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Within a tight-binding approximation, we numerically deter-
mine the time evolution of graphene electronic states in the
presence of classically vibrating nuclei. There is no reliance on
the Born–Oppenheimer approximation within the p-orbital tight-
binding basis, although our approximation is “atomically adia-
batic”: the basis p-orbitals are taken to follow nuclear positions.
Our calculations show that the strict adiabatic Born–Oppenheimer
approximation fails badly. We find that a diabatic (lazy electrons
responding weakly to nuclear distortions) Born–Oppenheimer
model provides a much more accurate picture and suggests a gen-
eralized many-body Bloch orbital-nuclear basis set for describing
electron–phonon interactions in graphene.

graphene | time-dependent quantum mechanics | nonadiabatic
dynamics | tight-binding | Born–Oppenheimer approximation

In recent years, graphene has become perhaps the most popular
2D material studied for its optical, electronic, and mechani-

cal properties. Electron–phonon interactions in graphene have
become a focus because of their role in optical processes, ther-
malization of electrons, and superconductivity (1–6). Experi-
mental measurements of electron coherence lengths as well as
theoretical studies have suggested that electron–phonon inter-
actions play a key role in relaxation of charge carriers follow-
ing photoexcitation (7–9). Few theoretical studies investigate
the time-dependent dynamics of electrons in the presence of
phonons, and graphene electronic structure calculations typi-
cally assume static, unbroken perfect symmetry of the lattice.
However, even at low temperatures, this symmetry exists only
in an average sense if the vibrational modes of the nuclei
are unfrozen.
The fixed nuclei Born–Oppenheimer (BO) approximation

may of course be implemented for static, broken symmetry
geometries. However, degenerate or nearly degenerate adiabatic
electronic Bloch waves of high-symmetry nuclear configurations
must very strongly mix among themselves, even for configura-
tions within the zero point motion of the nuclei. Such extremely
strong, spatially extended electronic mixing for tiny, even local,
nuclear displacements cannot be physical. If it were, the rele-
vance of Bloch band structure (10) for high-symmetry configu-
rations would be called into question. Instead, something like
the average nuclear positions holds sway, suggesting a diabatic
wave function more attuned to the lazy or sluggish response of
the electrons to instantaneous nuclear configurations and vin-
dicating (to no one’s surprise) the textbook Bloch wave high
symmetry treatments. Clearly, an intuitively diabatic mindset is
already built into the canon of solid-state physics.
In this paper, we develop numerical evidence that a diabatic

BO (DBO) approximation is much superior to the standard adi-
abatic one. As with the adiabatic BO (ABO) approximation,
the electronic wave function in a diabatic formulation remains a
function only of nuclear configuration. Electron–phonon inelas-
tic scattering remains a clear breakdown or correction to the
diabatic approximation, as it is in the adiabatic approximation. In
molecular physics, electron–phonon inelastic scattering is called
vibronic coupling.
Through numerical simulations, we study the explicit time

evolution of electronic wave functions in the presence of lat-
tice vibrations. Modeling the nuclei classically, we work within

the single-particle picture for the electronic degrees of freedom
to construct a time-dependent tight-binding electronic Hamilto-
nian whose matrix elements change with fluctuations in inter-
atomic bond distances. We then directly solve the resulting
time-dependent Schrödinger equation (TDSE) for the electronic
states. In doing so, we are exactly solving for the electronic
time evolution within the tight-binding approximation, without
invoking any form of the BO approximation at all.
We do not include the back-action of the ⇡-electronic states

on the nuclear motions. This is justified by the infinitesimal
importance of single electrons on the forces experienced by
the carbon atoms in a large sample of graphene, and the rel-
ative unimportance of the ⇡-electron cloud as against the in-
plane orbitals responsible for most of the binding forces in
graphene. However, back-action should be taken seriously
in the future, especially when considering the full multielec-
tron response to nuclear geometry fluctuations. It will also
be clear from our results that the minor adjustments to the
nuclear positions due to back-action as they jostle thermally
will not qualitatively affect our central conclusion that ⇡ elec-
trons cannot and do not follow the details of nuclear motion in
graphene.

