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Abstract—Cloud platforms offer the same VMs under many
purchasing options that specify different costs and time commit-
ments, such as on-demand, reserved, sustained-use, scheduled
reserve, transient, and spot block. In general, the stronger the
commitment, i.e., longer and less flexible, the lower the price.
However, longer and less flexible time commitments can increase
cloud costs for users if future workloads cannot utilize the VMs
they committed to buying. Large cloud customers often find it
challenging to choose the right mix of purchasing options to
reduce their long-term costs, while retaining the ability to adjust
capacity up and down in response to workload variations.

To address the problem, we design policies to optimize long-
term cloud costs by selecting a mix of VM purchasing options
based on short- and long-term expectations of workload utiliza-
tion. We consider a batch trace spanning 4 years from a large
shared cluster for a major state University system that includes
14Kk cores and 60 million job submissions, and evaluate how these
jobs could be judiciously executed using cloud servers using our
approach. Our results show that our policies incur a cost within
41% of an optimistic optimal offline approach, and 50% less
than solely using on-demand VMs.

Keywords-Cloud Computing, Infrastructure-as-a-Service, Pur-
chasing Options

I. INTRODUCTION

With the advent of cloud computing, large institutions
that have traditionally operated large private compute clusters
for their general computing needs have begun to migrate
to public Infrastructure-as-a-Service (IaaS) cloud platforms,
which rent VMs to users for a price per unit time, due
to their low cost and high accessibility. Migrating a large-
scale private computing infrastructure to a public cloud is
a complex task. For example, the major hyperscale public
cloud providers—Amazon, Google, and Microsoft—now offer
dozens of VM types with different CPU, memory, I/O, and
network characteristics at different prices. Thus, selecting the
“right” type of VM—that yields the desired performance at
the lowest cost—for a particular workload can be challenging.
In addition, a significant fraction of a private cluster’s cost is
due to upfront capital expenses, e.g., server hardware, building
space, supporting IT equipment, etc., that are fixed, while
a cloud-based cluster’s cost is largely operational expenses
that are dependent on expectations of the future workload. If
cloud resources are provisioned judiciously—by choosing the
optimal mix of VM options—when migrating large workloads
to the cloud, cloud costs can be often lower than operating a
private cluster. However, the large number of cloud VM con-
figurations, the uncertainty in future workload characteristics,
and the complexity of decision making when operating a large

cloud cluster imply there is no guarantee that the potential cost
savings from migrating to the cloud will actually be realized.

In addition to offering dozens of VM types, cloud platforms
also offer these VMs under a variety of purchasing options that
specify different prices and time commitments. For example,
the on-demand option is the most common, enabling users
to request and release VMs at any time and only be charged
for the time they hold them. In contrast, the reserved option
requires users to commit to buying 1 or 3 years of VM time
in advance, but at a significant discount compared to holding
an on-demand VM for 1 or 3 years. Of course, if reserved
VMs are utilized less than their discount, then they will incur
a higher cost than utilizing the equivalent on-demand VMs,
since users may release on-demand VMs when not in use.

Cloud providers offer numerous other VM purchasing op-
tions that specify different time commitments and costs for
the same types of VMs, including sustained-use, scheduled
reserved, spot/preemptible, and spot block. The specific set of
purchasing options, as well as their names, prices, and some
details, differ across cloud providers, which we discuss in §II.
In general, though, the stronger a user’s time commitment, i.e.,
longer and less flexible, the lower the VM’s price. However,
as illustrated above, despite a lower price, longer and less
flexible commitments can increase cloud costs if users’ future
workload cannot utilize the VMs they committed to buying.
Thus, optimizing for long-term cloud costs not only requires
selecting the right VM types based on a workload’s resource
usage, but also selecting the right mix of purchasing options
based on future workload expectations. While the former
problem of choosing cloud VM types has been the subject
of much research [1], [3], [9], [11], optimizing the purchasing
options for the chosen VMs has not seen as much attention.
This problem requires cloud users to balance two competing
tradeoffs—making the longest possible commitments for the
provisioned VMs to extract the greatest savings, while retain-
ing some ability to make short-term increases or decreases to
provisioned VMs to respond to changing workloads.

This paper focuses on optimizing the mix of purchasing
options for cloud VMs. We develop policies to estimate and
optimize long-term cloud costs on the major cloud platforms
by selecting the mix of available purchasing options based
on short- and long-term expectations of workload utilization.
In general, these policies normalize the cost of each VM
purchasing option subject to its expected utilization based
on historical workload data, and then selects the option for
each unit of demand that yields the lowest cost. Further, the



uncertainty in future workload demand also needs to be con-
sidered when selecting a purchasing option. As we show, the
normalization and uncertainty issues differ for each purchasing
option, making the problem non-trivial. For example, for long-
term options, such as scheduled reserved, we must consider
thousands of options with different costs, e.g., based on when
VMs are scheduled to run, respectively, while for a short-
term option, such as spot block, the uncertainty of job runtime
predictions needs to be considered.

Our hypothesis is that mixing VM purchasing options
enables cloud users to “hedge their bets” and minimize their
long-term cloud costs relative to exclusively using a single
purchasing option, such as all on-demand VMs or all reserved
VMs. We evaluate this hypothesis and our policies using 4
years of batch traces consisting of 60 million job submissions
from a 14k-core shared batch cluster for a major U.S. state
university system. Our evaluation considers a scenario where
this large workload is migrated to, and operated in, the cloud,
and compares realistic online policies to an optimistic optimal
offline variant, which assumes perfect future knowledge of
workload demand and a perfectly elastic workload that can
be freely split across VMs. In doing so, our work answers a
number of interesting questions, listed below.

e What is the cost savings from mixing VM purchasing
options relative to exclusively using on-demand VMs or
reserved VMs?

e How do the policies needed to optimize for provider-
specific VM purchasing options differ across cloud
providers?

e Can users get more cost savings from cloud providers that
offer more purchasing options, such as Amazon, tailored to
specific types of workloads versus those that offer fewer,
such as Microsoft?

