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Abstract—Cloud platforms offer the same VMs under many
purchasing options that specify different costs and time commit-
ments, such as on-demand, reserved, sustained-use, scheduled
reserve, transient, and spot block. In general, the stronger the
commitment, i.e., longer and less flexible, the lower the price.
However, longer and less flexible time commitments can increase
cloud costs for users if future workloads cannot utilize the VMs
they committed to buying. Large cloud customers often find it
challenging to choose the right mix of purchasing options to
reduce their long-term costs, while retaining the ability to adjust
capacity up and down in response to workload variations.

To address the problem, we design policies to optimize long-
term cloud costs by selecting a mix of VM purchasing options
based on short- and long-term expectations of workload utiliza-
tion. We consider a batch trace spanning 4 years from a large
shared cluster for a major state University system that includes
14k cores and 60 million job submissions, and evaluate how these
jobs could be judiciously executed using cloud servers using our
approach. Our results show that our policies incur a cost within
41% of an optimistic optimal offline approach, and 50% less
than solely using on-demand VMs.

Keywords-Cloud Computing, Infrastructure-as-a-Service, Pur-
chasing Options

I. INTRODUCTION

With the advent of cloud computing, large institutions

that have traditionally operated large private compute clusters

for their general computing needs have begun to migrate

to public Infrastructure-as-a-Service (IaaS) cloud platforms,

which rent VMs to users for a price per unit time, due

to their low cost and high accessibility. Migrating a large-

scale private computing infrastructure to a public cloud is

a complex task. For example, the major hyperscale public

cloud providers—Amazon, Google, and Microsoft—now offer

dozens of VM types with different CPU, memory, I/O, and

network characteristics at different prices. Thus, selecting the

“right” type of VM—that yields the desired performance at

the lowest cost—for a particular workload can be challenging.

In addition, a significant fraction of a private cluster’s cost is

due to upfront capital expenses, e.g., server hardware, building

space, supporting IT equipment, etc., that are fixed, while

a cloud-based cluster’s cost is largely operational expenses

that are dependent on expectations of the future workload. If

cloud resources are provisioned judiciously—by choosing the

optimal mix of VM options—when migrating large workloads

to the cloud, cloud costs can be often lower than operating a

private cluster. However, the large number of cloud VM con-

figurations, the uncertainty in future workload characteristics,

and the complexity of decision making when operating a large

cloud cluster imply there is no guarantee that the potential cost

savings from migrating to the cloud will actually be realized.

In addition to offering dozens of VM types, cloud platforms

also offer these VMs under a variety of purchasing options that

specify different prices and time commitments. For example,

the on-demand option is the most common, enabling users

to request and release VMs at any time and only be charged

for the time they hold them. In contrast, the reserved option

requires users to commit to buying 1 or 3 years of VM time

in advance, but at a significant discount compared to holding

an on-demand VM for 1 or 3 years. Of course, if reserved

VMs are utilized less than their discount, then they will incur

a higher cost than utilizing the equivalent on-demand VMs,

since users may release on-demand VMs when not in use.

Cloud providers offer numerous other VM purchasing op-

tions that specify different time commitments and costs for

the same types of VMs, including sustained-use, scheduled

reserved, spot/preemptible, and spot block. The specific set of

purchasing options, as well as their names, prices, and some

details, differ across cloud providers, which we discuss in §II.

In general, though, the stronger a user’s time commitment, i.e.,

longer and less flexible, the lower the VM’s price. However,

as illustrated above, despite a lower price, longer and less

flexible commitments can increase cloud costs if users’ future

workload cannot utilize the VMs they committed to buying.

Thus, optimizing for long-term cloud costs not only requires

selecting the right VM types based on a workload’s resource

usage, but also selecting the right mix of purchasing options

based on future workload expectations. While the former

problem of choosing cloud VM types has been the subject

of much research [1], [3], [9], [11], optimizing the purchasing

options for the chosen VMs has not seen as much attention.

This problem requires cloud users to balance two competing

tradeoffs—making the longest possible commitments for the

provisioned VMs to extract the greatest savings, while retain-

ing some ability to make short-term increases or decreases to

provisioned VMs to respond to changing workloads.

This paper focuses on optimizing the mix of purchasing

options for cloud VMs. We develop policies to estimate and

optimize long-term cloud costs on the major cloud platforms

by selecting the mix of available purchasing options based

on short- and long-term expectations of workload utilization.

In general, these policies normalize the cost of each VM

purchasing option subject to its expected utilization based

on historical workload data, and then selects the option for

each unit of demand that yields the lowest cost. Further, the



uncertainty in future workload demand also needs to be con-

sidered when selecting a purchasing option. As we show, the

normalization and uncertainty issues differ for each purchasing

option, making the problem non-trivial. For example, for long-

term options, such as scheduled reserved, we must consider

thousands of options with different costs, e.g., based on when

VMs are scheduled to run, respectively, while for a short-

term option, such as spot block, the uncertainty of job runtime

predictions needs to be considered.

Our hypothesis is that mixing VM purchasing options

enables cloud users to “hedge their bets” and minimize their

long-term cloud costs relative to exclusively using a single

purchasing option, such as all on-demand VMs or all reserved

VMs. We evaluate this hypothesis and our policies using 4

years of batch traces consisting of 60 million job submissions

from a 14k-core shared batch cluster for a major U.S. state

university system. Our evaluation considers a scenario where

this large workload is migrated to, and operated in, the cloud,

and compares realistic online policies to an optimistic optimal

offline variant, which assumes perfect future knowledge of

workload demand and a perfectly elastic workload that can

be freely split across VMs. In doing so, our work answers a

number of interesting questions, listed below.

• What is the cost savings from mixing VM purchasing

options relative to exclusively using on-demand VMs or

reserved VMs?

• How do the policies needed to optimize for provider-

specific VM purchasing options differ across cloud

providers?

• Can users get more cost savings from cloud providers that

offer more purchasing options, such as Amazon, tailored to

specific types of workloads versus those that offer fewer,

such as Microsoft?

