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We observe that space- and time-crystallization effects in multicomponent superfluids—while having the
same physical origin and mathematical description as in the single-component case—are conceptually much
more straightforward. Specifically, the values of the temporal and spatial periods are absolute rather than
relative, and the broken translation symmetry in space and/or time can be revealed with experiments involving
only one equilibrium sample. We discuss two realistic setups—one with cold atoms and another one with
bilayer superconductors—for the observation of space and time crystallization in two-component counterflow

superfluids.
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The superfluid long-range order—either genuine or, in
lower dimensions, topological/algebraic—is associated with
the emergence of a well-defined (modulo 27), defect-free
field of a coarse-grained phase, ®(r, t); see, e.g., Ref. [1]. In
what follows, we discuss the genuine long-range order only.
The generalization to the case of algebraic order is readily
achieved along the lines described in Ref. [2]. Also, we use the
classical-field (matter-wave) language, which, on one hand,
captures the essence of superfluid phenomena and, on the
other hand, is straightforwardly generalized to the case of
quantum bosonic fields [1].

Long-range order in the coarse-grained matter field ¢ =
exp[i®(r,t)] means that we are dealing with the broken
global U(1) symmetry state. The very nature of this state
implies the existence of a space crystal when the phase is a
linear function of distance (and  is periodic in space with
the period 27 /k),

Y(r,t) =y(0,1)e™". (1

This is a state with finite superflow velocity proportional to
the wave vector K. In the literature on superfluidity, the term
“space crystal” is almost never (if at all) used in the context
of the state Eq. (1), because the matter density n(r,t) =
| (r, t)|> remains homogeneous in space. (It should not be
confused with a supersolid—the superfluid state with sponta-
neously broken translation symmetry in the particle density.)
However, it is now conventional to call various states of
matter “solids” and/or “crystals” if there is some observable
revealing broken translation invariance, and this observable
need not be the particle density. One familiar example is the
valence-bond crystal state of lattice bosons at half-integer
filling factor. In superfluids, the phase field plays the role
of such an observable. The interference fringes produced by
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superimposing two matter waves with opposite wave vectors
[3] nicely visualize the fact that superflows break translation
symmetry and thus qualify to be called space crystals. Su-
percurrent states in three-dimensional superfluids do not form
naturally by cooling the system across the transition temper-
ature [4]. Nevertheless, supercurrent states can be prepared
by cooling the system in a rotating vessel which is stopped
once the system is in the superfluid phase. In this sense, the
period of the space crystal in the phase field depends on the
experimental conditions used to prepare the sample, but other-
wise we are dealing with a stable thermodynamic equilibrium
described by the Gibbs distribution with an emergent quan-
tized topological constant of motion (phase winding number)
[1]. Academically speaking, such a persistent current state is
metastable. However, its relaxation time due to rare quantum-
tunneling or thermal-activation events is exponentially large
in the inverse k, and easily exceeds the time of the universe
unless the period of the space crystal is microscopically small.

While the existence of plane-wave states (1) is a generic
property of any statistical model with broken U (1) symmetry,
the period depends on the reference frame. The Galilean
transformation of the field ® when going to the reference
frame moving with the velocity vy with respect to the origi-
nal one,

VoI
Q(r, 1) —> (r,1) — ; @
14

implies that the state wave vector changes to
k—>k—vy/y. 3)

Here, y is the system-specific parameter relating the wave
vector of the matter wave to the flow velocity. In the quantum
case, ¥y = li/m, where 7 is the Planck’s constant (in what

©2020 American Physical Society


https://orcid.org/0000-0001-7855-4650
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.020505&domain=pdf&date_stamp=2020-01-14
https://doi.org/10.1103/PhysRevB.101.020505

NIKOLAY PROKOF’EV AND BORIS SVISTUNOV

PHYSICAL REVIEW B 101, 020505(R) (2020)

follows we set it to unity) and m is the particle mass. This
relativity of the period is quite unique for nonrelativistic
crystals.

What distinguishes superfluids from purely statistical mod-
els with broken U (1) symmetry is that broken U(1l) sym-
metry automatically entails breaking of the time-translation
symmetry, and links superfluidity to yet another fundamental
phenomenon of time crystallization [5,6]. Indeed, the phase
@ evolves in time in accordance with the universal Beliaev-
Josephson-Anderson relation (in the reference frame of the
normal component)

b= —p. “)

Here, u = py is the chemical potential that depends on the
wave vector of the superflow. Equation (4) readily follows
from the generalized Gibbs distribution for a superfluid [1].
Its remarkable simplicity and universality is rooted in the fact
that the phase @ is canonically conjugated to the total amount
of matter,

N=/|1p|2ddr (5)

[the U(1) symmetry in question is the Noether’s symmetry
responsible for the conservation of N]. With relation (4),
expression (1) can be upgraded to the formula

Y(r,t) =¥ (0, 0)e™ i, (©6)

showing that, in the long-wave limit, the superfluid order
parameter has the form of a running plane wave. Hence, the
superfluid state with a superflow is a space-time crystal, or a
time crystal in the absence of the superflow.

