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Abstract— Parkinson’s disease (PD) currently influences
around one million people in the US. Deep brain stimulation
(DBS) is a surgical treatment for the motor symptoms of PD
that delivers electrical stimulation to the basal ganglia (BG)
region of the brain. Existing commercial DBS devices employ
stimulation based only on fixed-frequency periodic pulses.
While such periodic high-frequency DBS controllers provide
effective relief of PD symptoms, they are very inefficient in
terms of energy consumption, and the lifetime of these battery-
operated devices is limited to 4 years. Furthermore, fixed high-
frequency stimulation may have side effects, such as speech
impairment. Consequently, there is a need to move beyond
(1) fixed stimulation pulse controllers, and (2) ‘one-size-fits-
all’ patient-agnostic treatments, to provide energy efficient and
effective (in terms of relieving PD symptoms) DBS controllers.
In this work, we introduce a deep reinforcement learning (RL)-
based approach that can derive patient-specific DBS patterns
that are both effective in reducing a model-based proxy for PD
symptoms, as well as energy-efficient. Specifically, we model
the BG regions as a Markov decision process (MDP), and
define the state and action space as state of the neurons
in the BG regions and the stimulation patterns, respectively.
Thereafter, we define the reward functions over the state space,
and the learning objective is set to maximize the accumulated
reward over a finite horizon (i.e., the treatment duration),
while bounding average stimulation frequency. We evaluate the
performance of our methodology using a Brain-on-Chip (BoC)
FPGA platform that implements the physiologically-relevant
basal ganglia model (BGM). We show that our RL-based DBS
controllers significantly outperform existing fixed frequency
controllers in terms of energy efficiency (e.g., by using 70%
less energy than common periodic controllers), while providing
suitable reduction of model-based proxy for PD symptoms.

I. INTRODUCTION

In 2010, Parkinson’s disease (PD) affected over 680,000

individuals in the US older than 45, with projections to

reach 930,000 people by 2020 [1]; this would make it the

second most prevalent movement disorder [2]. Due to the

number of affected individuals, PD also causes significant
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Institutes of Health R37 NS040894 awards.

economic impact, with the costs in the US alone surpassing

$25B annually [3].

Deep brain stimulation (DBS) is an effective method

to treat the motor symptoms of PD [4]–[7] by delivering

appropriate electrical stimulation (i.e., pacing) to the basal

ganglia (BG) region of the brain, as illustrated in Figure 1.

Existing commercial DBS devices only feature the basic

“ON-OFF” functionality, delivering fixed frequency, periodic

neurostimuli. In such devices, the stimulation parameters

(e.g., stimulation frequency and amplitude) are commonly

hand-tuned by physicians through trial and error, remaining

fixed throughout the treatment [8]. As a result, development

of automated neurostimulation parameter selection methods

and feedback-based stimulation controllers has attracted sig-

nificant research interest in recent years.

In [9]–[14], the authors propose an adaptive DBS (aDBS)

framework that can automatically adjust stimulation param-

eters based on feedback signals recorded from patients.

Specifically, electromyography and accelerometer record-

ings, cortical neurosignals (e.g., electrocorticography), sub-

cortical neurosignals (e.g., BG local field potentials) and

neurochemical signals are used to assess patient’s symptoms

and to adjust neurostimulation parameters accordingly.

On the other hand, [8], [15], [16] propose the use of rein-

forcement learning (RL) to select appropriate pulse frequen-

cies for standard periodic DBS to treat epilepsy; this results

in reduced total stimulation energy applied to the patient’s

brain, and thus, increased lifetime of these battery-operated

devices. Specifically, [8] proposes a method that uses EEG

signals to estimate the patient’s clinical states followed by

minimizing the stimulation frequency and duration through

RL. Based on the EEG signals, the proposed algorithm

makes decisions about which stimulation frequency should

be applied. In [16], a TD(0) reinforcement learning algorithm

is applied to determine the stimulation frequency that mini-

mizes stimulation energy and side effects. The authors in [15]

define discrete Markov decision process (MDP) rewards

over the symptoms of patients after stimulation (i.e., seizure
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Fig. 1. Graphical depiction of deep brain stimulation (DBS) in the basal
ganglia (BG). In DBS, electrodes are positioned to stimulate the subthalamic
nucleus or the internal segment of the globus pallidus (GPi) with periodic
fixed frequency trains of short-duration pulses [17].

or not-seizure), and apply the fitted-Q iteration algorithm

to select suitable control actions by maximizing rewards.

However, in these prior efforts, the control action space

consist of simple periodic stimulation with a limited set of

fixed frequencies. Their sole focus was on the search for

optimal stimulation frequencies, while the stimulation pulse

pattern – i.e., a simple periodic signal – remained identical

across different patients.

In this paper, we introduce a deep RL-based approach

for synthesis of optimal, patient-specific DBS controllers

over the treatment time horizon, as summarized in Fig-

ure 2. Specifically, we consider the widely-adopted DBS

performance metrics (i.e., Error Index (EI) [18] and Beta

Power Spectral Density (Pβ) [19]) as Quality-of-Control
(QoC) indicators to optimize DBS controllers. To obtain

an evolving (rather than static) controller policy, we model

the BG region of the brains as an MDP whose state and

action spaces are constituted by post-processed signals from

BG regions as well as stimulation patterns, respectively; this

allows DBS controllers to adapt to the pathological changes

of the patient over time (e.g., to time-varying severity in the

level of symptoms).