Our results show that our policy, which mixes VM purchas-
ing options, incur a cost within 41% of an optimistic optimal
offline approach, and are 50% and 79% less than solely using
on-demand VMs or reserved VMs, respectively. Our work also
shows that, while cloud platforms offer numerous complex
VM purchasing options, near-optimal procurement strategies
for general batch workloads can be simple in practice, as
ours largely uses a mix of transient, on-demand, and reserved
options available from all of the major cloud providers.

II. CLOUD PROVIDER OVERVIEW

We first provide details on the VM purchasing options of-
fered by the major public cloud providers: Microsoft, Google,
and Amazon. We then discuss differences between the set of
options offered by each cloud provider.

A. Cloud VM Purchasing Options

As noted earlier, our work focuses specifically on VM pur-
chasing options that relate to time commitments and flexibility,
and not VM types or capacity reservations. For example,
we do not consider dedicated hosts or VMs, which reduce
virtualization overhead and interference, or burstable VMs,

which enable VMs to periodically use additional resources.
Since these options only differ in the resources they offer, users
can treat them as a different resource type. The only exception
to this, as we discuss below, is customized VMs. We also do
not consider capacity reservations, which enable users to pay
to ensure that their future requests for on-demand VMs are
not rejected due to a lack of capacity. Currently, these capacity
reservations incur the same cost as the on-demand option, so
users may just as well purchase and hold on-demand VMs.
We also do not consider some of the small differences between
similar purchasing options across cloud providers, although we
note some of these differences below. These small differences
generally do not affect our policies in §III or the magnitude
of our results in §V.

Table I lists the different VM purchasing options that we
consider and their primary attributes. As can be seen, the
same cloud VM can be procured under a number of different
purchasing options. The relative cost represents the percentage
cost relative to the on-demand cost per unit time for the
equivalent VM type, and is not the percentage discount.
Thus, 60% represents 60% of the on-demand cost, which
corresponds to a 40% discount. The time commitment is the
amount of time the user must commit to buying. We discuss
the other attributes below.

On-demand. The on-demand option is the most common one
offered by all cloud providers, and typically the default option
for users. As a result, we represent the cost of the other options
relative to the on-demand option. An on-demand VM incurs a
cost per unit time from the time the cloud platform allocates
it to the user until the time the user terminates it. The per unit
time cost is now billed at fine-grained resolutions, e.g., either
per-second or per-minute, rather than hourly. Cloud platforms
do not generally revoke on-demand VMs, but they are not
guaranteed to be available when requested. That is, cloud
platforms may reject users’ request for on-demand VMs if
they run out of data center capacity. However, the frequency
of out-of-capacity rejections is not publicly known.
Reserved. The reserved option enables users to commit to
buying a VM for 1 or 3 year period in return for a discount
compared to procuring an on-demand VM over the same
period. All cloud providers offer 1 and 3 year reserved options,
which are designed for cheaply satisfying a user’s expected
base load—the minimum level of demand—over the reserva-
tion’s term. While reserved VMs are not revocable, they do
generally guarantee the user capacity on request. That is, if a
user ever terminates a reserved VM, when they request the VM
later (within the reservation’s term), unlike with on-demand
VMs, the cloud platform guarantees to have the capacity
to satisfy that request. Note that Google’s reserved option
equivalent requires combining a 1 or 3 year committed-use
discount with a separate capacity reservation. As mentioned
above, we do not consider purchasing capacity reservations
(which Amazon also offers) independent of VMs.

The reserved option is essentially a volume discount, where
the actual discount is based on the time commitment as well as
other options, such as the amount of upfront payment, whether



Purchasing Option | Relative Cost (%) | Time Commitment | Revocable | Guaranteed | Cloud Providers |

On-demand 100% None No No All
Reserved 60% 8760hrs (1yr) No Yes All
Reserved 40% 26,280hrs (3yrs) No Yes All
Transient 20-40% None Yes No All
Sustained-Use 70-100% None No No Google
Customized 105% - - - Google
Spot Block 55-70% None After 1-6hrs No Amazon
Scheduled Reserve 90-95% 1200-8760hrs (1yr) No Yes Amazon

TABLE I
Overview of the primary VM purchasing options across the major cloud providers

reserved VMs can be “converted” to other VMs of a different
type (but the same resources), and whether the reserved VMs
can switched between different data centers within the same
geographical region. The costs in Table I—60% and 40%
of the on-demand price for 1 and 3 year terms—are typical
discounts for standard options, e.g., payment in full for non-
convertible VMs tied to one availability zone. As expected,
the longer the time commitment, the higher the discount.
Transient. All cloud providers offer their suplus capacity
in the form of transient VMs [7] but under different names
and slightly different terms. Transient VMs are the cheapest
purchasing option, costing 20-40% of the on-demand cost, and
come with no time commitment. However, since transient VM
resources represent spare capacity, cloud platform’s may re-
voke them at any time to satisfy higher-priority requests for on-
demand and reserved VMs. Given their low cost and priority,
transient VMs are not guaranteed, and requests for such VMs
are likely rejected due to fluctuating surplus capacity more
frequently than on-demand VMs (although the rejection rates
are not publicly known). Transient VMs are generally designed
for cheaply satisfying batch jobs that run in the background,
and can tolerate delays due to unexpected revocations.

As with reserved, there are some small differences between
Microsoft, Google, and Amazon’s transient offering. Microsoft
and Google both offer transient VMs, called low-priority batch
VMs and preemptible VMs, respectively, for a fixed cost
per unit time. In contrast, Amazon offers spot VMs, which
have a variable cost per unit time. In the past, spot VMs
were revoked only when their dynamic spot price, which was
often volatile, exceeded a user’s bid price. However, Amazon
recently changed spot VMs to remove user bids (and thus
decouple revocations from prices), and reduced price volatility.
While spot prices technically remain variable, they are now
largely stable. As a result, spot VMs are now similar to low-
priority batch and preemptible VMs. The key difference in the
transient offerings now is that spot VMs (Amazon) and low-
priority batch VMs (Microsoft) have no maximum lifetime,
while preemptible VMs (Google) have a maximum lifetime
of 24 hours after which they are always revoked.
Sustained-Use. Google offers a sustained-use discount that
automatically applies to on-demand VMs of any type that
are run for some fraction of a month-long billing period.
The discount applies separately to each core, i.e., vCPU, and
gigabyte (GB) of memory regardless of type, since Google

