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ABSTRACT. We improve the robustness of Deep Neural Net (DNN) to adver-
sarial attacks by using an interpolating function as the output activation. This
data-dependent activation remarkably improves both the generalization and
robustness of DNN. In the CIFAR10 benchmark, we raise the robust accu-
racy of the adversarially trained ResNet20 from ~ 46% to ~ 69% under the
state-of-the-art Iterative Fast Gradient Sign Method (IFGSM) based adver-
sarial attack. When we combine this data-dependent activation with total
variation minimization on adversarial images and training data augmentation,
we achieve an improvement in robust accuracy by 38.9% for ResNet56 under
the strongest IFGSM attack. Furthermore, We provide an intuitive explanation
of our defense by analyzing the geometry of the feature space.

1. Introduction. The adversarial vulnerability [34] of Deep Neural Nets (DNNs)
threaten their applicability in security critical tasks, e.g., autonomous cars [1], ro-
botics [11], DNN-based malware detection systems [26, 10]. Since the pioneering
work by Szegedy et al. [34], many advanced adversarial attacks have been devised
to generate imperceptible perturbations to fool the DNN [9, 25, 7, 39, 14, 4, 8]. Not
only are adversarial attacks successful in white-box attacks, i.e., when the adversary
has access to the DNN parameters, but they are also successful in black-box attacks,
i.e., without access to network parameters. Adversarial attacks are transferable in
the sense that a perturbed image meant to be misclassified by one DNN also has

2020 Mathematics Subject Classification. Primary: 68T45; Secondary: 68T01.
Key words and phrases. Deep learning, Adversarial defense, Interpolation.
Please correspond to wangbaonj@gmail.com.



2 BAO WANG AND ET AL.

a significant chance to be misclassified by another DNN [28]. Due to this transfer-
ability, adversaries can attack DNN without knowing the network parameters (i.e.
blackbox) [19, 6]. There even exist universal perturbations that can imperceptibly
perturb any image and cause misclassification for any given network [22]. And re-
cently, there has been much work on defending against these universal perturbations
[2].

In this work, we defend against adversarial attacks by replacing the commonly
used output activation of DNN with a manifold-interpolating function. Together
with the Projected Gradient Descent (PGD) adversarial training [21], Total Varia-
tion Minimization (TVM), and training data augmentation, we show state-of-the-art
results for adversarial defense on the CIFAR10 benchmark.

1.1. Related work. Defensive distillation was recently proposed to increase the
robustness of DNN [27], and a related approach [35] cleverly modifies the training
data to increase robustness against black-box attacks and adversarial attacks in
general. To counter adversarial perturbations, Guo et al. [12], proposed to use im-
age transformation, e.g., bit-depth reduction, JPEG compression, TVM, and image
quilting. A similar idea of denoising the input was later explored in [23], where
the authors divide the input into patches, denoise each patch, and then reconstruct
the image. These input transformations are intended to be non-differentiable, thus
making adversarial attacks more difficult, especially for gradient-based attacks. An-
other denoising approach is introduced by Liao et al. [18], where they proposed a
High-level Representation Guided (HGD) denoiser — the idea is that while pertur-
bations seem small in the original and adversarial images, these perturbations are
amplified in higher representations. Transformation-based defenses have also been
proposed by Xie et al. [40], and Luo et al. [20]. Song et al. [33], noticed that small
adversarial perturbations shift the distribution of adversarial images far from the
distribution of clean images. Therefore, they proposed to purify the adversarial im-
ages by PixelDefend. And Prakash et al. [29], also seek to examine image statistics
in order to construct an adversarial defense — in their work, they introduce Pixel
Deflection where they force images to match statistics of natural images. Lee et
al. [17], have also used the distribution of images to detect adversarial examples.
Adversarial training is another family of defense methods to enhance the stability
of DNN [9, 21, 24]. In particular, the PGD adversarially trained DNN achieves
state-of-the-art resistance to the available attacks [21]. GANSs are also employed for
adversarial defense [31]. In [3], the authors proposed an approximated gradient to
attack the defenses that are based on the obfuscated gradient.

Instead of using the softmax function as DNN’s output activation, Wang et
al. [36, 38], utilized a class of non-parametric interpolating functions. This is a
combination of both deep and manifold learning which causes the DNN to utilize
the geometric information of the training data sufficiently. The authors show a
significant amount of generalization accuracy improvement, and the results are more
stable when one only has a limited amount of training data. Recently, Wang et al.
[37] modeled ResNet as a transport equation, and they proposed an Feynman-Kac
formalism principled adversarial robust DNN.

