
Control Synthesis from Linear Temporal Logic Specifications using
Model-Free Reinforcement Learning

Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos, and Miroslav Pajic

Abstract— We present a reinforcement learning (RL) frame-
work to synthesize a control policy from a given linear temporal
logic (LTL) specification in an unknown stochastic environment
that can be modeled as a Markov Decision Process (MDP).
Specifically, we learn a policy that maximizes the probability
of satisfying the LTL formula without learning the transition
probabilities. We introduce a novel rewarding and discounting
mechanism based on the LTL formula such that (i) an optimal
policy maximizing the total discounted reward effectively max-
imizes the probabilities of satisfying LTL objectives, and (ii)
a model-free RL algorithm using these rewards and discount
factors is guaranteed to converge to such a policy. Finally, we
illustrate the applicability of our RL-based synthesis approach
on two motion planning case studies.

I. INTRODUCTION

Formal logics have been used to facilitate robot motion
planning beyond its traditional focus on computing robot
trajectories that, starting from an initial region, reach a de-
sired goal without hitting any obstacles (e.g., [1], [2]). Linear
Temporal Logic (LTL) is a widely used framework for formal
specification of high-level robotic tasks on discrete models.
Thus, control synthesis on discrete-transition systems for
LTL objectives has attracted a lot of attention (e.g., [3]–[7]).

Another line of work considers motion planning for LTL
objectives for systems that exhibit uncertainty coming from
either robot dynamics or the environment, such as Markov
Decision Processes (MDPs) [8]–[14]. By synthesizing con-
trol for an MDP, from a given LTL objective, the obtained
controller maximizes the probability of satisfying the speci-
fication. Also, tools from probabilistic model checking [15]
can be directly used for synthesis. Yet, when the MDP tran-
sition probabilities are not known a priori, the control policy
needs to be synthesized through learning from samples.

Hence, there is a recent focus on learning for control (i.e.,
motion planning) synthesis for LTL objectives [16]–[26].
Most model-based reinforcement learning (RL) methods are
based on detection of end components, and provide estimates
of satisfaction probabilities with probably approximately
correct bounds (e.g., [16], [17]). Such approaches, however,
need to first learn and store the MDP transition probabilities,
and thus have significant space requirements, restricting their
use to systems with small and low-dimensional state spaces.

On the other hand, model-free RL methods derive the
desired policies without storing a model of the MDP. The

This work is sponsored in part by the ONR under agreements N00014-17-
1-2504, N00014-20-1-2745 and N00014-18-1-2374, AFOSR award number
FA9550-19-1-0169, and the NSF CNS-1652544 and CNS-1932011 grants.

Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos and
Miroslav Pajic are with Duke University, Durham, NC 27708, USA,
{alper.bozkurt, yu.wang094, michael.zavlanos,
miroslav.pajic}@duke.edu.

temporal logic tasks need to be represented by a reward
function, possibly with a finite-memory, so that the optimal
policy maximizing the discounted future reward, also maxi-
mizes the probability of satisfying the tasks. One approach is
to use temporal logic specifications that are time-bounded or
defined on finite traces so that they can be directly translated
to a real-valued reward function [19]–[22]. Alternatively,
unbounded LTL formulas can be transformed into an ω-
automaton and the accepting condition of the automaton can
be used to design the reward function.

Such reward functions based on Rabin conditions are
introduced in [23], as part of a model-free RL method;
the approach assigns a sufficiently small negative and a
positive reward to the first and second sets of the Rabin pairs,
respectively. A generalization to deep Q-learning, with a new
optimization algorithm, is done in [24]. Yet, in the presence
of rejecting end components or multiple Rabin pairs, optimal
policies obtained by this method may not satisfy the LTL
property almost surely, even if such policies exist [25].

A given LTL property can also be translated into a limit-
deterministic Büchi automaton (LDBA), which can be used
in quantitative analysis of MDPs [27], [28]. The first reward
function based on LDBA accepting conditions is introduced
in [29]. Yet, similar to [23], in the presence of non-accepting
components, the algorithm might fail to converge to the
policy that almost surely satisfies the LTL specification.

The problem of satisfying the Büchi condition of an
LDBA can be reduced to a reachability problem by adding
transitions with a positive reward from accepting states to a
terminal state [25]. Then, as the transition probability from
an accepting state to the terminal state goes to zero, in order
to reach the terminal state and obtain a positive reward, an
accepting state needs to be visited infinitely often, which
captures the satisfaction of the Büchi condition. However,
model-free RL algorithms such as Q-learning may fail to
converge to the correct reachability probabilities without
discounting (or improper discounting) in the presence of end
components [17], as Q-learning might get stuck in one of the
fixed-point solutions; e.g., if all the values are initialized to
1, Q-learning will not be able to decrease any value estimate.

Consequently, in this paper, we propose a model-free
RL algorithm that is guaranteed to find a control policy
that maximizes the probability of satisfying a given LTL
objective (i.e., specification) in an arbitrary unknown MDP;
for the MDP, not even which probabilities are nonzero (i.e.,
its graph/topology) is known. We use an automata-based
approach that constructs a product MDP using an LDBA of a
given LTL formula and assigns rewards based on the Büchi
(repeated reachability) acceptance condition. Such optimal

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 10349

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

policy can then be derived by learning a policy maximizing
the satisfaction probability of the Büchi condition on the
product. Unlike [25], our approach directly assigns positive
rewards to the accepting states and discounts these rewards
in such a way that the values of the optimal policy are proved
to converge to the maximal satisfaction probabilities as the
discount factor goes beyond a threshold that is less than 1.