Our results show that our policy, which mixes VM purchas-

ing options, incur a cost within 41% of an optimistic optimal

offline approach, and are 50% and 79% less than solely using

on-demand VMs or reserved VMs, respectively. Our work also

shows that, while cloud platforms offer numerous complex

VM purchasing options, near-optimal procurement strategies

for general batch workloads can be simple in practice, as

ours largely uses a mix of transient, on-demand, and reserved

options available from all of the major cloud providers.

II. CLOUD PROVIDER OVERVIEW

We first provide details on the VM purchasing options of-

fered by the major public cloud providers: Microsoft, Google,

and Amazon. We then discuss differences between the set of

options offered by each cloud provider.

A. Cloud VM Purchasing Options

As noted earlier, our work focuses specifically on VM pur-

chasing options that relate to time commitments and flexibility,

and not VM types or capacity reservations. For example,

we do not consider dedicated hosts or VMs, which reduce

virtualization overhead and interference, or burstable VMs,

which enable VMs to periodically use additional resources.

Since these options only differ in the resources they offer, users

can treat them as a different resource type. The only exception

to this, as we discuss below, is customized VMs. We also do

not consider capacity reservations, which enable users to pay

to ensure that their future requests for on-demand VMs are

not rejected due to a lack of capacity. Currently, these capacity

reservations incur the same cost as the on-demand option, so

users may just as well purchase and hold on-demand VMs.

We also do not consider some of the small differences between

similar purchasing options across cloud providers, although we

note some of these differences below. These small differences

generally do not affect our policies in §III or the magnitude

of our results in §V.

Table I lists the different VM purchasing options that we

consider and their primary attributes. As can be seen, the

same cloud VM can be procured under a number of different

purchasing options. The relative cost represents the percentage

cost relative to the on-demand cost per unit time for the

equivalent VM type, and is not the percentage discount.

Thus, 60% represents 60% of the on-demand cost, which

corresponds to a 40% discount. The time commitment is the

amount of time the user must commit to buying. We discuss

the other attributes below.

On-demand. The on-demand option is the most common one

offered by all cloud providers, and typically the default option

for users. As a result, we represent the cost of the other options

relative to the on-demand option. An on-demand VM incurs a

cost per unit time from the time the cloud platform allocates

it to the user until the time the user terminates it. The per unit

time cost is now billed at fine-grained resolutions, e.g., either

per-second or per-minute, rather than hourly. Cloud platforms

do not generally revoke on-demand VMs, but they are not

guaranteed to be available when requested. That is, cloud

platforms may reject users’ request for on-demand VMs if

they run out of data center capacity. However, the frequency

of out-of-capacity rejections is not publicly known.

Reserved. The reserved option enables users to commit to

buying a VM for 1 or 3 year period in return for a discount

compared to procuring an on-demand VM over the same

period. All cloud providers offer 1 and 3 year reserved options,

which are designed for cheaply satisfying a user’s expected

base load—the minimum level of demand—over the reserva-

tion’s term. While reserved VMs are not revocable, they do

generally guarantee the user capacity on request. That is, if a

user ever terminates a reserved VM, when they request the VM

later (within the reservation’s term), unlike with on-demand

VMs, the cloud platform guarantees to have the capacity

to satisfy that request. Note that Google’s reserved option

equivalent requires combining a 1 or 3 year committed-use

discount with a separate capacity reservation. As mentioned

above, we do not consider purchasing capacity reservations

(which Amazon also offers) independent of VMs.

The reserved option is essentially a volume discount, where

the actual discount is based on the time commitment as well as

other options, such as the amount of upfront payment, whether



Purchasing Option Relative Cost (%) Time Commitment Revocable Guaranteed Cloud Providers

On-demand 100% None No No All
Reserved 60% 8760hrs (1yr) No Yes All
Reserved 40% 26,280hrs (3yrs) No Yes All
Transient 20-40% None Yes No All
Sustained-Use 70-100% None No No Google
Customized 105% - - - Google
Spot Block 55-70% None After 1-6hrs No Amazon
Scheduled Reserve 90-95% 1200-8760hrs (1yr) No Yes Amazon

TABLE I
Overview of the primary VM purchasing options across the major cloud providers

reserved VMs can be “converted” to other VMs of a different

type (but the same resources), and whether the reserved VMs

can switched between different data centers within the same

geographical region. The costs in Table I—60% and 40%

of the on-demand price for 1 and 3 year terms—are typical

discounts for standard options, e.g., payment in full for non-

convertible VMs tied to one availability zone. As expected,

the longer the time commitment, the higher the discount.

Transient. All cloud providers offer their suplus capacity

in the form of transient VMs [7] but under different names

and slightly different terms. Transient VMs are the cheapest

purchasing option, costing 20-40% of the on-demand cost, and

come with no time commitment. However, since transient VM

resources represent spare capacity, cloud platform’s may re-

voke them at any time to satisfy higher-priority requests for on-

demand and reserved VMs. Given their low cost and priority,

transient VMs are not guaranteed, and requests for such VMs

are likely rejected due to fluctuating surplus capacity more

frequently than on-demand VMs (although the rejection rates

are not publicly known). Transient VMs are generally designed

for cheaply satisfying batch jobs that run in the background,

and can tolerate delays due to unexpected revocations.

As with reserved, there are some small differences between

Microsoft, Google, and Amazon’s transient offering. Microsoft

and Google both offer transient VMs, called low-priority batch

VMs and preemptible VMs, respectively, for a fixed cost

per unit time. In contrast, Amazon offers spot VMs, which

have a variable cost per unit time. In the past, spot VMs

were revoked only when their dynamic spot price, which was

often volatile, exceeded a user’s bid price. However, Amazon

recently changed spot VMs to remove user bids (and thus

decouple revocations from prices), and reduced price volatility.

While spot prices technically remain variable, they are now

largely stable. As a result, spot VMs are now similar to low-

priority batch and preemptible VMs. The key difference in the

transient offerings now is that spot VMs (Amazon) and low-

priority batch VMs (Microsoft) have no maximum lifetime,

while preemptible VMs (Google) have a maximum lifetime

of 24 hours after which they are always revoked.

