Brief Announcement: Collect in the Presence of Continuous
Churn with Application to Snapshots and Lattice Agreement’

Sweta Kumari
Technion, Israel
sweta@cs.technion.ac.il

Hagit Attiya
Technion, Israel
hagit@cs.technion.ac.il

ACM Reference Format:

Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. 2020.
Brief Announcement: Collect in the Presence of Continuous Churn with
Application to Snapshots and Lattice Agreement. In Symposium on Principles
of Distributed Computing (PODC ’20), August 3—7, 2020, Virtual Event, Italy.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3382734.3405709

1 INTRODUCTION

A popular programming technique that contributes to designing
provably-correct distributed applications is to use shared objects for
interprocess communication, instead of more low-level techniques.
Although shared objects are a convenient abstraction, they are not
generally provided in large-scale distributed systems; instead, the
processes keep individual copies of the data and communicate by
sending messages to keep the copies consistent. Traditional dis-
tributed computing considers a static system, with known bounds
on the number of fixed computing nodes and the number of pos-
sible failures. Dynamic distributed systems allow nodes to enter
and leave the system at will, either due to failures and recoveries,
moving in the real world, or changes to the systems’ composition.
Motivating applications include those in peer-to-peer, sensor, mo-
bile, and social networks, as well as server farms.

The usefulness of shared memory programming abstractions
has been long-established for static systems [3]. This success has
inspired work on providing the same for newer, dynamic, systems.

In this paper, we promote the store-collect shared object [5] as a
primitive well-suited for dynamic message-passing systems with
an ever-changing set of participants, a phenomenon called “churn”.
Each node can store a value in the object with a STORE operation
and can collect the latest value stored by each node with a coLLECT
operation. We focus on the situation when nodes enter and leave,
but the resulting network is always fully connected, which could
be due to, say, an overlay network. We assume nodes can crash,
as long as the number of crashed nodes is no more than a fixed
fraction of the total number of nodes in the system.

A continuous-churn-tolerant store-collect object can be implemented
fairly easily. We adopt the system model in [4], which allows never-
ending churn as long as not too many churn events take place
during the length of time that a message is in transit. To capture

*Supported in part by ISF grant 380/18 and NSF grant 1816922. Full version in [7].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC °20, August 3-7, 2020, Virtual Event, Italy

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7582-5/20/08.

https://doi.org/10.1145/3382734.3405709

51

Jennifer L. Welch
Texas A&M University
welch@cse.tamu.edu

Archit Somani
Technion, Israel
archit@cs.technion.ac.il

this constraint, there is an assumed upper bound D on the maxi-
mum message delay, but no lower bound. Nodes do not know D and
have no local clocks, causing consensus to be impossible to solve [4].
During any time interval of length D, the number of churn events
that can occur is a fraction of the number of nodes in the system at
the beginning of the interval. Our algorithm for implementing a
(non-linearizable) store-collect object is based on the (linearizable)
read-write register algorithm in [4]. It is simple and efficient: once
a node joins, it completes a store operation within one round-trip,
and a collect operation within two round-trips. A by-product of
our work in this paper is a revised proof of the churn management
protocol that is much more accessible than that in [4].

The store-collect object specification is versatile, yielding efficient
implementations for objects that are not linearizable. There are
simple algorithms to implement (non-linearizable) max-registers,
abort flags, and sets using store-collect [7].

Building an atomic snapshot on top of a store-collect object is easy!
We present a simple algorithm with an elegant correctness proof,
which is more efficient than one based on registers as the values
can be collected in parallel instead of in series. In static systems,
atomic snapshot objects can be used to build multi-writer registers,
concurrent timestamp systems, counters, and accumulators, and
to solve approximate agreement and randomized consensus. They
have also been applied in dynamic systems.

Atomic snapshots yield a very simple implementation of gen-
eralized lattice agreement (GLA) [9] in a dynamic system. GLA is
an extension of (single-shot) lattice agreement, well-studied in the
static shared memory model [6]. Notably, [11] considers dynamic
systems subject to changes in the composition due to reconfigu-
ration and provides an implementation for a large class of shared
objects, including conflict-free replicated data types, that can be
modeled as a lattice. Unlike our work, it requires that changes to the
system composition eventually cease in order to ensure progress.