It is important to keep in mind that the value of p; is
relative. This is formally reminiscent of (and even partially
connected to) the relative nature of the wave vector k: By
changing the reference frame we change k and ;. Further-
more, the chemical potential is defined only up to a global
constant prescribed by the convention about the ground-state
energy per particle. In the nonrelativistic physics, the rest
energy of a free particle is typically set to zero. The merely
conventional character of this choice results in a certain
constraint on the protocols of measuring p and the time-
crystallization effect in superfluids, but does not exclude the
effect itself.

In their paper on the no-go theorem for equilibrium time
crystals [7], Watanabe and Oshikawa argued that it is the
above-discussed relativity of the chemical potential that rec-
onciles their theorem with Eq. (6). However, the proof of the
no-go theorem in Ref. [7] is based on the implicit assumption
that energy is the only additive constant of motion in a system
(cf. Ref. [8]), which is certainly not true for superfluids where
(5) is also a key constant of motion. The actual restriction
implied by the no-go theorem for equilibrium time crystals
is twofold: (i) An equilibrium time crystal is supposed to have
at least one additive constant of motion besides the energy. (ii)
The observable revealing the time crystallization has to violate
the conservation of this constant.

In light of the above discussion, it is instructive to iden-
tify a class of superfluid systems that feature the effect of
equilibrium space and time crystallization in the form of
Eq. (6) while being free of the subtleties originating from

the relative nature of k and u;. We observe that multicom-
ponent (counterflow) superfluids belong to such a class. Here,
the quantity of interest, ®,,(r, t), is the coarse-grained field
of the phase difference between the components “a” and
“b” (the description stays exactly the same for an arbitrary
number of components, so we restrict ourselves to the two-
component case for simplicity). We further limit ourselves
with counterflow superfluid states (see, e.g., Ref. [1]) where
the superfluid order exists exclusively in the field @, (r, )
but not in the individual phases of the components. The long-
wave equilibrium statistics of the two-component counterflow
superfluid is isomorphic to that of a single-component super-
fluid, rendering the system particularly simple and relevant
for our purposes. To exclude irrelevant long-wave degrees of
freedom, we also assume that the normal component is pinned
by either disorder, walls, or an external periodic potential. The
Beliaev-Josephson-Anderson relation for &, (its derivation
from the Gibbs distribution is directly analogous to that in the
single-component case),

anb = MUb — Ma, (7)

has the form of the Josephson relation for the standard ac
Josephson effect between two single-component superfluids
(made of the same type of matter but having different chemi-
cal potentials). Similarly, the protocol of detecting the rotation
of the phase ®,, can be based on simply creating a “Josephson
link” between components “a” and “b.” In this regard, note
that any protocol of revealing the time crystallization effect in
the field ®,;, has to deal with interactions explicitly violating
the U(1) x U(1) symmetry of the original system, which
implies a process converting components “a” and “b” into
each other. The conceptual difference between this “internal”
Josephson effect and its conventional counterpart is that now
the frequency of the phase rotation—and thus the period of
oscillations of the ac Josephson current—is independent of
the choice for counting energy in a single equilibrium sample.

In the presence of disorder or external periodic potential,
the system has a natural reference frame. The absence of
Galilean invariance in this case does not yet mean that the
period of the space crystal (1) is not relative. One can, in prin-
ciple, design an experiment when this period is observed from
a moving frame, in which case Eqgs. (2) and (3) still apply.
However, in a counterflow superfluid with two components
having equal parameters y, Galilean transformation (2) leaves
the phase field intact,

Vo I VoI
+
Va

q>ab e CI>ab -

= Dy, ®)

and the period of the corresponding space crystal is the same
in any reference frame.

