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Quantum-to-classical correspondence in two-dimensional Heisenberg models
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The quantum-to-classical correspondence (QCC) in spin models is a puzzling phenomenon where the static
susceptibility of a quantum system agrees with its classical-system counterpart, at a different corresponding
temperature, within the systematic error at a subpercent level. We employ the bold diagrammatic Monte Carlo
method to explore the universality of QCC by considering three different two-dimensional spin-1/2 Heisenberg
models. In particular, we reveal the existence of QCC in models with two parameters.
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I. INTRODUCTION

The quantum-to-classical correspondence (QCC) is a re-
cently discovered phenomenon where the static susceptibility
of a certain spin model (at any available temperature TQ

and lattice distance r) can be accurately reproduced, up to a
global normalization factor, by its classical counterpart at the
corresponding temperature TC . The QCC was first revealed by
Kulagin et al. [1] for the square- and triangular-lattice spin-
1/2 Heisenberg antiferromagnets [1]. QCC was subsequently
established for the pyrochlore lattice Heisenberg antiferro-
magnet [2]. Up to now, the origin of QCC still remains
unknown, which motivates us to further study the universal
applicability of QCC in two-dimensional (2D) spin systems.

In this article, we verify the existence of the QCC for three
2D frustrated magnets: the kagome-lattice Heisenberg anti-
ferromagnet (KLHA), the square-lattice J1 − J2 model, and
the spatially anisotropic triangular-lattice Heisenberg antifer-
romagnet (ATLHA), all of which are of great experimental
and numerical interest [3–5]. All considered Hamiltonians can
be described as

H =
∑
〈i j〉

Ji j Si · S j , (1)

where 〈i j〉 stands for all pairs of interacting lattice sites as
illustrated for each model in Fig. 1, and Ji j are the correspond-
ing coupling constants. For KLHA, Ji j = J , while for the
other two models Ji j can take two different values, J1 and J2.
The only difference between the quantum and classical mod-
els is that spin-1/2 operators S are replaced with unit vectors.

It is worth noting that the QCC only applies to the static
susceptibility expressed by the correlator

χ (r) ≡
∫ β

0
dτ χ (r, τ ) =

∫ β

0
dτ 〈 S(0, 0) · S(r, τ ) 〉 , (2)

where S(r, τ ) is the Matsubara spin-1/2 operator. The equal-
time correlation function, χ (r, τ = 0), while having a qualita-
tively similar spatial profile, does not match the classical cor-
relation function. It is thus surprising to observe that the static

quantum and classical correlations, despite featuring a highly
nontrivial and model-dependent pattern of sign-alternating
spatial fluctuations, demonstrate perfect qualitative and ex-
tremely accurate quantitative agreement (see Figs. 2 and 3).

On the one hand, it is believed that the quantum KLHA
is one of the most promising candidates for a spin liquid
ground state that does not break the spin-rotation and lattice-
translation symmetries [6–9]. On the other hand, it has been
reported that the classical KLHA is located at a tricritical
point where three different ordered states coexist [10]. The
proposed quantum and classical ground states are, thus, dra-
matically different, which apparently denies the existence
of QCC at least at low enough temperature. We verify that
the QCC remains valid at temperatures T/J � 1/3. Unfor-
tunately, limitations of the bold diagrammatic Monte Carlo
method (BDMC) based on the G2W expansion [1] do not
allow us to access lower temperatures to ensure that the
ground-state properties are dominating in the correlation func-
tion [11]. Whether QCC is valid at much lower temperature
remains to be seen in the future.

The square-lattice J1 − J2 model enables us to explicitly
check the validity of QCC in the different phases of the same
system. Numerous previous works have established the rich
ground-state phase diagram of this model with respect to
changing the J2/J1 ratio [4]. Apart from the spin liquid state
predicted for 0.41 � J2/J1 � 0.62 [12], it also features three
ordered states: ferromagnetic (FM), Néel antiferromagnetic
(NAF), and collinear antiferromagnetic (CAF). We choose the
following parameter sets in this work: (J1 = 1.0, J2 = 0.5) to
address the mostly frustrated case and (J1 = −1.0, J2 = 0.4)
in the CAF phase (notice the ferromagnetic sign of the nearest
neighbor interaction). Here and in what follows, we choose
the modulus of J1 as the unit of energy.