separately charges for each core and GB of memory. Thus, VM
types simply incur a cost based on their pre-defined number
of cores and memory allotment. The discount starts once each
core or GB of memory is used for 25% of the month, and
increases the longer they are used with the maximum discount
being 30% off the on-demand cost for the entire month.
Specifically, for the first 25% of the month users pay 100% of
the on-demand cost, next for 25-50% they pay 80%, then for
50-75% they pay 60%, and finally for 75-100% they pay 40%.
The overall cost for an entire month of sustained use comes
to 70% of on-demand (i.e., 30% discount). The sustained-use
discount applies regardless of when a core or GB of memory
is used during a month, or whether it is part of a pre-defined
VM type. Sustained-use VMs offer a middle option between
on-demand and reserved VMs, since they cost slightly more
than the reserved option but less than on-demand, and also
come with no time commitment.

Customized. Google also offers a customized VM option,
which enables users to purchase a VM with a custom cost
based on a configurable number of cores and memory. Cus-
tomized VMs can be used in conjunction with any of the
purchasing options above, including the sustained-use dis-
count. Customized VMs have the potential for significant cost
savings by better matching job resource requirements to VM
resources, thereby reducing wasted resources. However, this
savings comes at an increased cost, which is currently 105%
the normalized cost per core and GB-memory of an on-demand
VM with pre-defined cores and memory allotment.

Spot Block. Amazon offers spot block VMs that have a short
pre-defined lifetime of 1, 2, 3, 4, 5, or 6 hours. Spot block
VMs are always revoked after their pre-defined lifetime (but
typically not before), although users can terminate them early
and only pay for the time they held them. Thus, spot block
VMs have a maximum lifetime, but no time commitment. Spot
block VMs cost 50-70% of the on-demand cost with higher
discounts for shorter lifetimes. Spot block VMs are a form of
short-term reservation that ensures the cloud platform is able
to reclaim resources in the near future. Their average discount
is less than spot, and near that of reserved. However, spot
block VMs do not require a long time commitment, and are
designed for short tasks (<6 hours) that either have a deadline
or cannot gracefully handle revocations, which makes them
unsuitable for transient/spot VMs.

Scheduled Reserved. Amazon also offers a scheduled reserve



option designed for workloads that do not run continuously
but do run on a regular schedule, such as nightly batch jobs or
financial simulations that run after the stock market closes each
weekday afternoon. Scheduled reserved VMs enable users to
define repeating daily, weekly, or monthly reservation sched-
ules at hourly resolutions. For example, users could define
a daily schedule that reserves a VM from 9pm-12am each
day. As with the reserved option, scheduled reserved capacity
is guaranteed and not revocable. However, the discount is
much smaller, only 10% during off-peak weekend hours and
5% during peak weekday hours. Scheduled reserved are only
offered for a 1 year term, and require users to purchase a
schedule with a minimum of 1200 hours over the year. This
option is also currently available in only 3 of the larger regions
(Northern Virginia, Oregon, and Ireland).

B. Differences between Cloud Providers

As Table I shows, the major cloud providers offer slightly
different VM purchasing options. Microsoft offers the simplest
set with on-demand, 1- and 3-year reserved, and transient
options. Google then adds the sustained-use discount for on-
demand VMs, along with the ability to configure customized
VMs with any purchasing option. In contrast, Amazon adds
the spot block and scheduled reserved options. Note that
Table I's relative cost is an estimate across all the cloud
providers. In general, Microsoft quotes similar prices (in the
same way) as Amazon for the same purchasing options and
VM types, while Google quotes prices slightly differently.
However, the discounts offered for the purchasing options
(even for comparable VMs) are not directly comparable across
cloud providers, since aspects of their infrastructure, such as
the network and I/O bandwidth, and the resources may differ.

Our goal is not to analyze which cloud provider offers the
lowest absolute cost for each option (for a given workload)
based on today’s prices, as these prices and each platform’s
infrastructure can and do change frequently. Rather, our goal
is to understand how to choose an appropriate mix of these
purchasing options to optimize long-term cloud costs, and to
understand their impact on a large-scale batch workload. Thus,
our evaluation in §V uses the same prices, discounts, and VM
types across all the cloud providers based on the estimates
in Table I. Finally, our work only considers VM rental costs,
and not the additional costs related to network I/O, storage
capacity, or the use of other cloud services.

III. LONG-TERM COST OPTIMIZATION

Given a set of cloud VM types (of different fixed sizes)
offered under the purchasing options in §II, our problem is to
select the resources and purchasing options that minimize the
long-term cost based on both short- and long-term expectations
of workload utilization. We assume our workload is composed
of batch job submissions from users that include the requested
number of cores and memory.

To simplify the problem, we first consider an optimistic
optimal offline approach which assumes perfect knowledge
of the future workload as well as the ability to allocate

fractional demand to fractional resources where possible.
That is, even though our workload’s demand is composed
of discrete jobs, we assume that discrete jobs can be sub-
divided across resources, and purchasing options. Similarly,
even though cloud VMs are mostly composed of discrete
resource bundles (types), we assume resources (cores and
memory) can be purchased separately and bundled together in
any quantity. That is, we assume resources are allocated in the
form of customized VMs, as currently offered by Google, and
that the purchasing option price applies separately to cores and
memory (as with Google). As a result, we discuss a workload’s
utilization in terms of generic units of resource demand,
which, in the fractional case, can be either be the number of
cores or gigabytes of memory. We do not separately consider
customized versus non-customized options in the offline case.
Solving this offline case provides an optimistic optimal upper
bound on the realizable cost savings in practice. We then
present our online approach, which removes the assumptions
above of perfect future knowledge and fractional demand. Our
online policy is similar to the offline policy, but substitutes
imperfect predictions of short- and long-term demand (based
on historical data) for perfect knowledge and considers the
availability of limited VM types.