The difference between the single-component and counter-
flow superfluids becomes even more dramatic and instructive
in the case of toroidal geometry and rotating frame. The
fictitious vector potential Ag. emerging in the rotating frame
brings about the gauge freedom. In the single-component
superfluid in the rotating frame, the gauge freedom renders
the notion of spatial phase difference ambiguous and thus ill
defined. The gauge-invariant equivalent of the phase differ-
ence between the points r; and r, has now the form of the line
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integral,
r;
/ (VO — Ag) - dl. C)]
ry

Even in the absence of topological defects in the field P,
this integral depends on the form of the line because of
the term with Agg. This, in particular, means that there is
no experimental way of unambiguously measuring the phase
difference in the rotating frame. In the case of a counterflow
superfluid, the counterpart of the integral (9) reads [cf. Eq. (8)]

I I
/ (V®ap — Afice + Afice) - dl = / V& -dl. (10
ry r

Now the phase difference is well defined and invariant with
respect to the choice of the reference frame.

Experimental implementation 1: Cold atoms. One possible
realization of the counterflow superfluidity is with multicom-
ponent ultracold bosons in optical lattices [9]. A straight-
forward generalization of the protocol discussed in Ref. [2]
(in the context of algebraic time crystallization in a single-
component two-dimensional superfluid) allows one to simul-
taneously study both the space and time crystallization in such
systems. The protocol is as follows.

(1) Consider a toroidal shape sample with close, but differ-
ent, chemical potentials w, and uy, in a state with finite coun-
terflow supercurrent. Introduce switchable internal Josephson
links between the two components on two special sites of the
optical lattice separated by a distance r.

(2) At time zero, turn the first link on for the duration Ar,
such that (Ap = |ua — upl)

At Ap < 1. (11)

(3) Keep both links switched off for a much longer time
interval # A > 1 and then turn the second link on for the
duration At.

(4) Quickly, on timescales < 1/Apu, apply a deep optical
lattice to localize all atoms in the system and count atom
numbers N, and N, using single-site microscopy [10,11].

Repeating the protocol many times under identical condi-
tions allows one to accumulate representative statistics and
process the data with the help of an auxiliary experimental
run that skips the next-to-last step of the above-described
protocol. The outcome of the auxiliary run is the expectation
value Ny, = (N, — Np) that averages typical particle number
differences taking place right before the two samples are dis-
connected for a period of time ¢. The key statistical observable
is then

K(t) = ([Na(t) = No(1) = N %) 12)

In this expression, random particle number differences charac-
terizing irreproducibility of the initial state preparation cancel
out and we are left with a signal reflecting spatial and temporal
oscillations of the phase field,

(Pap(r, 1) — Pyp(0, 0)). 13)

State preparation fluctuations are independent of r and ¢ and
thus create no problem except for that of a signal-to-noise
ratio, which can be improved by collecting more statistics and
optimizing setup parameters. To ensure that the space- and

time-dependent contribution to dispersion is large, one needs
to have Jy/Ap > 1, where Jy is the Josephson constant
(assumed to be the same for both links).

Experimental implementation 2: Bilayer superconductor. A
different—and interesting on its own—realization of the
space- and time-crystallization effect in a counterflow super-
fluid is a bilayer superconducting annulus. When the thick-
ness of the two layers is small enough to suppress finite-
temperature bulk superconductivity and tunneling between
the layers is negligibly small, the system still features (at
an appropriately low temperature) a two-dimensional neutral
counterflow superfluid mode [12]. In this case, the coarse-
grained phase field ®,,(r, t) describes the phase difference
between the layers “a” and “b.” Because of the long-range
current-current interaction between the layers via the vector
potential, the field ®,,(r, ) remains algebraically ordered
while the individual phase fields ®,(r,¢) and ®,(r,?) are
destroyed at finite temperature by the proliferation of vortices
that cost finite energy [12]. The effect of surface supercon-
ductivity predicted recently by Samoilenka and Babaev [13]
can be used to create an interesting modification of the bi-
layer superconducting setup [14], in which the two layers are
formed by adjacent surfaces of two superconducting materials
that remain normal in the bulk.

The setup with switchable Josephson link(s) and subse-
quent counting of the electrons in each of the two layers
appears to be impractical. Instead, one can utilize the standard
ac Josephson setup with one or two permanent links. One
link would be sufficient for revealing the time crystallization
through the current-current correlation function [2]. To reveal
both the space and time crystallization, one needs the second
link (assume that both have the same Josephson constant
Jo) at a macroscopically large distance r from the first one.
Operationally, the resulting device will behave as a hybrid
of an ac Josephson junction and a superconducting quantum
interference device (SQUID). On the one hand, it will be
demonstrating the algebraic Josephson effect (see Ref. [2])
with the frequency prescribed by the superconducting analog
of relation (7), where the chemical potential difference uy, —
W, is doubled because of the Cooper pairing. On the other
hand, the net amplitude of the Josephson current will depend
on the phase shift k - r between the two junctions,

k-r

Jnet ¢ Jp|cos - | (14)

This way one can directly measure the projection of the wave
vector Kk on the axis of r.

