
Fast In-Memory CRIU for Docker Containers
Ranjan Sarpangala Venkatesh

Georgia Institute of Technology
ranjansv@gatech.edu

Till Smejkal
TU Dresden

till.smejkal@tu-dresden.de

Dejan S. Milojicic
Hewlett Packard Labs

dejan.milojicic@hpe.com

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

ABSTRACT
Server systems with large amounts of physical memory
can benefit from using some of the available memory ca-
pacity for in-memory snapshots of the ongoing computa-
tions. In-memory snapshots are useful for services such
as scaling of newworkload instances, debugging, during
scheduling, etc., which do not require snapshot persis-
tence across node crashes/reboots. Since increasingly
more frequently servers run containerized workloads,
using technologies such as Docker, the snapshot, and
the subsequent snapshot restore mechanisms, would be
applied at granularity of containers. However, CRIU, the
current approach to snapshot/restore containers, suf-
fers from expensive filesystem write/read operations on
image files containing memory pages, which dominate
the runtime costs and impact the potential benefits of
manipulating in-memory process state.
In this paper, we demonstrate that these overheads

can be eliminated by using MVAS – kernel support for
multiple independent virtual address spaces (VAS), de-
signed specifically for machines with large memory
capacities. The resulting VAS-CRIU stores application
memory as a separate snapshot address space in DRAM
and avoids costly file system operations. This accelerates
the snapshot/restore of address spaces by two orders
of magnitude, resulting in an overall reduction in snap-
shot time by up to 10× and restore time by up to 9×.
We demonstrate the utility of VAS-CRIU for container
management services such as fine-grained snapshot gen-
eration and container instance scaling.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7206-0/19/09. . . $15.00
https://doi.org/10.1145/3357526.3357542

CCS CONCEPTS
• Software and its engineering→Virtualmemory;
Checkpoint / restart; Main memory; • Hardware→
Non-volatile memory.

KEYWORDS
In-memory Address Space Snapshot/Restore, Container
snapshot/restore, CRIU, Multiple Virtual Address Spaces
(MVAS), Memory-Centric Computing
ACM Reference Format:
Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S. Milojicic,
and Ada Gavrilovska. 2019. Fast In-Memory CRIU for Docker
Containers. In Proceedings of the International Symposium on
Memory Systems (MEMSYS ’19), September 30-October 3, 2019,
Washington, DC, USA. ACM, Washington, D.C., USA, 13 pages.
https://doi.org/10.1145/3357526.3357542

1 INTRODUCTION
Container technology, with Docker as a front runner, is
widely adopted for management of datacenter and cloud
applications and infrastructure resources [16, 26]. A key
mechanism underpinning many of the operations in the
container life-cycle management is snapshot-restore. It
permits for the entire state of a running container to be
snapshotted, temporarily suspended, or saved and later
restored in an entirely different container [9, 27]. On ma-
chines with large amounts of memory, many snapshot-
based services, such as scaling of workloads via new con-
tainer instances [15], rewind-restore debugging [24], or
even scheduling [12], can be accelerated via in-memory
snapshots; after all, these services do not require persis-
tent snapshots that need to survive node crashes and
reboots.
For Docker containers, the current approach uses

CRIU [3], a widely-used open-sourced snapshot/restore
tool in userspace. CRIU provides application-transparent
snapshotting for a wide range of applications, including
LXC and OpenVZ containers. It operates by suspending
the running process container, and saving all the process
state, including the process memory, into files.

CRIU captures container application states of the CPU,
registers, signals and also memory in image files. The
cost of writing/reading memory pages from image files

https://doi.org/10.1145/3357526.3357542
https://doi.org/10.1145/3357526.3357542

is expensive for applications with large memory foot-
prints. Even on ramfs, which is an in-memory filesystem,
the time to write/read memory pages and associated
metadata dominate snapshot/restore time. Our experi-
ments show memory restore time accounts for 83% of
the total restore time for a 8GB address space. Such
overheads can obviate the benefits sought after from
in-memory snapshots. Moreover, they are not necessary
for in-memory snapshots which do not require the per-
sistence property typically associated with writing data
into files.
In this paper, we show that these overheads can be

eliminated through use of recent kernel-level support
for multiple independent address spaces (MVAS) [4, 23].
MVAS is a modified operating system process abstrac-
tion which can support multiple virtual address spaces
(VAS). These address spaces are independent of the pro-
cess and can be detached, saved, and again attached
in the same or different process. If saved in persistent
memory they can live across reboots or even operating
system versions.

We present VAS-CRIU, a new in-memory snapshot/re-
start mechanism which uses MVAS. In VAS-CRIU, we
snapshot process memory into a process independent
virtual address space. A VAS contains a page table and
a memory descriptor not tied to any process. The VAS
and the snapshotted application share pages in a Copy-
On-Write (COW) manner, reducing snapshot creation
time and the overall memory footprint of the snapshots.
The VAS can later be remapped to restore a container’s
process memory using COW, accelerating restore and
rewind operations. VAS-CRIU speeds up both snapshot
and restores of containers.

We demonstrate the utility of VAS-CRIU with two use
cases. The first one stresses the snapshot side of VAS-
CRIU, by creating container snaphots at fine granularity.
Frequent snapshotting of application containers is very
useful in various scenarios ranging from crash recovery
to replay debugging. In current approaches to snapshot
application containers using CRIU, memory pages are
written into image files, causing application containers
to be paused while a snapshot is created. If the applica-
tion is snapshotted frequently, the total runtime will be
dominated by the snapshot time, limiting the number of
snaphots and their granularity. Figure 1 shows the split
cost of snapshotting an application container. The fig-
ure shows that snapshotting memory accounts for 80%
of the snapshot time. VAS-CRIU accelerates the snap-
shot time by storing memory pages as separate address
spaces in DRAM. As a result, VAS-CRIU acheives re-
duced snapshot time, which in turn allows for frequent
snapshot generation.