1.2. Organization. We organize this paper as follows: In section 2, we overview
the DNN with a graph Laplacian-based high dimensional interpolating activation
function. In section 3, we present a few adversarial attacks that will be used as
benchmarks for this work. In section 4, we elaborate on adversarial defense via
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interpolating activation together with TVM. In section 5, we further study the
robustness of PGD adversarially trained DNN with interpolating activation. This
paper ends up with concluding remarks.

2. DNN with data-dependent activation. In this section, we summarize the
architecture, training, and testing procedures of the DNN with the data-dependent
activation [36]. For the standard DNN with softmax activation, the training and
testing are shown in Fig. 1 (a) and (b), respectively. In the kth iteration of training,
given a mini-batch of training data X,Y, we perform:

Forward propagation: Transform X into features by the DNN block (a combina-
tion of convolutional layers, nonlinearities, etc.), and then feed the output into the
softmax activation to obtain the predictions Y, i.e.,

Y = Softmax(DNN(X, ©F~1) Wk=1),

Then the loss is computed (e.g., cross entropy) between Y and Y: £ = [linear —
Loss(Y,Y).

Backpropagation: Update weights (08~ W¥~1) by gradient descent with learn-
ing rate v
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Once the model is optimized, with optimal parameters being (©, W), the pre-
dicted labels for testing data X are

Y = Softmax(DNN(X, ©), W).

Wang et al [36] proposed to replace the data-agnostic softmax by an interpolating
function defined below.

2.1. Manifold interpolation - a harmonic extension approach. Let X =
{x1,X2, -+ ,Xp} be a set of points on a high dimensional manifold M C R? and
Xte = {xt xt ... x'} (“te” for template) be a subset of X which are labeled
with label function g(x) *. We want to interpolate a function u that is defined on M
and can be used to label the entire dataset X. The harmonic extension is a natural
approach to find such an interpolating function, which is defined by minimizing the
following Dirichlet energy functional

(1) Ew) =5 > wxy)(ux)—uy))?

with the boundary condition

u(x) = g(x), x € X",

!'The minimum requirement is that the template data needs to cover all classes. In [36], we
show that for an image classification task with m number of different classes, the size of the
template needs to be at least mlogm. In practice, the size of the template set will not affect the
performance much as long as the template set size is more than 1K for CIFAR10 and CIFAR100.
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FIGURE 1. Training and testing procedures of the DNN with soft-
max and WNLL functions as the output activation layer. (a) and
(b) show the training and testing steps for the standard DNN; re-
spectively; (¢) and (d) illustrate the training and testing procedure
of the WNLL activated DNN, respectively.

2
where w(x,y) is a weight function, chosen to be Gaussian: w(x,y) = exp(—”xgig'”)

with o being a scaling parameter. The Euler-Lagrange equation for Eq. (1) is

@) Yyex (wxy) +w(y, x)) (u(x) —u(y)) = 0 x € X/X*
u(x) = g(x x € X'

By solving the linear system Eq. (2), we obtain labels u(x) for the unlabeled data
x € X/X"'. This interpolation becomes invalid when the labeled data is tiny, i.e.,
|X'| <« |X/X®]|. To resolve this issue, the weights of the labeled data is increased
in the Euler-Lagrange equation, which gives
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Syex (W06, ¥) + w(y, %)) (4G — u(y)) +
(3) (|§§l| — 1) Y yexe w(y, %) (u(x) —u(y)) =0 x € X /Xt
u(x) = 9%) exte

The solution to Eq. (3) is named weighted nonlocal Laplacian (WNLL), denoted
as WNLL(X, X% Y®). Shiet al. [32], showed that WNLL converges to the solution
of the high dimensional Laplace-Beltrami equation. For classification, g(x) is the
one-hot label for the example x.