A. Optimistic Optimal Offline Approach

We model the workload trace in terms of the aggregate
resource demand per unit time from all active jobs within
that time unit; the aggregate resource demand is defined to
be the total cores and memory requested by all active jobs
within a time unit. Thus, the workload can be viewed as a
time-varying function of resource demand. The intuition for
our optimal offline approach is as follows: for each unit of
resource demand, e.g., cores and memory requested by jobs,
we compute the cost of the necessary resources under each
purchasing option to satisfy that unit of demand normalized by
its utilization over the length of the commitment. For example,
for one unit of resource demand and a 1-year reservation, we
normalize the cost based on the utilization over a year. Thus,
if the reservation’s cost is 60% of the on-demand cost, but
the utilization over the year is only 60%, then its normalized
cost is the same as the normalized on-demand cost. Given the
normalized costs for various options, we select the cheapest
option for each unit of resource demand until the demand
across time slots is satisfied. As discussed below, we apply
this approach separately to cores and memory.

Our general strategy applies directly when considering the
relative cost of on-demand, 1- and 3-year reserved, scheduled
reserved, and the sustained-use options. In these cases, we can
directly compute a optimistic optimal normalized cost for the
resources to satisfy each unit of demand under our assumption
of a fractional supply and demand. However, the normalized
cost of the transient and spot block options is directly a
function of each job’s length, which prevents us from directly
computing it under the assumption of a fractional resource
demand. For example, for the transient option, the longer the
job, the more revocations it will experience and the greater its



normalized cost. Similarly, a job that runs for 3 hours on a
3-hour spot block resources has a higher normalized cost than
a job that runs for 1 hour on a 1-hour spot block resource.
Thus, when computing the normalized cost for these options,
we must consider job length. As a result, in the offline case,
we first assign a normalized cost for using the transient and
spot block for each job, as discussed below, before considering
the other purchasing options.

Transient. As prior work has discussed [6], [8], the normal-
ized cost of using transient VMs is a function of not only
their relative cost per unit time and the job’s length, but
also the revocation rate and the use of fault-tolerance mech-
anisms to mitigate the impact of revocations. In general, the
longer a job, the more likely it is to experience a revocation.
However, precise revocation rates (and their distribution) are
not publicly known, and likely differ across providers. For
example, Google always revokes preemptible VMs after 24
hours, while historical data suggests Amazon’s mean-time-to-
revocation for spot VMs may be closer to 48 hours [4]. The
use of fault-tolerance mechanisms can mitigate the impact
of revocations [6], [8], [4], [5], [12]. For example, if a job
employs periodic checkpointing (for some period), on each
revocation, it can restart from the latest checkpoint rather than
from the beginning. Of course, employing such mechanisms
incurs some overhead that degrades performance and increases
the normalized cost. Prior work has extensively studied these
overheads and the normalized cost for transient VMs for
different types of jobs, durations, revocation rates, and fault-
tolerance mechanisms [6], [8], [4], [5], [12].

Our work can directly apply the prior work above to
compute the normalized cost of using transient VMs based
on a job’s duration and resource usage, as well as the optimal
checkpointing frequency based on the revocation rate. How-
ever, we note that such systems-level checkpointing is still not
commonly used by large production batch systems for a variety
of reasons. For example, while Linux containers include a
checkpoint/restart mechanism, it remains under active devel-
opment, and does not apply to parallel jobs. Thus, our analysis
assumes a more basic use of transient VMs that assumes no
checkpointing by restarting a job after each revocation.

In particular, to ensure a job assigned to a transient VM
completes, once it has experienced a revocation, we just restart
it on an on-demand VM. Under this simple model, we compute
the expected cost E[C(T')] to execute a job of length T" using
the transient option as below. We assume that piansient and
Dondemand are the relative transient and on-demand prices,
R(T) is the probability the job will be revoked before it
completes at time T, and F,cyoxe[T] < T is the expected
time a revoked job runs.

E[C(T)] = (1 - R(T))(ptransient X T)-‘r
R(T) (ptransient X Erevoke[T] +pondemand X T)

The first term represents the total cost to run the job if it is not
revoked, while the second term represents the total cost to run
the job if it is revoked. The normalized cost per unit time is
then the expected cost to execute the job E[C(T')] divided by

D

the expected running time, which is (1— R(T)) x T+ R(T") x
(Erevoxe[T]+T). Of course, our approach is dependent on the
revocation characteristics. For example, assume a revocation
always occurs within 24 hours (as with Google) and that it
is equally likely at any point within 24 hours, and that the
transient option costs 30% of on-demand per unit time. In this
case, if a job’s running time 7'=18 hours, then its probability
of revocation R(18)=0.75 and its expected running time if it
is revoked Feyoxe[T]=9 hours. As a result, the expected cost
E[C(T)]=0.25(0.3)(18) + 0.75((0.3)(9) + (1)(18))=16.875,
and the expected running time is 0.25(18)+0.75(9+18)=24.75
hours, which yields a normalized cost per unit time that is
68% of the on-demand price. Thus, in this case, the discount
relative to using on-demand is only 32% rather than 70%.
Clearly, a shorter job yields a lower normalized cost. For
example, a 12 hour job has a normalized cost of 58% of
on-demand. With Google, under our restart model, it never
makes sense to run a job with a duration greater than 24 hours,
while it may make sense for the other providers, depending on
the job’s length and revocation characteristics. For the offline
case, we assume we know each job’s running time, as well
as the revocation characteristics, and can directly compute the
normalized cost per job per unit time. The transient option
tends to be the cheapest option for shorter jobs, e.g., a few
hours, but can be competitive with other purchasing option
for longer jobs. In our illustrative example, the 12 hour job
above has a lower normalized cost than the fully utilized 3-
year reserved option (which is 40% the on-demand price), but
the 18 hour job has a higher normalized cost. The transient
option is not good for extremely long jobs, e.g., many days
or weeks, as the higher revocation probability increases their
expected running time and normalized cost.
Spot Block. Spot blocks can be purchased in 1-, 2-, 3-, 4-
, 5-, or 6-hour increments with a higher discount applied to
shorter increments, such that a 1-hour block is 55% the on-
demand price with each additional hour increasing the price
by 3% resulting in a 6-hour increment that is 70% the on-
demand price. In the offline case, since we know the duration
of each job, we simply map jobs to the smallest spot block
increment that is greater than their running time, and compute
the corresponding normalized cost per unit of time based on
the increment’s discount. Jobs longer than 6 hours cannot
be run using the spot block option. As we discuss, for the
online case, we must predict each job’s running time based on
historical data to compute this normalized cost. This option
tends to be slightly more expensive than the transient option,
since it is only applicable to short jobs less than 6 hours (where
the transient option does well). As a result, the primary reason
to use this option over the transient one is largely based on
job requirements. For example, a job may not be capable of
automatically detecting revocations and restarting a job; the
job may not be idempotent and thus cannot be re-run after a
revocation; or the job may have a fixed deadline that is not
amenable to the probabilistic nature of the transient option.
On-demand. Computing the normalized cost for on-demand
VMs is straightforward: we simply assign the on-demand cost
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Sustained-Use. The sustained-use discount for an on-demand
server applies regardless of when a unit of resource demand
is used within a month. Thus, to compute it, we need only
compute the average resource demand over each month-long
billing period. The full discount applies to the floor of this
average, while a partial discount applies to the remainder of
the average. Note that the sustained-use discount applies to
the on-demand cost, so, when applied, it always results in a
normalized cost equal to or less than the on-demand cost.
Reserved. In the offline case, when normalizing the cost
of the reserved option, we assume a fractional resource, as
mentioned above, that aggregates the resource demand of all
jobs. Figure 1 shows an illustrative example of the aggregate
resource demand over time for a batch trace. For each unit
of stacked resource demand starting at 0 on the y-axis, we
compute the utilization of that unit of demand over both the
1- and 3-year offered reserved terms. For the 1- and 3-year
terms we assign the same normalized cost per unit of time
to each unit of stacked resource demand starting at 0 based
on its utilization across the term. This has the effect, as in
Figure 1, of drawing a line at each unit of demand on the
y-axis, computing its utilization, and then normalizing its cost
across the term length based on the utilization.