Figure 1: CRIU: Split cost of snapshot time

The second use case relies on restore as a mechanism
to scale container instances, where the restore perfor-
mance is critical for achieving high responsiveness. We
show that with VAS-CRIU, new container instances are
restored faster than with CRIU. To summarize, both of
these use cases can benefit from availability of large
physical memory capacity. However, to fully operate
at memory speeds, they require a mechanism such as
VAS-CRIU, which removes the unnecessary overheads
of existing CRIU implementations.

This paper makes the following contributions:
• We present the implemention of the support for mul-
tiple virtual address in the Linux Kernel (Section 3.2).

• We present VAS-CRIU, a new in-memory address
space snapshot/restoremechanism for containers (Sec-
tion 3.3). By operating on native address space abstrac-
tions (i.e., page tables) and by avoiding unnecessary
file system operations, VAS-CRIU acheives two orders
of magnitude savings in the time to snapshot/restore
memory pages.

• Experimental evaluations of the VAS-CRIU-based snap-
shot and restore mechanisms in the context of sup-
porting fine grained snapshotting of containers demon-
strate that VAS-CRIU results in 9-10× reduction in
overall snapshot/restore time.

2 BACKGROUND
Before providing detail on the design and benefits of
VAS-CRIU, we provide a brief overview of the existing
mechanisms available in Linux through the CRIU utility
(Checkpoint Restore In Userspace), and on the original
design of MVAS.

2.1 CRIU
CRIU is an application transparent snapshot/restore tool
in userspace for Linux. The CRIU project has extended
the mainline Linux kernel with system calls that support
snapshot/restore. CRIU stores application snapshots as
protobuf image files in a filesystem. CRIU is also used for
migrating applications (e.g., Docker containers) across

Figure 2: CRIU snapshot/restore algorithm

nodes in a network. However, in the context of this
paper, we are only concerned with the use of CRIU for
snapshot/restore on a single node.
The basic CRIU operations are:

• Snapshot a process into an image file in $CWD:
criu dump -t PID -vvv -o dump.log

• Restore a process from an image file from $CWD:
criu restore -vvv -o restore.log

Snapshot procedure. CRIU takes the PID of the appli-
cation to be snapshotted and freezes the entire process
tree rooted at PID to ensure state information does not
change during a snapshot. CRIU’s snapshot procedure
relies on the /proc filesystem to capture the process
file descriptor information, pipes, memory maps, etc.,
and write all of this in a file (as shown in Figure 2). Our
main focus in this work is on capturing memory map-
pings and associated pages, which dominate the cost.
The following steps happen during a memory snapshot
in standard CRIU:
1. CRIU captures Virtual Memory Areas (VMA) infor-

mation by parsing /proc/pid/smaps/ (anonymous
process memory) and /proc/pid/map_files/ (mem-
ory mapped files).

2. Bitmap of pages to be written out is created.
3. Pipes for each VMA region are created.
4. Position independent parasite code is injected into the

process in two steps using ptrace(PTRACE_SEIZE,
...). First, only a few bytes required for the mmap
syscall are inserted at the current instruction pointer
location. Second, mmap allocates memory and loads
the parasite code blob, which once instantiated, ex-
ecutes commands sent by CRIU. For snapshotting,
the parasite code maps memory segments into a pipe
using vmsplice().

5. Using splice() these pages are written out from the
pipe into image files.

Restore procedure. On restore, CRIU forks and trans-
forms itself into the process it restores. Shared resources
are restored once, and later implicitly shared upon fork().
Since CRIU is transforming itself, it restores all resources
except for memory mapping, timers and threads. To
restore memory, a new context is required, which is
provided by a restorer code blob. This is also position-
independent, similar to the parasite code. The restorer

code blob is loaded at an address which does not con-
flict with the current CRIU memory mapping and the
memory mapping of the process being restored. CRIU
jumps into the restore context and does the following:
1. Unmaps all CRIU memory mappings.
2. Performs virtual dynamic shared object (VDSO) proxi-

fication. This enables CRIU to make appropriate mod-
ifications if a restore is made on a different kernel
version, such as on another machine, since the VDSO
ELF object could have changed.

3. Creates new memory mapping for the restored pro-
cess.

Limitations in CRIU. There are two design limita-
tions of CRIU which affect efficiency and reliability of
restores. First, during restore CRIU cannot mmap snap-
shotted VMAs in place since they could conflict with
existing CRIU mappings. Instead, CRIU allocates a large
contiguous buffer which is later remapped into different
VMAs by the restorer blob. This adds complexity and
time overhead in the restore code path. Second, CRIU
assumes a child process inherits anonymous private
mapping if the start and end addresses of a VMA are the
same. However, this approach fails if the VMA has been
remapped.

2.2 Original MVAS
MVAS [4] was designed for large memory-centric com-
puting [5] addressing more physical memory than even
the size of the virtual address space. Conventional meth-
ods using mmap() and munmap() become inefficient for
saving pointer-based data structures across process life-
times and for providing shared memory between pro-
cesses. To overcome these limitations, MVAS provides
virtual address spaces as first-class citizens which live
beyond the lifetime of processes and can be dynamically
attached, detached and switched into by any process
with appropriate permissions. The original work was
prototyped in FreeBSD and Barrelfish.

For VAS-CRIU we leverage a Linux MVAS kernel [23]
to quickly create and restore memory as separate virtual
address spaces. In particular, we leverage the following
functions of Multiple Virtual Address Spaces.

vas_create(name, access mode) creates a new
VAS with the given name and access mode. The VAS will
belong to the current user and the user’s main group
(uid and gid).

vas_attach(pid, vid, type) attempts to attach
the VAS with the given vid to the process with the given
pid. The type defines how the attached VAS can be used.
Allowed values are read-only attaching or read-write.

Other functions, such as detach, find, and delete
are straightforward.We do not use switch in this work [4].

3 DESIGN AND IMPLEMENTATION
We summarize the assumptions that underpin the de-
sign of our solution, and provide details for the MVAS-
specific extensions in Linux and the implementation of
VAS-CRIU.