Sustained-Use. Google offers a sustained-use discount that

automatically applies to on-demand VMs of any type that

are run for some fraction of a month-long billing period.

The discount applies separately to each core, i.e., vCPU, and

gigabyte (GB) of memory regardless of type, since Google

separately charges for each core and GB of memory. Thus, VM

types simply incur a cost based on their pre-defined number

of cores and memory allotment. The discount starts once each

core or GB of memory is used for 25% of the month, and

increases the longer they are used with the maximum discount

being 30% off the on-demand cost for the entire month.

Specifically, for the first 25% of the month users pay 100% of

the on-demand cost, next for 25-50% they pay 80%, then for

50-75% they pay 60%, and finally for 75-100% they pay 40%.

The overall cost for an entire month of sustained use comes

to 70% of on-demand (i.e., 30% discount). The sustained-use

discount applies regardless of when a core or GB of memory

is used during a month, or whether it is part of a pre-defined

VM type. Sustained-use VMs offer a middle option between

on-demand and reserved VMs, since they cost slightly more

than the reserved option but less than on-demand, and also

come with no time commitment.

Customized. Google also offers a customized VM option,

which enables users to purchase a VM with a custom cost

based on a configurable number of cores and memory. Cus-

tomized VMs can be used in conjunction with any of the

purchasing options above, including the sustained-use dis-

count. Customized VMs have the potential for significant cost

savings by better matching job resource requirements to VM

resources, thereby reducing wasted resources. However, this

savings comes at an increased cost, which is currently 105%

the normalized cost per core and GB-memory of an on-demand

VM with pre-defined cores and memory allotment.

Spot Block. Amazon offers spot block VMs that have a short

pre-defined lifetime of 1, 2, 3, 4, 5, or 6 hours. Spot block

VMs are always revoked after their pre-defined lifetime (but

typically not before), although users can terminate them early

and only pay for the time they held them. Thus, spot block

VMs have a maximum lifetime, but no time commitment. Spot

block VMs cost 50-70% of the on-demand cost with higher

discounts for shorter lifetimes. Spot block VMs are a form of

short-term reservation that ensures the cloud platform is able

to reclaim resources in the near future. Their average discount

is less than spot, and near that of reserved. However, spot

block VMs do not require a long time commitment, and are

designed for short tasks (<6 hours) that either have a deadline

or cannot gracefully handle revocations, which makes them

unsuitable for transient/spot VMs.

Scheduled Reserved. Amazon also offers a scheduled reserve



option designed for workloads that do not run continuously

but do run on a regular schedule, such as nightly batch jobs or

financial simulations that run after the stock market closes each

weekday afternoon. Scheduled reserved VMs enable users to

define repeating daily, weekly, or monthly reservation sched-

ules at hourly resolutions. For example, users could define

a daily schedule that reserves a VM from 9pm-12am each

day. As with the reserved option, scheduled reserved capacity

is guaranteed and not revocable. However, the discount is

much smaller, only 10% during off-peak weekend hours and

5% during peak weekday hours. Scheduled reserved are only

offered for a 1 year term, and require users to purchase a

schedule with a minimum of 1200 hours over the year. This

option is also currently available in only 3 of the larger regions

(Northern Virginia, Oregon, and Ireland).

B. Differences between Cloud Providers

As Table I shows, the major cloud providers offer slightly

different VM purchasing options. Microsoft offers the simplest

set with on-demand, 1- and 3-year reserved, and transient

options. Google then adds the sustained-use discount for on-

demand VMs, along with the ability to configure customized

VMs with any purchasing option. In contrast, Amazon adds

the spot block and scheduled reserved options. Note that

Table I’s relative cost is an estimate across all the cloud

providers. In general, Microsoft quotes similar prices (in the

same way) as Amazon for the same purchasing options and

VM types, while Google quotes prices slightly differently.

However, the discounts offered for the purchasing options

(even for comparable VMs) are not directly comparable across

cloud providers, since aspects of their infrastructure, such as

the network and I/O bandwidth, and the resources may differ.

Our goal is not to analyze which cloud provider offers the

lowest absolute cost for each option (for a given workload)

based on today’s prices, as these prices and each platform’s

infrastructure can and do change frequently. Rather, our goal

is to understand how to choose an appropriate mix of these

purchasing options to optimize long-term cloud costs, and to

understand their impact on a large-scale batch workload. Thus,

our evaluation in §V uses the same prices, discounts, and VM

types across all the cloud providers based on the estimates

in Table I. Finally, our work only considers VM rental costs,

and not the additional costs related to network I/O, storage

capacity, or the use of other cloud services.

III. LONG-TERM COST OPTIMIZATION

Given a set of cloud VM types (of different fixed sizes)

offered under the purchasing options in §II, our problem is to

select the resources and purchasing options that minimize the

long-term cost based on both short- and long-term expectations

of workload utilization. We assume our workload is composed

of batch job submissions from users that include the requested

number of cores and memory.

To simplify the problem, we first consider an optimistic

optimal offline approach which assumes perfect knowledge

of the future workload as well as the ability to allocate

fractional demand to fractional resources where possible.

That is, even though our workload’s demand is composed

of discrete jobs, we assume that discrete jobs can be sub-

divided across resources, and purchasing options. Similarly,

even though cloud VMs are mostly composed of discrete

resource bundles (types), we assume resources (cores and

memory) can be purchased separately and bundled together in

any quantity. That is, we assume resources are allocated in the

form of customized VMs, as currently offered by Google, and

that the purchasing option price applies separately to cores and

memory (as with Google). As a result, we discuss a workload’s

utilization in terms of generic units of resource demand,

which, in the fractional case, can be either be the number of

cores or gigabytes of memory. We do not separately consider

customized versus non-customized options in the offline case.