Theory and Model
Vibrations break the symmetry of a periodic crystal, but for
convenience and computations, symmetry may be partially
restored at long range by using a supercell consisting of many
primitive unit cells. The thermal motion is then taken to
repeat at the supercell level. In this situation, within the ABO
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approximation, the motion preserves the band index n , where n

is an integer running from 1 toN , the number of atoms (with one
basis orbital each) in the supercell. Projecting the true solution
from the TDSE onto the ABO basis, we are able to under-
stand whether the time evolution of the electron is described
by the ABO approximation, which has been frequently used in
condensed matter physics and quantum chemistry since its devel-
opment in 1927 (11, 12). In fact, we will see a DBO approach is
much closer to the truth.
We simulate a sheet of graphene with time-dependent nuclear

vibrations by modeling the nuclei classically and the electronic
degrees of freedom quantum mechanically (13, 14). Using
a nearest-neighbor tight-binding model, we construct a time-
dependent Hamiltonian for the electronic degrees of freedom.
Using this Hamiltonian, we solve the TDSE and compare the
true electronic states to ABO basis states.
The classical treatment of nuclear motion may be surprisingly

close to reality. The “Schrödinger Correspondence Principle”
(15, 16) linking the classical motion of harmonic oscillators
(including infinite dimensional ones) to exact quantum evolu-
tion supports this statement. That is to say, as is discussed in
ref. 16, Schrödinger showed that the mean position and momen-
tum of quantum wave packets in a harmonic oscillator tend to
obey the classical equations of motion. Thus, the treatment of
nuclei as classical harmonic oscillators is a simplified yet jus-
tified approach to the investigating the quantum mechanical
many-body problem.

Classical Nuclei. In order to consider a wide range of vibrational
modes, we construct a supercell for graphene containing N =32
atoms, as shown in Fig. 1. The supercell lattice vectors are
parallel to the standard hexagonal lattice vectors, with a scale
factor of 4 such that a1 =(4a

p
3, 0) and a2 =(2a

p
3, 6a), where

a =0.142 nm⇡ 2.684a0 is the equilibrium bond distance, taking
a0 to be the Bohr radius.

We take the i th carbon nucleus to have position Ri(t)=

R0,i + eRi(t)= (Xi(t),Yi(t)), where R0,i is the equilibrium posi-
tion specified by the standard graphene lattice structure, and
eRi(t)= ( eXi(t), eYi(t)) is the time-dependent displacement from
equilibrium. The in-plane interatomic forces that contribute to
bond vibration are taken to be described by a nearest-neighbor
harmonic potential

Fig. 1. Lattice vectors for the standard unit cell (green) and 32-atom
supercell (red) used here for graphene’s honeycomb lattice.

V ({R(t)})=
X

hi,ji

1
2
M!2

0 (|Ri(t)�Rj (t)|� a)2, [1]

with M =21,893.6me as the carbon atomic mass, !0 =
0.0146 rad ·Ryd/~ is the approximate C=C aromatic bond
vibration frequency from infrared spectroscopy (17), and

P
hi,ji

denotes a sum over all nearest-neighbor pairs of atoms. We
acknowledge that out-of-plane vibrations could have an impact
on electron–phonon coupling investigated in this paper, but we
work within the 2D approximation with confidence that qual-
itatively our conclusions will remain unchanged. We assume
toroidal boundary conditions for the supercell, allowing for
atoms on one edge of the unit cell to have nearest-neighbor
interactions with atoms on the opposite boundary without any
acquisition of phase. This is the equivalent of considering the k=
(0, 0)—i.e., the phononic � point—solutions for the phononic
band structure.
The classical eigenvalue problem for the normal modes

becomes

M!2
qi =

X

j

@2
V

@qi@qj
qj , [2]

where q=(q1, . . . , q2N )= ( eX1, eY1, . . . , eXN , eYN ) lists the com-
ponents of each nucleus’s displacement from equilibrium. Let
the nth eigenmode correspond to frequency !=!n and a
normalized eigenvector q= q̂(n). Any solution to the eigen-
mode problem can be expressed as a linear combination q(t)=
Re