The ATLHA model is chosen specifically to study how
moderate anisotropy in the coupling constants effects the
QCC. In this case, we choose J2/J1 = 0.33, which is the same
as the ratio used to explain experimental data in Cs2CuCl4
[5]. When the anisotropy is very strong, the ATLHA model
resembles decoupled one-dimensional (1D) chains, for which
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(a) (b) (c)

FIG. 1. Specifying interactions and primitive cells for three spin
models: (a) kagome-lattice model, (b) square-lattice J1 − J2 model,
and (c) anistropic triangular-lattice model. In panel (a), all bonds
have the same coupling constant J . In panels (b) and (c), solid and
dashed lines represent coupling constants J1 and J2 respectively,
while dotted lines define the primitive cells.

the QCC does not hold [1]. It appears that observing the
crossover between the 1D and 2D behavior requires very small
ratios of the coupling constants, and the fascinating QCC
phenomenon is robust against anisotropy.

To obtain the static spin-spin correlation function for
quantum models, we employ the BDMC method that allows
one to study any frustrated spin model in the cooperative
paramagnetic regime at temperatures below the exchange cou-
pling constant J [1,2]. The relative accuracy of the converged
BDMC results is ≈1% (the loss of convergence is the prime
reason preventing the method from being used at very low
temperature). All models were simulated on lattices with pe-
riodic boundary conditions and system sizes L × L = 16 × 16
in terms of primitive cells. These system sizes are much
larger than the correlation length to ensure that finite-size
corrections to presented results are negligible (the correlation
functions decrease by about four orders of magnitude before
reaching distances L/4 along the primitive cell directions).
The primitive cells and sample geometry are showed in Fig. 1.

Establishing QCC for single-parameter models boils down
to one-to-one correspondence between the temperatures of
quantum, TQ, and classical, TC , systems, for which the
difference between the normalized correlation functions,
χ (r)/χ (0), is minimized. This “one-dimensional” TQ-to-TC

mapping applies to KLHA. More interesting results are ob-
tained for the other two models, both of which feature an
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FIG. 2. Accurate (within the accuracy bounds) match between
the normalized quantum (dots connected by the dashed line) and
classical (open circles) correlation functions of the kagome-lattice
Heisenberg antiferromagnet at TQ = 1.0. The sequence of labeled
distances is illustrated in the top right corner. The sign of the
correlation function is indicated explicitly next to each point.
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FIG. 3. Accurate match of the normalized static quantum (dots
connected by the dashed line) and classical (open circles) correlation
functions for the square-lattice J1 − J2 model at TQ = 1.0. The
sequence of labeled distances is illustrated in the top right corner.
The sign of the correlation function is indicated explicitly next to
each point.

additional model parameter J2. It turns out that not only the
temperature but also J2 need to be fine-tuned to obtain the
best match between the quantum and classical correlation
functions if we choose to stay in the same model subspace.
To be more specific, we find that for the quantum model with
JQ

2 �= 0 at temperature TQ, the matching classical counterpart
should be taken with JC

2 �= JQ
2 at temperature TC (asymp-

totically, JC
2 → JQ

2 at high temperature). This constitutes a
“two-dimensional” (TQ, JQ

2 )-(TC, JC
2 ) mapping.

In what follows, we establish that at all accessible temper-
atures all models demonstrate a perfect (within error bars)
match between the static quantum and classical correlation
functions. We discuss properties of the correspondence map-
ping and conclude with broader implications of this work, as
well as perspectives for future developments.

II. RESULTS

The precise protocol for establishing the QCC is as fol-
lows. We first compute the static correlation function of the
quantum system by the BDMC method. The answer for its
classical counterpart χC (r) was obtained by the conventional
single-spin flip Monte Carlo method. Next, we normalize the
quantum result to unity at the origin [χC (r = 0) = 1 auto-
matically], to obtain f (r) = χ (r)/χ (0). Finally, we fine-tune
classical system parameters—which are, in our case, TC/J1

and JC
2 —to find the best fit to the f (r) curves. We repeat this

process at different temperatures TQ or values of JQ
2 , to obtain

the correspondence curves.
Note that we have only one or two fitting parameters to

describe the entire functional dependence of f on distance,
including numerous, and often irregular, sign changes and
an order of magnitude strong fluctuations. Remarkably, all
these features can be reproduced by the classical model at
all distances within the error bounds of our calculations
(often at the subpercent level for several closets sites). In
Figs. 2 and 3, we show examples of QCC for KLHA and
the square-lattice J1 − J2 model at TQ = 1.0. Absolute val-
ues of all results shown in both plots are also presented in
Tables I and II because for most data points the error bars are
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TABLE I. Absolute values of quantum and classical correlation
functions of kagome-lattice model presented in Figs. 2, along with
the error bounds on the difference between the two. The error
bounds are based on the 3σ -criterion for purely statistical Monte
Carlo fluctuations and the systematic error of the extrapolation to the
infinite diagram order limit for quantum simulations. Accurate QCC
is observed for all points within the error bounds.