The rest of the paper is organized as follows. We in-
troduce preliminaries and formalize the problem in Sec. II.
Sec. III presents our model-free RL algorithm that maximizes
probabilities that LTL specifications are satisfied. Finally, we
evaluate our approach on several motion planning problems
for mobile robots (Sec. IV), before concluding in Sec. V.

II. PRELIMINARIES AND PROBLEM STATEMENT

We start with preliminaries on LTL, MDPs, and RL on
MDPs, before problem formulation. We denote the sets of
real and natural numbers by R and N, respectively. For a set
S, S+ denotes the set of all finite sequences taken from S.

A. Markov Decision Processes and Reinforcement Learning

MDPs are common modeling formalism for systems that
permit nondeterministic choices with probabilistic outcomes.

Definition 1. A (labeled) MDP is a tuple M =
(S,A, P, s0,AP, L), where S is a finite set of states, A is a
finite set of actions, P : S×A×S → [0, 1] is the transition
probability function, s0 ∈ S is an initial state, AP is a finite
set of atomic propositions, and L : S → 2AP is a labeling
function. For simplicity, let A(s) denote the set of actions that
can be taken in state s; then for all states s ∈ S, it holds
that

∑
s′∈S P (s, a, s′) = 1 if a ∈ A(s), and 0 otherwise.

A path is an infinite sequence of states σ = s0s1s2 . . . ,
with si ∈ S such that for all i ≥ 0, there exists ai ∈ A with
P (si, ai, si+1) > 0. We use σ[i] to denote the state si, as
well as σ[:i] and σ[i+1:] to denote the prefix s0s1 . . . si and
the suffix si+1si+2 . . . of the path, respectively.

Definition 2. A policy π for an MDP M is a function
π : S+ → A such that π(σ[:n]) ∈ A(σ[n]). A policy
is memoryless if it only depends on the current state, i.e.,
π(σ[:n]) = π(σ[n]) for any σ, and thus can be defined as
π : S → A. A Markov chain (MC) of an MDPM induced by
a memoryless policy π is a tuple Mπ = (S, Pπ, s0,AP, L),
where Pπ(s, s′) = P (s, π(s), s′) for all s, s′ ∈ S. A bottom
strongly connected component (BSCC) of an MC is a
strongly connected component with no outgoing transitions.

Let R : S → R be a reward function of the MDP M.
Then, for a discount factor γ ∈ (0, 1), the K-step return
(K ∈ N or K =∞) of a path σ from time t ∈ N is

Gt:K(σ) =

K∑
i=0

γiR(σ[t+i]), Gt(σ) = lim
K→∞

Gt:K(σ). (1)

Under a policy π, the value of a state s is defined as the
expected return of a path – i.e.,

vπ(s) = Eπ [Gt(σ) | σ[t] = s] , (2)

for any fixed t ∈ N such that PrMπ (σ[t] = s) > 0.

The RL objective is to find an optimal policy π∗ for MDP
M from samples, such that the return vπ(s) is maximized for
all s ∈ S; we denote the maximum by v∗(s). Specifically, RL
is model-free, if π∗ is derived without explicitly estimating
the transition probabilities, as done in model-based RL;
hence, it scales significantly better in large applications [30].

B. LTL and Limit-Deterministic Büchi Automata
LTL provides a high-level language to describe specifica-

tions of a system. LTL formulas can be constructed induc-
tively as combinations of Boolean operators, negation (¬)
and conjunction (∧), and two temporal operators, next (©)
and until (U), using the following syntax:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2, a ∈ AP. (3)

The satisfaction of an LTL formula ϕ for a path σ of an
MDP from Def. 1 (denoted by σ |= ϕ) is defined as follows:
σ satisfies an atomic proposition a, if the first state s0 of the
path is labeled with a, i.e., a ∈ L(s0); a path σ satisfies©ϕ
if σ[1:] satisfies the formula ϕ; and finally,

σ |= ϕ1Uϕ2, if ∃i.σ[i] |= ϕ2 and ∀j < i.σ[j] |= ϕ1. (4)

Other common Boolean and temporal operators are derived
as follows: (or) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2); (implies) ϕ1 →
ϕ2 ≡ ¬ϕ1 ∨ ϕ2; (eventually) ♦ϕ ≡ true U ϕ; and (always)
�ϕ ≡ ¬(♦¬ϕ) [15].

Satisfaction of an LTL formula can be evaluated on a
Limit-Deterministic Büchi Automata (LDBA) that can be
directly derived from the formula [27], [28].

Definition 3. An LDBA is a tuple A = (Q,Σ, δ, q0, B),
where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × (Σ ∪ {ε}) → 2Q is a (partial) transition function,
q0 ∈ Q is an initial state, and B is a set of accepting
states, such that (i) δ is total except for the ε-moves, i.e.,
|δ(q, α)| = 1 for all q ∈ Q,α ∈ Σ; and (ii) there exists a
bipartition of Q to an initial and an accepting component,
i.e., QI ∪QA = Q, where
• the ε-moves are not allowed in the accepting component,

i.e., for any q ∈ QA, δ(q, ε) = ∅,
• outgoing transitions from the accepting component stay

within it, i.e., for any q ∈ QA, ν ∈ Σ, δ(q, ν) ⊆ QA,
• the accepting states are in the accepting component,

i.e., B ⊆ QA.
An infinite path σ is accepted by the LDBA if it satisfies the
Büchi condition – i.e., inf(σ)∩B 6= ∅, where inf(σ) denotes
the set of states visited by σ infinitely many times.