While it is easy to layer linearizability on top of a store-collect
object, not every application needs the costs associated with lin-
earizability, and store-collect gives the flexibility to avoid them. Our
approach is modular, hiding the underlying complications of the
message-passing and continuous churn from higher layers.

The problem of implementing shared objects in the presence of
ongoing churn and crash failures is studied by Baldoni et al., e.g., [8].
Unlike our results, that work assumes the system size is restricted
to a fixed window and the system is eventually synchronous.

If the level of churn is too great, our store-collect algorithm is not
guaranteed to preserve the safety property; that is, a collect might
miss the value written by a previous store (see [4]). This behavior
is in contrast to the algorithms in [2, 10], which never violate the
safety property but only ensure progress once reconfigurations
cease. In future work, we would like to either improve our algorithm

https://doi.org/10.1145/3382734.3405709
https://doi.org/10.1145/3382734.3405709

PODC 20, August 3-7, 2020, Virtual Event, Italy

to avoid this behavior or prove that any algorithm that tolerates
ongoing churn is subject to such bad behavior.

2 THE STORE-COLLECT ALGORITHM

Each node runs a client thread and a server thread. A shared store-
collect object supports concurrent execution of store and collect
operations, invoked by client threads. STORE,, (v), where v is a value
and p is a client, gets a response ACK. An invocation COLLECT), gets
a response RETURNP(V), where V is a view, that is, a set of client-
value pairs without repetition of client ids. V(p) is v if (p,v) € V
and L if no pair in V has p as its first element. Informally, a collect
operation should return a view containing the latest value stored by
each client. We also require that a later collect operation (possibly
by a different client) returns later values (see [7]).

Nodes track the system composition with an algorithm that is
the same as the one in CCREG [4], except for a single line which
updates the current view (see [7]). A node p maintains a set Changes
of events concerning the nodes that have entered the system. When
an ENTER, event occurs, p adds enter(p) to its Changes set and
broadcasts an enter message requesting information about prior
events. When p finds out that another node g has entered the
system, either by receiving an enter message directly from q or
by receiving an enter-echo message for ¢ from a third node, it
adds enter(q) to its Changes set. When p receives an enter message
from a node g, it replies with an enter-echo message containing
its Changes set, its current estimate local view (LView) of the state
of the simulated object. The first time that p receives an enter-
echo in response to its own enter message from a joined node, it
computes join_threshold, the number of enter-echo messages it
needs to get before it can join and increments its join_counter.

A fraction y is used to calculate join_threshold, the number of
enter-echo messages that should be received before joining, based
on the size of the Present set (nodes that have entered, but have not
left). Setting y is a key challenge in the algorithm as setting it too
small might not propagate updated information, whereas setting it
too large might not guarantee termination of the join.

Once p receives the required number of replies to its enter mes-
sage, p adds join(p) to its Changes set and broadcasts a message
saying that it has joined and sets local variable is_joined to true.
When p finds out that another node g has joined, it adds join(g) to
its Changes set. When a LEAVE,, event occurs, p broadcasts a leave
message and halts. When p finds out that a node g left the system,
it adds leave(q) to its Changes set.

Once a node has joined, its client thread can handle collect and
store operations (Algorithm 1) and its server thread (Algorithm 1)
can respond to clients. Our implementation adds a sequence num-
ber, sqno, to each value in a view, which is now a set of triples,
{{(p, v, sqno), .. .}, without repetition of node ids. We use the nota-
tion V(p) = v if there exists sqno such that (p,v, sqno) € V, and L
if no triple in V has p as its first element. A merge of two views, V;
and V3, picks the latest value stored by each node according to the
highest sqno. Note that V1, Vo < merge(V1, V2).

Each node keeps a local copy of the current view in its LView
variable. In a collect operation, a client thread requests the latest
value of servers’ local views using a collect-query message. When
a server node p receives a collect-query message, it responds with

52

Attiya, Kumari, Somani and Welch

Algorithm 1 CCC—Client and server code, for node p.