2.2. Training and testing of the DNN with data-dependent activation
Function. For a standard DNN, we denote the WNLL activated one as DNN-
WNLL, e.g., the WNLL activated ResNet20 is denoted as ResNet20-WNLL. In
both training and testing of the DNN-WNLL, we need to reserve a small portion
of data/label pairs, denoted as (X', Y'), to interpolate the label for new data.
We name the reserved data (X', Y*) as the template. Directly replacing softmax
by WNLL has difficulties in back propagation, namely the true gradients % and

595 (here £ = LWNLL — Loss(Y,Y), as shown in Fig. 1(c)) are difficult to
compute since WNLL defines an implicit function. Instead, to train the DNN-
WNLL, a proxy via an auxiliary DNN (Fig. 1(c)) is employed. On top of the
original DNN, we add a buffer block (a fully connected layer followed by a ReLU),
and followed by two parallel branches, WNLL and linear (fully connected) layers.
The auxiliary DNN can be trained by alternating between training the DNN with
linear and WNLL activation functions, respectively. When training DNN with
WNLL activation function, the training loss of the WNLL activation is backpropped
via a straight-through gradient estimator [3, 5], e.g., in the kth iteration, we use
the following approximated gradient descent (Eq. (4)) to update W only (when
backpropagating the training loss LVYNE we freeze the remaining part except for
the buffer block, and the other parameters will be updated in training DNN with
linear activation function),
WNLL Y <
@) Wk :W]f;l _7(‘35 } 87\; 0X
oY oX O0Wgp
oLlnear gy 9X
oY  9X OWgp’

%W%ﬁl -

aLLincar
where %

and (%;v;:m are the gradients computed through two different acti-
vation functions. In the approximation of Eq. (4), we simply replace the value of
Llirear with that of LVNLL which allows us to compute the value of oLV by
leveraging the computational graph of DNN with linear activation. The detailed
training procedure can be found in [36].

At test time, we remove the linear activation from the neural net and use the
DNN and buffer blocks together with WNLL to classify new data (Fig. 1 (d)).
Here for simplicity, we merge the buffer block to the DNN block. For a given set of
testing data X, and the labeled template {(X',Y'*)}, the predicted labels for X
is given by

Y = WNLL(DNN(X, X', 0),Y').
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2.3. Computational complexity of DNIN with data-dependent activation.
Using WNLL activation will lead to some extra computational overhead, which
comes from the nearest neighbor searching and solving a system of linear equations.
We following the same training procedure as that used in [36] to train ResNet20. In
Table 1, we list the training and test time on a single Titan Xp GPU for ResNet20
on CIFARI10.

TABLE 1. Running time and GPU memory for ResNet20 with two
different activation functions.

Training time Testing time  Memory
ResNet20 3925.6 (s) 0.657 (s) 1007 (MB)
ResNet20-WNLL ~ 7378.4 (s) 14.09 (s) 1563 (MB)

3. Adversarial attacks. We consider three benchmark attacks: the Fast Gradient
Sign Method (FGSM) [9], Iterative FGSM (IFGSM) [16], and Carlini-Wagner’s Ly
(CW-L2) [7] attack. We denote the classifier defined by the DNN as § = f(6,x)
for a given instance (x, y). FGSM searchs the adversarial image x” with a bounded
perturbation by maximizing the loss L(x',y) = L(f(0,%x'),y), subject to the l
perturbation constraint ||x’ — x||oc < € with € being the attack strength. We can
approximately solve this constrained optimization problem by using the first order
approximation of the loss function i.e., £L(x,y) ~ L(x,y) + VxL(x,y)T - (x' — x).
Under this approximation, the optimal adversarial image is

(5) x' =x+esign - (VxL(x,y)).
IFGSM iterates FGSM to generate the enhanced attack, i.e.,
(6) x(m) = Clip, {x(m_l) + « - sign (Vxﬁ(x(m_l)a y))} )
where m = 1,--- , M, x(9 = x and x’ = x(*™), with M be the number of iterations.

a is the step size used in each iteration, and Clipy . clips the update to be within
an e-ball centered at x in [,.-norm.

Moreover, we consider the attack due to Carlini and Wagner. For a given image-
label pair (x,y), and V¢ # y, CW-L2 searches the adversarial image that will be
classified to class ¢t by solving the optimization problem

(7) min|15]3,

subject to
flx+8) =t, x+38 € [0,1]",
where ¢ is the adversarial perturbation (for simplicity, we ignore the dependence of
6 in f).
The equality constraint in Eq. (7) is hard to handle, so Carlini et al. considered
the surrogate

(®) o) = max (max(Z(x)) ~ Z()1,0).

i#£t

where Z(x) is the logit vector for an input x, i.e., output of DNN before the
output layer. Z(x); is the logit value corresponding to class i. It is easy to see that
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f(x 4+ &) =t is equivalent to g(x + d) < 0. Therefore, the problem in Eq. (7) can
be reformulated as

(9) min ||6]f3 + ¢ - g(x + ),

subject to
x4+ 46 €[0,1]",
where ¢ > 0 is the Lagrangian multiplier.