C. Problem Statement
In this work, we consider the problem of synthesizing a

robot control policy in a stochastic environment such that
the probability of satisfying the desired specification is
maximized. The robot environment is modeled as an MDP
with unknown transition probabilities (i.e., not even which
probabilities are nonzero is known), and the desired objective
(i.e., specification) is given by an LTL formula. Our goal is
to obtain such a policy by learning the maximal probabilities
that the LTL specification is satisfied; this should be achieved
by directly interacting with the environment – i.e., without
constructing a model of the MDP.

10350

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

For any policy π, Prπ(s |= ϕ) denotes the probability of
all paths from the state s to satisfy formula ϕ under the policy

PrMπ (s |= ϕ) := PrMπ {σ | σ[0] = s and σ |= ϕ} . (5)

We omit the superscriptM when it is clear from the context.
We now formally state the problem considered in this work.

Problem 1. Given an MDPM = (S,A, P, s0,AP, L) where
P is fully unknown and an LTL specification ϕ, design a
model-free RL algorithm that finds a finite-memory objective
policy πϕ that satisfies

Prπϕ (s |= ϕ) = Prmax(s |= ϕ), (6)

where Prmax(s |= ϕ) := maxπ Prπ(s |= ϕ) for all s ∈ S.

III. RL-BASED SYNTHESIS FROM LTL SPECIFICATIONS

In this section, we introduce a framework to solve Prob-
lem 1. We start by exploiting the fact that any LTL formula
can be transformed into an LDBA that can be used in
quantitative analysis of MDPs [27], [28]; in such LDBAs,
the only nondeterministic transitions are the ε-moves from
the initial component to the accepting component (e.g., see
Fig. 1a). Therefore, we reduce the problem of satisfying
a given LTL objective ϕ in an MDP M to the problem
satisfying a repeated reachability (Büchi) objective ϕB =
�♦B in the product MDP, computed from the MDP M
and the obtained LBDA. We then exploit a new discounting
and rewarding mechanism that enables the use of model-
free reinforcement learning, to find an objective policy with
strong performance guarantees (i.e., probability maximiza-
tion). Specifically, we use Q-learning [31] in this work,
but other reinforcement learning methods can be applied
similarly. Our overall approach is captured in Algorithm 1,
and we now describe each step in detail.

A. Design of Product MDP
Given an LTL formula ϕ with atomic propositions 2AP,

the product MDP is constructed by composing M with an
LDBA Aϕ with the alphabet 2AP, which can be automatically
derived from ϕ [27], [28]. LDBAs, similarly to deterministic
Rabin automata [15], can be used in quantitative analysis of
MDPs if they are constructed in a certain way [25].

Definition 4. A product MDP M× = (S×, A×, P×, s×0 ,
B×) of an MDP M = (S,A, P, s0,AP, L) and an LDBA
A = (Q, 2AP, δ, q0, B) is defined as: S× = S ×Q is the set
of states, A× = A ∪Aε, Aε:={εq|q ∈ Q} is the action set,
P× : S× ×A× × S× → [0, 1] is the transition function

P×(〈s, q〉, a, 〈s′, q′〉)

=


P (s, a, s′) q′ = δ(q, L(s)) and a /∈ Aε

1 a = εq′ and q′ ∈ δ(q, ε) and s = s′

0 otherwise
, (7)

s×0 is 〈s0, q0〉, and B× = {〈s, q〉 ∈ S× | q ∈ B} is the set of
accepting states. We say that a path σ of the product MDP
M× satisfies the Büchi condition ϕB if inf(σ) ∩B× 6= ∅.

The nondeterministic ε-moves in the LDBA are repre-
sented by ε-actions in the product MDP. When an ε-action

Algorithm 1: Model-free RL-based synthesis on MDPs that
maximizes the satisfaction probability of LTL specifications.

Input: LTL formula ϕ, MDP M
Translate ϕ to an LDBA Aϕ
Construct the product M× of M and Aϕ
Initialize Q(〈s, q〉, a) on M×
for t = 0, 1, . . . , T do

Derive a policy π from Q
Take the action at ← π(〈s, q〉t)
Observe the next state 〈s, q〉t+1

Q(〈s, q〉t, at)← (1−α) ·Q(〈s, q〉t, at)+α ·RB(〈s, q〉t)
+α · ΓB(〈s, q〉t) ·maxa′ Q(〈s, q〉t+1, a

′)
end for
Get a greedy policy πϕB from Q
return πϕB and Aϕ

is taken, only the state of the LDBA is updated according to
the corresponding ε-move. When an MDP action is taken,
the next MDP state will be determined by the transition
probabilities and the LDBA makes a transition by consuming
the label of the current MDP state. Intuitively, an ε-action
can be considered as guessing the possible paths generated
in the future. If, as part of iterative learning, the guess is
wrong the agent cannot change its guess; however, in the
next RL episode, the agent can make the correct one.