Space Classical Quantum Correlator
Label Correlator Correlator Difference Error bar

0 1.000000 1.000000 0.000000 0.000000
1 0.182995 0.183641 0.000646 0.000978
2 0.034589 0.034820 0.000231 0.000342
3 0.033010 0.033191 0.000181 0.000319
4 0.012270 0.012339 0.000069 0.000148
5 0.004932 0.005005 0.000073 0.000104
6 0.006247 0.006291 0.000044 0.000069
7 0.002195 0.002225 0.000030 0.000052
8 0.000969 0.000994 0.000025 0.000029
9 0.000681 0.000703 0.000022 0.000024
10 0.000350 0.000353 0.000003 0.000013
11 0.001175 0.001174 0.000001 0.000025
12 0.000377 0.000378 0.000001 0.000016
13 0.000129 0.000141 0.000012 0.000012
14 0.000236 0.000229 0.000007 0.000012

smaller than symbol sizes. We observe that an accurate match
can be achieved, and this holds at all temperatures accessible
to us and for all models studied in this work. As of now,
no exception from the QCC “rule” was found in dimensions
d > 1.

TABLE II. Absolute values of quantum and classical correlation
functions of square-lattice J1-J2 model presented in Figs. 3, along
with the error bounds on the difference between the two. The error
bounds are based on the 3σ -criterion for purely statistical Monte
Carlo fluctuations and the systematic error of the extrapolation to the
infinite diagram order limit for quantum simulations. Accurate QCC
is observed for all points within the error bounds.

Space Classical Quantum Correlator
Label Correlator Correlator Difference Error bar

0 1.000000 1.000000 0.000000 0.000000
1 0.166453 0.166971 0.000518 0.002629
2 0.042818 0.042386 0.000432 0.000448
3 0.038162 0.038169 0.000007 0.000914
4 0.017860 0.017840 0.000020 0.000219
5 0.001943 0.002026 0.000083 0.000217
6 0.009799 0.009810 0.000011 0.000299
7 0.005713 0.005695 0.000018 0.000140
8 0.000428 0.000394 0.000034 0.000069
9 0.000320 0.000327 0.000007 0.000046
10 0.002663 0.002653 0.000010 0.000123
11 0.001741 0.001731 0.000010 0.000083
12 0.000347 0.000340 0.000007 0.000040
13 0.000073 0.000078 0.000005 0.000046
14 0.000019 0.000003 0.000016 0.000037
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FIG. 4. Correspondence curves of all models. From top to the
bottom: KLHA; square-lattice CAF (J1 = −1.0, J2 = 0.4); square-
lattice QSL (J2/J1 = 0.5); and ATLHA (J2/J1 = 0.33). The high-
temperature asymptotic relations TC = (4/3)TQ and JC

2 = JQ
2 are

indicated by the dashed lines.

The free parameters of the classical model, TC and JC
2

are plotted in Fig. 4 as functions of the quantum model
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temperature TQ, together with the high-temperature asymp-
totic relations TC = (4/3)TQ and JC

2 = JQ
2 , which can be easily

verified by the high-temperature expansion. The first relation
merely reflects the difference between 〈 S2 〉 = S(S + 1) =
3/4 and 〈 n2 〉 = 1. (For models with two parameters, the QCC
represents a 2D mapping. If we keep JQ

2 fixed, we can still
present it as the correspondence curves). It is worth noting
that JC

2 of the square-lattice J1 − J2 model approaches JQ
2

from different sides when we change the sign of J1. Mapping
of spin-spin correlation functions between the quantum and
classical models is rather standard and expected in two limit-
ing cases. At T/J � 1, it can be established analytically by
looking at the lowest-order high-temperature series expansion
contribution capturing the weak short-range correlations. At
distances beyond the small correlation length, both systems
are described by the universal coarse-grained field statistics.
The QCC in the cooperative paramagnetic regime, T/J � 1,
is fundamentally different from these limiting cases: On the
one hand, correlations at short distance are strong and far
from being accurately described by the lowest-order high-
temperature series expansion; on the other hand, the corre-
lation length remains short and the coarse-grained description
is not applicable.

III. DISCUSSION

Using the BDMC technique, we computed the static spin-
spin correlations as functions of distance for three different
frustrated spin models, including the cooperative paramag-
netic regime that, as far as we know, cannot be addressed
for large system sizes by any of the other numerical methods.
We found that all systems feature the nontrivial quantum-to-
classical correspondence. We measured the correspondence
curves for each model down to temperatures below the ex-
change coupling constant and verified that each curve follows
the expected asymptotic behavior in the high-temperature
limit.