3.1 Design Assumptions
We have made the following design assumptions while
developing VAS-CRIU.

Snapshot all process state inDRAM, leveragingVAS
for the process address space. Fast snapshotting can
be achieved by snapshotting memory state stored in
DRAM. In the future, we expect to use NVM to per-
sist VASes across reboots/system crashes. For now, we
choose fast snapshot in memory over persistent snap-
shot on disks/SSDs. We argue that there are many im-
portant use cases where the ability to perform fast in-
memory snapshotswill significantly impact performance.
Saving memory pages into files is expensive in terms of
performance, even with fast access to a storage medium.
We show this by a relatively poor performance of CRIU
snapshot/restores over ramfs, as compared to VAS-CRIU.
The cost of funneling snapshot-writes and restore-reads
through the VFS layer is high.

Optimize both snapshotting and restore in support
of our use cases. In traditional use of snapshot/restore,
snapshot time is more important than restore time due
to a higher frequency of snapshots and rare use of re-
store, typically on failure. However, the motivating use
cases for in-memory snapshotting of containers, such as
scheduling, memory-to-memory migration, debugging,
etc., demand both – fast snapshot and fast restore. VAS-
CRIU maintains memory snapshots in DRAMwhich can
be easily mapped into the restore process address space.

Trade-off COW costs for snapshot/restore time.
COW costs affect application execution due to copy-
ing pages on write. However, we focus on applications
where these costs are not critical. For example, this
may be unacceptable for high performance applications
where any noise during application execution is detri-
mental to performance. For the use cases we focus on
this is an acceptable trade-off.

3.2 Linux MVAS
VAS-CRIU depends on an implemention of MVAS sup-
port for Linux. MVAS is open sourced, available at [23],
and being discussed for integration in the mainline
Linux. We introduced several new data structures to
manage the necessary MVAS data.

One of the new data structures is struct vas which
is the kernel’s representation of an address space created
with the MVAS kernel feature. This data structure is allo-
cated in the kernel every time a program wants to create
a new VAS. Since these address spaces are first class cit-
izens in the OS (i.e., they are not bound to the lifetime
of the process, or even operating system if stored in
non volatile memory), they have to be managed inde-
pendently in the kernel. To achieve this, we are using
a radix tree indexed with the id of the VAS. This radix
tree is a global data structure in the kernel and access to
it is protected using the Read-Copy-Update mechanism
(RCU). Hence, the frequently happening read accesses
do not suffer any bottlenecks.
The second data structure we introduced represents

an address space that is currently attached and used by
a process – struct att_vas. Since this data structure is
actually bound to the lifetime of a process and the VAS,
it is not managed in a global list, but instead in a list per
VAS (vas_link). For performance reasons, the struct
att_vas data structure is additionally also managed in
a second per-process list (tsk_link). Having the data
structure added to two lists allows easier search for
a VAS attached to a process and for which processes
currently use a specific VAS.

The third data structure we introduced into the kernel
is struct vas_context. This data structure is added
to the in-kernel representation of a process (struct
task_struct) and contains the list of all VASes that
are attached to a process. It allows sharing of attached
VASes between struct task_struct data structures.
The main reason for this additional indirection in the
kernel is that in Linux, struct task_struct represents
both processes and threads. However, we wanted VAS
to be attached to all threads of one process and not
only to the particular thread that performed the attach
operation. Hence, the information which VASes are at-
tached to a process is not directly kept in the struct
task_struct but instead in a struct vas_context to
which the task_struct only has a pointer. This design
facilitates easier sharing of information about attached
VASes among all threads of one process.

In Linux, segments have been deprecated based on
feedback from the Linux community. As a result, the
Linux MVAS implementation uses lazy attach, to defer
copying PTE entries until a page fault. A few other op-
timizations were introduced in support of switch (e.g.,
no automatic syncing of common areas) which are less
relevant for VAS-CRIU.

3.3 VAS-CRIU Implementation Details
During a snapshot, CRIU freezes the application to save
state, such as CPU registers, file descriptors, pending
signals and memory onto files. As shown in Section 4,

Figure 3: Snapshot/restore with VAS-CRIU

Table 1: System calls introduced in VAS-CRIU.
Name Parameters Description

vas_snapshot pid Creates a Copy-On-Write VAS
based memory snapshot of a
given process. Upon success it
returns a vid of the newly cre-
ated VAS. Else returns negative
integer.

vas_restore pid, vid Restores memory mapping of a
particular process, based on a
given VAS. Returns 0 on success.

for most applications the time to snapshot memory dom-
inates the total snapshot time, even for in-memory files
via ramfs.

The goal of VAS-CRIU is to reduce the memory snap-
shot/restore time by snapshotting process memory in
DRAM.We useMVAS to acheive this. VAS-CRIU is based
on CRIU and requires kernel support for MVAS. Figure 3
illustrates that VAS-CRIU defers to the original CRIU
implementation for dealing with non-memory related
states.

VAS-CRIU eliminates the vmsplice() and splice()
steps from CRIU, and snapshots the current application
memory state into a process independent address space
which lives in DRAM. This address space is created in a
Copy-On-Write (COW) fashion, which reduces memory
snapshot time by orders of magnitude.
We introduce the new functionality in CRIU using

two new operations, vas_snapshot and vas_restore,
summarized in Table 1. In the CRIU snapshot code path,
after freezing the process, we call vas_snapshot(pid)
to create a VAS snapshot. With this approach, there is no
need to send a memory snapshot daemon command to
the parasite code in the snapshotted process. Commands
sent to the daemon are ofmuch higher costs as compared
to a simple vas_snapshot().