hP
n
⇢ne

i�n q̂(n)
e
�i!n t

i
, and the energy in the nth eigenmode

is Un =(1/2)M!2
n⇢

2
n . We take each independent oscillator to

have temperature T -dependent energy Un = kBT such that
⇢n =

p
2kBT/(M!2

n). Without loss of generality, we choose
phase offsets as �n =0, and the nuclear coordinates {R(t)} are
fully determined from

q(t)=Re

"
X

n

r
2kBT
M!2

n

q̂(n)
e
�i!n t

#
. [3]

Tight-Binding Hamiltonian. Within the linear combination of
atomic orbitals approximation, we write the single-particle
electronic wave function

 k(r, t)=
X

i

a k,i(t)⇠k,i(r, t), [4]

with Bloch wave basis state |⇠k,i(t)i defined as

⇠k,i(r, t)=
1p
⌦

X

s

e
ik·s�(r�Ri(t)� s), [5]

where �(r�Ri(t))⌘�i(r, t) is the 2pz atomic orbital centered
on the i th nucleus, ⌦ is the number of unit cells in the sample,
and s is a lattice vector. Taking the onsite energies to van-
ish, the nearest-neighbor hopping integrals for the tight-binding
Hamiltonian are

Hij (t)=�h0 exp


�b

✓
Rij (t)

a
� 1

◆�
, [6]

where Rij (t)= |Ri(t)�Rj (t)|, h0 =2.7 eV⇡ 0.198Ryd, and
b=3.37 (18). The exponential parametrization tight-binding
Hamiltonian is well-established in the literature, and the con-
stants obtained from ref. 18 agree with the experimental result
|@Hij/@Rij |=6.4 eV. The overlap between any adjacent 2pz
orbitals vanishes: h�i(t) |�j (t)i= �ij .
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Electronic Wave Function. As an initial condition, we use a Bloch
state with k such that  TD

k (r, 0)= ABO

n,k (r, 0). This is an ABO
fixed-nuclei electronic state for some initial nuclear configuration.
Solving the time-dependent tight-binding Hamiltonian numer-

ically as the nuclei vibrate, we calculate the electronic wave
function  TD

k (r, t) without any reliance on the BO wave func-
tion  ABO

n,k (r, t). The overlap of these 2 electronic states is used
to assess how closely the electronic wave function adheres to the
ABO approximation.

TDSE Solution. The time-evolving electronic wave function is cal-
culated using the TDSE i~ d

dt

�� TD

k (t)
↵
= Ĥ (t)

�� TD

k (t)
↵
. From

Eq. 4, we have

i~dak,i
dt

=
X

j

[Hk(t↵)]ijak,j (t), [7]

where we have used the common tight-binding approximation
h�i(t) |�j (t)i= �ij . Without the latter assumption of vanish-
ing overlap between nearest-neighbor orbitals, in general one
finds an additional term in the TDSE dependent upon dR/dt
and @Sij/@Rij , where Sij = h�i(t) |�j (t)i (13). However, assum-
ing vanishing nearest-neighbor overlap eliminates this term. As
an initial condition, we may choose any arbitrary tight-binding
state, but in our simulations, we will specifically select BO
states—described in the following subsection—for the t =0wave
function such that  TD

k (r, 0)= ABO

n,k (r, 0).
We also note that the supercell wave vector k, which labels

an eigenvalue of the operator that translates a Bloch state by a
supercell lattice vector, is conserved in the time evolution due
to translational symmetry. Thus, the wave function  TD

k (r, t)
retains the label k for all times t . The electronic character
itself is expected to change over time, and retention of elec-
tronic character is measured by computing the squared modulus
electronic autocorrelation Ak(t)=

��⌦ TD

k (0)
�� TD

k (t)
↵��2. This

value indicates the probability of overlap of the true time-
evolved wave function with the initial state, thus indicating
the degree to which electronic character is preserved up to an
overall phase.

