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ABSTRACT (250 words)

In September 2018, Hurricane Florence caused extreme flooding in eastern North Carolina, USA, a
region highly dense in concentrated animal production, especially swine and poultry. In this study,
floodwater samples (n=96) were collected as promptly post-hurricane as possible and for up to approx.
30 days, and selectively enriched for Campylobacter using Bolton broth enrichment and isolation on
mCCDA microaerobically at 42°C. Only one sample yielded Campylobacter, which was found to be
Campylobacter jejuni with the novel genotype ST-2866. However, the methods employed to isolate
Campylobacter readily yielded Arcobacter from 73.5% of the floodwater samples. The Arcobacter
isolates failed to grow on Mueller-Hinton agar at 25, 30, 37 or 42°C microaerobically or aerobically, but
could be readily subcultured on mCCDA at 42°C microaerobically. Multilocus sequence typing of 112
isolates indicated that all were Arcobacter butzleri. The majority (85.7%) of the isolates exhibited novel
sequence types (STs), with 66 novel STs identified. Several STs, including certain novel ones, were
detected in diverse waterbody types (channel, isolated ephemeral pools, floodplain) and from multiple
watersheds, suggesting the potential for regionally-dominant strains. The genotypes were clearly
partitioned into two major clades, one with high representation of human and ruminant isolates and
another with an abundance of swine and poultry isolates. Surveillance of environmental waters and food
animal production systems in this animal agriculture-dense region is needed to assess potential regional
prevalence and temporal stability of the observed 4. butzleri strains, as well as their potential association
with specific types of food animal production.

IMPORTANCE (150 words)

Climate change and associated extreme weather events can have massive impacts on the prevalence of
microbial pathogens in floodwaters. However, limited data are available on foodborne zoonotic
pathogens such as Campylobacter or Arcobacter in hurricane-associated floodwaters in rural regions

with intensive animal production. With high density of intensive animal production as well as
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pronounced vulnerability to hurricanes, Eastern North Carolina presents unique opportunities in this
regard. Our findings revealed widespread incidence of the emerging zoonotic pathogen Arcobacter
butzleri in floodwaters from Hurricane Florence. We encountered high and largely unexplored diversity
while also noting the potential for regionally-abundant and persistent clones. We noted pronounced
partitioning of the floodwater genotypes in two source-associated clades. The data will contribute to
elucidating the poorly-understood ecology of this emerging pathogen, and highlight the importance of
surveillance of floodwaters associated with hurricanes and other extreme weather events for Arcobacter

and other zoonotic pathogens.
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INTRODUCTION AND SPECIFIC AIMS

Hurricanes and other extreme weather events that can result in massive flooding of urban or
agricultural areas have profound public health implications for contamination of surface waters (1-10).
Chemical contaminants (e.g., heavy metals, antibiotics and other pharmaceuticals) can leak from
overflowing, inundated or damaged sewage or animal waste containment structures into adjacent
surface waters. Microbial agents, including pathogenic bacteria, viruses and parasites, can similarly
become introduced into surface waters and persist on agricultural land and in urban areas. Such hazards
are accentuated in rural areas with concentrated animal production, including concentrated animal
feeding operations. However, relevant data remain sparse and incomplete, primarily due to impaired
accessibility, safety considerations and accompanying delays in accessing and sampling impacted sites.
There is a notable lack of reports that assess hurricane impacts on biological and chemical
contaminants in floodwaters, and in the context of geospatial features. Observational data gaps related
to microbial water quality in floodwaters has prevented investigation of questions related to the
importance of dilution relative to increased exposure. Although flooding increases potential exposure
of surface waters to microbes, the large volumes of water associated with flooding may also dilute
microbial agents, in turn counteracting the effects of increased contaminant loading.

