 times and counted the number of residual S* windows that were observed in all continental groups (‘global’), 4 to 8

continental groups (‘widespread’), or 1–3 continental groups (‘uncommon’). The southeast Asian groupwas excluded due to its small

sample size, such that the analysis incorporated Papua, East ISEA, West ISEA, South Asia, East Asia, Siberia, America and West

Eurasia. Table S3G shows the average amount of residual S* sequence per individual in each category (also see Figure S7D).

Papua has the lowest signal of residual S* (151 blocks/individual covering 8.8 Mb, 10.4% of the original 1265 S* blocks/individual),

while South Asia has the highest residual S* signal (185 blocks/individual covering 10.6 Mb, 23.1% of the original 710 S* blocks/in-

dividual). The differences between groups are small (Figure S7A, right pane), and approximately 15%–20% of residual S* windows

are found globally (Figure S7D), and over half are widespread. This broad distribution may reflect limitations of our African sample in

capturing African variation, demographic events such as pre-OOA genetic structure or shared drift during theOOA bottleneck, evolu-

tionary forces such as purifying selection within Africa, or unusual genomically local patterns of molecular evolution that are not

captured by the simulation model. Interestingly, Papua, West Eurasia and South Asia show the highest proportion of uncommon re-

sidual S* signal (Table S3G; Figure S7D). While this may partly reflect an Asian ancestry bias in our definitions of continental groups,

the pattern is consistent with local demographic processes specifically impacting these populations.

A potential cause of excess uncommon residual S* is region-specific introgressive sequences that coalesce earlier than the (H,N,D)

group of known hominins. This is consistent with the placement of Homo erectus on the hominin species tree (but also many other

causes; see below). Such sequence could be caused by direct introgression from H. erectus; or introgression from Denisovans if the

introgressing Denisovan population had, like the Altai Denisovan (Meyer et al., 2012), mixed with H. erectus. It could also be caused

by incomplete lineage sorting within the Neanderthal or Denisovan populations that are known to have mixed with modern humans;

by balancing selection; and by increases in local mutation rate in non-Africans. The topologies of interest are (X,(H,(D,N))), (X,(D,(H,N)))

and (X,(N,(D,H))). While we cannot accurately calculate topologies (see STARMethods S10 g) on genomicwindows, which cover both

chromosome copies and will frequently be chimeras of different coalescent histories, we can make simple predictions about the fre-

quency of certain mutation motifs given H. erectus introgression – following the [H,N,D,X] notation, a substantial increase in the fre-

quency of 0001 and an increase in 1110 that is dependent on the split time ofH. erectus andmodern humans. To assess evidence for

H. erectus introgression, we therefore retrieved all global and uncommon residual S* blocks in each continental group, and divided

the sum of the 0001 and 1110 mutation motifs observed in these blocks by their total sequence length.

While our initial calculations identified a clear excess in average 1110 and especially 0001 mutation motifs/bp in East ISEA and

Papua, further investigation revealed that this was largely driven by high-frequency introgressed windows around the HLA-A

gene. HLA regions have been discussed in the context of archaic introgression (Abi-Rached et al., 2011), and balancing selection

masquerading as archaic introgression (Yasukochi and Ohashi, 2017). Given the possible role of balancing selection or locally accel-

erated evolution in the HLA region, we profiled the frequency of 0001 and 1110 motifs when excluding chromosome 6 from the anal-

ysis (Figure S7E). There is a tendency toward higher 0001 and 1110 in East ISEA and Papua, centered on the islands of Flores and

Lembata. Uncommon residual S* windows in West Eurasia tend to have relatively high rates of the 1110 motif.

Thesemutationmotif patterns suggest a slight excess of unique variation that is not sharedwith humans, the Altai Denisovan or the

Altai Neanderthal in East ISEA and Papua. However, the signal is not strong, and the difference in total RS* between populations is
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small, suggesting at most little introgression from outside the Human/Neanderthal/Denisovan lineage in these populations. Still, the

question remains as to the cause of this mutation motif pattern. Homo erectus introgression has been suggested among Andaman

populations (Mondal et al., 2016), but debate is ongoing (Skoglund et al., 2018). The broader region is known to have harbored both

H. floresiensis and H. erectus in a time frame potentially overlapping occupation by modern humans. However, Papua especially is

the global center of gravity of Denisovan introgression among modern human populations. The Altai Denisovan is thought to have

some H. erectus ancestry (Lipson and Reich, 2017; Mallick et al., 2016; McColl et al., 2018; Prüfer et al., 2014; Skoglund et al.,

2016), though it is not yet clear whether this is also true for introgressing Denisovan populations. Alternatively, region-specific intro-

gression from either Neanderthals or Denisovans could introduce haplotypes coalescing outside the (H,N,D) tree due to incomplete

lineage sorting. Further analysis of other statistics, or the specific haplotypes driving the residual S* signal, coupled with complex

simulations, would be required to fully clarify this question, and are beyond the scope of this work.