For VAS restore, in the restorer blob, after unmapping
the CRIU mappings, we simply call vas_restore(). We
just copy the VMA data structures for all regions, except
for the VDSO and VVAR regions. VAS-CRIU eliminates
the two limitations of CRIU highlighted in Section 2.
Since VAS-CRIU captures the entire VAS, including all
VMAs, there is no need to allocate and remap memory

on restore, and anonymous page mappings are correctly
inherited.
VAS-CRIU snapshot. Figure 4 illustrates the behav-
ior of VAS snapshot. VAS-CRIU pauses the snapshot-
ting process and calls vas_snapshot() with its PID.
The kernel checks if the calling process has the appro-
priate permissions and valid parameters and creates a
VAS snapshot. A VAS is an address space that is not
tied to any process. Each VAS is primarily consisting of
the mm_struct data structure, which has a listing of all
mapped VMAs and associated page tables. The kernel
copies these data structures from the process into the
VAS, instead of actually copying the pages. The PTE for
the VAS and the process memory mapping are marked
COW. On the left-hand of the figure, we have a process
which is being snapshotted. On vas_snapshot() new
address space data structures are created for the process,
and the PTEs are shared in a COW manner. Subsequent
writes will create new PTEs. Subsequent snapshots be-
have similarly, continuing to share address space state
with the snapshotted process in a COW manner.
VAS-CRIU restore. Figure 5 illustrates the steps in-
volved in a VAS restore. The left part of the figure illus-
trates a process with two previous snapshots, i.e., two
VASes. On a debug trigger, the process is to be restored
from the earlier snapshot, VAS 1. During the restore,
CRIU transforms itself into the snapshotted process us-
ing VAS 1. Like in the case of standard CRIU, memory
is restored at the end of the restore procedure. As with
CRIU, the process has all other resources, such as file
descriptions and network connections, in place when
memory is finally restored. Similarly to standard CRIU,
we load the position independent restorer blob at an
appropriate place. Before loading the restorer blob, we
unmap all of the previous mappings of CRIU. From this
blob we call vas_restore(0, VID1). Since the PID is
set to 0 for the first argument, it will transform the
memory mapping of the calling process. The second
argument – corresponding to the VAS ID – is used to
identify the memory snapshot to restore from. Similarly
to the VAS snapshot procedure, the kernel copies the
mm_struct, associated virtual memory areas and page
tables from the VAS to the new process’ memory map.
This achieves the same COW sharing as in the snap-
shot procedure. We notice that the restore blob remains
in CRIU’s address space after vas_restore(). It is un-
mapped eventually at the end of the restore procedure.
Why not use fork? vas_snapshot duplicates page ta-
bles in a Copy-On-Write fashion similar to fork. How-
ever, fork replicates only the state of the calling thread,
not of all threads in the process. In our approach we
defer to facilities provided by CRIU to save all thread
states and optimize memory snapshotting using MVAS.

Figure 4: VAS snapshot and COWmechanism Figure 5: VAS restore mechanism

3.4 Limitations
In the current implementation, VAS-CRIU can only snap-
shot VASes into DRAM to create in-memory snapshots
of the execution. Since these VASes are not flushed
to persistent storage, they do not survive system re-
boots/crashes.

However, for the previously mentioned use cases such
as debugging, scheduling and scaling: a) persistence is
not essential and we trade fast restore from DRAM for
persistence. Hence, snapshotting into DRAM is accept-
able; and b) the technology trend towards the use of
NVRAM as operating memory is consistent with our
approach, our design and implementation will be appli-
cable to snapshotting in NVRAM in the future.

Writes after snapshot/restore cause page faults since
the VASes and the process COW-share page frames. We
evaluate the effects of this in the following section.

4 EVALUATION
Next, we present the experimental methodology and the
results from the evaluation of VAS-CRIU. Our goal is to
provide insights into the following questions.
• What are the gains inmemory and total snapshot/restore
time provided by VAS-CRIU compared to CRIU?

• What is the runtime application performance and
Copy-On-Write overhead post VAS-CRIU container
restore?

• How does VAS-CRIU contribute to enhacing memory-
centric services such as fine-grained in-memory snap-
shot generation?

4.1 Experimental Methodology
In all experiments we compare the performance of VAS-
CRIU with the default implementation of CRIU over
ramfs. We choose ramfs over tmpfs, which is also an
in-memory filesystem, because ramfs provides no swap-
ping of pages; therefore all file content is guaranteed to
be in memory. In the measurements for VAS-CRIU, all
state other than the address space memory snapshot, is
also stored in ramfs.

For both the CRIU and VAS-CRIU configuration, we
measure the time required to create an in-memory snap-
shot of the address space, and the total direct costs asso-
ciated with the snapshot and restore operations, which
result in a stall in the application execution. For the
application benchmarks, we also measure the indirect
costs resulting from the COW effects, and discuss the
aggregate impact of these costs on the application execu-
tion time and on the ability to perform high-frequency
snapshots.

Testbed.All experiments are performed on a dual-socket
12 core 2.67GHz Intel® Xeon® CPU X5650, with 48GB
memory. VAS-CRIU runs only on a Linux kernel with
support for MVAS. Currently, our implementation uses
the MVAS kernel based on 4.10. VAS-CRIU itself is based
on CRIU v2.12.1 (stable release). VAS-CRIU is linked
with libmvas [22], a userspace library which provides
wrappers for the MVAS system calls (vas_create,
vas_attach). We use the mvas [21] CLI client to enu-
merate VASes.

4.2 Microbenchmark-based Evaluation
Snapshot/Restoremicrobenchmark. To evaluate the
factors that impact the performance of VAS-CRIU, we de-
veloped a synthetic microbenchmark with the following
behavior. The application allocates a specified amount
of memory, touches every page, and waits for snapshot
to begin. After a snapshot completes, the original appli-
cation is killed. The restore operation completes (using
CRIU or VAS-CRIU), and the snapshot and restore tim-
ing information is returned.