Conclusions and discussion. Multicomponent super-
fluids—most notably, counterflow superfluids—unques-
tionably feature the effects of space and time crystallization.
In this context, the space crystallization is understood
broadly as the broken translation symmetry, irrespective of its
microscopic origin (including the role played by interactions)
and relevant observables. The counterflow superfluidity was
predicted theoretically some time ago but it has not been
yet realized in the laboratory. Observation of the space- and
time-crystallization effects can be used for detecting this
superfluid state experimentally.

To comply with the no-go theorem [7], a system featuring
the effect of time crystallization has to have an additive
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conserved quantity different from energy, and measurements
have to violate the conservation of this quantity. The counter-
flow superfluids with potentially interconvertible components
satisfy these criteria; internal Josephson links between the
two components probe the order in the phase difference
field through temporal correlations and spatial interference of
Josephson currents. The necessity for the time-crystallization
probe to deal with the interconversion of the two components
explicitly follows from the Beliaev-Josephson-Anderson re-
lation (7). Otherwise, each of the two chemical potentials
is defined up to its individual arbitrary additive constant
reflecting the convention about the counting zero for energy.

We discussed two different experimental setups and, cor-
respondingly, two different protocols for the observation of
space and time crystallization in counterflow superfluids. The
first setup, dealing with ultracold atoms in optical lattices,
appears to be the most universal and conceptually transparent.
Here, the probes are local in space and time and unquestion-
ably remove all concerns about nonequilibrium effects. Yet,
an important aspect of realistic cold-atomic systems is that
their sizes are rather moderate. This makes them especially
suitable for studying the finite-size effects leading to phase
decoherence and hence the finite linewidth of the Josephson
effect power spectrum [15,16]. This setup is equally good
for detecting the genuine space and time crystallization in a
three-dimensional system, as well as algebraic space and time
crystallization in lower dimensions.

The second experimental setup is based on a bilayer
supeconductor with two spatially separated Josephson links
between the layers to study the effect of space crystallization
via the interference of the two Josephson currents. The ad-
vantage of this setup is that it allows one to employ standard
experimental techniques for detecting the Josephson effect
in electronic systems. In particular, one can use the emitted
electromagnetic radiation to measure the frequency and the
amplitude of the oscillating current. This setup also appears
to be natural for utilizing the space- and time-crystallization
effects to reveal and study some other superfluid phenomena
and properties such as algebraic (as opposed to genuine) time
crystallization [2], equilibrium statistics of supercurrent states
[4], and surface superconductivity [13]. A minor shortcoming
of this setup is that the system is two dimensional so that it
deals with the algebraic space and time crystallization.

It is instructive to put our results in a broader context of
past and present activities addressing spontaneous breaking

of time-translation symmetry in equilibrium, steady state,
and periodically driven (Floquet) systems. At the moment,
exciting progress is being made—on both theoretical and
experimental side—with Floquet time crystals (see, e.g., the
review [17] and references therein). By their very nature—the
presence of a periodic drive—Floquet time crystals break
discrete time-translation symmetry as opposed to breaking
continuous time-translation symmetry. The discussed scenario
for a macroscopic system to break continuous time-translation
symmetry is most closely related to the Kuramoto syn-
chronization mechanism (see the review [18] and references
therein), when, under appropriate conditions, local rotors get
globally synchronized despite local fluctuations and disorder.

Our discussion was focused on the counterflow superfluid.
Nevertheless, all the conclusions apply to any multicompo-
nent superfluid because it inevitably has at least one coun-
terflow mode. In particular, a simple two-component Bose-
Einstein condensate would be a reasonable system for apply-
ing the above-mentioned protocol. In this regard, the man-
ifestation of time crystallization in a two-component Bose-
Einstein condensate has been already observed in Ref. [19].
As opposed to our protocol of detecting the time-translation
symmetry breaking at equilibrium, the experiment of Ref. [19]
starts by creating a coherent nonequilibrium initial state with a
well-defined relative phase between the two components (by
producing the second component out of the condensed first
one). The evidence for the broken time-translation symmetry
then comes in the form of long-lived oscillations of the relative
phase of the two condensates.

If the two-pulse protocol for equilibrium states is mod-
ified to render the weak interconversion interaction global
(uniform) rather than local, then the experiment would
demonstrate—by the very fact that a macroscopic equilib-
rium system features a finite response to such a type of
perturbation—a fundamental property of macroscopic time
crystals: the inevitable presence of long-range spatial corre-
lations along with the oscillations in the time domain. This
property can be interpreted in terms of a time-dependent order
parameter (see, e.g., Ref. [20]).
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