By letting § = 1 (tanh(w) + 1) — x, Eq. (9) can be written as an unconstrained
optimization problem. Moreover, Carlini et al. introduce the confidence parameter
K into the above formulation. Above all, the CW-L2 attack seeks the adversarial
image by solving the following problem

1
(10) min HE (tanh(w) + 1) — X||% +c
w

1 1
max {—H,I?jtx(Z(2(tanh(W)) +1);) — Z(a(tanh(w)) + 1)t} .

The Adam optimizer [15] can solve this unconstrained optimization problem
efficiently. All three attacks clip the values of the adversarial image x’ to between
0 and 1.

3.1. Attack the DNN with WNLL activation. For a given mini-batch of
testing images (X,Y) and template (X', Y®), we denote the DNN-WNLL as
Y = WNLL(Z({X, Xt}),Y*), where Z({X,X"}) is the composition of the DNN
and buffer blocks as shown in Fig. 1(c). By ignoring dependence of the loss
function on the parameters, the loss function for DNN-WNLL can be written as
L(X,Y, X" Y') = Loss(Y,Y). The above attacks for DNN-WNLL are formu-
lated below.

¢ FGSM

(11) X' =X + ¢ sign (VXE(X,Y, Xfe,Yte)) :
o IFGSM
(12) X = Clipx [X™ Y + o - sign (VXE(X(”“”, Y, Xt Yte))],

where m=1,2,--- ,M; X =X and X' = XM,
e CW-L2

1
(13) %n||§ (tanh(W) + 1) — X||3 + ¢ - max[—x,
1 1
max(Z(5 (tanh(W)) + 1);) — Z(5 (tanh(W)) + 1],
where i are the logit values of the input images X, t are the target labels.

In the above attacks, VxL is required to generate the adversarial images. In
the DNN-WNLL, this gradient is difficult to compute. As shown in Fig. 1 (c), we
approximate Vx £ in the following way
- OLWNLL gy 9X 9X  aLlmer gy 09X 09X
(14) VX£:7A'7A'7~'7%7~'7,\'7~'7’

oY X o0X 90X oY X o0X 0X
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Original Original
FGSM FGSM
IFGSM IFGSV
FGSM FGSM
WNLL WNLL
IFGSM IFGSM
WNLL WNLL

Original Original
FGSM FGSM
IFGSM IFGSM
FGSM FGSM
WNLL WNLL
IFGSM IFGSM
WNLL WNLL

FIGURE 2. Samples from CIFAR10. Panel (a): from the top to
the last rows show the original, adversarial images by attacking
ResNet56 with FGSM and IFGSM (e = 0.02); and by attacking
ResNet56-WNLL. Panel (b) corresponding to those in panel (a)
with € = 0.08. Charts (c¢) and (d) corresponding to the TV mini-
mized images in (a) and (b), respectively.

again, in the above approximation, we set the value of £ to the value of L.
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Based on our numerical experiments, the batch size of X has minimal influence
on the adversarial attack and defense. In all of our experiments, we choose the size
of both mini-batches X and the template to be 500.

4. Defense by interpolating function, TVM, and training data augmenta-
tion. To defend against adversarial attacks, we first combine the data-dependent
activation with input transformation and with training data augmentation. We
train ResNet56 [13] and ResNet56-WNLL, respectively, on the original training
data, the TV minimized training data, and a combination of the previous two.
Moreover, in testing, we apply the TVM [30] used by [12], with the same setting,
to transform the adversarial images to boost classification performance. The basic
idea of TVM is to reconstruct the simplest image z from the sub-sampled image,
X ®x with X the mask filled by a Bernoulli binary random variable, by solving

mzinH(l —X) O (z—x)|l2 + Arv - TVa2(2),

where Apy > 0 is the regularization constant.