Controller adaption is supported by careful design of the

corresponding reward functions to include changes in BG

signals before and after stimulation. We use the evolutions of

QoC metrics over time as inputs to a deep actor-critic (AC)

learning algorithm to maximize the cumulative rewards over

a finite horizon (i.e., treatment duration). The convolutional

neural networks (CNNs) embedded in the AC architecture

are structured specifically to extract features of the post-

processed signals from the BG regions, consequently obtain-

ing the optimal DBS control policy.

We specifically develop our algorithm on top of the

AC learning framework [20], [21], since the nature of AC

algorithms can effectively reduce the variance of gradient

estimation and can be trained in a parallel setting [22], [23];

this results in a faster learning convergence and better control

performance than the value-based RL algorithms, such as Q-

learning [24] or deep Q-learning [25]. More importantly, this

AC framework has been employed to solve a wide range of

real-world control problems, such as automated traffic light
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Fig. 2. Training dataflow pipeline: (1) quantized Error Index (EI) and
globus pallidus (GPi) signals are acquired by the deep brain stimulation
(DBS) device (and beta power spectral density Pβ is computed) from the
Basal Ganglia Model (BGM) implemented as the Brain on Chip (BoC)
platform, and (2) EI and Pβ are sent to the data storage and inference
module (DSIM) which executes the reinforcement learning (RL) engine;
the DSIM executes the learning algorithm, and (3) returns the corresponding
DBS control policy/pattern to the DBS device, which (4) applies the DBS
pattern on the BGM. In latter phases, the BGM model is replaced with live
animal models.

control [26], playing video games [21], robotics [27], [28]

and unmanned aerial vehicle (UAV) cooperative control [29].

To evaluate our DBS control design methodology, we

develop a Brain on Chip (BoC) platform based on a

field programmable gate array (FPGA) implementation of a

physiologically-based basal ganglia model (BGM) extended

from [30], [31]; the BGM was experimentally validated in

live animal models (i.e., live rats), and its use for DBS

device design and testing for patient conditions with varying

severity of PD has already been shown in [30], [31]. The

BoC enables testing of automated DBS algorithms safely

and with sufficient supportive data. We experimentally show

that our RL-based DBS controllers are both energy efficient,
significantly increasing battery lifetime, AND therapeutically
effective in terms of alleviating model-based proxies of

PD symptoms; this is significant improvement over state-

of-the-art periodic, fixed-frequency DBS controllers, which

although successful in alleviation of PD symptoms, require

more than three times the stimulation energy of our RL-based

DBS controllers.

Consequently, the contributions of this work are two-fold:

(1) we propose an MDP model that captures the dynamics

of neuron activities in the BG by defining the state space,

the action space, the transition probabilities, and the reward

functions. As a result, even if the dynamics are unknown,

learning algorithms can still be applied to synthesize control

policies of the BGM by observing the state space and ap-

proximating the transition probabilities; and (2) we develop

a deep RL algorithm for synthesis of learning-based patient-

specific DBS controllers, and validate the algorithm on the

BoC platform with statistically significant results.

This paper is organized as follows. Section II introduces a

basal ganglia model of the brain, as well as the QoC metrics

used to evaluate DBS control performance. The transfor-

mation to an MDP, enabling the reinforcement learning-
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Fig. 3. Model of the brain’s Basal ganglia region including thalamic (TH)
sub-region and Sensorimotor Cortex (SMC) inputs, as well as the controller
inputs for deep brain stimulation (DBS).

based approach, are detailed in Section III. Our approach

is evaluated in Section IV, and possible future extensions of

our work are discussed in Section V.

II. BRAIN MODELLING AND PROBLEM STATEMENT

In this section, we start by describing the BGM, followed

by the definition of relevant QoC metrics used to assess the

DBS controller performance. Additionally, PD identification

from the defined QoC metrics is introduced. The BG model

is presented with sufficient detail to introduce correspond-

ing QoC metrics for controller synthesis. For an in-depth

overview of the model, the reader is directed to [30], [31].

A. Computational Basal Ganglia Model

The BG region of the brain includes three sub-regions

—subthalamic nucleus (STN), globus pallidus pars externa
(GPe), and globus pallidus pars interna (GPi). Furthermore,

due to its critical importance for characterizing the effects of

DBS on PD symptoms (i.e., for obtaining the QoC metrics

described in Section II-B), we also include the thalamic
region (TH), as well as inputs from the sensory motor cortex
(SMC) in the PD-relevant brain model. We collectively refer

to the model of these components as the BGM, with the

structure illustrated in Figure 3.

Each sub-region of the BGM is comprised of n neurons,

containing a number of internal states.1 The BGM abstracts

the internal neuron’s complexity by capturing its electrical

potential, which is critical for modeling communication be-

tween neurons. We denote the electrical potential of a neuron

as vqj , where j ∈ {1, .., n} is the neuron’s index within its

sub-region, and q ∈ {TH, STN,GPe,GPi} denotes the

respective sub-regions. Therefore, the state of each BGM

sub-region is an electrical potential vector

vq = [vq1 ... vqn]
�. (1)

Initial states of the neurons are model parameters that are

stochastically set in our experiments. Neurons are intercon-

nected through chemical synapses to form a BGM network

(Figure 3). While these connections can be modeled as con-

tinuous dynamical systems [19], discrete-event analysis and

digital implementation are facilitated by observing neuron

inputs and outputs as binary events aqj ∈ {0, 1}, referred to as

1While from the modeling perspective n is a design parameter, exper-
iments have shown that model fidelity obtained with 10 neurons is nearly
identical to models with orders of magnitude higher neuron counts [30].

neural activations, which occur when the neuron’s electrical

potential vqj exceeds a predefined threshold hq
j . We formally

capture this as

aqj(t) = 1⇔(vqj (t) ≥ hq
j)∧

(∃δ > 0, ∀ε ∈ (0, δ], vqj (t− ε) < hq
j).