An example product MDP is illustrated in Fig. 1. In the
MDP (Fig. 1b), states s0 and s1 are labeled by atomic propo-
sitions a and b, respectively. In the LDBA (Fig. 1a), for sim-
plicity, the transitions are labeled by Boolean formulas of the
atomic propositions of a and b or an ε label, with 1 standing
for “true”; this is equivalent to labeling the transitions using
sets of atomic propositions, as in Def. 3. A transition labeled
by a Boolean formula is triggered upon receiving a set of
atomic propositions satisfying that formula, and a transition
labeled by an ε label can be (but does not have to be) trig-
gered automatically. The product MDP is shown in Fig. 1c.

To distinguish the two ε transitions from q0 to q1 and
from q0 to q2 in Fig. 1a, we denote them by ε1 and ε2 in
Fig. 1c, respectively. Notice that choosing ε2 before choosing
β does not satisfy the Büchi condition although the generated
paths by this policy satisfy the LTL formula. Yet, this does
not constitute a problem because in such cases, there always
exists a corresponding policy that generates the same paths
and satisfies the Büchi condition (e.g. choosing ε2 after β).

Now, the satisfaction of the LTL objective ϕ on the
original MDP M is related to the satisfaction of the Büchi
objective ϕB on the product MDPM×, as formalized below.

Lemma 1. A memoryless policy πϕB that maximizes the
satisfaction probability of ϕB on M× induces a finite-
memory policy πϕ that maximizes the satisfaction probability
of ϕ on M in Problem 1.

Proof. Follows from the proof of Theorem 3 in [28].

Therefore, the behavior of the induced policy πϕ can
be described by the policy πϕB and the LDBA Aϕ derived
directly from the LTL formula ϕ. Initially, Aϕ is reset to its
start state q0 and whenever the MDP M makes a transition

10351

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

1 ε

ε

a

¬a

b ¬b

1

q0

q1

q2

q3

(a) A derived LDBA A for the LTL
formula ϕ = ♦�a ∨ ♦�b

0.9 0.1

1.0 1.0

s0
{a}

α

β

s1
{b} θ

(b) An example MDP M; the circles
denote MDP states, rectangles denote ac-
tions, and numbers transition probabilities

0.9

0.1
1.0

1.0

1.0

1.0

1.0

1.0

0.9
0.1
1.0 1.0

0.9

0.1

1.0

1.0

0.9

0.1
1.0

1.0

q0,s0

α

β

ε1

ε2

q0,s1

q1,s0

q2,s0

θ

ε1

ε2

q1,s1

q2,s1

α

β

θ

q3,s1

α

β

q3,s0

θ

α

β θ

(c) The obtained product MDP

Fig. 1: Product MDPM× obtained from an MDPM and an LDBA A that is automatically derived from an LTL formula ϕ.

from s to s′,Aϕ updates its current state from q to δ(q, L(s)).
The action to be selected in an MDP state s when Aϕ is in
a state q is determined by πϕB as follows: if πϕB(〈s, q〉) is
an ε-action εq′ , Aϕ changes its state to q′ and the action
πϕB(〈s, q′〉) is selected; otherwise, πϕB(〈s, q〉) is selected.

B. Learning for Büchi Conditions with Discounted Rewards
Our goal is to learn a policy that maximizes the probability

of satisfying a given Büchi objective. By Lemma 1, in what
follows, we assume policies are memoryless since they are
sufficient for Büchi objectives. For simplicity, we omit the
superscript × and write M = (S,A, P, s0, B) and s ∈ S
instead of M× = (S×, A×, P×, s×0 , B

×) and 〈s, q〉 ∈ S×.
We propose a model-free learning method that uses care-

fully crafted rewards and state-dependent discounting based
on the Büchi condition such that an optimal policy π∗

maximizing the expected return is also an objective policy
πϕB maximizing the satisfaction probabilities. Specifically, we
define the return of a path as a function of these rewards and
discount factors in such a way that the value of a state, the
expected return from that state, approaches the probability
of satisfying the objective as the discount factor γ goes to 1.

Theorem 1. For a given MDP M with B ⊆ S, the value
function vγπ for the policy π and the discount factor γ satisfies

lim
γ→1−

vγπ(s) = Prπ(s |= �♦B) (8)

for all states s ∈ S, if the return of a path is defined as

Gt(σ) :=
∑∞

i=0
RB(σ[t+i]) ·

∏i−1

j=0
ΓB(σ[t+j]) (9)

where
∏−1
j=0 := 1, RB : S → [0, 1) and ΓB : S → (0, 1)

are the reward and the discount functions defined as:

RB(s) :=

{
1− γB s ∈ B
0 s /∈ B

, ΓB(s) :=

{
γB s ∈ B
γ s /∈ B

(10)

Here, we set γB = γB(γ) as a function of γ such that

lim
γ→1−

1− γ
1− γB(γ)

= 0. (11)

Before proving Theorem 1, we develop bounds on Gt(σ).