CRIU vs VAS-CRIU (over ramfs). vas_snapshot()
reduces the time to create an in-memory snapshot of an
address space by up to two orders of magnitude. These
gains translate into speedup of the snapshot and restore
times, shown in Figures 6a and 6c. Figure 6b shows the
high cost incurred by CRIU in reading memory pages

(a) Comparison of total snapshot
time CRIU vs VAS-CRIU

(b) CRIU: Split cost of restore time (c) Comparison of total restore
time CRIU vs VAS-CRIU

Figure 6: Comparison of CRIU vs VAS-CRIU when snapshotting an application with different memory
working set size.

from a filesystem. In contrast, in the experiments per-
formed for Figure 6c, VAS-CRIU incurs less than a mil-
lisecond, and no more than 5ms, for restoring the con-
tainer address space. The remaining restore time costs
are common to both CRIU and VAS-CRIU. The results
show nearly an order of magnitude lower execution time
for these operations in VAS-CRIU compared to CRIU.
In addition, unlike CRIU, they are almost constant with
respect to increase in the address space size; hence the
benefits of VAS-CRIU can increase for larger address
spaces.
The trade-off in achieving these speedups is that in

VAS-CRIU the COW costs affect the application exe-
cution time after a snapshot or restore operation. We
evaluate the COW effects of VAS-CRIU in the following
section using the application benchmarks.

4.3 Evaluation with Application
Kernels

Docker benchmark. To compare the performance of
CRIU andVAS-CRIU for snapshottingDocker containers
we use the K-means and WordCount applications using
Metis, an in-memory MapReduce library designed for
multicore architectures [14]. We use the applications
provided with Metis.
Using these applications we designed the following

benchmark. We built distinct Docker images for each
application input size. Application input size determines
the memory footprint of the container processes. For
each Docker image built we copy the application exe-
cutable file and docker-entrypoint script into the con-
tainer’s filesystem. For WordCount, we copy the input
file as well. Once the container is launched it executes
only the MAP phase. Next, the container is snapshot-
ted, and all relevant files, depending on using CRIU or
VAS-CRIU, are written into ramfs.

In the experiments measuring the direct costs of the
snapshot and restore operations, snapshot results in

stopping of the container. Next, we restore the snap-
shotted container using the latest snapshot, and signal
it to continue executing the REDUCE phase. After the
container has finished execution we collect the statis-
tics, and delete the snapshot image files before the next
test iteration. For evaluating the COW effects associated
with VAS-CRIU, we use a similar benchmark configu-
ration, however we do not stop the container; instead
after a snapshot completes, the application continues its
execution (e.g., with the REDUCE phase).

Although CRIU snapshots are application transparent
and can be issued anytime, for our purposes we choose
to snapshot after the MAP phase. This approach allows
application execution state and address space sizes to
be comparable across runs. Address space size impacts
the snapshot and restore time, whereas execution state
determines the number of future writes, resulting in
COW overhead.
At the time of the snapshot we measure the total

address space of all snapshotted processes. CRIU writes
a mm.img image file for each process which contains a
list of VMAs. Each VMA has a start and end address.
We add the size of each VMA to obtain the total address
space size.
K-means. K-means creates 16 clusters using 10 vector
dimensions for a given number of points. We increase
the number of points from 5M to 50M to increase the
memory footprint of the application. Figure 7a shows
the time to snapshot only memory pages after the MAP
phase. This increases linearly for CRIU. In contrast, VAS-
CRIU has almost the same memory snapshot time for
the given set of address space sizes. Figures 7b and 7c
show that the gains in memory snapshot time translate
to 1.1× to 3× benefits in the total snapshot and restore
time for K-means with CRIU vs VAS-CRIU.

The reduction in the direct overheads associated with
snapshot and restore in VAS-CRIU leads to consequent
runtime costs due to COW page sharing. We quantify
the effects of this with the following measurements.

(a) Memory pages snapshot (b) Container snapshot time (c) Container restore time

(d) Execution of REDUCE phase (e) Frequent snapshotting
Figure 7: K-means: Comparison of CRIU vs VAS-CRIU

First, once the container has been restored, we allow
it to continue executing. Figure 7d shows the execution
time of the REDUCE phase in K-means. This time in-
cludes the COW overhead of handling page faults and
copying the actual page data. We observe that for K-
means the execution time is comparable to that of CRIU.
However, for VAS-CRIU, the reduction in restore time
alone is up to 2× larger, reducing the overall impact
of restore by up to 42.3 % compared to CRIU, for this
application.
To further justify the COW-related overheads, we

perform the following experiment. We execute K-means
for each problem size while asynchronously triggering
periodic snapshots. On each snapshot, vas_snapshot
creates a VAS, and the application execution continues.
When the application completes its execution, we re-
port the total number of generated snapshots. For this
experiment, we set the frequency of the snapshots at an
aggressive 100ms value.

The numbers above each of the bars in Figure 7e cor-
respond to the number of snapshots generated with
VAS-CRIU for K-means at each problem size. We do not
report the number of snapshots with CRIU for two rea-
sons. First, the default implementation of snapshot in
CRIU does not support incremental snapshots, instead
the application is stopped and then restoreed. Further-
more, after even a small number of subsequent snap-
shots, the CRIU experiment terminates prematurely due
to lack of memory. In contrast, with VAS-CRIU, K-means
was able to complete for all inputs, while also generating

11 to 105 incremental snapshots, depending on problem
size.

The total execution time of the application when trig-
gering high-frequency snapshots substantially exceeds
the time without snapshots. For brevity, we do not re-
port the raw numbers, but we measured it to be 2× to
5× slower, where 5× slowdown corresponds to generat-
ing 105 snapshots during execution. Instead, the height
of the bars in Figure 7e corresponds to the normalized
overhead on execution time per snapshot. Each value is
computed as the difference between the execution time
with and without snapshots, divided by the total number
of snapshots generated during the application run. Since
we cannot compute this value for CRIU, as a reference
we plot with dashed lines the measured snapshot time
only for CRIU(from Figure 7b). Note that this dashed line
is idealistic, as it does not capture the runtime overheads
from repeated CRIU snapshots. Regardless, for all cases
of K-means, the effective per-snapshot cost is substan-
tially lower for VAS-CRIU vs. CRIU. This illustrates the
value of VAS-CRIU for fine-grained, high-frequency in-
cremental snapshots, which can be useful in debugging,
migration, and other container management services.