We apply the three attack schemes mentioned above to attack ResNet56 and
ResNet56-WNLL. For IFGSM, we run 10 iterations of Eqgs. (6) and (12) with e = 0.1
to attack the DNN with two different output activations, respectively. For the CW-
L2 attack (Egs. (10, 13)), in both scenarios we set the parameters ¢ = 10 and x = 0,
and run 10 iterations of the Adam optimizer with learning rate 0.01. Figure 2 depicts
three randomly selected images (horse, automobile, airplane) from the CIFARI0
dataset, as well as the perturbed images from applying different attacks on ResNet56
and ResNet56-WNLL, and the TV minimized ones. All attacks successfully fool the
classifiers to classify any of them correctly. Figure 2 (a) shows that the perturbations
resulted from FGSM attack with ¢ = 0.02 is almost imperceptible. However, both
FGSM and IFGSM attacks are powerful in fooling DNNs. Figure 2 (b) shows the
corresponding images of (a) with a stronger attack, e = 0.08. With a larger ¢, the
adversarial images become more noisy. The TV minimized images of Fig. 2 (a)
and (b) are shown in Fig. 2 (c) and (d), respectively. TVM removes a significant
amount of information from the original and the adversarial images. Meanwhile, it
also makes it harder for humans to classify them.

4.1. Numerical results. In this subsection, we first discuss the transferability
of adversarial examples generated by attacking DNNs with softmax and WNLL
activation functions. The transferability of adversarial examples is often used for
black-box adversarial attacks. Adversarial examples of a robust DNN typically have
good transferability. Next, we numerically verify the efficacy of adversarial defense
by leveraging DNN with the WNLL activation function and TVM. Finally, we
explain the adversarial robustness by considering the deep learning features learned
by DNN with different activation functions.

4.1.1. Transferability of the adversarial images. Consider the transferability of ad-
versarial examples crafted by using the above adversarial attacks to attack ResNet56
with either softmax or WNLL activation. We utilize the training strategy used in
[36] to train the DNNs. To test the transferability, we classify the adversarial im-
ages by using ResNet56 with the opponent activation (the opponent activation of
WNLL is softmax, and vice versa). We list the mutual classification accuracy (the
accuracy of DNN with one specific activation to classify adversarial images crafted
by attacking DNN with the other activation) on adversarial images resulting from
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using FGSM or IFGSM in Table. 2. The adversarial images crafted by attacking
ResNet56 with two types of activation functions are both transferable, as the mu-
tual classification accuracy on adversarial images (e # 0) is significantly lower than
testing on the clean images (¢ = 0). For both FGSM and IFGSM, the stronger
attack (in the sense of bigger ¢) is adapted to the opponent activation function, as
the mutual classification accuracy decreases dramatically as € increases. IFGSM not
only fools its underlying model completely, but also significantly decreases the accu-
racy of the opponent DNN. The mutual classification results for the CW-L2 attack
is shown in Table. 3, where Exp-I denotes classifying adversarial images resulted
from attacking ResNet56-WNLL by ResNet56, and Exp-II denotes the opposite.
Training data augmentation can defend CW-L2 attack very effectively.

TABLE 2. Mutual classification accuracy on the adversarial im-
ages crafted by using FGSM and IFGSM to attack ResNet56 and
ResNet56-WNLL. (Unit: %)

Attack Training data e=0 €=002 e€=004 e€=006 =008 €e=0.1
Accuracy of ResNet56 on adversarial images crafted by attacking ResNet56-WNLL
FGSM Original data 93.0 69.8 56.9 44.6 34.6 28.3
FGSM TVM data 88.3 51.5 37.9 30.1 24.7 20.9
FGSM Original + TVM 93.1 78.5 70.9 64.6 59.8 55.8
IFGSM Original data 93.0 5.22 5.73 6.73 7.55 8.55
IFGSM TVM data 88.3 7.00 6.82 8.30 9.28 10.7
IFGSM Original + TVM 93.1 27.3 28.6 29.5 29.1 29.4

Accuracy of ResNet56-WNLL on adversarial images crafted by attacking ResNet56

FGSM Original data 94.5 65.2 49.0 39.3 32.8 28.3
FGSM TVM data 90.6 45.9 30.9 22.2 16.9 13.8
FGSM  Original + TVM data  94.7 78.3 68.2 61.1 56.5 52.5
IFGSM Original data 94.5 3.37 3.71 3.54 4.69 6.41
IFGSM TVM data 90.6 7.88 7.51 7.58 8.07 9.67
IFGSM  Original + TVM data  94.7 34.3 33.4 33.1 34.6 35.8

TABLE 3. Mutual classification accuracy on the adversar-
ial images crafted by using CW-L2 to attack ResNet56 and
ResNet56-WNLL. (Unit: %)

Training data Original data TVM data Original + TVM data
Exp-1 52.1 43.2 80.0
Exp-11 59.7 41.1 80.1