Solving this offline case provides an optimistic optimal upper

bound on the realizable cost savings in practice. We then

present our online approach, which removes the assumptions

above of perfect future knowledge and fractional demand. Our

online policy is similar to the offline policy, but substitutes

imperfect predictions of short- and long-term demand (based

on historical data) for perfect knowledge and considers the

availability of limited VM types.

A. Optimistic Optimal Offline Approach

We model the workload trace in terms of the aggregate

resource demand per unit time from all active jobs within

that time unit; the aggregate resource demand is defined to

be the total cores and memory requested by all active jobs

within a time unit. Thus, the workload can be viewed as a

time-varying function of resource demand. The intuition for

our optimal offline approach is as follows: for each unit of

resource demand, e.g., cores and memory requested by jobs,

we compute the cost of the necessary resources under each

purchasing option to satisfy that unit of demand normalized by

its utilization over the length of the commitment. For example,

for one unit of resource demand and a 1-year reservation, we

normalize the cost based on the utilization over a year. Thus,

if the reservation’s cost is 60% of the on-demand cost, but

the utilization over the year is only 60%, then its normalized

cost is the same as the normalized on-demand cost. Given the

normalized costs for various options, we select the cheapest

option for each unit of resource demand until the demand

across time slots is satisfied. As discussed below, we apply

this approach separately to cores and memory.

Our general strategy applies directly when considering the

relative cost of on-demand, 1- and 3-year reserved, scheduled

reserved, and the sustained-use options. In these cases, we can

directly compute a optimistic optimal normalized cost for the

resources to satisfy each unit of demand under our assumption

of a fractional supply and demand. However, the normalized

cost of the transient and spot block options is directly a

function of each job’s length, which prevents us from directly

computing it under the assumption of a fractional resource

demand. For example, for the transient option, the longer the

job, the more revocations it will experience and the greater its



normalized cost. Similarly, a job that runs for 3 hours on a

3-hour spot block resources has a higher normalized cost than

a job that runs for 1 hour on a 1-hour spot block resource.

Thus, when computing the normalized cost for these options,

we must consider job length. As a result, in the offline case,

we first assign a normalized cost for using the transient and

spot block for each job, as discussed below, before considering

the other purchasing options.
Transient. As prior work has discussed [6], [8], the normal-

ized cost of using transient VMs is a function of not only

their relative cost per unit time and the job’s length, but

also the revocation rate and the use of fault-tolerance mech-

anisms to mitigate the impact of revocations. In general, the

longer a job, the more likely it is to experience a revocation.

However, precise revocation rates (and their distribution) are

not publicly known, and likely differ across providers. For

example, Google always revokes preemptible VMs after 24

hours, while historical data suggests Amazon’s mean-time-to-

revocation for spot VMs may be closer to 48 hours [4]. The

use of fault-tolerance mechanisms can mitigate the impact

of revocations [6], [8], [4], [5], [12]. For example, if a job

employs periodic checkpointing (for some period), on each

revocation, it can restart from the latest checkpoint rather than

from the beginning. Of course, employing such mechanisms

incurs some overhead that degrades performance and increases

the normalized cost. Prior work has extensively studied these

overheads and the normalized cost for transient VMs for

different types of jobs, durations, revocation rates, and fault-

tolerance mechanisms [6], [8], [4], [5], [12].
Our work can directly apply the prior work above to

compute the normalized cost of using transient VMs based

on a job’s duration and resource usage, as well as the optimal

checkpointing frequency based on the revocation rate. How-

ever, we note that such systems-level checkpointing is still not

commonly used by large production batch systems for a variety

of reasons. For example, while Linux containers include a

checkpoint/restart mechanism, it remains under active devel-

opment, and does not apply to parallel jobs. Thus, our analysis

assumes a more basic use of transient VMs that assumes no

checkpointing by restarting a job after each revocation.
In particular, to ensure a job assigned to a transient VM

completes, once it has experienced a revocation, we just restart

it on an on-demand VM. Under this simple model, we compute

the expected cost E[C(T )] to execute a job of length T using

the transient option as below. We assume that ptransient and

pondemand are the relative transient and on-demand prices,

R(T ) is the probability the job will be revoked before it

completes at time T , and Erevoke[T ] < T is the expected

time a revoked job runs.

E[C(T )] = (1−R(T ))(ptransient × T )+

R(T )(ptransient × Erevoke[T ] + pondemand × T )
(1)

The first term represents the total cost to run the job if it is not

revoked, while the second term represents the total cost to run

the job if it is revoked. The normalized cost per unit time is

then the expected cost to execute the job E[C(T )] divided by

the expected running time, which is (1−R(T ))×T +R(T )×
(Erevoke[T ]+T ). Of course, our approach is dependent on the

revocation characteristics. For example, assume a revocation

always occurs within 24 hours (as with Google) and that it

is equally likely at any point within 24 hours, and that the

transient option costs 30% of on-demand per unit time. In this

case, if a job’s running time T=18 hours, then its probability

of revocation R(18)=0.75 and its expected running time if it

is revoked Erevoke[T ]=9 hours. As a result, the expected cost

E[C(T )]=0.25(0.3)(18) + 0.75((0.3)(9) + (1)(18))=16.875,

and the expected running time is 0.25(18)+0.75(9+18)=24.75
hours, which yields a normalized cost per unit time that is

68% of the on-demand price. Thus, in this case, the discount

relative to using on-demand is only 32% rather than 70%.

Clearly, a shorter job yields a lower normalized cost. For

example, a 12 hour job has a normalized cost of 58% of

on-demand. With Google, under our restart model, it never

makes sense to run a job with a duration greater than 24 hours,

while it may make sense for the other providers, depending on

the job’s length and revocation characteristics. For the offline

case, we assume we know each job’s running time, as well

as the revocation characteristics, and can directly compute the

normalized cost per job per unit time. The transient option

tends to be the cheapest option for shorter jobs, e.g., a few

hours, but can be competitive with other purchasing option

for longer jobs. In our illustrative example, the 12 hour job

above has a lower normalized cost than the fully utilized 3-

year reserved option (which is 40% the on-demand price), but

the 18 hour job has a higher normalized cost. The transient

option is not good for extremely long jobs, e.g., many days

or weeks, as the higher revocation probability increases their

expected running time and normalized cost.