(2)

Consequently, BGM evolution can be captured by sets of

activations of all neurons over time. Formally, over arbitrary

time window [t0, t1], activations of the jth neuron in the rth

region can be defined as a set

Aj
q

∣∣t1
t0

= {τ |(t0 ≤ τ ≤ t1) ∧ (arj triggers at τ)}. (3)

Sensorimotor Cortex (SMC) inputs are embedded in TH
sub-region activations, i.e., they affect the electrical poten-

tials vTH
j∈{1,..,n}, potentially causing activations in TH neu-

rons. We denote the rising-edge of an SMC pulse at instant τ
as SMCτ . Correct activations in TH occur due to normal

neural activity, while erroneous ones occur rarely in healthy

patients (e.g., once in every 1000 activations). On the other

hand, erroneous activations occur relatively often in patients

suffering from PD (e.g., once in every few activations).

A correct activation in the TH region due to an SMC pulse

is defined as

(∀τ)(∃!tj)(SMCτ ⇔ aTH
j (tj) = 1, τ < tj < τ+25ms).

(4)

In other words, an SMC pulse should trigger exactly one
activation of each neuron in the TH region within 25 ms of

its occurrence. An erroneous response from TH occurs after

an SMC activation if the TH neuron does not respond with

exactly one activation within 25 ms following an incoming

SMC pulse [18].

For example, Figure 4 shows an excerpt of TH region

activations due to SMC pulses; as can be seen, erroneous

responses are much more likely to occur in PD brains

(without DBS therapy), compared to healthy and DBS-

treated PD brains when only occasionally such activations

may occur (or be missed). Activations aTH
j∈{1,..,n}(t) over an

arbitrary interval t ∈ {t0, t1} that do not satisfy (4), form the

set of erroneous activations Aerror
TH

∣∣t1
t0

, which is, as discussed

in the sequel, critical for PD identification.

Recall that additional input stimuli directly applied by the

DBS controller (via physically attached device probes), is

also included in the model. Similarly to how SMC inputs

affect the electric potentials of neurons in the TH sub-region

(i.e., vTH
j∈{1,..,n}), DBS inputs affect the electric potentials of

neurons in the STN sub-region (i.e., vSTN
j∈{1,..,n}). In essence,

DBS inputs influence the occurrence of neuron activations

in STN, which propagates through the basal ganglia network

to the TH region; here, we measure neural activity and

use the acquired signals to compute QoC metrics, as will

be described in the following subsection. In return, this

enables assessment of the stimulation efficacy, and ultimately

adjustment of neurostimulation parameters.

Finally, note that while seemingly simple, the described

BGM contains all components required to extract PD-

relevant QoC metrics, as we show in the rest of this section.
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Fig. 4. (top) Thalamic (TH) neuron activations (in blue) of a healthy brain,
(middle) a Parkinson’s disease (PD) brain without deep brain stimulation
(DBS), and (bottom) a PD brain with DBS treatment. Sensorimotor Cortex
(SMC) pulses (highlighted in red) have been inverted and amplified to
emphasize erroneous activations. The erroneous TH activations are high-
lighted with red ellipsoids – as can be seen, PD brains without DBS exhibit
significantly higher numbers of such erroneous activations compared to a
healthy brain or a PD brain with DBS.

B. Quality of Control Metrics

QoC for DBS controllers is determined by their efficacy

in reducing PD symptoms. While multiple biomarkers (i.e.,

indicators of PD) are defined in literature, in the remaining of

this subsection, we introduce the most commonly used Error

Index (EI) [18] and Beta Power Spectral Density (Pβ) [19].

1) Error Index: The Error Index (EI) is defined as

EI(t) =
|Aerror

TH

∣∣t
t0
|

n|SMCτ

∣∣t
τ=t0

|
, t0 = 0, (5)

where |Aerror
TH

∣∣t
t0
| is the cumulative number of erroneous

responses of the TH region to the SMC pulses, and

|SMCτ

∣∣t
τ=t0

| is the cumulative number of SMC activa-

tions up to time t.2 Intuitively, every neuron in TH receives

the same input from SMC; hence, the number of neurons n
multiplies the number of SMC activations to obtain the total

number of expected activations due to SMC pulses. Note that,

since EI is defined as a ratio, it is bounded to the range [0, 1],
and it is desired for the DBS controller to maintain EI as low

as possible.

The definition (5) can be used to identify PD symptoms

over relatively long periods of time, due to the included

cumulative erroneous responses (e.g., as shown in [18]).

However, as we propose changing stimulation patterns, we

introduce a windowing function that enables EI computation

over a sliding window of duration Tw; effectively this re-

quires changing the static value of t0 in (5) into t0 = t−Tw,

2Recall that, by assumption, the SMC produces no erroneous neural
activations.