Since the 1- and 3-year terms are 60% and 40% of the on-
demand cost as shown in Table I, the resource utilization must
be at least 60% and 40%, respectively, to have a normalized
cost less than the on-demand cost. The higher the utilization,
the higher the normalized cost, such that 100% utilization
yields the entire discount. The 3-year term’s cost is competitive
with the transient option for long jobs if its utilization is high,
e.g., 90-100%, while the 1-year term’s cost is competitive with
spot blocks at high utilizations. The choice of selecting a 1-
versus a 3-year term is a function of the expectations of each
unit of demand’s utilization over the term. As we show in §V,
since our 4-year batch trace has a mostly stable year-to-year
demand, the 3-year term dominates in the offline case.
Scheduled Reserved. Computing the normalized cost of the
scheduled reserve option is similar to that of reserved, in
that we normalize the cost relative to the utilization over
the scheduled reserved’s 1-year term. However, unlike with
the reserved option, which is essentially a single schedule,
with scheduled reserved we must consider every possible
daily, weekly, and monthly schedule. For example, for a daily
schedule, to meet the 1200 hour yearly minimum, we must
reserve at least 4 consecutive hours per day starting at the
beginning of an hour. Thus, there are 21 possibly 4-hour

schedules, 20 possible 5-hour schedules, 19 possible 6-hour
schedules, etc., for a total of 210 possible daily schedules (note
that mixing schedules of different lengths will further increase
the number of possible daily schedules). A weekly schedule
is similar to a daily schedule, but only runs on certain days of
the week, e.g., Monday and Friday, while a monthly schedule
only runs on certain days of the month, e.g., the 1st and 15th.
There may be multiple non-overlapping schedules for each
unit of demand over a 1-year term that yield a lower cost than
either the on-demand or reserved price.

To find these schedules, we observe that the problem
reduces almost directly to the classic weighted job scheduling
problem, which has an efficient and well-known dynamic
programming solution that runs in O(nlogn) time (and is
often used in tutorials to teach dynamic programming'). The
weighted job scheduling problem takes as in put a set of n jobs
that each have a start and end time, as well as an associated
value. Given multiple, possibly overlapping jobs in time, the
problem is to select the non-overlapping set of jobs, such that
we maximize overall value. In our approach, each possible
multi-hour scheduling interval is akin to a job, the normalized
discount of that schedule is akin to the value, and the output is
the cheapest set of schedules. Thus, we can solve the problem
directly, given the normalized cost for each schedule.

For daily schedules, for each unit of resource demand,
we simply compute its average utilization for each hour of
each day over the year, which yields 24 values. Given these
24 average utilization values, we can compute the average
utilization for any multi-hour daily schedule interval. This
enables us to compute any daily schedule’s normalized cost
based on its utilization over the year and its discount. Note
that when computing the normalized cost, we compare it to
the 1-year reserved cost for that unit of demand and discard the
schedule interval if its cost is higher than the 1-year reserved
cost. For weekly schedules, we simply compute the hourly
average utilization over the year for each day of the week, and
compute the normalized cost for all possible schedules over the
week (with different day combinations). We apply the same
approach for monthly schedules. While weekly and monthly
schedules admit many possible schedule combinations, the
minimum length of a reservation (which is based on satisfying
1200 aggregate hours in a year) combined with the maximum
number of days in a week and month make this number
tractable. The number of weekly schedules is 2025, and while
the number of monthly schedules is ~2B, many are discarded
due to high prices and not used as input to the algorithm.
Selecting Purchasing Options. The policies above yield a
normalized cost for each VM purchasing option for each unit
of demand at each unit of time. For the transient and spot
block options, we sort their costs, such that the first unit of
stacked resource demand at each time unit always has the
lowest transient and spot block cost. In our optimistic offline
case, when selecting the purchasing option, we ignore that
these costs map to individual jobs. To compute our optimistic

Uhttps://www.geeksforgeeks.org/weighted- job-scheduling-log-n-time/



offline optimal cost, we select the lowest cost for each unit of
stacked resource demand, starting at 0. We first determine the
lowest of the normalized transient, spot block, on-demand, and
scheduled reserved options for each unit of resource demand
for each unit of time before considering the reserved options.