WordCount. The second Metis application we use in
the evaluation of VAS-CRIU is WordCount. It returns
the top five words in a text file taken as input. Unlike
K-means, which iterates over the dataset repeatedly,
WordCount has a spread out memory access pattern.
Hence, it is expected to have a higher COW overhead

(a) Memory pages snapshot (b) Container snapshot time (c) Container restore time

(d) REDUCE phase execution (e) Frequent snapshotting
Figure 8: WordCount: Comparison of CRIU vs VAS-CRIU

than K-means for similar address space size and snap-
shot intervals. We increase the size of the text file from
50MB to 120MB to increase the memory footprint of
the application. Figure 8a shows the memory snapshot
time for CRIU and VAS-CRIU. Again we see that the
memory snapshot time of VAS-CRIU is two orders of
magnitude less than CRIU. Figure 8b shows the total
snapshot time using CRIU and VAS-CRIU. We see that
the saving in memory snapshot time positively impacts
the total snapshot time. VAS-CRIU’s total snapshot time
remains almost constant for the given set of address
space ranges. Similar observations can be made for the
total restore time, shown in Figure 8c.

Figure 8d shows the COW overhead for the REDUCE
phase for WordCount. Although VAS-CRIU pays an ex-
tra 70ms for the largest address space size (1936MB),
when considering the 200ms to 400ms gains in snap-
shot or restore time, compared to CRIU, it still provides
a net gain in execution time of 15.8 %.

Figure 8e shows the measurements from performing
high-frequency snapshots on WordCount, at 100ms pe-
riods. As in the case with K-means, VAS-CRIU makes it
possible to perform such fine-granularity incremental
snapshots, generating up to 157 snapshots during the
application execution for the largest problem size. With
CRIU, this is not possible. This highlights the utility
that VAS-CRIU provides for services such as debugging,
which can benefit from frequent snapshots. Unlike K-
means, the results for WordCount show that the effec-
tive per-snapshot cost is higher, when compared to the

Figure 9: Cassandra total restore time: CRIU vs
VAS-CRIU

CRIU snapshot time (in an ideal case, not when consid-
ering possible effects of concurrent snapshotting and
execution). We suspect that the ratio of the triggered
COW events relative to the overall write count for this
application is such that it makes the COW overheads
significant for this scenario. We plan to perform a more
detailed characterization of the write access pattern of
the applications to further understand how to exercise
the trade-offs.

4.4 COW overhead and Post-restore
performance

For the high frequency snapshotting use case, the COW
effects are observed continuously, since the application
proceeds executing as snapshots are generated, thus
triggering copies on each write. However, in other use

Figure 10: Post-restore YCSB: Difference in 99th-
Percentile Latency between VAS-CRIU and CRIU

cases, the COW costs appear only once an application
is restored, and are amortized during the application
execution time. Once page copies are created, the appli-
cation execution proceeds at the original performance
level. Moreover, the reduction in the overall restore time,
can still lead to net benefits.
To demonstrate this, we construct a use case where

snapshot restore is used as a mechanism to quickly cre-
ate new container instances, as needed to scale an ap-
plication to handle higher load. We use Cassandra [1],
a popular open source object store, configured as an
in-memory cache. A new docker instance of Cassandra
is loaded with 190MB of data using YCSB. There are 50K
rows each having 10 fields with 400 byte elements. All
in-memory Cassandra rows are flushed to permanent
storage. After this the instance is snapshotted using
CRIU or VAS-CRIU. A new Cassandra container is re-
stored using the snapshot of the earlier instance. The
total size of the container address space is about 6.5 GB.
Figure 9 shows the total process restore time of Cassan-
dra. VAS-CRIU provides 3.6 s saving in total restore time
against CRIU.

We run YCSB workloads post restore to measure the
impact of COW on the Cassandra data serving perfor-
mance. YCSB and Cassandra containers were pinned to
cores on separate sockets. The number of YCSB worker
threads was throttled and we show results for 32 and
16 threads. Figure 10 shows the difference in the 99th
percentile latency of CRIU and VAS-CRIU. For the write-
heavy workload A involving 32 threads, we see at most
800 µs of additional delay in the immediate post-restore
request processing time in the case based on VAS-CRIU
compared to CRIU. However, the difference in average
latency is only 22 µs. The additional delay is due to the
Copy-On-Write overheads of the initial write operations.
The pre initialized snapshot does not have any applica-
tion cache since no workload has been run. Therefore,
both CRIU and VAS-CRIU will encounter the similar

demand paging overhead. Hence, the performance mea-
surements are comparable.
To further understand the impact of using COW in

VAS-CRIU, we measure the time series response latency
of YCSB workloads. The X-axis shows time in seconds
and Y-axis shows average latency in microseconds for
the last one second. Figure 11 shows that the significant
gains made in container restore time outweigh the run-
time performance overhead of COW. These figures show
that VAS-CRIU based container starts responding after
2.27 s whereas CRIU based container does not respond
to client requests until 8.08 s. For all cases, the total time
to complete executing the workloads is always better
for VAS-CRIU compared to CRIU. We see upto 6.81 s of
total runtime gain for these workloads.

4.5 Lessons Learned
We summarize the following lessons learned:
• By eliminating the VFS overheads and allowing for
fast creation of VASes through few kernel-level data
structures, VAS-CRIU accelerates the time to create a
snapshot of an address space by 1 to 2 orders of mag-
nitude. This translates to a speedup for snapshot or
restore operations of 10 % to 200 % for the application
benchmarks used in the evaluation, and up to an or-
der of magnitude for the synthetic microbenchmark.
Such speedup can accelerate services which rely on
snapshot/restore operations.

• VAS-CRIU trades the speed of snapshot/restore for
runtime overheads due to COW.We demonstrate that
the COW-related overheads can be outweighed by
the reduction of the snapshot or restore time from
the critical path, leading to a net gain of up to 42.3 %
in execution time.

• Finally, VAS-CRIU simplifies the design of process
memory snapshotting. VAS-CRIU handles process
memory as an address space instead of treating them
as individual memory segments. With this VAS-CRIU
addresses certain limitations associate with CRIU.
VAS-CRIU removes 720 lines of code since there is
no need to parse memory maps in procfs and write
individual page frames into a filesystem.