On September 12, 2018, Florence, a large, slow-moving hurricane, made landfall on the North
Carolina coast, resulting in record-breaking flooding for several locations. In the seven days that
followed, certain North Carolina communities received over 30 inches of rain, surpassing any of the
previously-recorded amounts of rainfall from a single storm in the region and resulting in unprecedented
flood magnitudes for many inland rivers (11). Such heavy rainfall and flooding can massively impact
water quality and safety in flooded areas, especially via runoff from agricultural operations. Eastern
North Carolina is highly dense in facilities that produce food animals, including swine and poultry,

especially turkeys (12, 13). Swine production units with multiple houses and large numbers of animals
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in each house are highly prevalent in the region, with turkey and swine production frequently interspersed
(14). Animal production is a leading source of employment for many of the region’s residents. However,
this region is also prone to a high frequency of severe weather events, including major hurricanes (15).
Hurricane Florence was preceded two years earlier by another major hurricane (Matthew,
September 28 - October 10, 2016) with long-lasting adverse impacts on the socioeconomic landscape of
North Carolina. Several of the Hurricane Florence-impacted areas had been previously flooded by
Matthew. A research team in North Carolina had been assembled to investigate the environmental and
public health impacts of Hurricane Matthew (16). Therefore, this team was already in place and readily
poised to collect and analyze Hurricane Florence-associated floodwater samples as soon as it became
logistically possible and safe to reach impacted areas. The original objective of the current study was to
assess the prevalence of Campylobacter jejuni and Campylobacter coli in the floodwaters, and allow
comparisons with genotypic data collected over several years of investigation of these zoonotic
pathogens in food animals and wildlife in this region (14, 17-25). However, in the course of the study
we detected numerous samples positive for Arcobacter, and therefore we undertook the additional
objective of characterizing the prevalence and genotypic diversity of Arcobacter from the hurricane-

associated floodwaters.

MATERIALS AND METHODS

Water sample collection. A total of 96 floodwater samples were collected at sites in the Neuse (n=39),
Cape Fear (n=20), Lumbee (Lumber) (n=24), and Waccamaw (a sub-basin of the Lumbee) (n=13)
watersheds in Eastern North Carolina (Table S1 and Fig. 1). The Neuse (Fig. 1A), Cape Fear (Fig. 1B)
and Lumbee (Fig. 1C) are all distinct river basins, without surface connectivity between them. Water was
collected in autoclaved one-liter Nalgene bottles triple-rinsed with the target sample water prior to

collection. Flood sample collection sites were classified into four categories: 1, Channel i.e., flowing
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water in stream channels; 2, Floodplain i.e., slow-moving or stagnant floodplain water; 3, Isolated
ephemeral e.g., pools of floodwater likely to dry within a few days in the absence of additional rainfall;
and 4, Other, such as isolated permanent water bodies (i.e. ponds, lakes). Sampling was performed in
two distinct time periods, designated phase 1 and phase 2, yielding 50 and 46 samples, respectively.
Phase 1 sampling started within 7 days of Hurricane Florence’s landfall and occurred between 9/18/2018
and 9/28/2018, while phase 2 sampling occurred on 10/18/2018 and 10/19/2018. Coordinates of each
sample location were recorded and logged using a handheld GPS unit and Google Earth. Efforts were
made to sample the same sites in both phases. In cases where the exact sample site from phase 1 was no
longer available (i.e., area was no longer flooded), samples were collected from a nearby similar location.
Additional samples were taken from the Lumbee watershed on 11/13/18 (n=2) and the Rocky Branch
Creek, in Raleigh, North Carolina, on 10/15/18 (n=4). Upon collection, the samples were immediately
stored in coolers on ice, transported to the laboratory, and stored at 4°C until processing, typically within

24-72 h.

Isolation of Campylobacter and Arcobacter. The majority of the samples (n=64) were processed via
parallel enrichments of water (1.3 ml), as well as 0.45 pum filters (Thermo Fisher Scientific, Inc.,
Waltham, MA) prepared via vacuum filtration of 50 ml water, while 34 samples were processed only via
enrichments of the water suspension. The filters were subsequently cut with flame-sterilized scissors into
three equal-size fragments, one of which was used for enrichment of Campylobacter (the remaining
fragments were utilized to enrich for Salmonella enterica and Listeria spp., which will be described in a
separate presentation). The water samples and filter fragments were enriched for Campylobacter in 10
ml Bolton Broth (Oxoid Ltd., Hampshire, UK) and incubated under microaerobic conditions at 37°C for
24 h using GasPak EZ Campy sachets (Becton, Dickinson and Co., Sparks, Maryland, USA). Following