For the reserved options, we first consider the 1-year option.
We compute the average cost of the lowest cost non-reserved
options above for each unit of resource demand over each
l-year term. That is, we determine for each unit of stacked
resource demand, whether the 1-year reserved option or the
average cost of the other non-reserved options yields the
lowest cost. Since we can purchase a reserved option at any
time, we use a l-year sliding window that performs this
comparison over each l-year interval in our data. Assuming
there is >3 years of data available, we next apply the same
approach to compute the normalized 3-year reserved cost. We
compare this normalized 3-year cost with that of the lowest of
the 1-year reserved option and non-reserved options, and take
the lowest value. We can apply a sliding window depending on
data availability. Our approach above will yield the lowest cost
purchasing option for each unit of stacked resource demand
over time under our assumptions of perfect future knowledge
and fractional supply and demand.

B. Practical Online Approach

Since our optimistic assumptions for the offline approach
are not practical, we adapt it to an online approach and
evaluate it in §V using 4 years of job submission data from
a large-scale batch cluster. Our practical online approach is
essentially the same as our offline approach, but utilizes pre-
dictions of short- and long-term demand in the place of perfect
knowledge, and does not assume a fractional supply and
demand. That is, each job requests a certain number of cores
and memory, and (with the exception of the customized option)
each VM type has a specific number of cores and memory.
Since our predictions are imperfect, our online approach is
a heuristic. However, even given perfect future knowledge
of the workload, the problem is NP-hard, as removing the
fractional assumption makes it strictly harder than the NP-
hard bin packing problem.

Our predictions of long-term demand are straightforward:
we simply take prior job submission data and apply our offline
approach from the previous section to estimate the amount of
1-year, 3-year, and scheduled reserved capacity to purchase.
In §V, we make these decisions based on the first year of
job data, and evaluate our online approach over the next 3
years. Since we do not have 3 years of prior data, we simply
assume our training year will repeat to estimate the 3-year
reserved capacity to purchase. The accuracy of such long-
term predictions is a function of whether a workload changes
significantly over time. In many cases, such changes are often
the result of exogeneous factors not present in historical data,
such as new users gaining access. Thus, this (or any) large
cluster’s operators with knowledge of these exogeneous factors
may be able to develop a better prediction model. Our goal
here is not to develop the most accurate prediction model,

Job
(CPU: X,
Mem: y)

Is there

enough
Reserve idle
capacity?,

Select Reserve

VM demand VM
Fig. 2. Simple flow chart for selecting the VM purchasing option online when
only reserved, transient, and on-demand are available, as with Microsoft
rather it is to quantify the long-term cost benefits of mixing
different contract types using reasonable predictions.

The offline approach separately determines the amount of
cores and memory to purchase under each of the reserved
purchasing options. In practice, we must map these cores and
memory to specific types of VMs. To do this, we simply
purchase the largest VM types available that have a ratio of
cores to memory that is closest to the offline ratio for each
purchasing option. Note that the per-resource on-demand cost
of different VM types (with the exception of specialized types,
such as GPUs or FPGAs, which we do not consider) is similar,
so we do not consider cost in selecting VM types. We are
biased towards large VMs, since they are can run larger jobs.

After purchasing reserved capacity at the outset, as jobs
arrive online, we schedule them on available reserved capacity
based on their requested cores and memory. If there are no
available resources to execute a job, we dynamically acquire
additional non-reserved resources to execute the job. Since we
are using the cloud, our batch system is not limited to a fixed-
size cluster, and thus jobs never need wait in a queue for re-
sources. When dynamically acquiring non-reserved resources,
we must determine whether to purchase on-demand, transient,
or spot block.? Since the normalized cost of each is a function
of the job’s duration, we use training data to develop a simple
model to predict job runtimes, which we discuss below.

Given a prediction of the job’s running time (as well
as the transient revocation characteristics), we compute the
normalized cost of each option and select the lowest cost.
We compute this normalized cost for every available VM
type based on the job’s requested cores and memory. The
lowest cost VM type is generally the smallest one that has the
requisite cores and memory, although a discrete set of VM
types results in wasted resources that increase the normalized
cost. The customized option eliminates this waste but at a
5% increase in cost. We also use the prediction to determine
whether we can schedule a job to run on a scheduled reserved
VM, such that it completes before the scheduled reservation

2The sustained-use discount is always automatically applied to on-demand
when used, so we need not consider it here.



expires. Figure 2 depicts a simple flow chart for the online case
where only reserved, transient, and on-demand options are
available (as with Microsoft). Here, E[C[T]] is the normalized
cost to execute a job of length 7" on a transient VM, while
P,,q is the expected cost to execute it on an on-demand VM.
Job Runtime Predictions. We develop a simple regression
model based on a year of historical job submission data to
predict job runtime. As above, our goal is not to develop the
most accurate job runtime prediction model, but to quantify the
long-term cost benefits of mixing different contract types using
reasonable predictions. Each job in our batch trace, described
in §1IV, lists a user ID, job submission time, requested cores
and memory, and maximum runtime limit. The maximum
runtime limit is supplied by the user and represents the
maximum time the job can run before the system kills it—
it is not a job runtime estimate. We use these attributes as
the input features to a regression model with the job runtime
as the output variable. Once trained, the model supplies a job
runtime prediction given a job’s input features. We assume this
prediction is accurate when estimating the normalized cost of
the on-demand, transient, and spot block options.

IV. IMPLEMENTATION

We implemented both the optimistic offline approach
(§II-A) and practical online approach (§III-B) in Python.
The offline implementation takes as input a trace of job
submissions, and uses it to compute the mix of VM purchasing
options that minimize the cost based on the assumptions in
§III-A. Each job entry includes its submission time, requested
number of cores and memory, and running time. The online
implementation also takes as input a prior year’s trace of
job submissions, and uses it to determine the amount of
1-year, 3-year, and scheduled reserved capacity, assuming
subsequent years will be similar to the prior year. The online
implementation also regresses on this data to build its job
runtime prediction model.