Spot Block. Spot blocks can be purchased in 1-, 2-, 3-, 4-

, 5-, or 6-hour increments with a higher discount applied to

shorter increments, such that a 1-hour block is 55% the on-

demand price with each additional hour increasing the price

by 3% resulting in a 6-hour increment that is 70% the on-

demand price. In the offline case, since we know the duration

of each job, we simply map jobs to the smallest spot block

increment that is greater than their running time, and compute

the corresponding normalized cost per unit of time based on

the increment’s discount. Jobs longer than 6 hours cannot

be run using the spot block option. As we discuss, for the

online case, we must predict each job’s running time based on

historical data to compute this normalized cost. This option

tends to be slightly more expensive than the transient option,

since it is only applicable to short jobs less than 6 hours (where

the transient option does well). As a result, the primary reason

to use this option over the transient one is largely based on

job requirements. For example, a job may not be capable of

automatically detecting revocations and restarting a job; the

job may not be idempotent and thus cannot be re-run after a

revocation; or the job may have a fixed deadline that is not

amenable to the probabilistic nature of the transient option.

On-demand. Computing the normalized cost for on-demand

VMs is straightforward: we simply assign the on-demand cost





offline optimal cost, we select the lowest cost for each unit of

stacked resource demand, starting at 0. We first determine the

lowest of the normalized transient, spot block, on-demand, and

scheduled reserved options for each unit of resource demand

for each unit of time before considering the reserved options.

For the reserved options, we first consider the 1-year option.

We compute the average cost of the lowest cost non-reserved

options above for each unit of resource demand over each

1-year term. That is, we determine for each unit of stacked

resource demand, whether the 1-year reserved option or the

average cost of the other non-reserved options yields the

lowest cost. Since we can purchase a reserved option at any

time, we use a 1-year sliding window that performs this

comparison over each 1-year interval in our data. Assuming

there is >3 years of data available, we next apply the same

approach to compute the normalized 3-year reserved cost. We

compare this normalized 3-year cost with that of the lowest of

the 1-year reserved option and non-reserved options, and take

the lowest value. We can apply a sliding window depending on

data availability. Our approach above will yield the lowest cost

purchasing option for each unit of stacked resource demand

over time under our assumptions of perfect future knowledge

and fractional supply and demand.

B. Practical Online Approach

Since our optimistic assumptions for the offline approach

are not practical, we adapt it to an online approach and

evaluate it in §V using 4 years of job submission data from

a large-scale batch cluster. Our practical online approach is

essentially the same as our offline approach, but utilizes pre-

dictions of short- and long-term demand in the place of perfect

knowledge, and does not assume a fractional supply and

demand. That is, each job requests a certain number of cores

and memory, and (with the exception of the customized option)

each VM type has a specific number of cores and memory.

Since our predictions are imperfect, our online approach is

a heuristic. However, even given perfect future knowledge

of the workload, the problem is NP-hard, as removing the

fractional assumption makes it strictly harder than the NP-

hard bin packing problem.

Our predictions of long-term demand are straightforward:

we simply take prior job submission data and apply our offline

approach from the previous section to estimate the amount of

1-year, 3-year, and scheduled reserved capacity to purchase.

In §V, we make these decisions based on the first year of

job data, and evaluate our online approach over the next 3

years. Since we do not have 3 years of prior data, we simply

assume our training year will repeat to estimate the 3-year

reserved capacity to purchase. The accuracy of such long-

term predictions is a function of whether a workload changes

significantly over time. In many cases, such changes are often

the result of exogeneous factors not present in historical data,

such as new users gaining access. Thus, this (or any) large

cluster’s operators with knowledge of these exogeneous factors

may be able to develop a better prediction model. Our goal

here is not to develop the most accurate prediction model,
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Fig. 2. Simple flow chart for selecting the VM purchasing option online when

only reserved, transient, and on-demand are available, as with Microsoft

rather it is to quantify the long-term cost benefits of mixing

different contract types using reasonable predictions.

The offline approach separately determines the amount of

cores and memory to purchase under each of the reserved

purchasing options. In practice, we must map these cores and

memory to specific types of VMs. To do this, we simply

purchase the largest VM types available that have a ratio of

cores to memory that is closest to the offline ratio for each

purchasing option. Note that the per-resource on-demand cost

of different VM types (with the exception of specialized types,

such as GPUs or FPGAs, which we do not consider) is similar,

so we do not consider cost in selecting VM types. We are

biased towards large VMs, since they are can run larger jobs.

After purchasing reserved capacity at the outset, as jobs

arrive online, we schedule them on available reserved capacity

based on their requested cores and memory. If there are no

available resources to execute a job, we dynamically acquire

additional non-reserved resources to execute the job. Since we

are using the cloud, our batch system is not limited to a fixed-

size cluster, and thus jobs never need wait in a queue for re-

sources. When dynamically acquiring non-reserved resources,

we must determine whether to purchase on-demand, transient,

or spot block.2 Since the normalized cost of each is a function

of the job’s duration, we use training data to develop a simple

model to predict job runtimes, which we discuss below.

Given a prediction of the job’s running time (as well

as the transient revocation characteristics), we compute the

normalized cost of each option and select the lowest cost.

We compute this normalized cost for every available VM

type based on the job’s requested cores and memory. The

lowest cost VM type is generally the smallest one that has the

requisite cores and memory, although a discrete set of VM

types results in wasted resources that increase the normalized

cost. The customized option eliminates this waste but at a

5% increase in cost. We also use the prediction to determine

whether we can schedule a job to run on a scheduled reserved

VM, such that it completes before the scheduled reservation

2The sustained-use discount is always automatically applied to on-demand
when used, so we need not consider it here.



expires. Figure 2 depicts a simple flow chart for the online case

where only reserved, transient, and on-demand options are

available (as with Microsoft). Here, E[C[T ]] is the normalized

cost to execute a job of length T on a transient VM, while

Pond is the expected cost to execute it on an on-demand VM.