TABLE 4. Testing accuracy on the adversarial/TVM adver-
sarial CIFAR10 dataset. The testing accuracy with no de-
fense is in red italic; and the results with all three defenses
are in boldface. (Unit: %)

Training data Original data TVM data Original + TVM data
ResNet56 4.94/32.2 11.8/54.0 15.1/52.4
ResNet56-WNLL 18.3/35.2 15.0/53.9 28/54.5
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TABLE 5. Testing accuracy on the adversarial/ TVM adversarial

CIFARI10 dataset. The testing accuracy with no defense is in red

italic; and the results with all three defenses are in boldface. (Unit:

%)
Attack Training data e=0 e = 0.02 e =0.04 e = 0.06 e =0.08 e=20.1

ResNet56
FGSM Original data 93.0  36.9/19.4 29.6/18.9 26.1/18.4 23.1/17.9  20.5/17.1
FGSM TVM data 88.3  27.4/50.4  19.1/47.2 16.6/43.7 15.0/38.9  13.7/35.0
FGSM  Original + TVM  93.1  48.6/51.1  42.0/47.6  39.1/44.2 37.1/41.8 35.6/39.1
IFGSM  Original data 93.0 0/16.6 0/16.1  0.02/15.9  0.1/15.5  0.25/16.1
IFGSM TVM data 88.3  0.01/43.4 0/42.5  0.02/42.4 0.18/42.7 0.49/42.4
IFGSM  Original + TVM  93.1  0.1/38.4  0.09/37.9 0.36/37.9  0.84/37.6  1.04/37.9
ResNet56-WNLL

FGSM Original data 945  585/26.0 50.1/25.4 42.3/25.5 35.7/24.9 29.2/22.9
FGSM TVM data 90.6  31.5/52.6  24.5/49.6  20.2/45.3 17.3/41.6  14.4/37.5
FGSM  Original + TVM 947 60.5/ 55.4 56.7/52.0 55.3/48.6 53.2/45.9 50.1/43.7
IFGSM  Original data 94.5  0.49/16.7  0.14/17.3  0.3/16.9  1.01/16.6  0.94/16.5
IFGSM TVM data 90.6  0.61/37.3  0.43/36.3 0.63/35.9 0.87/35.9 1.19/35.5
IFGSM  Original + TVM  94.7 0.19/38.5  0.3/39.4  0.63/40.1 1.26/38.9 1.72/39.1

4.1.2. Adversarial defense. Figure 3 plots the results of adversarial defense by com-
bining the WNLL activation, TVM, and training data augmentation. Panels (a)
and (b) show the testing accuracy of ResNet56 with and without defense on CI-
FARI10 data for FGSM and IFGSM, respectively. It is seen that as € increases,
the testing accuracy decreases rapidly. FGSM is a relatively weak attack, and the
accuracy remains above 20.5% even with the most potent attack (e = 0.1). Mean-
while, the defense raises the accuracy to 43.7%. Figure 3 (b) shows that IFGSM
fools ResNet56 near completely even with € = 0.02. The defense maintains the
accuracy above 38.5%, 54.5% under the CW-L2 and IFGSM attacks, respectively
(see Tables. 4 and 5). Compared to the state-of-the-art defensive methods on CI-
FARI10, PixelDefend, our approach is much simpler and faster. Without adversarial
training, we have shown our defense is more robust to FGSM and IFGSM attacks
under the strongest attack than PixelDefend [33]. Moreover, our defense strategy
is additive to adversarial training and many other defenses including PixelDefend.

100

- Without Defense

100

->- Without Defense
——With Defense

> 80 —+With Defense >,
@ ®
‘g 60 L g 50
5] \ T o e
< 400 <

20 e ol

0 0.05 0.1 0 0.05 0.1
€ €

FIGURE 3. € v.s.

accuracy without defense, and defending by

WNLL activation, TVM and augmented training. (a) and (b) plot
results for FGSM and IFGSM attack, respectively.
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To analyze the contribution from each component of the defensive strategy, we
separate the three parts and list the testing accuracy in Tables. 4 and 5. Performing
TVM on the adversarial images cannot defend FGSM attacks except when the
training data contains the TV minimized images. For instance, when we attack the
model by FGSM with ¢ = 0.02, the accuracy on the adversarial images for ResNet56
and ResNet56-WNLL are 36.9% and 58.5%, respectively, provided the models are
trained on the original training data. The accuracy reduces to 19.4% and 26.0%
when testing on the TV minimized adversarial images. For ResNet56, the accuracy
raises to 50.4% and 51.1% when the model is trained on the TVM and augmented
data, respectively. For ResNet-WNLL, the accuracy increases to 52.6% and 55.4%,
respectively. The WNLL activation improves testing accuracy of adversarial attacks
significantly and persistently. Augmented training can also improve the stability
consistently.