enrichment, appropriate dilutions were prepared, 100 ul was spread-plated on modified charcoal-
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cefoperazone-deoxycholate agar (mCCDA; Oxoid), and the mCCDA plates were incubated
microaerobically at 42°C for 48 h, as described (17). An average of five putative Campylobacter colonies
per positive sample were transferred from mCCDA to Mueller Hinton Agar (MHA; Becton, Dickinson
and Co.) for purification following incubation microaerobically at 42°C for 48 h, as described (17). Many
cultures (found upon further analysis to be Arcobacter) grew poorly or not at all on MHA, and an average
of four Campylobacter-like colonies from such cultures were chosen and purified via subculture on fresh
mCCDA plates. Purified isolates were preserved at -80°C and Campylobacter species designations were
determined via multiplex PCR with hip and ceu primers to detect C. jejuni and C. coli, respectively, as
described (17). A subset of isolates that did not yield a Aip or ceu amplicon via multiplex PCR were
analyzed via 16S rRNA sequencing (Genewiz, South Plainfield, NJ, USA) using the amplicon obtained
from the universal 16S primers 8f (5’-AGA GTT TGA TCC TGG CTC AG- 3") (26) and 1492R (5°-

GGT TAC CTT GTT ACG ACT T- 3°) (27).

Multilocus sequence typing and minimum spanning trees. Campylobacter or Arcobacter isolates
were chosen so as to represent each positive sample and enrichment type (suspension or filter) and
characterized via multilocus sequence typing (MLST) as described (28, 29). Novel C. jejuni and A.
butzleri alleles and sequence types were deposited into the corresponding PubMLST databases

(https://pubmlst.org/campylobacter/;  https://pubmlst.org/arcobacter/). = Concatenated  sequences

representing all A. butzleri profiles within the PubMLST database, including those identified in this
study, were downloaded from PubMLST on November 14 2019 and again on July 13 2020. These
sequences were imported into BioNumerics (version 7.6.3; Applied Maths, Austin, TX) and aligned
using the Fast algorithm. Within BioNumerics, a Neighbor-joining dendrogram was constructed from
the aligned profile sequences; minimum spanning trees (MSTs) were constructed based on the sequence

distances between the concatenated profile sequences and using the default priority rules and
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‘Permutation resampling’ resampling strategy and ‘Highscore summary’ methods. MST nodes were

color-coded within BioNumerics according to sampling date, source or location of isolation.

Sequence Data. All MLST sequence data have been deposited into PubMLST

(https://pubmlst.org/campylobacter/; https://pubmlst.org/arcobacter/) as described above.

RESULTS

Campylobacter was rarely detected in the floodwater samples, which instead frequently yielded
Arcobacter. Of the 98 water samples from the hurricane-impacted watersheds (96 from the floodwaters
in phases 1 and 2 and two from the Lumbee basin three weeks later), only one (1.0%), a sample of channel
water from the Waccamaw watershed in phase 2, was positive for Campylobacter. Several putative
Campylobacter colonies from this sample were purified on MHA and all were found to be
Campylobacter jejuni. MLST analysis of two of these isolates revealed a novel sequence type, ST-2866
(Table S1).

Interestingly, the enrichment procedures employed for Campylobacter yielded Campylobacter-
like organisms from a large portion (72/98, 73.5%) of the samples. On mCCDA these Campylobacter-
like cultures had a colony appearance suggestive of Campylobacter, and helical, motile cells were noted
with phase contrast microscopy. However, unlike Campylobacter spp., these organisms grew poorly or
not at all upon subculture on MHA or on tryptic soy agar with 5% sheep blood (Remel Microbiology
Products, Lenexa, KS) and incubation at either 42 or 37°C microaerobically, but could be readily
subcultured on mCCDA at 42°C microaerobically. Sequencing of PCR products obtained from a subset
of isolates using 16S rRNA gene primers indicated 99% identity with Arcobacter butzleri. The genus
Arcobacter has been proposed to be reorganized into to five novel genera, one of which, Aliarcobacter

gen. nov., would include the species currently designated as Arcobacter butzleri (30). However, as
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discussed before (31), we consider the designation Arcobacter (for “aerotolerant campylobacters™) valid,
pending a  thorough phylogenomic assessment of Epsilonproteobacteria that would include
Campylobacter, Helicobacter and other genera, and therefore have chosen to maintain this taxonomic
designation in this work.