S13 – Rampasasa is not an introgression outlier
Our dataset includes 19 samples from Rampasasa, Flores, a village that is home to some individuals of unusually short stature and

close to the cave where Homo floresiensis (Brown et al., 2004) bones were found. The dataset also includes two other villages on

Flores (Cibol and Bena) and samples representing many other islands in East ISEA. This offers the opportunity to test for anomalous

signals of unusual archaic introgression into Rampasasa, as recently also assessed by Tucci et al. (2018), with the benefit of being

able to include samples from nearby and regional populations. Compared to surrounding regions, we did not detect any unusual

signs of Neanderthal or Denisovan introgression in the village – the total amount of the genome with evidence for Neanderthal intro-

gression only (62.9 Mb) was similar to neighboring villages (e.g., Cibol 64.4 Mb) and at the lower end of the East ISEA range (62.9–

67.2 Mb). Denisovan introgression is similarly low (23.6 Mb; Cibol 23.8 Mb; region 23.6–42.9 Mb). The levels of Denisovan and Nean-

derthal introgression are exactly as expected based on the proportion of Papuan ancestry in Rampasasa (Main Text Figure 7).

As with all other populations, the S* statistic detected a substantial archaic signal in Rampasasa that could not be assigned by CP

or the HMM to either Denisovan or Neanderthals. We also studied residual S*: S* windows that explicitly exclude Neanderthal or De-

nisovan introgression and so may be enriched for introgression signal contributed by genetically uncharacterized hominins, such as

H. erectus introgression if it occurred. Although the residual S* signal in Rampasasa is high, there was no clear evidence of excess

residual S* signal compared to regional or global populations (per individual, 20Mb in Rampasasa; Cibol 19.4Mb; region 18.7–20Mb;

also see Main Text Figure 7). An analysis of the composition of the residual S* signal (STARMethods S12) indicates that Rampasasa,

and East ISEA and Papua more broadly, are relatively more consistent with limited H. erectus introgression (Figure S7E), but we

emphasize again that the signal is not conclusive and that various other explanations exist (see STARMethods S12 above). Our find-

ings are consistent with those of Tucci et al. (2018), in that while they cannot rule out additional archaic introgression into Rampasasa,

they suggest that any such introgression must have been extremely limited. By including highly local populations in our analysis we

are able to provide additional regional context, further emphasizing that Rampasasa is not an outlier compared to nearby villages and

islands.

DATA AND SOFTWARE AVAILABILITY

FASTQ files for each individual are available in the European Genome-phenome Archive (EGA) with accession number

EGAS00001003054 (https://www.ebi.ac.uk/ega/home). Variant files are available from the Estonian Biocenter data archive (http://

evolbio.ut.ee).

New code has been uploaded to GitHub:

The new HMM model: https://github.com/guysjacobs/archHMM

Topology counting code: https://github.com/guysjacobs/archTopoCount

Code to combine BED-format introgressed windows: https://github.com/guysjacobs/archBedCombine
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Figure S1. Flowcharts of Analyses, Related to STAR Methods
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Figure S2. Assessing the Mismatch Distribution in East ISEA and Resolution to Distinguish Mismatch Peaks Using Different Block Lengths,

Related to Figure 3 and STAR Methods

(A) Mismatch of East ISEA high-confidence Denisovan blocks against the Altai Denisovan. The two peaks observed in the Papuan data do not clearly resolve due

to low sample size. (B) Resampling Papuan high-confidence Denisovan blocks to the East ISEA chunk length distribution and re-calculating the mismatch in-

dicates that the resolution to detect the dual peak signal is low given the East ISEA block lengths. The light blue lines indicate individual resampling iterations and

the red line the average of resampled sets. The mismatch of the 2000-longest blocks in Papuans (dashed, green) and East ISEA (dashed, blue) are shown for

comparison. (C) Simple theoretical model showing the impact of block length on the expected mismatch distribution, given a Denisovan introgression scenario

(legend continued on next page)



representing Papuans (top) and East Asians (bottom). The expectedmismatch is scaled, using the simulatedmutation rate, to thousands of years. Left to right are

the simulated mismatch distribution based on 50 Kb, 100 Kb, 250 Kb and 500 Kb blocks. The blue line corresponds to introgression from the Denisovan clade

diverging from the Altai Denisovan at t1, while the red line corresponds to introgression from Denisovan clade diverging at t2. The green line is the mixture of the

two, assuming each introgression has a 50% weighting.
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Figure S3. Mismatch Distributions Using Different Block Sets, Related to Figure 3 and STAR Methods