IFGSM fools the ResNet56-WNLL near completely, as the accuracy is always
less than or close to 1%. These results verify the efficacy of using the approximated
gradient, i.e., Eq. (14), in attacking the neural nets.

4.1.3. Analysis of the geometry of features. We consider features’ geometry of the
original and adversarial images. We randomly select 1000 training and 100 testing
images from the airplane and automobile classes, respectively. We apply two visual-
ization strategies for ResNet56: (1) Apply the principle component analysis (PCA)
to reduce the 64D features from the layer before the softmax to 2D, and (2) we add
a 2 by 2 fully connected (FC) layer before the softmax to learn 2D features. We
verify that the newly added layer does not change the performance of ResNet56, as
shown in Fig. 4, and the training and testing performance remains essentially the
same.

100 PR ArasyYrmam 100
90
> > 80
g 80 ®
3 3
£ < 60
60 —Training —Training
- - Testing - - Testing
50 40
0 50 100 150 200 0 50 100 150 200
Epochs Epochs

(a) (b)

FIGURE 4. Epochs v.s. accuracy of ResNet56 on CIFAR10. (a):
without the additional FC layer; (b): with the additional FC layer.

Figure 5 (a) and (b) show the 2D features generated by ResNet56 with the addi-
tional FC layer for the original and adversarial testing images, respectively, where
we generate the adversarial images by using FGSM (e = 0.02). Before adversarial
perturbation (Fig. 5 (a)), there is a line that can separate the two classes very well.
The small perturbation mixes the features and there is no linear classifier that can
easily separate these two classes (Fig. 5 (b)). The first two principle components
(PCs) of the 64D features of the clean and adversarial images are shown in Fig. 5
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Algorithm 1 PGD Adversarial Training of the DNN-WNLL

Input: Training set: (data, label) pairs (X,Y). Ni: the number of epochs
in training DNN + Linear blocks. Nipgsym: the number of iterations of IFGSM
attack.
Output: An optimized DNN-WNLL, denoted as DNNwnNLL.
for iter = 1,..., N (where N is the number of alternating steps.) do
//PGD adversarial training of the left branch: DNN with linear activation.
Train DNN + Linear blocks, and denote the learned model as DNNy,inear-
Partition the training data into M; mini-batches, i.e., (X,Y) = Uij\ill(Xi, Y,).
for epoch; = 1,...,N; do
fori=1,...,M; do
/] Attack the input images by IFGSM.
for iter; = 1,..., Nypgsm do
Update the training image X; = X; + € - sign (Vx, L),
where £ is the loss of the prediction by DNN + Linear blocks w.r.t
the ground truth labels Y.
Backpropagate the classification error of the adversarial images.
//PGD adversarial training of the right branch: DNN with WNLL activation.
Split (X,Y) into training data and template, i.e.,
(){7 Y) - (Xtr’ Ytr) LJ()(te7 Yte)'
Partition the training data into Ms mini-batches, i.e.,
(X, ) = U2 (X, Y.
for epochy; =1,..., Ny do
fori=1,..., M5 do
/[ Attack the input training images by IFGSM.
for iter; = 1,..., Nijrgsm do

Update the training image X" = X! + ¢ - sign (ngrf),

where £ is the loss of the prediction by DNN with WNLL
activation w.r.t the ground truth labels Y}*.

Backpropagate the classification error of the adversarial images.

(c) and (d), respectively. Again, the PCs are well separated for clean images, while
adversarial images causes overlap.