Putative Arcobacter was recovered frequently from enrichments of either water suspensions or
filters (63.1 and 79.7%, respectively). Of the 65 samples for which both water suspensions and filters
were enriched, 64.1% were Arcobacter-positive for both water and filters, while 3.1 and 16.9% were
positive only with the water suspension or the filter, respectively. Prevalence of Arcobacter was similar
in samples from phase 1 and phase 2 (72.0 and 73.9%, respectively) (Fig. 2). In each phase, the
Arcobacter-positive samples were distributed throughout the sampling region without any noticeable
spatial clustering within each sampled watershed, and were recovered with similar frequency from
samples of the two most prevalent waterbody types, i.e., channel (42/54, 77.8%) and floodplain (19/25,
76.0%) (Fig. 1). Total prevalence of Arcobacter across the two sampling phases was similar in the Neuse
and Lumbee watersheds (34/39, 87.2% and 21/24, 87.5%) followed by the Cape Fear (12/20, 60.0%) and
Waccamaw sub-basin (3/13, 23.1%).

Arcobacter butzleri from floodwater samples exhibited high genotypic diversity, with several
genotypes isolated from multiple floodwater types, watersheds and sampling timepoints. MLST
analysis of 112 putative Arcobacter isolates confirmed that all were A. butzleri and identified 74 STs, of
which 66 were novel (Table S1). The novel STs accounted for the majority (96/112, 85.7%) of the isolates
that were genotyped. Most of these novel STs were encountered just once among the floodwater isolates,
but several were detected in isolates from multiple samples (Fig. 3, Table S1). Even though different
colonies from the same enrichment typically had the same ST, different STs were frequently identified

in suspension vs. filter enrichments of the same sample (Table S1). Among the previously-identified
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STs we identified some that were shared with isolates of swine (ST-314), environmental water (ST-474),
ruminant (ST-138 and ST-750), poultry (ST-110 and ST-186), and human origin (ST-138) (Fig. 4).
Several (n=14) STs, of which all but two were novel, were identified in isolates from different
samples (Table 1). On several occasions the same ST was identified in different water types, timepoints,
and watersheds. Only two of these STs (ST-757 and 760, both novel) were encountered in just one
watershed (Neuse), each at different times during the sampling period (Table 1). Of the remainder, most
were from the Lumbee and at least one additional watershed, with two (ST-821 and 834) recovered
exclusively from watersheds other than the Lumbee. Certain STs detected in 3 or more samples were
noteworthy in their distribution. For instance, the novel ST-730 was identified in ephemeral water bodies
and channel water on two different dates spanning one month, and in both the Cape Fear and Lumbee
watersheds. ST-746, also novel, was isolated from channel samples in all four watersheds across the two
sampling phases, spanning an entire month. STs 734 and 750 were found in ephemeral, floodplain and
channel samples from the Lumbee as well as the Neuse watersheds on three different dates, again
spanning a whole month (Table 1 and Fig. 3).
Floodwater A. butzleri genotypes partitioned in two major clades with different source-associated
compositions. All but two of the 112 A4. butzleri STs from the floodwater isolates were partitioned in
two major clades, designated cluster A and B (Fig. 4). The exceptions were ST-138 and ST-740, which
were localized in a different clade, designated cluster C (Fig. 4). The majority of floodwater isolates
grouped in cluster B (88/112, 78.6%), followed by cluster A (22/112, 19.6%). Source distribution
analysis including the other STs available in the A. butzleri PubMLST database revealed that cluster A
was highly populated by isolates of human and ruminant origin, with notable under-representation of
poultry or swine-derived isolates (Fig. 4 and Table S2). The opposite was found in cluster B, where
floodwater isolates were closely related to others of poultry and swine origin (Fig. 4 and Table S2). Only

one of the 112 genotyped floodwater isolates, from cluster B, shared its ST (ST-474) with an isolate
10
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previously obtained from environmental water (Fig. 4 and Table S2). Isolates from environmental water
(outside of the floodwater isolates in the current study) were relatively uncommon in either cluster, and
were mostly found in cluster C (Fig. 4 and Table S2) that included two of the floodwater STs (ST-138
and ST-740) from the current study. Isolates of human and food animal origin were also well-represented
in cluster C (Fig. 4 and Table S2). None of the floodwater isolates from the current study mapped within
another major cluster (designated D in Fig. 4) which included multiple STs from foods and food animals
(Fig. 4).