Job Runtime Predictions. We develop a simple regression

model based on a year of historical job submission data to

predict job runtime. As above, our goal is not to develop the

most accurate job runtime prediction model, but to quantify the

long-term cost benefits of mixing different contract types using

reasonable predictions. Each job in our batch trace, described

in §IV, lists a user ID, job submission time, requested cores

and memory, and maximum runtime limit. The maximum

runtime limit is supplied by the user and represents the

maximum time the job can run before the system kills it—

it is not a job runtime estimate. We use these attributes as

the input features to a regression model with the job runtime

as the output variable. Once trained, the model supplies a job

runtime prediction given a job’s input features. We assume this

prediction is accurate when estimating the normalized cost of

the on-demand, transient, and spot block options.

IV. IMPLEMENTATION

We implemented both the optimistic offline approach

(§III-A) and practical online approach (§III-B) in Python.

The offline implementation takes as input a trace of job

submissions, and uses it to compute the mix of VM purchasing

options that minimize the cost based on the assumptions in

§III-A. Each job entry includes its submission time, requested

number of cores and memory, and running time. The online

implementation also takes as input a prior year’s trace of

job submissions, and uses it to determine the amount of

1-year, 3-year, and scheduled reserved capacity, assuming

subsequent years will be similar to the prior year. The online

implementation also regresses on this data to build its job

runtime prediction model.

We evaluate our approach in simulation using a 4-year trace

of job submissions from a 14k batch cluster for a major state

University system (serving multiple campuses). Our simulation

requires that jobs always receive the cores and memory

they request, and have the same runtime as in the original

trace. We analyze this trace in §V-A to highlight important

characteristics that impact the saving of different purchasing

options. In addition to the job submission time and requested

cores and memory, each job entry also includes a user ID

and maximum running time limit. For job runtime predictions,

we use ridge regression using these 4 input features and a

job’s actual running time as the output feature. For the online

approach, we use the first year of jobs (2015) for training,

and then evaluate on the next 3 years (2016-2018) of jobs.

We evaluate the offline approach on the same 3 years.

V. EVALUATION

Our evaluation examines the cost benefits of using a mix

of VM purchasing options in both the offline and online cases
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Fig. 3. The hourly core demand in 2018 with an average of 4380 cores.

compared to using a single purchasing option, either all on-

demand or all reserved, for our batch trace. We examine the

cost benefits for the set of purchasing options offered by each

cloud provider. Specifically, Microsoft offers on-demand, 1-

and 3-year reserved, and transient. Google offers the same

as Microsoft but also with a sustained-use discount and a

customized option, while Amazon also offers the same as

Microsoft but with scheduled reserved and spot block. In addi-

tion, Google’s variant of the transient option has a maximum

lifetime of 24 hours, while Amazon and Microsoft’s variant

has no maximum lifetime. Thus, Amazon and Microsoft offer

a transient option with longer potential times-to-revocation.

For our experiments, we assume an average time-to-revocation

of 12 hours for Google (with a maximum of 24 hours)

uniformly distributed, while for Microsoft and Amazon, we

assume an average of 48 hours (based on an analysis in

prior research [4]). Since the revocation characteristics of the

transient option are not well-known, we also evaluate the mix

without considering the transient option.

Since our focus is on the benefits of different purchasing

options, we use the same standard set of VM types and prices

across all providers. As a result, our evaluation does not

reflect the absolute cost difference between providers, but the

relative benefits of each provider’s set of purchasing options.

We consider standard VM types with 1, 2, 4, 8, 16, 32, and

64 cores with 4, 8, 16, 32, 64, 128, and 256 GB memory,

respectively. We assume the cost of a 1 core, 4GB VM is

$0.0481 per hour, which is equivalent to an m5.large VM

in Amazon with larger capacity VMs priced as a simple scalar

multiple. Google and Microsoft’s quoted prices for a similar

size VM are roughly the same. Below, we highlight salient

characteristics of the batch trace that impact our results before

evaluating the benefits of mixing VM purchasing options.

A. Batch Trace Characteristics

Figure 3 shows the hourly core demand on average for our

batch cluster over the year 2018. While our cluster has 14k

cores, the core demand peaks at nearly 43k cores, indicating

that jobs may periodically experience long waiting times. In

the cloud, these waiting times are not necessary as there is no

resource constraint. As might be expected, the average core

utilization over the year is much less than the peak, at only

4380 cores, resulting in a 31% average utilization. The high

peak-to-average demand ratio and the low average utilization

make our batch workload well-suited for the cloud, which has

the potential to reduce both job waiting times (by acquiring



more resources when demand is high) and cost (by releasing

non-reserved resources when demand is low).

Figure 4 shows a breakdown of jobs based on their running

time (a) and core-hours (b) for each year (2016-2018) of our

trace. We break jobs into 3 categories based on their runtime:

i) 0-6 hours, ii) 0-24 hours, and iii) 0-96 hours. We select these

runtime categories because they roughly correspond to the

running times necessary to use spot blocks, Google transient

preemptible VMs, and Amazon transient spot VMs. That is,

spot blocks only permit blocks from 1-6 hours, preemptible

VMs have a maximum lifetime of 24 hours, and prior work

suggests that Amazon spot VMs have an average lifetime of

∼48 hours but can run much longer without a revocation [4].

Figure 4(a) shows that a high percentage (>96%) of the jobs

are less than 6 hours in length, and only a small percentage

are longer. The number of jobs that run longer than 96 hours

is quite small at 0.11%. However, Figure 4(b) shows the CPU-

hours the jobs in these categories consumes. Importantly, even

though >96% of jobs are small, they only consume less than

25% of the CPU-hours on average. In contrast, the small

number (∼1%) of 0-24 hour jobs comprise 52% of the CPU-

hours on average, while 0-96 hour jobs comprise 82%. Thus,

even though jobs longer than 96 hours comprise only 0.11%

of the workload, they use 18% of the CPU-hours over the

3-year period. As we discuss below, these job characteristics

impact the the cost savings of different purchasing options.