Future numerical work with respect to QCC can follow
two different routes. (i) Extend the low-temperature range for
quantum systems. Our current implementation of the BDMC
technique faces convergence problems at temperature T 	 J
and does not allow us to obtain data at sufficiently low T for
reliable extrapolation to the ground state. Making predictions
based on QCC with regards to the spin liquid ground state
is not possible under these conditions. There exist numerous
alternative formulations of the diagrammatic expansion [13]
and ways of regrouping and resumming diagrammatic series;
some of them may prove helpful in extending the range of
temperatures where the diagrammatic Monte Carlo technique
works. (ii) Expand the “family” of models demonstrating the
QCC in dimensions d > 1 or find exceptions from the “rule.”
Without proper theoretical understanding of its origin, it is
worth exploring how other model features, such as long-range
coupling, affect QCC.

Other finite-temperature methods [14–16] can, in principle,
address the T/J < 1 regime of the 2D Heisenberg models,
but they all have important disadvantages when compared
with BDMC. Methods based on exact diagonalization are
limited to small system sizes; e.g., for KLHA the finite-
temperature Lanczos method can only deal with about 40
lattice sites, leaving no space for studies of spatial profiles
at distances r 	 L/2. Since static susceptibility χ (r) is not
based on the correlation function of conserved quantities—
such as energy or uniform magnetization—it is not simulated
by high-temperature expansion methods due to prohibiting
computational complexity involved. New methods, such as
the infinite projected entangled pair states at finite temper-
ature [17], have the potential to change this situation in the
future.

ACKNOWLEDGMENTS

This work was supported by the Simons Collaboration on
the Many Electron Problem, the National Science Foundation
under Grant No. DMR-1720465, and the MURI Program
“New Quantum Phases of Matter” from AFOSR.

[1] S. A. Kulagin, N. Prokof’ev, O. A. Starykh, B. Svistunov,
and C. N. Varney, Phys. Rev. Lett. 110, 070601
(2013).

[2] Y. Huang, K. Chen, Y. Deng, N. Prokof’ev, and B. Svistunov,
Phys. Rev. Lett. 116, 177203 (2016).

[3] T. Imai, E. A. Nytko, B. M. Bartlett, M. P. Shores,
and D. G. Nocera, Phys. Rev. Lett. 100, 077203
(2008).

[4] O. Mustonen, S. Vasala, K. P. Schmidt, E. Sadrollahi, H. C.
Walker, I. Terasaki, F. J. Litterst, E. Baggio-Saitovitch, and M.
Karppinen, Phys. Rev. B 98, 064411 (2018).

[5] R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski,
Phys. Rev. Lett. 86, 1335 (2001).

[6] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[7] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173

(2011).
[8] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.

Lett. 109, 067201 (2012).

[9] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B
87, 060405(R) (2013).

[10] L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108,
207204 (2012).

[11] T. Shimokawa and H. Kawamura, J. Phys. Soc. Jpn. 85, 113702
(2016).

[12] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424
(2012).

[13] R. Rossi, F. Werner, N. Prokof’ev, and B. Svistunov, Phys. Rev.
B 93, 161102(R) (2016).

[14] J. Schnack, J. Schulenburg, and J. Richter, Phys. Rev. B 98,
094423 (2018).

[15] C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett.
108, 227206 (2012).

[16] N. E. Sherman and R. R. P. Singh, Phys. Rev. B 97, 014423
(2018).

[17] P. Czarnik and P. Corboz, Phys. Rev. B 99, 245107
(2019).

035132-4

https://doi.org/10.1103/PhysRevLett.110.070601
https://doi.org/10.1103/PhysRevLett.110.070601
https://doi.org/10.1103/PhysRevLett.110.070601
https://doi.org/10.1103/PhysRevLett.110.070601
https://doi.org/10.1103/PhysRevLett.116.177203
https://doi.org/10.1103/PhysRevLett.116.177203
https://doi.org/10.1103/PhysRevLett.116.177203
https://doi.org/10.1103/PhysRevLett.116.177203
https://doi.org/10.1103/PhysRevLett.100.077203
https://doi.org/10.1103/PhysRevLett.100.077203
https://doi.org/10.1103/PhysRevLett.100.077203
https://doi.org/10.1103/PhysRevLett.100.077203
https://doi.org/10.1103/PhysRevB.98.064411
https://doi.org/10.1103/PhysRevB.98.064411
https://doi.org/10.1103/PhysRevB.98.064411
https://doi.org/10.1103/PhysRevB.98.064411
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.1103/PhysRevB.86.024424
https://doi.org/10.1103/PhysRevB.86.024424
https://doi.org/10.1103/PhysRevB.86.024424
https://doi.org/10.1103/PhysRevB.86.024424
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.97.014423
https://doi.org/10.1103/PhysRevB.99.245107
https://doi.org/10.1103/PhysRevB.99.245107
https://doi.org/10.1103/PhysRevB.99.245107
https://doi.org/10.1103/PhysRevB.99.245107