ABO Approximation. A discussion of the ABO approximation
and its application to the time-dependent Hamiltonian Ĥ (t)
constructed previously is presented in SI Appendix, Supporting
Information Text. For reference, we solve the TISE within the BO
approximation Ĥ (t↵)

�� ABO

n,k (t↵)
↵
=En,k(t↵)

�� ABO

n,k (t↵)
↵
at vari-

ous time points {t↵} for the coefficients {a(n)
i

(t↵)}, resulting in
a dispersion relation En,k(t↵) with N =32 bands indexed by n .
Thus, the TISE results in the eigenvalue problem

X

j

([Hk(t↵)]ij �Ek(t↵)�ij )a
(n)
k,j (t↵)= 0, [8]

where [Hk(t↵)]ij =
D
⇠k,i(t↵)

���Ĥ (t↵)
��� ⇠k,j (t↵)

E
. In the ABO

approximation, an electronic state that begins in the nth band
with supercell wave vector k will always remain on the same
band by definition, and the character of the state at some time is
fully dependent on the molecular geometry at that fixed instant.
In other words, the ABO approximation (and BO states more
generally) are memoryless. The supercell wave vector k is once
again conserved in the time evolution, as was the case for the
TDSE solution. Thus, the time-dependent fluctuations in the
energy eigenvalues {En,k(t)} for a fixed supercell wave vector
k correspond to tracing out time-dependent paths on the adia-
batic potential energy surfaces En({R(t)}), not on the reciprocal
space bands. We emphasize that within ABO, both the quantum

number n and the supercell wave vector k are indeed preserved
in the time evolution within ABO, while for the TDSE solu-
tion, the supercell wave vector k is preserved and band index
n is not a good quantum number. The supercell band structure
En,k(t↵) is shown for the 32-atom unit cell for an arbitrarily cho-
sen time and nuclear displacement in Fig. 2. By linearly scaling
the lattice vectors, the supercell’s Brillouin zone retains the sym-
metries of the standard graphene Brillouin zone. It can be easily
shown that choosing an even scale factor of 4 maps the Dirac
cones onto the K and K0 points of the supercell Brillouin zone
as well.

Numerical Methods. In our simulation, we choose amplitudes
for the vibrational eigenmodes corresponding approximately to
room temperature, T =300K. In the time domain, our simula-
tion runs from 0 to 30,000 ~/Ryd, sampling such that t↵+1 � t↵ =
1 ~/Ryd.

� Point, Lowest Nondegenerate State. For reference we calcu-
late the ABO band structure at every time t↵ using Hk�(t↵)
where k� =(0, 0). We first examine the time evolution of
the ground electronic state (band index n =1) at k�. From
Fig. 3, we can clearly see that the lowest nondegenerate
state is energetically separated from the n =2 band by ⇡
0.15Ryd. Due to this energetic separation, there are few if
any true avoided crossings in between the n =1 and n =2
potential energy surfaces. From the Landau–Zener formula,
this would suggest that time evolving

�� TD

k� (t)
↵

for initial
condition

�� TD

k� (0)
↵
=
�� ABO

1,k� (0)
↵
would allow overlap probabil-

ity P1,k�(t)=
��⌦ ABO

1,k� (t)
�� TD

k� (t)
↵��2 to remain near 1 for all

times. Moreover, we would expect that the squared modulus
of the autocorrelation A1,k�(t)=

��⌦ TD

k� (0)
�� TD

k� (t)
↵��2 would

Fig. 2. Band structure shown at an arbitrary time point using the graphene
supercell. The symmetry of the standard Brillouin zone still exists, and the
Dirac cones line up with the K points.

18318 | www.pnas.org/cgi/doi/10.1073/pnas.1908624116 Mohanty and Heller

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
Se

pt
em

be
r 2

2,
 2

02
0 



PH
YS

IC
S

0 10 20 30 40 50
Time (Vibrational Periods)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

En
er

gy
 (R

yd
)

Eigenenergies at k = (0,0)

0 5 10 15 20
Time (Vibrational Periods)

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

En
er

gy
 (R

yd
)

Cluster of Eigenenergies at k = (0,0)
17 18 19 20 21 22 23 24 25

Fig. 3. Time-dependent energy spectrum En(t) at the � point, where k= (0, 0): the full spectrum (Left) and the cluster-containing band (Right) (n= 18). On
the abscissa, we have plotted time in terms the number of cycles of the shortest vibrational mode, which in our N= 32 atom simulation is 190.679 ~/Ryd.

also remain near 1, as electronic character should be preserved
if 2 adiabatic potential energy surfaces are far from crossing.
For electronic states on energetically isolated potential energy
surfaces like these, we would expect the ABO approximation
to provide a reasonable picture of the time evolution, at least
for our small supercell, as the electronic wave function should
closely match the Born-Oppenheimer state on the band in
which it began. Thus, electronic character is preserved, and
the BO basis predicts this reasonably due to a lack of avoided
crossings. This situation changes radically for clusters of nearly
degenerate states.