The bottom charts of Fig. 5 depict the first two PCs of the 64D features output
from the layer before the WNLL. The distributions of the unperturbed training and
testing data are the same, as illustrated in panels (e) and (f). The new features
are better separated which indicates that DNN-WNLL are more accurate and more
robust to small random perturbation. Panels (g) and (h) plot the features of the
adversarial and TV minimized adversarial images in the test set. The adversarial
attacks make the features move towards each other and TVM helps to eliminate the
outliers. Based on our computation, the interpolating function on features shown
in panels (g) and (h) are significantly more accurate than the softmax classifier as
shown in panel (d). The fact that the adversarial perturbations change the features’
distribution was also noticed in [33], and [18].
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FIGURE 5. Visualization of the features learned by DNN with soft-
max ((a), (b), (¢), (d)) and WNLL ((e), (f), (g), (h)) activation
functions. (a) and (b) plot the 2D features of the original and ad-
versarial testing images; (c) and (d) are the first two principle com-
ponents of the 64D features for the original and adversarial testing
images, respectively. Charts (e), (f) plot the first two components
of the training and testing features learned by ResNet56-WNLL;
(¢) and (h) show the two principle components of the adversarial
and TV minimized adversarial images for the test set.

5. PGD adversarial training with data-dependent activation function.
Image transformation based adversarial defense has been broken recently by cir-
cumventing the obfuscated gradient [3]. To train a DNN that is most resistant
to adversarial attacks, Madry et al. [21], incorporate the adversarial perturbation
into the empirical risk function E(x ,)~p [£(X, ¥, 0)], where D is the collection of the
pairs of training images and labels, and 6 represents the parameters of the neural
nets. The idea of PGD adversarial training is that instead of feeding samples from
D directly into the loss £, we use the adversary to perturb the input first, and then
we end up with the following saddle point problem

(15) minp(9) = minBp,)p |max L0, x +3,y)| ,

where ¢ is the adversarial perturbation. To make the problem (Eq. (15)) solv-
able, the inner maximization problem is relaxed to a strong adversarial attack, say
IFGSM. It is argued in [3], that PGD adversarial training achieves the best resis-
tance to adversarial attacks for CIFAR10 classification. We extend the PGD adver-
sarial training to DNN-WNLL by applying the approximated gradient, Eq. (14), to
approximately resolve the interior maximization problem. We summarize the PGD
adversarial training of DNN-WNLL in Algorithm 1.

5.1. Numerical results. We consider PGD adversarial training, respectively, for
the ResNet20 and ResNet20-WNLL. Again, we train the ResNet20 with two types
of activation, where we follow the strategy used in [36], and where all the hyper-
parameters in Algorithm 1 are referred. To approximate maxses £(6,%x + 0,y), we
apply the IFGSM attack with o = 8/255 in Egs. (6, 12).
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First, we fixed the attack strength ¢ = 1/255 and vary the number of IFGSM
iterations. As shown in Fig. 6 (a), the accuracy of ResNet20 with both activations
decreases as the number of iteration increases. The vanilla ResNet20’s accuracy
decays much faster than the ResNet20-WNLL. The difference is ~ 23% when 10
iterations of IFGSM is applied. Second, we fixed the IFGSM iteration to be 10 and
vary e from 0 to 8/255 with step size 1/255. As shown in Fig. 6 (b), for different

nonzero attack strengths, PGD adversarial training of the ResNet20-WNLL has
~ 23% higher accuracy than the vanilla one consistently.

90 —> PGD Vanilla ResNet20
90 < PGD Vanilla ResNet20 W\ —PGD WNLL ResNet20
\ = |["PGD WNLL ResNet20 i\
\ N VA
\b\ o * >s80 \ \\
I RN
[8) . -, ® LN
o N -~ 3 701 1 ~— e,
3 o Q \
Q 70 ° < \
< 60| |
60 \
L 500 S
0 5 10 0 0.01 0.02 0.03

Iteration (e = 1/255) €

(a) (b)

FIGURE 6. (a): #IFGSM iterations v.s. accuracy for the ResNet20
and the ResNet20-WNLL trained with PGD adversarial training.

(b):e v.s. accuracy for the ResNet20 and the ResNet20-WNLL
trained with PGD adversarial training.

6. Concluding remarks. In this paper, by analyzing the influence of adversar-
ial perturbations on the geometric structure of the DNN features, we propose to
defend against adversarial attacks by using a data-dependent activation function.
We further show our defenses are additive to other defenses, namely total variation
minimization, training data augmentation, and projected gradient descent adversar-
ial training. Results on ResNet20 and ResNet56 with CIFAR10 benchmark reveal
that these defenses improve robustness to adversarial perturbation significantly.
Total variation minimization simplifies the adversarial images, which is very useful
in removing adversarial perturbation. The data-dependent activation framework

raises the accuracy of PGD adversarial training around 23% under different attack

strengths. An interesting direction to explore is to combine these methods with
other denoising methods to remove adversarial perturbation.
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