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
Error Index
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Fig. 5. Histogram of acquired windowed Error Index (EI) values estimated
by a normal probability distribution function. Window size is selected as
Tw = 2s.

resulting in (windowed) EI defined as

EITω
(t) =

|Aerror
TH

∣∣t
t−Tw

|
n|SMCτ

∣∣t
τ=t−Tw

|
. (6)

The selection of time window Tw introduces a significant

trade-off; reducing the time window decreases confidence

in PD detection, while prolonging it may increase time-to-

detection of PD symptoms. A suitable window length Tw can

be determined such that the desired tradeoff is achieved. To

find such Tw, we observe the variance σ2
Tw

of EITw(t). For

example, we considered the sliding window size Tw = 2s as

used for EI monitoring in [32]. To statistically validate this

window size, we observed distribution of EI2s(t) obtained

from the BGM (Figure 5). Obtained variance is σ2
2s = 5.55 ·

10−4, providing 2σ2s (95.45% confidence interval) bound of

0.047 for EI, which is sufficiently accurate for PD detection

based on EI values.

2) Beta Power Spectral Density: Beta Power Spectral

Density, Pβ , is another PD biomarker, which we thus con-

sider to capture DBS quality of control. In a PD brain, the

GPi region exhibits pathological oscillations of neurons at

frequencies within the 13 Hz − 35 Hz band (i.e., the beta
band). Since GPi neural activity of a healthy brain does not

feature the same oscillations, Pβ in GPi is shown to be a

suitable biomarker for PD. For example, such periodicity can

be observed in Figure 6.

Figure 7 shows an excerpt of the BGM dynamics illustrat-

ing the power spectral densities of the model of a healthy

brain, the model of a PD brain without DBS, and the model

of the PD brain under DBS; the aforementioned pathological

oscillations are especially evident in the frequency domain.

Note that the Pβ peak at 13 Hz is significantly more

emphasized in the PD brain compared to the healthy brain

or the PD brain under DBS.

We compute the beta band power for one neuron as

P GPi
β j =

∫ 2π·35Hz

ω=2π·13Hz

PGPi
j (ω)dω, (7)

where PGPi
j (ω) is the single-sided power spectral density of

the jth neuron’s potential in the GPi region. Therefore, the

beta band power for the entire region with n neurons can be
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Fig. 6. Globus pallidus (GPi) activations (as highly amplified voltage
signals) illustrating periodic firing patterns in a Parkinsonian GPi, versus
that of healthy and stimulated Parkinson’s disease (PD) (i.e., PD with
DBS) brains.

computed as

PGPi
β =

1

n

n∑
j=1

P GPi
β j . (8)

Similarly to the EI computation described in Section II-B.1,

PGPi
β is computed across a predefined time window.

C. Problem Statement

As discussed in Introduction, periodic high-frequency (i.e.,

130-150Hz) DBS controllers are effective in alleviating PD

symptoms – i.e., they provide low QoC cost (low EI and

Pβ levels). However, to achieve this, they are also very

energy inefficient, due to the high stimulation rates (fre-

quency). Furthermore, by applying ‘one-size-fits-all’ periodic

stimulation, they don not support patient-specific effective

DBS that could additionally improve energy efficiency; to

obtain patient-specific stimulation policies, it is necessary to

develop learning-based DBS controllers.

Consequently, our objective is to derive learning-based
methods for design of DBS controllers that are both energy
efficient and therapy effective (i.e., with a desired (low) QoC

cost). Given the PD-relevant Basal Ganglia model described

in Section II-A and the relevant DBS controller QoC metrics

defined in Section II-B, we are able to map this problem into

the following two essential challenges.

• How can we transform the computational BG model

into a form suitable for efficient stimulation pattern

exploration, given the large state/action (i.e., biomark-

er/stimulation pattern) spaces?

• How can we formulate a problem for synthesis of QoC-

optimal DBS control policies (i.e., stimulation patterns)

in a way that facilitates learning-based DBS design?

In what follows, we address these challenges by introduc-

ing a suitable transformation from the computational BGM

to an MDP-based model; such MDP model is then utilized

as a foundation for our Reinforcement Learning (RL)-based

Fig. 7. Beta power spectral density Pβ of globus pallidus (GPi) sub-region
showing the beta band power from 13 Hz − 35 Hz band is greater for
unhealthy models versus that of the healthy, and the treated brain models.

synthesis of DBS patterns that minimize energy consumption

while providing the desired QoC level.

III. REINFORCEMENT LEARNING FORMULATION OF THE

DBS CONTROLLER SYNTHESIS PROBLEM

In this section, we start by introducing MDPs and actor-

critic (AC) learning, after which we define the transfor-

mation of the BGM (described in Section II-A) into an

MDP-compliant representation. Finally, we introduce a deep

RL algorithm for design of effective and energy efficient

DBS patterns (i.e., controllers).

A. MDPs and Actor-Critic Learning

We start with the following definitions.

Definition 3.1 (MDP): An MDP is a tuple M =
(S, s0,U ,P, R, γ), where S is a finite set of states; s0 is the

initial state; U is a finite set of actions; P is the transition

probability function defined as P : S × U × S → [0, 1];
R : S ×U ×S → R is the reward function, and γ ∈ [0, 1] is

a discount factor.

Definition 3.2 (Control Policy of MDPs): A policy π of

an MDP M is a function, π : S → U , that maps the set

of states S to the set of (control) actions U .

The goal of RL is to find an optimal (control) policy

π∗ that maximizes the accumulated return, which is defined

as follows.

Definition 3.3 (Accumulated Return): Given an MDP M
and a policy π, the accumulated return over a finite horizon

starting from the stage t and ending at stage t+T , for T > 0,

is defined as Gt =
T∑

k=0

γkrt+k, where rt+k is the return at

the stage t+ k.