� Point, Nearly Degenerate State. It is abundantly clear from Fig. 3
that, as a function of time, the band energies fluctuate signifi-
cantly; nearly degenerate bands suffer avoided crossings in time.
In particular, at the � point, we find 2 distinct clusters of 9 bands
each—1 below and 1 above the Fermi energy—caused by the
breaking of degeneracy due to nuclear displacements. The elec-
tronic states corresponding to the bands in these clusters are of
particular interest; as suggested by time-dependent perturbation
theory, we would expect these states to be highly coupled, mak-
ing electronic time evolution unlikely to be adiabatic. Without
loss of generality, we choose to investigate the behavior of the
electronic state corresponding to band index n =18, marked by
the purple band in Fig. 3.
Additionally, we measure the preservation of electronic char-

acter by calculating the squared modulus of the autocorrelation
function An,k�(t)=

��⌦ TD

k� (0)
�� TD

k� (t)
↵��2. A decay of this auto-

correlation from 1 indicates that the electronic character of the
initial state is not preserved in the time evolution.

Near K Point. Experimental optical excitation of graphene elec-
trons is commonly performed with photons of energy ⇡ 1.5 eV
for electrons that are near the Dirac cones (19–21). We examine
the behavior of electronic states with wave vector ke =(ke,x , 0)
such that E17,ke (t)�E16,ke (t)⇡ 1.5 eV for all t . As with the
� point cases, we find that the bands tend to cluster where
degeneracies of the bands within the supercell’s reduced Bril-
louin zone have been broken. Here, we select band n =18
to investigate electron time evolution (SI Appendix, Fig. S1);
bands 18 and 19 exhibit numerous avoided crossings in the
time domain.
As with the � point case, we solve Eq. 8 for E18,ke (t) and�� ABO

18,ke (t)
↵
and use

�� TD

ke (0)
↵
=
�� ABO

18,ke (0)
↵
as the initial condi-

tion for the TDSE. The same measures of wave function over-

lap probabilityPn,ke (t)=
��⌦ ABO

n,ke (t)
�� TD

ke (t)
↵��2 and the squared

modulus of the autocorrelationAn,ke (t)=
��⌦ TD

ke (0)
�� TD

ke (t)
↵��2

are used to determine the validity of the ABO approximation and
the preservation of electronic character, respectively.

Results
In the following sections, we present the results of our simula-
tions, comparing the ABO and true electronic states.

� Point, Lowest Nondegenerate State. While the results
are not plotted here, the overlap probability P1,k�(t)=��⌦ ABO

n,k�(t)
�� TD

k� (t)
↵��2 of the ABO and true electronic wave

functions as well as the squared modulus of its autocorrelation
A1,k�(t)=

��⌦ TD

k� (0)
�� TD

k� (t)
↵��2 of the true wave function

remain nearly 1 for all times, as expected for the lowest
nondegenerate state. The energetic separation of the lowest
nondegenerate state from the first excited state at the � point
allows little to no diabatic transfer of the electronic to another
ABO potential energy surface. As a result, we conclude that�� TD

k� (t)
↵
remains approximately an instantaneous eigenstate

of the time-dependent Hamiltonian at all times, and electronic
character is well-preserved. This simulation confirms the idea
that the ABO approximation is suitable for cases in which
eigenstates are reasonably energetically separated.