Even though certain repeatedly-encountered STs were isolated from multiple watersheds and
waterbody types (Table 1), cluster composition suggested potential dependence on watershed. Isolates
from the Cape Fear watershed composed similar portions of both cluster A and B (13.6 and 15.9%,
respectively), similarly to those from the Lumbee watershed (27.3 and 30.7%, respectively). However,
more disproportionate contributions to cluster A and B were noted for isolates from the Neuse watershed
(59.1% and 46.6%, respectively). Furthermore, Waccamaw isolates, albeit relatively few (n=6, with three
different novel STs), were all found in cluster B, making up approx. 6.8% of the floodwater isolates in
that cluster. Both STs in cluster C were from the Neuse watershed.

Geographically, cluster A consisted mostly of isolates from the United States (many from the
current study), Thailand (primarily human) and the United Kingdom (primarily ruminant) (Fig. 4 and
Fig. 5; Table S2). In contrast, cluster B had a significant representation of isolates from the US (primarily
from the current study) and from Spain (primarily poultry, seafood, and other foods) (Fig. 4 and Fig. 5;
Table S2). US isolates outside of the current study tended to be of human origin (Fig. 4 and Fig. 5; Table

S2).

DISCUSSION
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Even though surface water is considered a major source of pathogens that can contaminate the food
supply, little is known about the prevalence or genotypes of Campylobacter and Arcobacter in
floodwaters associated with extreme weather events such as hurricanes. Moreover, the lack of data on
pathogen presence in floodwaters limits our understanding of whether floodwaters have high microbial
contaminant concentrations due to increased surface water contact with contaminant sources, or if the
large volumes of water associated with floodwaters ultimately dilute microbial agents and result in low
contaminant concentrations. Consequently, estimates of public health risks associated with surface
waters in flood and post-flood conditions remain imprecise. The current study is, to our knowledge, the
first such report on the prevalence and genotypes of Campylobacter and Arcobacter in hurricane-
associated floodwaters. Our findings suggested that Campylobacter were uncommon (only one sample,
1.0%), while the methods employed for Campylobacter yielded Arcobacter from the majority (73.5%)
of the samples.

As indicated above, reports on Arcobacter prevalence in hurricane-associated floodwaters have
been lacking. However, Arcobacter contamination of groundwater subsequent to extreme precipitation
events was previously implicated in a massive waterborne outbreak in the Lake Erie region (32). Of the
16 groundwater wells surveyed in that study, seven were found positive for Arcobacter. Campylobacter
was not detected, but Arcobacter spp. were recovered on the selective media employed for
Campylobacter (32), as was also the case in our study. Unfortunately, the species or genotypes of
Arcobacter involved in that outbreak and groundwater contamination were not determined (32).

In our study, all analyzed Arcobacter isolates were found to be A. butzleri, an emerging water-
borne pathogen which has also been repeatedly isolated from diverse types of food (33—41). The media
and relatively high temperature employed here (42°C) may well have prevented the recovery of other
Arcobacter species that may have been present in the floodwaters. In several studies, however, 4.

butzleri was one of the most commonly-isolated Arcobacter species from water sources (39, 42—45).
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The prevalence of Arcobacter-positive samples in our study was high (73.5%), even though the
selective media and conditions were those intended for Campylobacter. A previous study utilizing
Arcobacter-specific selective media reported a similar prevalence (75%) from a river catchment in
Spain in autumn and winter, with higher prevalence in the spring and summer (45). Analysis of river,
sewage water and spring water in Turkey, utilizing Arcobacter-specific media, revealed Arcobacter
prevalence of 52, 36.4 and 12.5%, respectively (44). Our study might have revealed an even higher
prevalence had Arcobacter-specific media been employed. However, a rigorous analysis of a panel of
A. butzleri strains for growth on mCCDA vs. cefoperazone amphotericin teicoplanin (CAT) agar
designed for Arcobacter indicated that all strains could grow on mCCDA, even though some grew
better on CAT (46). In future studies, use of both mCCDA and CAT or other Arcobacter-specific
media will be valuable to maximize the chances of recovery of both Campylobacter and Arcobacter
spp. from floodwaters.