Lemma 2. For all paths and Gt(σ) from (9), it holds that

0 ≤ γGt+1(σ) ≤ Gt(σ) ≤ 1− γB + γBGt+1(σ) ≤ 1 (12)

Proof. Since there is no negative reward, Gt ≥ 0 holds. By
the return definition, replacing γ with 1 yields a larger or
equal return, which constitutes the following upper bound
on the return: Gt(σ) ≤ 1− γbB ≤ 1, where b is the number
of B states visited. Return Gt(σ) from (9) satisfies

Gt(σ) =

{
1 + γB(Gt+1(σ)− 1) σ[t] ∈ B
γGt+1(σ) σ[t] /∈ B

(13)

From Gt(σ) ≤ 1 it follows that 1 + γB(Gt+1(σ) − 1) ≥
γGt+1(σ), which with (13) proves the other inequalities.

Lemma 2 implies that replacing a prefix of a path with
states belonging to B never decreases the return of a path and
similarly replacing with states that do not belong to B never
increases the return. The result is particularly useful when
we establish upper and lower bounds on the value of a state.

The next lemma shows that under a policy, the values of
states in the accepting BSCCs of the induced Markov chain
approach 1 in the limit; thus, is the key to proving Theorem 1.

Lemma 3. Let BSCC(Mπ) denote the set of all BSCCs of
an induced Markov chain Mπ and let Bπ denote the set of
B states that belong to a BSCC of Mπ – i.e.,

Bπ := {s | s ∈ B, s ∈ T, T ∈ BSCC(Mπ)}. (14)

Then, for any state s in Bπ

lim
γ→1−

vγπ(s) = 1. (15)

Proof. For any fixed t ∈ N, let Nt be the stopping time of
first returning to the state s ∈ S after leaving it at t,

Nt = min{τ | σ[t+τ] = s, τ > 0}. (16)

Then by (2), it holds that

vγπ(s) = 1− γB + γBEπ[Gt+1(σ) | σ[t]=s]

= 1− γB + γBEπ
[
Gt+1:t+Nt−1(σ)

+

(∏Nt−1

i=1
Γ(σ[t+i])

)
·Gt+Nt(σ) | σ[t]=s

]
, (17)

10352

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

since once a state s ∈ Bπ is visited, almost surely it is visited
again [15]. Using that Gt(σ) ≥ γGt+1(σ), we obtain

vγπ(s) ≥ 1− γB + γBEπ
[
γNt−1Gt+Nt(σ) | σ[t]=s

]
À
≥ 1− γB + γBEπ

[
γNt−1 | σ[t]=s

]
vπ(s)

Á
≥ 1− γB + γBγ

Eπ [Nt−1|σ[t]=s]vπ(s)

≥ 1− γB + γBγ
nvπ(s) (18)

where À holds by the Markov property, Á holds by the
Jensen’s inequality, and n ≥ 1 is a constant. From (18),

vγπ(s) ≥ 1− γB
1− γBγn

≥ 1− γB
1− γB(1− n(1− γ))

=
1

1 + n 1−γ
1−γB − n(1− γ)

. (19)

where the second “≥” holds by (1−(1−γ))n ≥ 1−n(1−γ)
for γ ∈ (0, 1). Finally, since vγπ(s) ≤ 1 by Lemma 2, letting
γ, γB → 1− under the condition (11) results in (15).

We now prove Theorem 1.

Proof of Theorem 1. First, we divide the expected return of
a random path σ from a state s ∈ S by whether it visits the
states B ⊆ S infinitely often:

vγπ(s) = Eπ[Gt(σ) | σ[t]=s, σ |= �♦B]Prπ(s |= �♦B)

+ Eπ[Gt(σ) | σ[t]=s, σ 6|= �♦B]Prπ(s 6|= �♦B) (20)

for some fixed t ∈ N. let Mt be the stopping time of first
reaching a state in Bπ after leaving s at t,

Mt = min{τ | σ[t+τ] ∈ Bπ, τ > 0} (21)

where Bπ is defined as in (14). Then, it holds that

Eπ[Gt(σ) | σ[t]=s, σ |= �♦B] (22)
À
= Eπ[Gt(σ) | σ[t]=s, σ |= ♦Bπ]

Á
≥ Eπ

[
γMtGt+Mt(σ) | σ[t]=s, σ |= ♦Bπ

]
Â
≥ Eπ

[
γMt | σ[t]=s, σ |= ♦Bπ

]
vγπ,min(Bπ)

Ã
≥ γEπ [Mt|σ[t]=s,σ|=♦Bπ]vγπ,min(Bπ)

= γmvγπ,min(Bπ), (23)

where vγπ,min(Bπ) = mins∈Bπ v
γ
π(s) and m is constant. Here,

À holds because a path σ |= �♦B almost surely eventually
enters an accepting BSCC, it eventually reaches a state s ∈
Bπ almost surely, Á, Â and Ã hold due to Lemma 2, the
Markov property and Jensen’s inequality. From (20), we have

vγπ(s) ≥ γmvπ(Bπ)Prπ(s |= �♦B). (24)

Similarly, let M ′t be the stopping time of first reaching a
rejecting BSCC of Mπ after leaving s at t. Then

M ′π = min
{
τ | σ[t+τ] ∈ T, T ∩B = ∅,
T ∈ BSCC(Mπ), τ > 0

}
(25)

denoting the number of time steps before a rejecting BSCC

is reached. Thus, from Lemma 2 and the Markov property

Eπ[Gt(σ) | σ[t]=s, σ 6|= �♦B]

≤ Eπ
[
1− γM

′
π

B | σ[t]=s, σ 6|= �♦B
]

≤ 1− γEπ[M ′π|σ[t]=s,σ 6|=�♦B]
B = 1− γm

′

B (26)

where m′ is also constant. From this upper bound and (20)

vγπ(s) ≤ Prπ(s |= �♦B) + (1− γm
′

B)Prπ(s 6|= �♦B).