Now, we formally introduce the objective of RL – given

an MDP M with unknown transition probabilities P and a

pre-defined reward function R, find a policy π∗ such that

the expected accumulative return starting from the initial

stage over the entire horizon is maximized; this is formally

112

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:06:01 UTC from IEEE Xplore.  Restrictions apply. 



captured as

π∗ = argmax
π

Est∈S,ut∼π(st),rt∼R[G1], (9)

where st ∈ S denotes that the states s1, s2, . . . , sT at each

stage are selected from the finite state set S, ut ∼ π(st)
denotes that the actions ut at any stage t are determined by

the policy π, and rt ∼ R denotes that the rewards at any

stage t are determined by the reward function R.

The optimization problem in (9) has been extensively

studied, and various algorithms proposed (e.g., [20]–[22],

[25], [33]–[35]), which can be used to solve the DBS

control problem that we are interested in. We employ the

AC learning framework [20], [21] as AC-based algorithms

result in a reduced variance of gradient estimation, faster

learning convergence and better control performance than

the value-based RL algorithms [22], [23]. We now introduce

the essential components of AC-based learning; further theo-

retical details can be found in [20], [21], [24] and references

therein. We start by defining the state-action value functions.

Definition 3.4 (State-Action Value Function): Given an

MDP M and policy π, the state-action value function

Qπ(s, u), where s ∈ S and u ∈ U , is defined as the

expected return for taking action u when at state s following

policy π at stage t, i.e.,

Qπ(s, u) = Es∼S,u∼U [Gt|st = s, ut = u]. (10)

The major components of AC-based learning problems are

the actor network μ(s|θu) : S → U and the critic network

Q(s, u|θc) : S ×U → R, where a neural network (NN) with

weights θu is used to approximate the optimal policy π∗ and

another NN with weights θc is used to approximate Q(·, ·).
During training, the two networks are updated sequentially

(i.e., one after the other), and as the training evolves, the

actor network μ(s|θu) should converge to π∗. Specifically,

in each training epoch, θc first performs a gradient descent

step θc ← θc − αc∇θcJc(θc) towards minimizing the critic

network loss function Jc(θc), which is defined as

Jc(θc) =Est,st+1∼δμ,ut∼μ,r∼R[(r+

γQ(st+1, μ(st+1|θu)|θc)−Q(st, ut|θc))2]. (11)

Here, δμ is the state visitation distribution over the explo-

ration policy μ, and st ∈ S is drawn from this distribution,

action ut follows the exploration policy μ, the reward r is

acquired following the reward function R, and αc is the

learning rate of the critic network.

In next step, the θu performs a gradient ascent step θu ←
θu + αu∇θuJu(θu), where

∇θaJu(θu) = Est∼δμ [∇θuQ(st, μ(st|θu)|θc)], (12)

and αu is the learning rate of the actor network.

B. BGM to MDP Transformation

In this section, we formulate an MDP which captures the

dynamics of the neuron activities of the BGM. We first define

the state space S , action space U , and the reward function

R that are used to formulate the RL problem. We define the

state sm ∈ S , m ≥ 0, as a matrix in R
2×l whose first row is

a discretized sequence of past EI signals and second row is a

discretized sequence of past Pβ signals, respectively, starting

from the time step m · l to (m + 1) · l; here, l ∈ R is the

period of sampling, such that l ∈ (0, T/2] where T denotes

the entire time-horizon of the stimulation for one round of

patient treatment, and m ∈ Z
+
0 . Formally, this is captured as

sj =
[
sm(0)

, sm(1)
, sm(2)

, . . . , sm(l−1)

]
=

[
em(0)

, em(1)
, em(2)

, . . . , em(l−1)

βm(0)
, βm(1)

, βm(2)
, . . . , βm(l−1)

]
,

(13)

where the em(i)
in the first row refer to the EI at time step

m(i), βm(i)
in the second row refer to the Pβ at time step

m(i), and m(i) = m · l + i, for all i ∈ [0, l − 1]. The action

um ∈ U starting from the time step m · l to (m + 1) · l is

represented by a vector in R
l, i.e.,

um = [um(0)
, um(1)

, um(2)
, . . . , um(l−1)

], (14)

where for all i ∈ [0, l − 1] it holds that

um(i)
=

{
1, if a pulse is placed at time step ti
0, otherwise.

(15)

Finally, we define the reward function as

R(sm, ut, sm+1) =

⎧⎪⎪⎨
⎪⎪⎩

ra, if ēm+1 < Te and β̄m+1 < Tβ
rb, if ēm+1 ≥ Te and β̄m+1 < Tβ
rb, if ēm+1 < Te and β̄m+1 ≥ Tβ
rc, if ēm+1 ≥ Te and β̄m+1 ≥ Tβ

(16)

where ēm+1 = 1
l

l∑
k=0

em+1(k)
, β̄m+1 = 1

l

l∑
k=0

βm+1(k)
,

Te ∈ R, Tβ ∈ R, and ra >> rb > 0 > rc. Intuitively,

we assign a large positive reward ra to the states whose

averages of both EI and Pβ are below the threshold Te and

Tβ after stimulation, respectively. A small positive reward

rb is assigned to the states which only one of the ēm+1 or

β̄m+1 value is below its corresponding threshold; otherwise,

a negative reward rc with a small absolute value is assigned

to all the other states. At last, the transition probabilities

P are captured by initial states of the electrical potential

vector v from (1), since it is the source of stochasticity in

the BGM [31], and in our case are considered unknown.