(A to C) show mismatches of Denisovan introgressed blocks against the Altai Denisovan, while panels D to F show mismatches of Neanderthal introgressed

blocks against the Altai Neanderthal. (A) CP-derived block sets, showing raw CP Denisovan output, the high-confidence Denisovan block set, and the high-

confidence Denisovan block set when keeping archaic heterozygotes for phasing (see STAR Methods S3). (B) HMM-derived block sets, showing raw HMM

Denisovan output and a filtered high-confidence HMM Denisovan block set with HMM Neanderthal signal removed. (C) High-confidence Denisovan block set,

this time removing the Neanderthal signal by dropping blocks overlapping the CP Vindija Neanderthal output, or a CP with the Neanderthal population defined as

both the Altai and Vindija Neanderthal genomes. (D) Regional mismatch of 2000-longest blocks of high-confidence Neanderthal introgressing sequence, based

on trimming the CPNeanderthal (Altai) block set. (E) Regional mismatch of 2000-longest blocks of high-confidence Neanderthal introgressing sequence, this time

based on trimming the HMMAltai Neanderthal block set. (F) As (D), but using rawCPNeanderthal sequence extracted using either the Vindija Neanderthal or both

Altai and Vindija Neanderthal genomes.
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Figure S4. Using Simulations to Assess the Accuracy of Introgression Time Inference Based on Exponential Fitting of Block Length Dis-

tributions, and Example Fits, Related to Figures 4 and 5 and STAR Methods

(A) Close correspondence between theoretical (dashed) and simulated (solid) block length distributions 500, 1000, 2000 and 2500 generations after a pulse

introgression event replacing 4% of a population of size 8334. (B) Fitting the introgression date using data coalescent simulated for demographic model fitting.

The dates are accurately inferred, with only a slight downward bias, even when errors are added. (C) Accuracy of introgression date inference based on forward-

time Wright-Fisher simulations and a single pulse of 4% introgression. (D) As in (C), but with block length errors added to the output. (E) As in (C), but with

introgression occurring more gradually over 540 generations instead of a single pulse. (F) Exponential fitting of unique > 180 Kb D1 blocks, assuming a genome-

wide average recombination rate of 1.273 10–8. (G) As in (F), but for D2 blocks. The relatively flatter distribution of D1 blocksmay reflectmore recent introgression

of that ancestral component.
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Figure S5. Simulation Model Schematic and Mismatch Results, Related to Figure 4 and STAR Methods

(A) Schematic of the Malaspinas et al. (2016) model, showing (left) traditional relationships between humans and archaic hominins (Denisovans, D;

Neanderthals, N) and (right) our modified model allowing for two Denisovan-related branches, D1 and D2, both of which introgress into Papuans. Branch lengths

are drawn to scale, and branch widths represent population sizes. (B) Detail of the modified Malaspinas et al. (2016) model, which incorporates four introgression

events from the Neanderthal branch, one to Asia (883 generations ago, 0.2%), one to Australia/Papua (1412 generations ago, 0.5%), one to Eurasia (1566

generations ago, 1.1%) and one to the common ancestor of Australians/Papuans and Eurasians (1853 generations ago, 2.4%). While the original model

incorporated a single Denisovan introgression into Australians/Papuans (1353 generations ago, 4.0%), here we include two introgression events, one from each

of D1 and D2 (1353 generations ago, total 4.0% between both introgressions). Migration occurs between ‘neighboring’ human populations, and post-split

bottlenecks are also included, see Table S5A and Malaspinas et al. (2016). (C) Cross validation (blue) of best-fitting parameter values to the mismatch of high

confidence Denisovan-specific blocks (red). The shaded blue region indicates the 95% interval of mismatch distributions generated.
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Figure S6. Using Heterozygosity and Fst to Inform Models of Mainland Papuan/Baining Drift, Related to Figure 5 and STAR Methods

Observed (red vertical line) and simulated (blue histogram) heterozygosity and weighted average FST for our mainland Papuan and Baining sample, with (A)

Model 1, tB = 540 generations ago and mainland Papuan and Baining population sizes from the present to 540 generations ago set as inferred by SMC++ (see

Main Text Figure 5C), (B) Model 2, tB = 540 generations ago and Baining population NBaining = 3500, and (C) Model 3, tB = 800 and Baining population size

NBaining = 4500. Note that the scale of the FST plot of model 3 differs from the other two models.