Local Variables:
optype: string, initially L // which type of operation is pending
tag: int, initially 0 // identify current operation
threshold: int, initially 0 // no. replies required in current phase
counter: int, initially 0 // no. replies received in current phase
Derived Variable:
Members = {q| join(q) € Changes A leave(q) ¢ Changes}

When COLLECT, occurs:
1: optype = collect; tag++
2: threshold = B - |Members|; counter = 0
3: broadcast (collect-query, tag, p)
When RECEIVE,, (collect-reply, RView, £, q) occurs:
4. if (t==tag) A(q == p) then
5. LView = merge(LView, RView) ; counter++
6. if (counter > threshold) then
7: threshold = B - |Members| ; counter = 0
8: broadcast (store, LView, tag, p)
When STORE,, (v) occurs:
9: optype = store; tag++ ; sqno++
10: LView = merge(LView,{{p, v, sqno) })
11: threshold = § - |Members| ; counter = 0
12: broadcast (store, LView, tag, p)
When RECEIVE,, (store-ack, t,) occurs:
13: if (t== tag) A(q == p) then
14: countert++
15: if (counter > threshold) then
16: if (optype == store) then return ACK
17: else return LView
‘When RECEIVE), (store, RView, tag, q) occurs:
18: LView = merge(LView, RView)
19: if (is_joined) then broadcast (store-ack, tag, q)
20: broadcast (store-echo, LView)
When RECEIVE,, (collect-query, tag, q) occurs:
21: if (is_joined) then broadcast (collect-reply, LView, tag, q)
When RECEIVE,, (store-echo, RView) occurs:
22: LView = merge(LView, RView)

its LView through a collect-reply message if p has joined the sys-
tem. When the client receives a collect-reply message, it merges
its LView with the received view (RView), to get the latest value cor-
responding to each node. Then the client waits for sufficiently many
collect-reply messages before broadcasting the current value of its
LView variable in a store message. When server p receives a store
message with a view RView, it merges RView with its local LView
and, if p is joined, it broadcasts store-ack. The client waits for
sufficiently many store-ack messages before returning LView to
complete the collect; this threshold is recalculated to reflect possible
changes to the system composition that the client has observed.

In a store operation, a client thread merges the value it wishes to
store with its local view, and broadcasts the resulting view with a
new sequence number. It updates its local variable LView to reflect
the new value by doing a merge and broadcasts a store message.
When server p receives a store message with view RView, it merges
RView with its local LView and, if p is joined, it broadcasts store-
ack. The client waits for sufficiently many store-ack messages
before completing the store.

Collect in the Presence of Continuous Churn with Applications

The fraction f is used to calculate the number of messages that
should be received (stored in local variable threshold) based on the
size of the Members set (estimate of nodes that have joined and not
left), for the operation to terminate. Setting f is also a key challenge
in the algorithm as setting it too small might not return correct
information from collect or store, whereas setting it too large might
not guarantee termination of the collect and store.

Fortunately, there exist values for the parameters y and f that
allow the algorithm to be correct. In the extreme case of no churn,
the failure fraction can be as large as 0.33; in this case, it suffices to
set both y and f to .67. As the churn rate increases up to 0.04, the
failure fraction must decrease approximately linearly until reaching
0.03; in this case, it suffices to set y to .75 and f§ to .78.

3 ATOMIC SNAPSHOTS

We employ the store-collect algorithm to implement atomic snap-
shots [1]. A snapshot view is a set of (node id, value) pairs, without
duplicate node ids. An atomic snapshot provides two operations:
ScaN() returns a snapshot view, while UPDATE(v) takes a value
v, changes the value associated with the invoking node to be o,
and returns Ack. Our algorithm uses repeated collects to identify
an atomic scan when two consecutive collects return the same
collected views. Updates help scans to complete by embedding
an atomic scan that can be borrowed by overlapping scans they
interfere with.

We use a store-collect object, whose values are five-tuples: val
holds the argument of the most recent update invoked at p; usqno
holds the number of updates performed by p; ssqno holds the num-
ber of scans performed by p; sview holds a snapshot view that is the
result of a recent scan done by p, used to help other nodes complete
their scans; scounts holds a set of counts of how many scans have
been done by the other nodes, as observed by p.

To Scan, Algorithm 2 increments the scan sequence number and
performs a store on the shared store-collect object with all the other
components unchanged. Then, the first view is collected. In a while
loop, it collects an additional view. If the two most recently collected
views are equal (successful double collect), this view is returned.
Otherwise, the algorithm checks whether the last collected view
contains a node q that has observed its own ssqno (in scounts). If
this condition holds, the snapshot view of q is returned.