C. Deep RL Algorithm for Stimulation Pattern Synthesis

We now introduce the learning objective for solving the

DBS controller problem stated in Section II-C; i.e., that

minimizes QoC cost while limiting energy consumption

(captured as average stimuli freqency). We then present a

method to solve this learning problem.

Problem 1 (Learning Objective): Given an MDP M that

represents the BGM’s neural activity with unknown transition

probabilities P , and a stimulation frequency f that is lower

than the maximum stimulation energy specified in terms of

frequency fmax (i.e. f < fmax), find the optimal policy

π∗ that maximizes the expected accumulated return starting

from the initial stage, as defined in (9).
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Algorithm 1 Policy generation through deep AC learning

Input: Frequency of pulses f < fmax in the actions um

Begin:
1: Initialize the actor network μ(·|θu) with f
2: Initialize the critic network Q(·, ·|θc)
3: for epi = 0 to max epi do
4: Reinitialize the neuron activities with a new initial

state and collect from the brain model EI and Pβ with

duration l and form the initial state s0 following (13)

5: s← s0
6: for j = 0 to max epoch− 1 do
7: u← μ(s|θu)+N � Evaluate the actor network
8: Stimulate a for duration l. In the mean time,

collect from the brain EI and Pβ with duration l and

form s′ following (13)

9: Calculate reward r = R(s, u, s′) following (16)

10: Append tuple (s, u, r, s′) to the training buffer B
11: Sample minibatch B̃ uniformly from B
12: Update critic network θc ← θc − αc∇θcJ

B̃
c (θc)

13: Update actor network θu ← θu + αu∇θuJ
B̃
u (θu)

14: s← s′

15: end for
16: end for
17: π∗(·)← μ(·|θu)
18: return π

To solve Problem 1, we start by devising the dataflow

pipeline illustrated in Fig. 2. First, quantized EI and GPi

signals are acquired from the the BoC platform (implement-

ing the BGM) by the DBS device, where the Pβ biomarker

is computed, and, along with EI, forwarded to the data

storage and inference module (DSIM) – i.e., a computing

platform on the edge or in the cloud where the RL engine is

executed. The DSIM postprocesses the signals and executes

the learning algorithm Alg. 1; in return, the corresponding

DBS stimulation pattern is synthesized and sent to the DBS

device, which then applies the DBS pattern on the BGM.

Note that the EI and Pβ signals constitute the state s ∈ S
and the stimulation patterns constitute the actions u ∈ U
in the MDP M, respectively. While the actual brain with

implanted probes replaces the BoC platform in the real

operating environment, BoC allows evaluation of the learning

algorithm as it can generate relevant signals in real-time

(further discussion is provided in Section V).

Alg. 1 processes the discretized EI and Pβ signals and

learn the optimal control policy – i.e., a sequence of brain

stimulation pulses that reduces effects of PD by minimizing

the QoC cost. PD symptoms are identified from the dis-

cretized EI and Pβ signals, where higher EI and Pβ values

signify that the patient is highly affected by PD (as described

in Section II-B). Specifically, Alg. 1 takes input f , which

defines the average frequency of the stimulation controller,

and initializes the actor network and the critic networks (i.e.,

μ(·|θu) and Q(·, ·|θc), respectively). The inputs of the actor

network μ(·|θu) are states while outputs are actions; the critic

network takes as input both states and actions and in return

computes the predicted state-action values of the inputs.

Since we need to process real-time signals (i.e., time

series), we use CNNs to extract the hidden features and to

approximate the desired outputs. CNNs have been proven

effective in image analysis and natural language process-

ing [36]. However, in most cases the inputs to the CNNs

are time-independent (e.g., as in images), while in our case,

the inputs to the CNNs are time series.

Although some work has been done on the use of CNNs

on time-indexed data [37]–[39], existing methods mostly

focus on classification problems instead of regression, which

deviates from our objective. Also, considering that the state

space is represented by two correlated time sequences, which

is unique to the existing works, in this paper we design a

CNN structure specifically for the actor network and the

critic network. Furthermore, in our case the action vectors

um contains finite elements which are only 0s and 1s,

consequently, and thus we design a special actor network

structure whose outputs meet this requirement.

1) Actor-Critic Networks Design: In the actor network,

the inputs in R
l×2 are first convoluted with 32 convolution

filters (each with dimension 1× 3), followed by an average

pooling layer (with dim. 1× 4) to reduce the overall feature

map dimension. The output of this layer is in R
l/4×32. Then,

64 convolution filters (each with size 1× 3), are convoluted

with the outputs from the previous average pooling layer, and

the resulting feature maps are processed by an additional

average pooling layer (with dim. 1 × 4), which leads to

outputs in R
l/16×64. Then, all the feature vectors from the

previous average pooling layer are sequentially flattened and

concatenated; finally, two fully connected layers, (each with

1000 nodes), are used to map the resulting feature vectors

to the action logits ulogits
m ∈ R

b·l, where b represents the

number of non-zero elements in the action um. Given f in

Hz and l in ms, b can be obtained as b = f · l/1000.
Action logits ulogits

m can be translated to the actions um

as follows. First, the ulogits
m is reshaped to a matrix umat

m in

R
b×l and the Softmax function

σ(x)i =
exi∑K−1
k=0 xk

, x ∈ R
K , (17)