5 RELATEDWORK
Page granular COW based snapshot/restore is accom-
plished by fork() based approaches [29][19][7][24][17].
A new child process is created to snapshot a process state.
Fork based snapshotting mechanisms suffer from the
same COW overhead as VAS-CRIU. However, fork() is
much slower than vas_snapshot() since fork() cre-
ates a new process control block (task_struct) and all
associated data structures. When using frequent snap-
shots, this could cause a bloat of metadata stored in
DRAM even for processes with small address spaces.

(a) Workload A: READ (b) Workload A: UPDATE (c) Workload C: READ

(d) Workload B: READ (e) Workload B: UPDATE
Figure 11: Timeseries response latency with 32 YCSB threads: CRIU vs VAS-CRIU

mprotect() based approaches have been proposed to
provide page-granular COW based snapshot/restore [2]
[20][17]. mprotect() is used on all memory regions of
a snapshotted process. Subsequent writes result in a mi-
nor page fault causing a SIGSEV signal. Most mprotect
based implementations handle this in userspace result-
ing in high page fault overhead. Further, the snapshotted
data is stored in the same address space. Hence, it does
not provide strong data integrity for the snapshotted pro-
cess state. mprotect() based approaches reduce COW
overhead since they do not have to copy metadata/data
for pages which have not changed between snapshots.
Most COW snapshotting mechanisms use write pro-

tection provided by the paging hardware. However, this
isn’t accessible for userspace software. The Linux kernel
exports soft dirty bits to userspace via process mem-
ory maps exported via procfs. Several snapshot/restore
methods have been proposed based on soft dirty bits
[13] [8] [25]. The soft dirty bit is set for pages which
were written during a snapshot interval. Reading soft
dirty bits requires scanning of all maps and this does
not scale well for large address spaces. Further, it does
not provide snapshot data protection.

Undo-log based snapshot/restore approaches use com-
piler based static or dynamic instrumentation to log all
writes into an append-only log [11][18][30]. They store
data, size and target addresses of the writes issued after
the snapshot interval. Upon a restore request, all up-
dates can be unwound to get the snapshotted memory
state. The logs are in the same address space as the snap-
shotted process, therefore, they do not provide strong

snapshot data protection guarantees. Bounds checking
writes could be done during instrumented writes. How-
ever, this causes extra overhead for every write. Further,
most undo-log based approaches suffer from huge mem-
ory usage for the log due to duplicate writes to the same
location. Undo-log based approaches are unaware of the
spatial locality of memory accesses.

6 SUMMARY AND FUTUREWORK
We presented the design and implemention of VAS-
CRIU, a new approach to reducememory snapshot/restore
time using process independent address spaces. Both
VAS-CRIU and the Linux-MVAS patches are prepared
to be open-sourced [23, 28]. VAS-CRIU accelerates the
time to create a snapshot of an address space by 1 to
2 orders of magnitude, resulting in overall speedup of
snapshot/restore operations of 10 % to 200 %. This is es-
pecially relevant for applications and services which
heavily rely on snapshot/restore operations, such as
scheduling or debugging. VAS-CRIU accomplishes this
by trading the speed of snapshot/restore for run-time
overheads due to Copy-on-Write. We demonstrated that
these COW-related overheads can be justified by reduc-
ing the snapshot/restore overhead in the critical path,
leading to a net gain of up to 42.3 % in execution time.
In addition, Copy-on-Write results in lower memory
overhead. For some pathological cases, such as Word-
Count, where the ratio of memory writes to COW is un-
favorable, the runtime overheads of such high-frequency
snapshots can be significant, however VAS-CRIU still

provides benefits over the traditional CRIU implementa-
tion by making fast incremental snapshotting possible
due to its lower memory demand.
In terms of future work, VAS snapshotting in NVM

can provide both fast snapshotting and persistence. We
will extend VAS-CRIU with asynchronously flushing
snapshot VASes into NVM. The sync with NVM would
not increase snapshot time. The DRAM copy can be re-
tained or discarded. We also plan to explore VAS-CRIU
for quick launch of Dockerized applications. Applica-
tions can be snapshotted into a VAS after their initial
startup phase and then quickly restored into new con-
tainer instances. Use caseswe consider aremicroservices
and NFVs.
For write-heavy workloads, COW has a significant

runtime overhead. We will explore pre-copying pages,
based on write set estimation algorithms, into VAS page
tables before the process restore. Our prior research has
already demonstrated the practicality of such solutions
for different workload classes [6, 10]. In addition, infor-
mation about hot pages could be stored in the snapshot,
and could be used for page pre-copy.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable
feedback and comments. This work was partially sup-
ported by research grants from HPE, NSF award SPX-
1822972 and the German Research Foundation (DFG)
within CRC 912.

REFERENCES
[1] Apache. 2019. Cassandra. http://cassandra.apache.org/.
[2] Edouard Bugnion, Vitaly Chipounov, and George Candea. 2013.

Lightweight snapshots and system-level backtracking. In Pro-
ceedings of the 14th Workshop on Hot Topics on Operating Systems.
USENIX.

[3] CRIU community. 2019. Checkpoint/Restart in Userspace(CRIU).
https://criu.org/.

[4] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milo-
jicic, Reto Achermann, Paolo Faraboschi, Wen-mei Hwu, Tim-
othy Roscoe, and Karsten Schwan. 2016. SpaceJMP: Program-
ming with Multiple Virtual Address Spaces. In Proceedings of the
Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16).
ACM, New York, NY, USA, 353–368. https://doi.org/10.1145/
2872362.2872366

[5] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan
Milojicic. 2015. Beyond Processor-centric Operating Systems. In
15th Workshop on Hot Topics in Operating Systems.

[6] Pradeep Fernando, Sudarsun Kannan, Ada Gavrilovska, and
Karsten Schwan. 2016. Phoenix: Memory speed hpc i/o with nvm.
In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC). IEEE, 121–131.