The identification of 74 STs among the 112 A. butzleri isolates that were genotyped from the
floodwaters suggests a highly-diverse population. The majority (66/74, 89.2%) of the STs from the
hurricane-impacted watershed samples were novel. This may reflect the fact that the A. butzleri
PubMLST database is still under-populated. In comparison to Campylobacter species such as C. jejuni
and C. coli, A. butzleri and other Arcobacter spp. remain much less commonly investigated and
genotyped. However, the findings may also reflect regional diversity in the population that we analyzed.
The A. butzleri PubMLST database lacked isolates from the same region as the floodwater isolates
investigated here, i.e., eastern and southeastern North Carolina.

The fact that several dominant STs (e.g., STs 460, 730, 734, 746 and 750; Table 1) were
encountered in isolates from multiple sample types, watersheds and timepoints that on certain occasions
spanned the entire month of sampling may reflect regionally-prevalent strains of 4. butzleri. The

repeated detection of the novel ST-757 and 760 in only one watershed (Neuse) may reflect localized
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prevalence of the corresponding strains in that watershed, a speculation that will need to be addressed by
further sampling in the Neuse and other watersheds. On the other hand, the repeated detection of the
several STs in multiple watersheds that lacked surface connectivity (Table 1) suggests widespread
distribution of the corresponding strains in the region. In this context, it is of interest that A. butzleri
isolated during the same time period from Rocky Branch Creek, an urban creek in Raleigh, NC, had STs
which differed from those recovered from the floodwater samples but were still localized in clusters A
and B (2 STs each) (Fig. 4). Continued analysis of 4. butzleri from environmental waters will be critical
to elucidate the geographic and temporal distribution of the strains encountered in the floodwater
samples, in order to better understand transmission dynamics and inform management and mitigation
strategies.

Previously identified STs in the floodwater isolates from this study were shared with isolates of
swine, poultry or ruminants, from other countries. We currently lack information on the prevalence or
genotypes of A. butzleri in agricultural animals in the Hurricane Florence-impacted region. Such
information is needed to determine whether apparently dominant and persistent 4. butzleri STs identified
in the floodwaters, e.g., STs 746 and 750, may also be prevalent in animals produced in this food animal-
dense region or in surface waters during non-flooded conditions.

Previous studies of turkey and swine farms in eastern North Carolina, as well as wildlife and
cattle in the same region, using the same culture conditions as employed here, revealed high prevalence
of Campylobacter; Arcobacter was not isolated from those samples, which yielded exclusively C. jejuni
or C. coli (14, 17-19, 21, 24, 25). In the floodwater samples analyzed in the current study Campylobacter
prevalence was low (1.0%), in contrast to the overall high prevalence (73.5%) of Arcobacter. Even
though this may be due to true scarcity of Campylobacter, especially considering the relatively low
volume of water that was analyzed, it may also reflect preferential recovery of Arcobacter from water