Both the above upper bound and the lower bound from
(24) go to the probability of satisfying the formula as γ
approaches 1 from below, thus concluding the proof.

Theorem 1 suggests that the limit of the optimal state val-
ues is equal to the maximal probabilities as γ goes to 1; this is
captured by the next corollary whose proof follows from the
definition of the optimal policies and maximal probabilities.

Corollary 1. For all states s ∈ S the following holds:

lim
γ→1−

vγ∗ (s) = Prmax(s |= �♦B). (27)

Remark 1. From Theorem 1 of [32], γ < 1 ensures conver-
gence of the model-free learning to the unique solution. With
γ = 1, the result may converge to a non-optimal policy [17]
as there might exist multiple fixed-point solutions.

Finally, as the policies are discrete, the convergence of (8)
and (27) is achieved after some threshold γ′, as stated below.

Corollary 2. There exists a γ′ such that for all γ > γ′ and
for all states s ∈ S, the optimal policy π∗ satisfies

Prπ∗ (s |= �♦B) = Prmax(s |= �♦B). (28)

Proof. Let dmin be the minimum positive difference between
the satisfaction probabilities of two policies:

dmin := min
{
|Prπ1(s |= �♦B)− Prπ2(s |= �♦B)|

| s ∈ S, Prπ1
(s |= �♦B) 6= Prπ2

(s |= �♦B)
}

and let γ′ be the discount factor such that

max
{
|vγπ(s)− Prπ(s |= �♦B)| | s ∈ S

}
< dmin/2. (29)

Now, suppose a policy π′ that maximizes the satisfaction
probability is not optimal for γ′, then the optimal value of
all states must be larger than Prmax(s |= �♦B) − dmin/2,
which is not possible due to the definition of dmin.

IV. IMPLEMENTATION AND CASE STUDIES

We implemented our RL-based synthesis framework in
Python; we used Rabinizer 4 [33] to map LTL formulas
into LDBAs, and Q-learning for the proposed discounting
rewards. The code and videos are available at [34]. We evalu-
ated our framework on two motion planning case studies. We
consider two scenarios in a grid-world where a mobile robot
can take four actions top, left, down and right (Fig. 2 and 3).
The robot moves in the intended direction with probability
0.8 and it can go sideways with probability 0.2 (0.1 each). If
the robot hits a wall or an obstacle it stays in the same state.

For Q-learning, we used ε-greedy policy to choose the
optimal actions, and discount factors γB = 0.99 and γ =

10353

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3

0

1

2

3

4

c

a
ε2
b

c
ε2
b

ε1
a

c c

(a) Policy

0 1 2 3

0

1

2

3

4

1.00 1.00 0.00
c

1.00

1.00 1.00 0.79
a

1.00
b

1.00 0.00
c

1.00

1.00
b

1.00 1.00
a

1.00

1.00 0.00
c

0.81 0.00
c

(b) Value Estimates (c) Convergence

Fig. 2: The objective policy and the estimated maximal probabil-
ities of satisfying ϕ1 from (30). Empty circles: absorbing states;
Filled circles: obstacles; Arrows: actions top, left, down and right
and ε1, ε2 are ε-actions. State labels: encircled letters in the lower
part of the cells. The values are rounded to the closest hundredth.

0.99999. The probability that a random action is taken, ε, and
the learning rate, α, were gradually decreased from 1.0 to 0.1
and then 0.001. The objective policies and estimates of the
maximal probabilities were obtained using 100 000 episodes.

A. Motion Planning with Safe Absorbing States
In this example, the robot tries to reach a safe absorbing

state (states a or b in circle), while avoiding unsafe states
(states c). This is formally specified in LTL as

ϕ1 = (♦�a ∨ ♦�b) ∧�¬c. (30)

The LDBA computed from ϕ1 has 4 states and the product
MDP has 80 states. All episodes started in a random state and
were terminated after T = 100 steps.

The optimal policy obtained for an MDP is illustrated in
Fig. 2a. The shortest way to enter a safe absorbing state from
(0, 0) is reaching (1, 3) via (1, 2); yet, in that case, the robot
visits an unsafe state with probability 0.2. Thus, the optimal
policy tries to enter one of (3, 0) and (3, 2) by choosing up
in (3, 1). Under this policy, the robot eventually reaches a
safe absorbing state without visiting an unsafe state almost
surely. Once the robot enters an absorbing state, it chooses
an ε-action depending on the state label, and thus the LDBA
transitions to an accepting state, with positive rewards.

Fig. 2b shows the estimates of the maximal probabilities.
Note that the approximation errors in (1, 2) and (4, 2) are
due to the variance of the return caused by the unsafe states.
When the robot visits an unsafe state, the LDBA makes
a transition to a trap state, making it impossible for the
robot to receive a positive reward. Hence, the return that
can be obtained from (1, 2) and (4, 2) is either 1 or 0 with
probability 0.8 and 0.2, respectively. In addition, this type
of non-0 or non-1 probability guarantees cannot be provided
with existing learning-based methods for LTL specifications.