B. Mixing VM Purchasing Options

Below, we evaluate the cost savings from mixing all the

VM purchasing options in both the online and offline case.

Optimistic Offline Approach. Figure 5 shows the cost of

mixing VM purchasing options using our optimistic offline

approach from 2016-2018 for the sets of VM purchasing

options offered by the different cloud providers. Figure 5(a)

plots the cost relative to using only on-demand VMs, while

(b) plots the cost relative to reserving enough VM capacity to

satisfy the peak demand with no job waiting time. Figure 6

shows the average percentage mix of each purchasing option

over the 3-year period. We see that the cost relative to on-

demand is 35% for Amazon and Microsoft, but only 41% for

Google-Standard, which includes the sustained-use discount

but does not permit the customized option. The savings for

Google-Customized drops to 33.62% of the on-demand cost.

The Amazon and Microsoft cases are the same because

Amazon’s additional options—spot block and reserved—are

never used in the offline case, and we treat the transient case

the same for both Microsoft and Amazon. Spot blocks never

offer a cost benefit for short 1-6 hour jobs over transient,

although they may be used in practice based on a job’s

requirements, i.e., if it cannot risk a revocation. Scheduled

reserved is never selected, largely because its discount is too

low (5-10%). In particular, there is no unit of stacked demand

with a daily, weekly, or monthly period where the utilization

within the period is >90-95%, but where the utilization overall

for that unit of demand is <60%, which would result in that

unit of demand being satisfied by a reserved VM. Overall,

transient VMs dominate the offline mix with ∼29% because

they yield a much lower expected cost, even when considering

the likelihood of revocation and when using our simple policy

of always running a revoked job on on-demand. However,

despite their low cost, non-transient purchasing options still

account for ∼71% of the workload.

Google’s set of purchasing options is cheaper due to both

their sustained-use discount and customized option. Adding

the sustained-use discount in Google-Standard results in a cost

41% the on-demand cost, while also adding the customized

option reduces this to 33.62%, despite the 5% increase in

price. Nearly every job makes use of the customized option,

as most are not within 5% of the size of a standard VM. The

customized option enables us to match the cores requested by a

job to the closest multiple of 2, rather than the closest power of

2 (as with Amazon and Microsoft). In addition, Google enables

users to allocate up to 6.5GB per core, while the standard

offerings from Amazon and Microsoft associate 4GB with

each core. Since a large number of jobs in our workload have

>4GB memory per core, this increases the relative benefit of

the customized offering over the standard VM types. Finally,

Figure 5(b) shows that using only the 1-year reserved option

is much more expensive than only using the on-demand option

despite its 40% discount. As expected, this is due to our batch

trace’s high peak-to-average ratio in demand.

Practical Online Approach. Figure 7 shows the cost of our

online approach both as a percentage of the cost of only using

the on-demand option (a), and as a percentage of the optimistic

offline cost (b). Figure 8 shows the average percentage of each

VM purchasing option over the 3-year period. The mix of

purchasing options is similar to the offline approach above,

although the percentage of transient VMs used decreases due

to inaccurate job runtime predictions, as we discuss below. As

above, the online approach never selects the spot block option

or uses scheduled reserved. As a result, both Amazon’s and

Microsoft’s results are the same in the online case as well. Also

as before, Google-Standard and Google-Customized results

in slightly lower relative costs in (a). In the online case,

however, Google’s set of purchasing options do not yield quite

as much relative benefit as in the offline approach. This occurs

because the offline case knows all job runtimes, while the

online case has to predict them. Since Google has a lower

maximum lifetime (24 hours) for its transient option, incorrect

job runtimes (which, in our case, tend to predict jobs to

be shorter than they actually are) have a greater impact on

Google in the online case. That is, Google has more jobs

assigned to transient VMs that get revoked due to incorrect

predictions, which increases their overall cost. These incorrect

predictions reduce Google’s cost advantage to 39% (to 69%

the on-demand cost verses 50% for Amazon and Microsoft)

across the 3-year period.

Figure 7(b) compares the online approach for each set of

purchasing options with the respective offline approach. As

mentioned above, Google’s online cost is the highest relative

to its offline cost due to incorrect job runtime predictions

combined with its short maximum lifetime for transient VMs.
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Fig. 4. Job runtime (a) and CPU-hours (b) for different length jobs each year in our batch trace.
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Fig. 5. Cost for executing our batch trace using all purchasing options from the different cloud providers in the optimistic offline case as a percentage of
using on-demand only (a) and reserved only (b).
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Fig. 6. Mix of VM purchasing options used over 2016-2018 in the offline
case (with the transient option).

The online approach results in 35% greater cost compared to

their respective optimistic offline approach for Amazon and

Microsoft, while it results in 55% greater cost for Google.

C. Removing Transient VMs

We repeat the evaluation above, but in this case without the

transient option. We do this for two reasons. First, transient

characteristics are not publicly known, and have a significant

impact on our results. Second, not all jobs can run on transient

VMs due to having strict deadlines or not being able to

gracefully handle revocations.

Optimistic Offline Approach. Figure 9 shows the cost of

mixing VM purchasing options without the transient option in

the optimistic offline case. The figure shows that the overall

cost increased relative to with the transient option because

transient VMs were by far the cheapest option. However, this

does not occur to a significant degree, primarily because not

a large fraction of the CPU-hours come from jobs that are

less than 6 hours in length (see Figure 4(b)), which mitigates

the impact of spot block. However, the availability of spot

block for Amazon with no low cost replacement for transient

at either Google or Microsoft results in Amazon having the

lowest overall cost. Their cost savings exceed Google even

when using the sustained-use discount and customized option.