We evaluate our approach in simulation using a 4-year trace
of job submissions from a 14k batch cluster for a major state
University system (serving multiple campuses). Our simulation
requires that jobs always receive the cores and memory
they request, and have the same runtime as in the original
trace. We analyze this trace in §V-A to highlight important
characteristics that impact the saving of different purchasing
options. In addition to the job submission time and requested
cores and memory, each job entry also includes a user ID
and maximum running time limit. For job runtime predictions,
we use ridge regression using these 4 input features and a
job’s actual running time as the output feature. For the online
approach, we use the first year of jobs (2015) for training,
and then evaluate on the next 3 years (2016-2018) of jobs.
We evaluate the offline approach on the same 3 years.

V. EVALUATION

Our evaluation examines the cost benefits of using a mix
of VM purchasing options in both the offline and online cases
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Fig. 3. The hourly core demand in 2018 with an average of 4380 cores.

compared to using a single purchasing option, either all on-
demand or all reserved, for our batch trace. We examine the
cost benefits for the set of purchasing options offered by each
cloud provider. Specifically, Microsoft offers on-demand, 1-
and 3-year reserved, and transient. Google offers the same
as Microsoft but also with a sustained-use discount and a
customized option, while Amazon also offers the same as
Microsoft but with scheduled reserved and spot block. In addi-
tion, Google’s variant of the transient option has a maximum
lifetime of 24 hours, while Amazon and Microsoft’s variant
has no maximum lifetime. Thus, Amazon and Microsoft offer
a transient option with longer potential times-to-revocation.
For our experiments, we assume an average time-to-revocation
of 12 hours for Google (with a maximum of 24 hours)
uniformly distributed, while for Microsoft and Amazon, we
assume an average of 48 hours (based on an analysis in
prior research [4]). Since the revocation characteristics of the
transient option are not well-known, we also evaluate the mix
without considering the transient option.

Since our focus is on the benefits of different purchasing
options, we use the same standard set of VM types and prices
across all providers. As a result, our evaluation does not
reflect the absolute cost difference between providers, but the
relative benefits of each provider’s set of purchasing options.
We consider standard VM types with 1, 2, 4, 8, 16, 32, and
64 cores with 4, 8, 16, 32, 64, 128, and 256 GB memory,
respectively. We assume the cost of a 1 core, 4GB VM is
$0.0481 per hour, which is equivalent to an m5.large VM
in Amazon with larger capacity VMs priced as a simple scalar
multiple. Google and Microsoft’s quoted prices for a similar
size VM are roughly the same. Below, we highlight salient
characteristics of the batch trace that impact our results before
evaluating the benefits of mixing VM purchasing options.

A. Batch Trace Characteristics

Figure 3 shows the hourly core demand on average for our
batch cluster over the year 2018. While our cluster has 14k
cores, the core demand peaks at nearly 43k cores, indicating
that jobs may periodically experience long waiting times. In
the cloud, these waiting times are not necessary as there is no
resource constraint. As might be expected, the average core
utilization over the year is much less than the peak, at only
4380 cores, resulting in a 31% average utilization. The high
peak-to-average demand ratio and the low average utilization
make our batch workload well-suited for the cloud, which has
the potential to reduce both job waiting times (by acquiring



more resources when demand is high) and cost (by releasing
non-reserved resources when demand is low).

Figure 4 shows a breakdown of jobs based on their running
time (a) and core-hours (b) for each year (2016-2018) of our
trace. We break jobs into 3 categories based on their runtime:
1) 0-6 hours, ii) 0-24 hours, and iii) 0-96 hours. We select these
runtime categories because they roughly correspond to the
running times necessary to use spot blocks, Google transient
preemptible VMs, and Amazon transient spot VMs. That is,
spot blocks only permit blocks from 1-6 hours, preemptible
VMs have a maximum lifetime of 24 hours, and prior work
suggests that Amazon spot VMs have an average lifetime of
~48 hours but can run much longer without a revocation [4].

Figure 4(a) shows that a high percentage (>96%) of the jobs
are less than 6 hours in length, and only a small percentage
are longer. The number of jobs that run longer than 96 hours
is quite small at 0.11%. However, Figure 4(b) shows the CPU-
hours the jobs in these categories consumes. Importantly, even
though >96% of jobs are small, they only consume less than
25% of the CPU-hours on average. In contrast, the small
number (~1%) of 0-24 hour jobs comprise 52% of the CPU-
hours on average, while 0-96 hour jobs comprise 82%. Thus,
even though jobs longer than 96 hours comprise only 0.11%
of the workload, they use 18% of the CPU-hours over the
3-year period. As we discuss below, these job characteristics
impact the the cost savings of different purchasing options.

B. Mixing VM Purchasing Options

Below, we evaluate the cost savings from mixing all the
VM purchasing options in both the online and offline case.
Optimistic Offline Approach. Figure 5 shows the cost of
mixing VM purchasing options using our optimistic offline
approach from 2016-2018 for the sets of VM purchasing
options offered by the different cloud providers. Figure 5(a)
plots the cost relative to using only on-demand VMs, while
(b) plots the cost relative to reserving enough VM capacity to
satisfy the peak demand with no job waiting time. Figure 6
shows the average percentage mix of each purchasing option
over the 3-year period. We see that the cost relative to on-
demand is 35% for Amazon and Microsoft, but only 41% for
Google-Standard, which includes the sustained-use discount
but does not permit the customized option. The savings for
Google-Customized drops to 33.62% of the on-demand cost.

The Amazon and Microsoft cases are the same because
Amazon’s additional options—spot block and reserved—are
never used in the offline case, and we treat the transient case
the same for both Microsoft and Amazon. Spot blocks never
offer a cost benefit for short 1-6 hour jobs over transient,
although they may be used in practice based on a job’s
requirements, i.e., if it cannot risk a revocation. Scheduled
reserved is never selected, largely because its discount is too
low (5-10%). In particular, there is no unit of stacked demand
with a daily, weekly, or monthly period where the utilization
within the period is >90-95%, but where the utilization overall
for that unit of demand is <60%, which would result in that
unit of demand being satisfied by a reserved VM. Overall,

transient VMs dominate the offline mix with ~29% because
they yield a much lower expected cost, even when considering
the likelihood of revocation and when using our simple policy
of always running a revoked job on on-demand. However,
despite their low cost, non-transient purchasing options still
account for ~71% of the workload.