While the values from Fig. 2a and 2b were obtained from
a single run over K=100 000 episodes, we investigated the
impact of the number of episodes. Fig. 2c shows the L2
norm of the errors averaged over 100 repetitions for different
numbers of episodes (the error bars show standard deviation).

B. Mobile Robot in Nursery Scenario
In this scenario (inspired by [35]), the robot’s objective is

to repeatedly check a baby (at state b) and go back to its
charger (at state c), while avoiding the danger zone (at state

0 1 2 3

0

1

2

3

4

b d

a

c

(a) Policy c to b

0 1 2 3

0

1

2

3

4

b d

a

c

(b) Policy b to c

0 1 2 3

0

1

2

3

4

b d

a

c

(c) Policy b to a

0 1 2 3

0

1

2

3

4

b d

a

c

(d) Policy a to b

Fig. 3: A summary of the synthesized policy for the nursery
scenario. Arrows: actions top, left, down, and right; encircled
characters: state labels. The actions in states that are not reachable
or lead to another LDBA state are not displayed. In all subfigures,
the most likely paths are highlighted in red.

d). Near the baby b, the only allowed action is left and when
taken the following situations can happen: (i) the robot hits
the wall with probability 0.1 and wakes the baby up; (ii) the
robot moves left with probability 0.8 or moves down with
probability 0.1. If the baby has been woken up, which means
the robot could not leave in a single time step (represented
by LTL as b ∧ ©b), the robot should notify the adult (at
state a); otherwise, the robot should directly go back to the
charger (at state c). The full objective is specified in LTL as
ϕ2 = �

(
¬d︸︷︷︸
(1)

∧ (b ∧ ¬© b)→©(¬b U (a ∨ c))︸ ︷︷ ︸
(2)

∧ a→©(¬a U b)︸ ︷︷ ︸
(3)

∧ (¬b ∧©b ∧ ¬©©b)→(¬a U c)︸ ︷︷ ︸
(4)

∧ c→(¬a U b)︸ ︷︷ ︸
(5)

∧ (b ∧©b)→♦a︸ ︷︷ ︸
(6)

)
.

Here, the sub-formulas mean (1) avoid the danger state; (2) if
the baby is left, do not return before visiting the adult or the
charger; (3) after notifying the adult, leave immediately and
go for the baby; (4) after leaving the baby sleeping, go for the
charger and do not notify the adult; (5) after charging, return
to the baby first without visiting the adult; and (6) notify the
adult if the baby has woken up.

The LDBA for this specification has 47 states and the
product MDP has 940 states. The episodes were terminated
after 1000 steps and the robot position was reset to charging.

Fig. 3 depicts the optimal policy for the four most visited
LDBA states during the simulation. The robot follows the
policy in Fig. 3a after it leaves the charger dock (4, 1). Under
this policy, the robot almost surely reaches the baby in (0, 2),
while successfully avoiding visiting a. Similarly, the policy
in Fig. 3b is followed by the robot to go back to the charger
while the baby is sleeping. If the baby is awake, the robot
takes the shortest path to reach a (Fig. 3c).

V. CONCLUSION
In this work, we present a model-free learning-based

method to synthesize a control policy that maximizes prob-
ability that an LTL specification is satisfied in unknown
stochastic environments that can be modeled by an MDP.
We first show that synthesizing controllers from an LTL
specification on the MDP can be converted to synthesizing a
memoryless policy of a Büchi objective on the product MDP.
Then, we design a novel discounting and reward scheme, and
show that the memoryless policy optimizing this reward, also
optimizes the satisfaction probability of the Büchi objective
(and thus the initial LTL specification). Finally, we evaluate
our synthesis method on motion planning case studies.

10354

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 30(7):846–894, 2011.

[2] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the RRT. In 2011
IEEE International Conference on Robotics and Automation, pages
1478–1483. IEEE, 2011.

[3] C. I. Vasile and C. Belta. Sampling-based temporal logic path
planning. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4817–4822, Nov 2013.

[4] Stephen L Smith, Jana Tmov, Calin Belta, and Daniela Rus. Optimal
path planning for surveillance with temporal-logic constraints. The
International Journal of Robotics Research, 30(14):1695–1708, 2011.

[5] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach
to the deployment of distributed robotic teams. IEEE Transactions on
Robotics, 28(1):158–171, Feb 2012.

[6] Y. Kantaros and M. M. Zavlanos. Sampling-based control synthesis
for multi-robot systems under global temporal specifications. In 2017
ACM/IEEE 8th International Conference on Cyber-Physical Systems
(ICCPS), pages 3–14, April 2017.

[7] E. M. Wolff, U. Topcu, and R. M. Murray. Optimization-based
trajectory generation with linear temporal logic specifications. In 2014
IEEE International Conference on Robotics and Automation (ICRA),
pages 5319–5325, May 2014.

[8] M. Guo and M. M. Zavlanos. Probabilistic motion planning under
temporal tasks and soft constraints. IEEE Transactions on Automatic
Control, 63(12):4051–4066, Dec 2018.

[9] Meng Guo and Dimos V Dimarogonas. Multi-agent plan reconfigu-
ration under local LTL specifications. The International Journal of
Robotics Research, 34(2):218–235, 2015.