samples that may be contaminated with both Arcobacter and Campylobacter, or possibly higher relative
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fitness of Arcobacter in these samples. Major gaps currently exist in our understanding of the relative
fitness of Arcobacter and Campylobacter in environmental water and feces from agricultural animals.
In conclusion, our analysis of Hurricane Florence-associated floodwater samples revealed that
Campylobacter was uncommon, with C. jejuni detected only once, while Arcobacter, specifically the
emerging waterborne pathogen A. butzleri, was frequently recovered employing media and conditions
intended for Campylobacter. Genotyping via MLST revealed high genotypic diversity among the A.
butzleri isolates and a multitude of novel STs. Several STs, including novel ones, were detected in
multiple watersheds, diverse types of water (channel, isolated ephemeral pools, floodplain) and
repeatedly over the project survey period, suggesting the potential for dominant, persistent clones.
Genotyping clearly partitioned the floodwater-associated 4. butzleri isolates into two major clades, one
of which had high representation of human and ruminant isolates, while the other was highly populated
by swine and poultry isolates. The phylogenetic relationships among these strains, and their relatedness
among themselves and those from other sources will be enhanced by continued surveillance and higher-
resolution genotyping, as may be allowed with whole genome sequencing which is currently being
undertaken for the floodwater-derived A. butzleri strains. Such information will need to be
complemented by currently-lacking data on prevalence or genotypes of A. butzleri in agricultural
animals in the impacted region. The widespread prevalence of 4. butzleri in floodwaters, despite the
opportunity for dilution, may signal that surface waters pose risks to public health during flooded
conditions. Further, given that samples were collected shortly after hurricane landfall and throughout the
course of several weeks thereafter, results suggest that public health risks associated with surface waters
may persist beyond the peak of flooding. Further work is needed to determine the prevalence and
genotypes of Arcobacter and Campylobacter in the watersheds of this region during hurricane-associated
flooding but also in the absence of severe weather events, so that an assessment of baseline levels of

Arcobacter can be made. Data are also needed on baseline incidence of human Arcobacter infections in
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this region and potential increases during hurricane-associated flooding. Such data are lacking.
Arcobacter infections are currently not reportable and likely are rarely diagnosed, especially in the
affected region which is largely rural, low-income and generally underserved, with relative scarcity of
clinics that would collect and analyze human diarrheal samples. All water samples were collected from
water bodies in Tier 1 counties, a designation reflecting highest distress levels based on economic well-
being metrics (47). There is a critical need for integration of surveillance of environmental waters for
pathogens such as Arcobacter and Campylobacter with public health data on the incidence of waterborne

gastrointestinal illness in the hurricane-impacted communities.
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FIGURE LEGENDS

Fig. 1

Water types and sampling sites.

A. Sample results for Campylobacter and Arcobacter over the two sampling phases are indicated in red
(positive) and black (negative) and waterbody types are shown by the indicated symbols. Base map tile
was from Stamen (Terrain style), with open-source data from OpenStreetMap and OpenStrectMap
Foundation. Maps were created in R using the ggmap package. B. Distribution of the sampling sites by
watershed. (A), Neuse River Basin; (B), Cape Fear River Basin; (C), Lumbee (Lumber) River Basin;
and (D), Waccamaw Basin, a sub-basin of the Lumbee Basin. Samples positive and negative for
Arcobacter are shown in red and black, respectively and waterbody types are shown by the indicated
symbols. The sole Campylobacter-positive sample site is also indicated on the map. The blue lines
correspond to major hydrographic features, and the gray shaded areas correspond to the river basins.
Scale bars (in km) are included for A-D, and the location of the four watersheds in the reference map of
the state of North Carolina, USA, is shown at the bottom right of the Figure. Map was created with R
using open-source geospatial hydrography data accessed through the North Carolina, USA, Department

of Environmental Quality (http://data-ncdenr.opendata.arcgis.com/datasets/major-river-basins). The

Lumbee river designation is in accordance with an ordinance passed by the Lumbee Tribal Council
calling on all parties to observe the river’s ancestral name. County, state, and federal government utilize

the designation “Lumber river”, created by state legislation in the 19th century (48, 49).
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Fig. 2
Prevalence of Campylobacter and Arcobacter in Hurricane Florence-impacted watershed samples
over the study period. Sample collection and processing for Campylobacter and Arcobacter were

performed as described in Materials and Methods.

Fig. 3

Genotype distribution of A. butzleri floodwater isolates in the different sampling periods. The
MLST-based minimum spanning tree demonstrates the genotype distributions of A. butzleri isolated and
genotyped in this study (in colors other than gray) and all other A. butzleri in the A. butzleri PubMLST
database (gray). Each circle represents a different ST determined by MLST. The size of the circle
indicates the number of isolates with the corresponding ST, with the smallest circles corresponding to
one isolate. Closely-related STs are connected by thick black lines. Phase 1 (blue and gold): 18-20
September 2018; Phase 2 (red): 18-19 October 2018. Genotypes of isolates from Rocky Branch Creek
on 15 October 2018 are in turquoise. Genotypes of isolates from two additional samples of the Lumbee
watershed collected on 13 November 2018 are in pink. MLST analysis and minimum spanning tree

construction were done as described in Materials and Methods.