Google’s set of purchasing options is cheaper due to both

their sustained-use discount and customized option. Adding
the sustained-use discount in Google-Standard results in a cost
41% the on-demand cost, while also adding the customized
option reduces this to 33.62%, despite the 5% increase in
price. Nearly every job makes use of the customized option,
as most are not within 5% of the size of a standard VM. The
customized option enables us to match the cores requested by a
job to the closest multiple of 2, rather than the closest power of
2 (as with Amazon and Microsoft). In addition, Google enables
users to allocate up to 6.5GB per core, while the standard
offerings from Amazon and Microsoft associate 4GB with
each core. Since a large number of jobs in our workload have
>4GB memory per core, this increases the relative benefit of
the customized offering over the standard VM types. Finally,
Figure 5(b) shows that using only the 1-year reserved option
is much more expensive than only using the on-demand option
despite its 40% discount. As expected, this is due to our batch
trace’s high peak-to-average ratio in demand.
Practical Online Approach. Figure 7 shows the cost of our
online approach both as a percentage of the cost of only using
the on-demand option (a), and as a percentage of the optimistic
offline cost (b). Figure 8 shows the average percentage of each
VM purchasing option over the 3-year period. The mix of
purchasing options is similar to the offline approach above,
although the percentage of transient VMs used decreases due
to inaccurate job runtime predictions, as we discuss below. As
above, the online approach never selects the spot block option
or uses scheduled reserved. As a result, both Amazon’s and
Microsoft’s results are the same in the online case as well. Also
as before, Google-Standard and Google-Customized results
in slightly lower relative costs in (a). In the online case,
however, Google’s set of purchasing options do not yield quite
as much relative benefit as in the offline approach. This occurs
because the offline case knows all job runtimes, while the
online case has to predict them. Since Google has a lower
maximum lifetime (24 hours) for its transient option, incorrect
job runtimes (which, in our case, tend to predict jobs to
be shorter than they actually are) have a greater impact on
Google in the online case. That is, Google has more jobs
assigned to transient VMs that get revoked due to incorrect
predictions, which increases their overall cost. These incorrect
predictions reduce Google’s cost advantage to 39% (to 69%
the on-demand cost verses 50% for Amazon and Microsoft)
across the 3-year period.

Figure 7(b) compares the online approach for each set of
purchasing options with the respective offline approach. As
mentioned above, Google’s online cost is the highest relative
to its offline cost due to incorrect job runtime predictions
combined with its short maximum lifetime for transient VMs.
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case (with the transient option).

The online approach results in 35% greater cost compared to
their respective optimistic offline approach for Amazon and
Microsoft, while it results in 55% greater cost for Google.

C. Removing Transient VMs

We repeat the evaluation above, but in this case without the
transient option. We do this for two reasons. First, transient
characteristics are not publicly known, and have a significant
impact on our results. Second, not all jobs can run on transient
VMs due to having strict deadlines or not being able to
gracefully handle revocations.

Optimistic Offline Approach. Figure 9 shows the cost of
mixing VM purchasing options without the transient option in
the optimistic offline case. The figure shows that the overall
cost increased relative to with the transient option because
transient VMs were by far the cheapest option. However, this
does not occur to a significant degree, primarily because not
a large fraction of the CPU-hours come from jobs that are
less than 6 hours in length (see Figure 4(b)), which mitigates
the impact of spot block. However, the availability of spot
block for Amazon with no low cost replacement for transient
at either Google or Microsoft results in Amazon having the
lowest overall cost. Their cost savings exceed Google even
when using the sustained-use discount and customized option.
Practical Online Approach. Figure 10 then shows the same
results when using our online approach as a percentage of
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the on-demand cost. The benefits of spot block decrease when
using the online approach, since the predictions of job running
times are not accurate. Due to the reduced benefit of spot
block, Google’s sustained-use discount and customized option
enable it to achieve the lowest cost. Figure 10 shows the mix
of purchasing options, which has a slightly reduced percentage
of spot block VMs compared to Figure 9.

VI. RELATED WORK

There has been significant prior work in optimizing par-
ticular workloads and applications for using different VM
purchasing options. However, most of this work focuses on
optimizing a single type of purchasing option and comparing
it with using on-demand, rather than looking at all of them in
combination. Perhaps most relevant to our work is HCloud [2],
which focuses on combining the reserved and on-demand
purchasing options. However, HCloud anecdotally shows that
reserved VMs tend to have less performance interference
than on-demand VMs of an equivalent type, although cloud
SLOs do not specify a difference between purchasing options
of equivalent types of VMs. HCloud primarily focuses on
determining how to map jobs to on-demand and reserved VMs
based on their sensitivity to performance interference. Thus,
HCloud targets small-scale workloads and does not evaluate
their approach using a real large-scale workload over a multi-
year period, nor optimize for other purchasing options.

There is a large body of work on optimizing for other
purchasing options, including transient VMs [12], [4], [5],
[8], [13], the sustained-use discount [14], and burstable VMs
(which we consider to be a different VM type) [10]. Thus
far, we know of no work that examines the benefits of spot
block, scheduled reserved, or customized VMs. There is also
a large body of related work on selecting the appropriate VM
type for a particular application or workload [1], [3], [9],
[11]. Our work differs from this work in that we focus on
selecting the best purchasing option given accurate knowledge
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of a job’s resource requirements. Of course, user resource
requests for jobs may not be the most efficient. Thus, our work
could incorporate prior work on automatically determining the
resources needed for a job to further optimize cost.

VII. CONCLUSION

Cloud platforms offer the same VMs under a variety
of purchasing options that specify different costs and time
commitments, such as on-demand, reserved, sustained-use,
scheduled reserve, spot/preemptible, and spot block. Choosing
from among these options can be challenging. To address this
problem, in this paper, we design policies to optimize long-
term cloud costs by selecting a mix of VM purchasing options
based on short- and long-term expectations of workload uti-
lization. We evaluate our policies on a batch job trace spanning
4 years from a large shared cluster for a major state University
system that includes 14k cores and 60 million job submissions,
and show how these jobs could be cost-effectively executed
in the cloud using our approach. Our results show that our
policies incur a cost within 41% of an optimistic offline
optimal approach, are 50% less than solely using on-demand
VMs, and 79% less than using reserved VMs.
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