is applied to each row entry of umat
m to normalize the

summation of each row to 1, where we denote the output

matrix from the Softmax as up
m ∈ R

b×l. We have that

up
m{y, z} =

umat
m {y, z}∑l−1

k=0 u
mat
m {y, k}

=
ulogits
m {y · b+ z}∑l−1

k=0 u
logits
m {y · b+ k}

, (18)

where
∑l−1

k=0 u
p
m{y, k} = 1 and u·m{y, z} refers to the

element located at the yth row and the zth column if u·m is

a matrix, and with a little abuse of notations, u·m{y} refers

to the yth element of u·m if it is a vector and all indices start

from 0. Note that up
m{y, z} are expected to represent the
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probability that the ith pulse, where i ∈ [0, b − 1], appears

at the index i in the action vector um, i.e., um(i)
= 1.

In what follows, the maximum element of each row of

up
m are selected to form the pulse index vector uidx

m , where

uidx
m {i} = maxup

m{i, :} ∀i ∈ [0, b − 1] and up
m{i, :} refers

to all the elements in the ith row of matrix up
m. Finally, the

elements in the action vector um are determined by

um(i)
=

{
1 if i ∈ uidx

m ,
0 otherwise,

(19)

where i ∈ [0, l − 1].
The critic network shares the same convolutional and fully

connected layers with the actor network, while the action

logits vector ulogits
m is included at the last fully connected

layer. The structure of the actor network and the critic

network are shown in Fig. 8 and 9, respectively.

2) AC Network Training: In Alg. 1, after the initialization

(Alg. 1, lines 1-2), we start each training episode by initializ-

ing the brain model with a new initial state of neuron electric

potentials (via vector v, as defined in (1)), with a different set

of potentials. Note that this step ensures sufficient exploration

of the MDP’s state space. Then, by acquiring and collecting

the EI and Pβ signals from the BGM over the duration l,
the current MDP state s is constructed as defined in (13)

(Alg. 1, lines 4-5). Finally, in each training epoch, the action

u, representing the stimulation pattern defined in (14), is

calculated by superimposing random noise N on the output

from the actor network μ(s|θu) (Alg. 1, line 8). Here, the

noise is used to ensure sufficient exploration of the state

space during learning [21].

The obtained stimulation pattern is applied the BG model

through through the DBS device; as a result, a new window

of EI and Pβ sequences, each with duration l, are acquired by

the DBS device and transmitted to the DSIM; then the two

sequences are assigned to s′ (Alg. 1, line 8). The AC-learning

step is performed (Alg. 1, line 9-13) by first calculating

the reward r as in (23), and then updating the critic and

actor networks respectively. We apply batch training [40] to

accelerate the training process and reduce variance of the

gradients (11) and (12). Specifically, we define the empirical

experience buffer to store all the empirical data that has been

encountered until time step t as

B = {(s(t), u(t), s(t+1), r(t))|t ∈ [0, T ]}, (20)

where (s(t), u(t), s(t+1), r(t)) is the learning experience at

time step t. During training, minibatches of experiences B̃ =
{(s(t), a(t), s(t+1), r(t))}B are drawn uniformly from the

buffer B to calculate the gradients of the batch cost function

∇θcJ
B̃
c (θc) =∇θcE{(s(t),a(t),s(t+1),r(t))}B̃ [(r+

γQ(s(t+1), μ(s(t+1)|θu)|θc)−Q(s(t), u(t)|θc))2],
(21)

∇θuJ
B̃
u (θu) =

1

n

∑
s(t)∈B̃

Es(t)∼δB̃ [∇θuQ(s(t), μ(s(t)|θu)|θc)].

(22)

Fig. 8. Structure of the actor network μ(·|θu).

As the final step, the critic and the actor networks are

updated according to (21) and (22) (Alg. 1, lines 12-13).

At the end of each training epoch, the current state s is

replaced by s′ (Alg. 1, line 14), and another training episode

is initiated by re-initializing the BGM with a set of random

initial neuron potential conditions. After training, the actor

the network gives the QoC-optimal stimulation pattern for
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Fig. 9. Structure of the critic network Q(·, ·|θc).

all the states s ∈ S , and serves as the optimal policy π∗

(Alg. 1, line 17).

IV. EVALUATION OF RL-BASED DBS CONTROLLERS

In this section, we evaluate the RL-based DBS controllers

derived by Alg. 1; to achieve this we utilize the BoC

platform, shown in Figure 10, which implements the BGM

on Altera DE2-115 FPGA board and acts as a safe testbed

for DBS controllers design and analysis. Furthermore, we

compare the performance of the derived RL-based DBS

controllers against the periodic stimulation patterns that are

employed in [8], [15], [16].

In Alg. 1, we selected the sampling duration l = Tw =
2sec, stimulation frequency f = 45 Hz, maximum number of

training episode max epi = 250, the maximum step in each

training episode max step = 50, actor learning rate αu =
0.001 and critic learning rate αc = 0.01. Figure 11 shows

the accumulated reward obtained in each training episode.

Observe that Alg. 1 starts to converge from around 80th

episode and finds the optimal control pattern after around

200 episodes of training, for the reward function from (16)

that was specifically defined as

R(·, ·, ·) =

⎧⎪⎪⎨
⎪⎪⎩

100, if ēm+1 < 0.1 and β̄m+1 < 25 · 105
1, if ēm+1 ≥ 0.1 and β̄m+1 < 25 · 105
1, if ēm+1 < 0.1 and β̄m+1 ≥ 25 · 105
−1, if ēm+1 ≥ 0.1 and β̄m+1 ≥ 25 · 105

(23)

Fig. 10. Experimental setup for deep brain stimulation (DBS) controller
evaluation based on the basal ganglia model (BGM) hardware platform.