[7] Qi Gao, Wenbin Zhang, Yan Tang, and Feng Qin. 2009. First-aid:
Surviving and Preventing Memory Management Bugs During
Production Runs. In Proceedings of the 4th ACM European Con-
ference on Computer Systems (EuroSys ’09). ACM, New York, NY,
USA, 159–172. https://doi.org/10.1145/1519065.1519083

[8] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, Fabrizio Petrini,
and Kei Davis. 2005. Transparent, incremental checkpointing at
kernel level: a foundation for fault tolerance for parallel comput-
ers. In Proceedings of the 2005 ACM/IEEE conference on Supercom-
puting. IEEE Computer Society, 9.

[9] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica.
2011. Mesos: A Platform for Fine-Grained Resource Sharing in
the Data Center.. In NSDI, Vol. 11. 22–22.

[10] Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, and Dejan
Milojicic. 2013. Optimizing checkpoints using nvm as virtual
memory. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. IEEE, 29–40.

[11] Andrew Lenharth, Vikram S Adve, and Samuel T King. 2009.
Recovery domains: an organizing principle for recoverable op-
erating systems. In ACM SIGARCH Computer Architecture News,
Vol. 37. ACM, 49–60.

[12] Jack Li, Calton Pu, Yuan Chen, Vanish Talwar, and Dejan Milo-
jicic. 2015. Improving preemptive scheduling with application-
transparent checkpointing in shared clusters. In Proceedings of
the 16th Annual Middleware Conference. ACM, 222–234.

[13] Yawei Li and Zhiling Lan. 2011. FREM: A fast restart mechanism
for general checkpoint/restart. IEEE Trans. Comput. 60, 5 (2011),
639–652.

[14] Yandong Mao, Frans Kaashoek, and Robert Morris. 2010. Opti-
mizing MapReduce for Multicore Architectures. Technical Report
MIT-CSAIL-TR-2010-020. MIT.

[15] S. Nadgowda, S. Suneja, and A. Kanso. 2017. Comparing Scaling
Methods for Linux Containers. In 2017 IEEE International Con-
ference on Cloud Engineering (IC2E). 266–272. https://doi.org/10.
1109/IC2E.2017.42

[16] Tom Nolle. 2018. Expect more container evolution, growth
in 2019. https://searchitoperations.techtarget.com/opinion/
Expect-more-container-evolution-growth-in-2019.

[17] James S Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1994.
Libckpt: Transparent checkpointing under unix. Computer Science
Department.

[18] Georgios Portokalidis and Angelos D Keromytis. 2011. REAS-
SURE: A self-contained mechanism for healing software using
rescue points. In International Workshop on Security. Springer,
16–32.

[19] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan
Zhou. 2005. Rx: Treating Bugs As Allergies—a Safe Method to
Survive Software Failures. In Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles (SOSP ’05). ACM,
New York, NY, USA, 235–248. https://doi.org/10.1145/1095810.
1095833

[20] Joseph F Ruscio, Michael A Heffner, and Srinidhi Varadarajan.
2007. Dejavu: Transparent user-level checkpointing, migration,
and recovery for distributed systems. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. IEEE,
1–10.

[21] Rodrigo Siqueira. 2017. MVAS-CLI. https://github.com/LSS-USP/
mvas-cli.

[22] Till Smejkal. 2016. Userspace MVAS library-libmvas. https:
//github.com/l3nkz/libmvas.

[23] Till Smejkal and Ranjan Sarpangala Venkatesh. 2017.
MVAS Linux kernel. https://github.com/ranjansv/
MVAS-CP-Linux-kernel.

[24] Sudarshan M Srinivasan, Srikanth Kandula, Christopher R An-
drews, Yuanyuan Zhou, et al. 2004. Flashback: A lightweight
extension for rollback and deterministic replay for software de-
bugging. In USENIX Annual Technical Conference, General Track.
Boston, MA, USA, 29–44.

http://cassandra.apache.org/
https://criu.org/
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1145/1519065.1519083
https://doi.org/10.1109/IC2E.2017.42
https://doi.org/10.1109/IC2E.2017.42
https://searchitoperations.techtarget.com/opinion/Expect-more-container-evolution-growth-in-2019
https://searchitoperations.techtarget.com/opinion/Expect-more-container-evolution-growth-in-2019
https://doi.org/10.1145/1095810.1095833
https://doi.org/10.1145/1095810.1095833
https://github.com/LSS-USP/mvas-cli
https://github.com/LSS-USP/mvas-cli
https://github.com/l3nkz/libmvas
https://github.com/l3nkz/libmvas
https://github.com/ranjansv/MVAS-CP-Linux-kernel
https://github.com/ranjansv/MVAS-CP-Linux-kernel

[25] Manav Vasavada, Frank Mueller, Paul H Hargrove, and Eric Ro-
man. 2011. Comparing different approaches for incremental
checkpointing: The showdown. In Linux Symposium. 69.

[26] Steven J. Vaughan-Nichols. 2017. What is Docker and why is it
so darn popular? ZDNet.com (2017).

[27] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 5.

[28] Ranjan Sarpangala Venkatesh. 2017. VAS-CRIU. https://github.
com/ranjansv/VAS-CRIU.

[29] Angeliki Zavou, Georgios Portokalidis, and Angelos D.
Keromytis. 2012. Self-Healing Multitier Architectures Using
Cascading Rescue Points. In Annual Computer Security Applica-
tions Conference (ACSAC).

[30] Chuck Chengyan Zhao, J Gregory Steffan, Cristiana Amza, and
Allan Kielstra. 2012. Compiler support for fine-grain software-
only checkpointing. In International Conference on Compiler Con-
struction. Springer, 200–219.

https://github.com/ranjansv/VAS-CRIU
https://github.com/ranjansv/VAS-CRIU

	Abstract
	1 Introduction
	2 Background
	2.1 CRIU
	2.2 Original MVAS

	3 Design and Implementation
	3.1 Design Assumptions
	3.2 Linux MVAS
	3.3 VAS-CRIU Implementation Details
	3.4 Limitations

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Microbenchmark-based Evaluation
	4.3 Evaluation with Application Kernels
	4.4 COW overhead and Post-restore performance
	4.5 Lessons Learned

	5 Related Work
	6 Summary and Future Work
	References