[10] Y. Kantaros and M. M. Zavlanos. Sampling-based optimal control
synthesis for multirobot systems under global temporal tasks. IEEE
Transactions on Automatic Control, 64(5):1916–1931, May 2019.

[11] M. Lahijanian, S. B. Andersson, and C. Belta. Temporal logic motion
planning and control with probabilistic satisfaction guarantees. IEEE
Transactions on Robotics, 28(2):396–409, April 2012.

[12] E. M. Wolff, U. Topcu, and R. M. Murray. Robust control of uncertain
Markov decision processes with temporal logic specifications. In 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pages
3372–3379, Dec 2012.

[13] Marta Kwiatkowska and David Parker. Automated verification and
strategy synthesis for probabilistic systems. In Dang Van Hung and
Mizuhito Ogawa, editors, Automated Technology for Verification and
Analysis, pages 5–22, Cham, 2013. Springer International Publishing.

[14] X. Ding, S. L. Smith, C. Belta, and D. Rus. Optimal control of Markov
decision processes with linear temporal logic constraints. IEEE
Transactions on Automatic Control, 59(5):1244–1257, May 2014.

[15] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, Cambridge, MA, USA, 2008.

[16] Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning
and control with temporal logic constraints, 2014. arXiv:1404.7073
[cs.SY].

[17] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelı́k, Vojtěch
Forejt, Jan Křetı́nský, Marta Kwiatkowska, David Parker, and Mateusz
Ujma. Verification of Markov decision processes using learning
algorithms. In Franck Cassez and Jean-François Raskin, editors,
Automated Technology for Verification and Analysis, pages 98–114,
Cham, 2014. Springer International Publishing.

[18] Min Wen, Rüdiger Ehlers, and Ufuk Topcu. Correct-by-synthesis
reinforcement learning with temporal logic constraints. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4983–4990. IEEE, 2015.

[19] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta. Q-learning
for robust satisfaction of signal temporal logic specifications. In 2016
IEEE 55th Conference on Decision and Control (CDC), pages 6565–
6570, Dec 2016.

[20] X. Li, C. Vasile, and C. Belta. Reinforcement learning with tem-
poral logic rewards. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3834–3839, Sep. 2017.

[21] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and
Sheila A McIlraith. Teaching multiple tasks to an RL agent using LTL.
In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 452–461. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2018.

[22] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio
Patrizi. Foundations for restraining bolts: Reinforcement learning
with LTLf /LDLf restraining specifications. In Proceedings of the
International Conference on Automated Planning and Scheduling,
volume 29, pages 128–136, 2019.

[23] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia.
A learning based approach to control synthesis of Markov decision
processes for linear temporal logic specifications. In 53rd IEEE
Conference on Decision and Control, pages 1091–1096, Dec 2014.

[24] Qitong Gao, Davood Hajinezhad, Yan Zhang, Yiannis Kantaros,
and Michael M. Zavlanos. Reduced variance deep reinforcement
learning with temporal logic specifications. In Proceedings of the
10th ACM/IEEE International Conference on Cyber-Physical Systems,
ICCPS ’19, pages 237–248, New York, NY, USA, 2019. ACM.

[25] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak. Omega-regular objectives
in model-free reinforcement learning. In Tomáš Vojnar and Lijun
Zhang, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 395–412, Cham, 2019. Springer International
Publishing.

[26] Xiao Li, Yao Ma, and Calin Belta. A policy search method for
temporal logic specified reinforcement learning tasks. In 2018 Annual
American Control Conference (ACC), pages 240–245. IEEE, 2018.

[27] Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini,
and Lijun Zhang. Lazy Probabilistic Model Checking without De-
terminisation. In Luca Aceto and David de Frutos Escrig, editors,
26th International Conference on Concurrency Theory (CONCUR
2015), volume 42 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 354–367, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[28] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetı́nský.
Limit-deterministic Büchi automata for linear temporal logic. In
Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verifi-
cation, pages 312–332, Cham, 2016. Springer International Publishing.

[29] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroen-
ing. Logically-constrained reinforcement learning. arXiv:1801.08099
[cs.LG], 2018.

[30] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and
Michael L. Littman. Pac model-free reinforcement learning. In Pro-
ceedings of the 23rd International Conference on Machine Learning,
ICML 06, page 881888, New York, NY, USA, 2006. Association for
Computing Machinery.

[31] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, USA, 2nd edition, 2018.

[32] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Conver-
gence of stochastic iterative dynamic programming algorithms. In
J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in
Neural Information Processing Systems 6, pages 703–710. Morgan-
Kaufmann, 1994.

[33] Jan Křetı́nský, Tobias Meggendorfer, Salomon Sickert, and Christo-
pher Ziegler. Rabinizer 4: From LTL to your favourite deterministic
automaton. In Hana Chockler and Georg Weissenbacher, editors,
Computer Aided Verification, pages 567–577, Cham, 2018. Springer
International Publishing.

[34] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. CSRL, 2019.
https://gitlab.oit.duke.edu/cpsl/csrl.

[35] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s Waldo?
sensor-based temporal logic motion planning. In Proceedings 2007
IEEE International Conference on Robotics and Automation, pages
3116–3121, April 2007.

10355

Authorized licensed use limited to: Duke University. Downloaded on September 22,2020 at 14:25:06 UTC from IEEE Xplore. Restrictions apply.