Fig. 11. Accumulated reward of each training episode – Alg. 1 starts
converging after 80 episodes of training and finds the optimal stimulation
control policy after 200 episodes of training.

Furthermore, we compared the performance of the derived

RL-based DBS controller, which has an average stimulation

frequency of 45 Hz, with the performance of the 45 Hz and

180 Hz periodic controllers, for which the stimulation pulses

are equally spaced in terms of time steps. Figure 12, Fig-

ure 13 and Figure 14 present the changes of the EI, Pβ and

TH neuron activations in a 10s window respectively, when

the DBS controllers are not activated until time 2000ms, and

remain on for the rest of the 10s test window.

In Figure 12 and Figure 13, the blue line shows the

performance of the RL-based controller, the orange line

shows the performance of the 45 Hz periodic controller

and the green line shows the performance of the 180 Hz

periodic controller. By comparing with the 45 Hz periodic

controller, which has the same frequency as the RL-based

controller derived by Alg. 1, it can be observed that the

RL controller significantly reduces both the EI and the Pβ ;

thus, providing effective PD therapy. In addition, although

the 180 Hz periodic controller can further reduce the EI

and Pβ , the RL controllers provides suitable QoC cost (i.e.,

it alleviates PD symptoms) while reducing the stimulation

frequency by 75%; hence, significantly increasing lifetime

of these battery operated devices.

Finally, in Figure 14, we observe that stimulating with

either the RL controller derived using Alg. 1 or the 180 Hz
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DBS ONDBS OFF

Fig. 12. Error Index (EI) over time after stimulating with different deep
brain stimulation (DBS) controllers. DBS is off in the first 2000ms and on
for the rest of testing period. Blue line shows the obtained results when the
derived RL-based controller is used. Orange and green lines show the results
when classical periodic controllers with 45 Hz and 180 Hz, respectively,
were utilized.

DBS OFF DBS ON

Fig. 13. Beta power spectral density Pβ over time after stimulating with
different patterns. Deep brain stimulation (DBS) is off in the first 2000ms
and then on for the rest of the testing period. Blue line shows the obtained
results for the derived RL-based controlled. Orange and green lines show
the results when classical periodic DBS controllers with 45 Hz and 180 Hz,
respectively, were used.

periodic controllers stabilizea the TH activations, effectively

alleviating the symptoms of the PD, as discussed in Sec-

tion II-A. On the other hand, the 45 Hz periodic controllers

cannot achieve such therapy effects. Thus, the RL DBS

controllers is capable of providing the desired PD therapy

effects with less than a third of the energy cost of commonly

used DBS controllers.

V. DISCUSSION AND CONCLUSION

Most existing commercial Deep Brain Stimulation (DBS)

devices only employ periodic stimulation with fixed high-

frequency stimulation, which is tuned by physicians through

trial-and-error. As a result, these devices can either achieve

therapy effectiveness OR energy efficiency. To address this

major limitation, in this work, we have introduced a rein-

forcement learning (RL)-based method for design of DBS

controllers that are both therapeutically effective, in terms

DBS OFF DBS ON

Fig. 14. Thalamic (TH) neuron activity after stimulating with different DBS
patterns. Obtained results when RL-based controller is used are shown in
the top row, while results when classical periodic controllers with frequency
of 45 Hz and 180 Hz are utilized are shown in the second and third
row, respectively.

of alleviating Parkinson Disease (PD) symptoms, AND en-

ergy efficient, by significantly increasing lifetime of these

battery-operated devices. To achieve this, we have derived a

procedure to map automatically a Basal Ganglia (BG) model,

capturing neural activity in the related brain regions, into a

Markov Decision Process (MDP)-based model; within the

MDP model, the state and action space have been defined as

signals gathered from the BG sub-regions and the stimulation

patterns, respectively. Finally, the learning objective has been

set to maximize the accumulated reward over a finite time-

horizon.

We have evaluated the performance of our RL-based

DBS controllers using a Brain-on-a-Chip (BoC) hardware

platform that encodes the previously validated Basal Ganglia

Model (BGM). We have shown that our method significantly

outperforms existing, commonly used, periodic DBS con-

trollers. We have presented a novel approach that effectively

alleviates PD symptoms while finding optimal DBS control

patterns, with minimal stimulation frequency, through the use

of reinforcement learning.

In an effort to achieve both higher energy efficiency of

DBS controllers as well as therapeutic effectiveness in alle-

viating PD symptoms, our findings suggest that generating

temporal patterns is important for enhancing DBS treatment,

as the RL-based DBS controllers significantly outperformed

the periodic controllers with the same frequency. The RL

approaches from [8], [15], [16] found that varying fixed

frequencies over treatment can improve efficacy; our results

suggest that even higher efficacy can be achieved at those

frequencies with optimal temporal patterns.

The framework proposed herein can also be employed

to develop patient specific controllers for use in human

or animal testing. Specifically, we are in the process of

replacing the BoC platform from Figure 2 with preclinical

(live) animal models. The results from this work suggest

that optimizations over the frequency domains is possible,

and combined with the work similar to [8], [15], [16], could

result in higher efficacy in controllers that can improve the

level of DBS treatment.
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