Practical Online Approach. Figure 10 then shows the same

results when using our online approach as a percentage of

the on-demand cost. The benefits of spot block decrease when

using the online approach, since the predictions of job running

times are not accurate. Due to the reduced benefit of spot

block, Google’s sustained-use discount and customized option

enable it to achieve the lowest cost. Figure 10 shows the mix

of purchasing options, which has a slightly reduced percentage

of spot block VMs compared to Figure 9.

VI. RELATED WORK

There has been significant prior work in optimizing par-

ticular workloads and applications for using different VM

purchasing options. However, most of this work focuses on

optimizing a single type of purchasing option and comparing

it with using on-demand, rather than looking at all of them in

combination. Perhaps most relevant to our work is HCloud [2],

which focuses on combining the reserved and on-demand

purchasing options. However, HCloud anecdotally shows that

reserved VMs tend to have less performance interference

than on-demand VMs of an equivalent type, although cloud

SLOs do not specify a difference between purchasing options

of equivalent types of VMs. HCloud primarily focuses on

determining how to map jobs to on-demand and reserved VMs

based on their sensitivity to performance interference. Thus,

HCloud targets small-scale workloads and does not evaluate

their approach using a real large-scale workload over a multi-

year period, nor optimize for other purchasing options.

There is a large body of work on optimizing for other

purchasing options, including transient VMs [12], [4], [5],

[8], [13], the sustained-use discount [14], and burstable VMs

(which we consider to be a different VM type) [10]. Thus

far, we know of no work that examines the benefits of spot

block, scheduled reserved, or customized VMs. There is also

a large body of related work on selecting the appropriate VM

type for a particular application or workload [1], [3], [9],

[11]. Our work differs from this work in that we focus on

selecting the best purchasing option given accurate knowledge
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Fig. 8. Mix of VM purchasing options used over 2016-2018 in the online
case (with the transient option).
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Fig. 9. Mix of VM purchasing options used over 2016-2018 in the offline
case without the transient option.

of a job’s resource requirements. Of course, user resource

requests for jobs may not be the most efficient. Thus, our work

could incorporate prior work on automatically determining the

resources needed for a job to further optimize cost.

VII. CONCLUSION

Cloud platforms offer the same VMs under a variety

of purchasing options that specify different costs and time

commitments, such as on-demand, reserved, sustained-use,

scheduled reserve, spot/preemptible, and spot block. Choosing

from among these options can be challenging. To address this

problem, in this paper, we design policies to optimize long-

term cloud costs by selecting a mix of VM purchasing options

based on short- and long-term expectations of workload uti-

lization. We evaluate our policies on a batch job trace spanning

4 years from a large shared cluster for a major state University

system that includes 14k cores and 60 million job submissions,

and show how these jobs could be cost-effectively executed

in the cloud using our approach. Our results show that our

policies incur a cost within 41% of an optimistic offline

optimal approach, are 50% less than solely using on-demand

VMs, and 79% less than using reserved VMs.

Acknowledgements. This work was funded by NSF grants

#CNS-1802523 and #CNS-1908536.

Ý

Þß

àá

âã

äå

æçè

éêë

ìíîïðñòóô õö÷øùú
ûüýþÿ❙�✁

●✂✄☎✆✝
❈✞✟✠✡☛☞✌✍✎

❆✏✑✒✓✔

✕
✖
✗
✘
✙✚
✛

✜✢✣✤ ✥✦✧★✩ ❘✪✫✬✭✮✯✰ ❖✱✲✳✴✵✶✷✸

✹✺✻✼✽

✾✿❀❁❂
❃❄

❅❇❉❊❋
❍■❏❑▲ ▼◆P◗❚ ❯❱❲❳❨ ❩❬❭❪❫

❴❵❛❜❝

❞❡❢❣❤
✐❥❦❧♠

♥♦♣qr

Fig. 10. Mix of VM purchasing options used over 2016-2018 in the online
case without the transient option.

REFERENCES

[1] O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Configurations for
Big Data Analytics. In NSDI, March 2017.

[2] C. Delimitrou and C. Kozyrakis. HCloud: Resource-Efficient Provision-
ing in Shared Cloud Systems. In ASPLOS, April 2016.

[3] C. Hsu, V. Nair, V. Freeh, and T. Menzies. Low-Level Augmented
Bayesian Optimization for Finding the Best Cloud VM. In ICDCS, July
2018.

[4] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers. In European

Conference on Computer Systems (EuroSys), April 2016.
[5] P. Sharma, D. Irwin, and P. Shenoy. Portfolio-driven Resource Man-

agement for Transient Cloud Servers. In International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS), June
2017.

[6] S. Shastri, A. Rizk, and D. Irwin. Transient Guarantees: Maximizing
the Value of Idle Cloud Capacity. In SC, November 2016.

[7] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan. Here
Today, Gone Tomorrow: Exploiting Transient Servers in Datacenters.
IEEE Internet Computing, 18(4), April 2014.

[8] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy. SpotOn: A
Batch Computing Service for the Spot Market. In Symposium on Cloud

Computing (SoCC), August 2015.
[9] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:

Eficient performance prediction for large-scale advanced analytics. In
NSDI, March 2016.

[10] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis. Using Burstable
Instances in the Public Cloud: Why, When, and How? ACM on

Measurement and Analysis of Computing Systems, 1(1), June 2017.
[11] N. Yadwadkar, B. Hariharan, J. Gonzalez, B. Smith, and R. Katz.

Selecting the Best VM across Multiple Public Clouds: A Data-driven
Performance Modeling Approach. In SoCC, September 2017.

[12] Y. Yan, Y. Gao, Z. Guo, B. Chen, and T. Moscibroda. TR-Spark:
Transient Computing for Big Data Analytics. In Symposium on Cloud

Computing (SoCC), October 2016.
[13] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and

B. Chun. Pado: A Data Processing Engine for Harnessing Transient
Resources in Datacenters. In European Conference on Computer Systems

(EuroSys), April 2017.
[14] L. Zheng, C. Joe-Wong, C. Brinton, C. Tan, S. Ha, and M. Chiang. On

the Viability of a Cloud Virtual Service Provider. In SIGMETRICS, June
2016.