Fig. 4

Relatedness of A. butzleri floodwater isolates to A. butzleri from different sources. The MLST-
based minimum spanning tree demonstrates the genotype distributions of A. butzleri isolated and
genotyped in this study in the context of all other 4. butzleri from diverse sources available in the A.
butzleri PubMLST database. Florence floodwater and Rocky Branch Creek isolates are in black and gray
respectively, and other sources are in various other colors, as indicated in inset. Major identified clades

A, B, C and D are indicated, with A and B, harboring all but two of this study’s genotypes, exhibited in
18
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higher resolution on the right-hand side of the Figure. Numerical ST designations of the floodwater
isolates are indicated inside the circles in each cluster (A and B) inset on the right. The two STs (ST-138
and 740) outside of A or B are shown in cluster C (left-hand side of Figure). Each circle represents a
different MLST-based ST. The size of the circle indicates the number of isolates with the corresponding
ST, with the smallest circles corresponding to one isolate. Closely-related STs are connected by thick
black lines. MLST analysis and minimum spanning tree construction was performed as described in

Materials and Methods.

Fig. 5

Relatedness A. butzleri floodwater isolates to A. butzleri from different countries. The MLST-based
minimum spanning tree demonstrates the genotype distributions of the floodwater isolates in the context
of A. butzleri from different countries. A. butzleri isolated and genotyped in this study are in gray, while
other isolates from the United States are in black. Diverse colors are used for other countries, as shown
in inset. Included are all A. butzleri isolates in the A. butzleri PubMLST database. Each circle represents
a different MLST-based ST. The size of the circle indicates the number of isolates with the corresponding
ST, with the smallest circles corresponding to one isolate. Closely-related STs are connected by thick

black lines. U.S. isolates previously outside of those in the current study are in black.
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Table 1. A. butzleri STs identified in multiple samples

ST (No. Date (No. samples) 2 Waterbody type | Watershed (No.
samples, ST (No. samples)® | samples)*
cluster)!
721(2,A) | 18 Sep (1), 18 Oct (1) 1(2) L(1), N(1)
736 (2, A) | 18 Sep (1), 18 Oct (1) 1(1),2 (1) L(1), N(1)
460 (3,B) | 18Sep (3) 1(2),4(1) L (2), CF (1)
726 (2,B) | 18 Sep (2) 1(D),2(D) L (1), CF (1)
729(2,B) | 18Sep (2) 1(1),3(1) L (1), CF (1)
730 (3,B) | 18 Sep (2), 18 Oct (1) 1(1),3(2) L (1), CF (2)
734(3,B) | 18 Sep (2), 18 Oct (1) 1(1),2(1),3(1) |L(),N(2)
746 (6,B) | 18 Sep (2), 28 Sep (1), 18 | 1(5), LB (1) L (3), CF (1), N (1), W (1)
Oct (2), 13 Nov (1)
750 (5,B) | 18Sep (2),28Sep (1), 18 | 1(1),2(3),3(1) |L(1),N(4)
Oct (2)
757(2,B) | 18 Sep (1), 18 Oct (1) 1(1),3(1) N ()
760 (2,B) | 28 Sep (1), 18 Oct (1) 1(2) N (2)
821 (2,B) | 18 Oct (1), 19 Oct (1) 2(1),3 (1) CF (1), W (1)
824 (2,B) | 180ct(2) 2 (1), NA (1) CF (1), N (1)
827(2,B) | 18 Oct (1), 13 Nov (1) 2(1), LB (1) LQ)

"'Novel STs are in bold font. Clusters are as in Table S1 and Fig. 3.

2 Dates are all in the year 2018.

3 Waterbody types, as in Table S1. 1, Channel; 2, Floodplain; 3, Isolated ephemeral; 4, Other (large

pond); NA, information not available; LB, Lumbee Basin, collected post-phase 2 on 11 Nov.
* Lumbee; N, Neuse; CF, Cape Fear; W, Waccamaw, as in Fig. 2. Detailed information on the
coordinates of the samples is present in Table S1.
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