An UpDATE first obtains all scan sequence numbers from a col-
lected view and assigns them to a local variable scounts. Next, an
embedded scan is performed and the returned view is saved in a
local variable sview. Then val is set to the argument value and the
update sequence number is incremented. Finally the new value,
update sequence number, collected view, and set of scan sequence
numbers are stored; the node’s scan sequence number is unchanged.

An operation terminates within O(N) collects and stores, where
N is the number of nodes active when it starts (see [7]).

4 GENERALIZED LATTICE AGREEMENT

Let (L,C) be a lattice, where L is the domain of lattice values,
ordered by C, with a join operator, LI, that merges lattice values. A
GLA object supports a PROPOSE operation whose input and response
are both lattice values. The input to p’s ith PROPOSE is denoted vf
and the response is wf . The following conditions are required:

53

PODC 20, August 3-7, 2020, Virtual Event, Italy

Algorithm 2 Atomic snapshot: code for node p.

Local Variables:
ssgno: int, initially 0 // no. scans p has invoked so far
scounts: set of (node id, integer) pairs without duplicate ids; initially @
val: element of Valag, initially L // argument to p’s recent update
usqno: int, initially 0 // no. updates p has invoked so far
sview: snapshot view, initially // result of last embedded scan
Vi, Va: store-collect views, both initially 0

When scan() occurs:
1: ssqno++
2: STORE ({—, —, ssqno, —, —))
3: Vi = CoLLECT ()
4: while true do

5 Vo = V15 V1 = CoLLECT ()

6 if (V; == V;) then

7: return V;.val // direct scan

8 if g such that (p, ssqno) € Vi (q).scounts then
9: return Vi (q).sview // borrowed scan

When UPDATE,, () occurs:
10: scounts = COLLECTy, ().ssqno
11: sview = SCANy () // embedded scan
12: val = v ; usqno++
13: STORE,, ({val, usqno, —, sview, scounts))
14: return Ack

P
1

proposed before this response, including uf , and all values returned
to any node before the invocation of p’s ith PRoposE. (b) Consistency:

Any two values wf’ and w}] are comparable.

(a) Validity: Every response value w; is the join of some values

Our GLA algorithm (see [7]) uses an atomic snapshot object,
in which each node stores a single lattice value (val). A PROPOSE
operation is simply an UPDATE of a lattice value which is the join
of all the node’s previous inputs, followed by a SCAN returning
the analogous values for all nodes, whose join is the output of the
Prorosk. Validity and consistency are immediate from the atomic
snapshot properties, as is the complexity.

REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots
of shared memory. J. ACM, 40(4):873-890, 1993.

[2] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage
without consensus. J. ACM, 58(2):7, 2011.

[3] H.Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing

systems. J. ACM, 42(1):124-142, Jan. 1995.

H. Attiya, H. C. Chung, F. Ellen, Saptaparni, and J. L. Welch. Emulating a shared

register in an asynchronous system that never stops changing. IEEE Transactions

on Parallel and Distributed Systems, 30(3):544-559, 2018.

H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applications.

Dist. Comp., 15(2):87-96, Apr. 2002.

H. Attiya, M. Herlihy, and O. Rachman. Atomic snapshots using lattice agreement.

Distributed Computing, 8(3):121-132, 1995.

H. Attiya, S. Kumari, A. Somani, and J. L. Welch. Store-collect in the presence

of continuous churn with application to snapshots and lattice agreement, 2020.

https://arxiv.org/abs/2003.07787.

R. Baldoni, S. Bonomi, and M. Raynal. Implementing set objects in dynamic

distributed systems. Journal of Comp. and Sys. Sci., 82(5):654— 689, 2016.

J. M. Faleiro, S. Rajamani, K. Rajan, G. Ramalingam, and K. Vaswani. Generalized

lattice agreement. In PODC, pages 125-134, 2012.

S. Gilbert, N. A. Lynch, and A. A. Shvartsman. Rambo: A robust, reconfigurable

atomic memory service for dynamic networks. Dist. Comp., 23(4):225-272, 2010.

P. Kuznetsov, T. Rieutord, and S. Tucci-Piergiovanni. Reconfigurable lattice

agreement and applications. In OPODIS, pages 31:1-31:17, 2019.

	1 Introduction
	2 The Store-Collect Algorithm
	3 Atomic Snapshots
	4 Generalized Lattice Agreement
	References