W
. E

ur
as

ia

S
. A

si
a

S
ib

er
ia

E
. A

si
a

A
m

er
ic

a

S
E

. A
si

a

W
. I

S
E

A

E
. I

S
E

A

P
ap

ua

W
. E

ur
as

ia

S
. A

si
a

S
ib

er
ia

E
. A

si
a

A
m

er
ic

a

S
E

. A
si

a

W
. I

S
E

A

E
. I

S
E

A

P
ap

ua

S*NoNean S*NoDeni
S* (>99%)

100Mb

80Mb

60Mb

40Mb

90Mb

70Mb

50Mb

30Mb

25.0Mb

20.0Mb

15.0Mb

10.0Mb

22.5Mb

17.5Mb

12.5Mb

7.5Mb

RS*

5 Mb
10
15
20
25
30 America

E Asia

E ISEA

W Eurasia

Papua

S Asia

SE Asia

Siberia

W ISEA America

E Asia

E ISEA

W Eurasia

Papua

S Asia

SE Asia

Siberia

W ISEA America

E Asia

E ISEA

W Eurasia

Papua

S Asia

SE Asia

Siberia

W ISEA

other E Asia + Siberia ISEA + Papua

CP D

total overlap
S*

HMM D

HMM N

CP N

<5% of chunk length. Keep for residual S*>5% of chunk length. Remove

5.2E-4

5.6E-4

6.0E-4

S
. A

si
a

S
ib

er
ia

A
m

er
ic

a

E
. A

si
a

W
. I

S
E

A

E
. I

S
E

A

P
ap

ua

W
. E

ur
as

ia

0001

m
ut

at
io

n 
m

ot
if 

co
un

t /
 b

p

0.8E-4

1.0E-4

1.2E-4
1110

global
uncommon

S
. A

si
a

S
ib

er
ia

A
m

er
ic

a

E
. A

si
a

W
. I

S
E

A

E
. I

S
E

A

P
ap

ua

W
. E

ur
as

ia

W
. E

ur
as

ia

E
. I

S
E

A

W
. I

S
E

A

E
. A

si
a

A
m

er
ic

a

S
ib

er
ia

S
. A

si
a

P
ap

ua

0.0

0.2

0.4

0.6

S. Asia

Papua

E. ISEA

Siberia

E. Asia
W. ISEA

America

0.12 0.16 0.20
Proportion of global residual S*

0.35

0.40

0.45

0.50

P
ro

po
rti

on
 o

f u
nc

om
m

on
 re

si
du

al
 S

*

P
ro

po
rti

on
 o

f r
es

id
ua

l S
* 

in
 c

at
eg

or
y

W. Eurasiaglobal
uncommon

5.2E-4

5.6E-4

6.0E-4

S
um

at
ra

M
en

ta
w

ai
N

ia
s

Ja
va

B
or

ne
o

S
ul

aw
es

i
FL

. C
ib

ol
FL

. R
am

pa
sa

sa
FL

. B
en

a
Le

m
ba

ta
Ta

ni
m

ba
r

K
ei

A
lo

r
N

ew
 G

ui
ne

a
B

ai
ni

ng

m
ut

at
io

n 
m

ot
if 

co
un

t /
 b

p

0.8E-4

1.0E-4

1.2E-4

S
um

at
ra

M
en

ta
w

ai
N

ia
s

Ja
va

B
or

ne
o

S
ul

aw
es

i
FL

. C
ib

ol
FL

. R
am

pa
sa

sa
FL

. B
en

a
Le

m
ba

ta
Ta

ni
m

ba
r

K
ei

A
lo

r
N

ew
 G

ui
ne

a
B

ai
ni

ng

0001 1110

Figure S7. Regional Distribution of S* and Residual S*, and Mutation Motif Characteristics of Residual S* Windows, Related to Figure 7 and

STAR Methods

(A) Continental distribution of S* (left), S* after excluding Neanderthal (S*NoNean) or Denisovan (S*NoDeni) blocks, and residual S* (RS*) after excluding both

archaic blocks (right). (B) Average sharing of total S* signal between all possible pairwise comparisons of samples from different regional groups, reported in Mb.

Populations are split into three groups for ease of visualization; individual population estimates are colored according to population label colors. (C) Schematic of

residual S* filtering procedure, whereby a 50 Kb S* window (top, purple; only one prediction is made that covers both chromosome copies) may be removed (left)

or kept (right) depending on whether it is over 5% covered – in total – by introgression block predictions from CP (turquoise, middle) or the HMM (gray, bottom)

from either Neanderthal (green) [S*NoNean], Denisovan (yellow) [S*NoDeni] or both [RS*]. (D) Continental pattern of the relative proportions of global and uncommon

residual S*. (E) Local variation in the 0001 and 1110 motifs across continental groups and within ISEA and Papua, with chromosome 6 excluded to discount the

impact of residual S* windows in the hypervariable HLA region.
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