� Point, Nearly Degenerate State. Fig. 4 shows the overlap
probability Pn,k�(t)=

��⌦ ABO

n,k�(t)
�� TD

k� (t)
↵��2 and A18,k�(t)=��⌦ TD

k� (0)
�� TD

k� (t)
↵��2. Examining Fig. 4, Left, given the initial

conditions we set, the probability of overlap between the true
state and the n =18 ABO state begins at 1. This probability
drops essentially to 0 in less than 100 ~/Ryd; the periods of
oscillation for the nuclear vibrational eigenmodes range from
190.7 ~/Ryd to 657.3 ~/Ryd. Thus, we see that the ABO approx-
imation breaks down within one vibrational period of the highest
frequency eigenmode. It fails because at an avoided crossing
the ABO approximation requires drastic changes in electronic
character over very modest changes in nuclear configuration.
The true time evolution is far more diabatic and electronic
character-preserving, as we will see.
Due to the incessant nuclear vibrations, the nearly degener-

ate manifolds of 9 ABO states are being constantly scrambled. Is
there a diabatic (DBO) basis that approximates time evolution of
the electronic wave function over much longer intervals, one that
could be constructed in this case from the 9 ABO basis states?
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Fig. 4. The probability of overlap Pn,k� (t) between each ABO state and the true time-evolved state beginning in ABO state n= 18 at t= 0 (Left) and the
magnitude squared of the autocorrelation An,k� (t) for the same true state, showing the dramatically better persistence of a diabatic-like autocorrelation
over an adiabatic one (Right). On the abscissa, time is plotted as number of cycles of the vibrational mode with the shortest period, which for N= 32 atoms
is 190.679 ~/Ryd.

From the squared modulus of the autocorrelationAn,k�(t), we
find that the electronic character of the actual time evolved quan-
tum electronic state decays slowly, over a period of 104 ~/Ryd.
This is 100 times slower that the period of nuclear vibra-
tions. Since the nuclei are moving classically, yet the electronic
state is remaining stable, we have unambiguous evidence of the
prevalence of a diabatic evolution in favor of an adiabatic one.

Near K Point. We present the overlap probabilities Pn,ke (t)=��⌦ ABO

n,ke (t)
�� TD

ke (t)
↵��2 and autocorrelation squared modulus

A18,ke (t)=
��⌦ TD

ke (0)
�� TD

ke (t)
↵��2 for an electronic state near the

K point in SI Appendix, Fig. S2. The scenario is similar to the �
point case, where we see clustering of bands. Due to the fold-
ing of the Brillouin zone, En,ke (t) has fewer bands per cluster
than that of the En,k�(t). The time-dependent tight-binding elec-
tronic state

�� TD

ke (t)
↵
overlaps substantially but erratically with

ABO states 17, 18, and 19. As with the � point case, the ABO
approximation breaks down within a timescale less than the high-
est nuclear oscillator period due to its prediction of rapid state
change near an avoided crossing or conical intersection.
The autocorrelation function of the time-dependent tight-

binding electronic state decays over time, although much less
quickly than the ABO states at the � point. We can conclude that
the electronic state loses its character at a timescale much larger
than the vibrational period of the classical nuclear oscillations, in
a manner highly suggestive of diabatic time evolution.

Extension to Larger Graphene Sample. The eventual decay of the
autocorrelation function is reminiscent of the initial sinusoidal
behavior of a state that begins in a superposition of eigenstates
in a 2-state system. When the eigenbasis is larger, the autocor-
relation of any such initial state takes much longer to return to
the original state. In a system whose adiabatic states are con-
stantly changing due to the nuclear vibrations, an adiabatic state
is no longer an eigenstate of the electronic Hamiltonian once
the nuclei have shifted slightly. As a result, we see decay of the
autocorrelation, which within any reasonable time, will likely not
return to 1.
As described previously, the clustering of ABO bands tends to

indicate whether or not an ABO state will mix with states with
similar energies in a diabatic time evolution regime. We have
confirmed that such clustering—and the avoided crossings that
appear and disappear in the time domain—continues to appear

with larger choices of supercells (SI Appendix, Fig. S3). At N =
50 (a 5⇥ 10 supercell), we have 50 bands, as expected, and the
clustering of bands depends on the folding of the Brillouin zone.
Our representative simulation choosing an initial condition

from an ABO state within one of these clusters similarly found
that by t =10, 000 ~/Ryd, the autocorrelation function slowly
decayed to ⇡ 0.6 over the course of several vibrational periods
(SI Appendix, Fig. S4). Our simulations, otherwise restricted by
computational memory limits, demonstrate consistency of our
conclusions regarding diabatic time evolution at various size
scales of the graphene supercell.

Many-Body DBO Approximation. We have said that the electrons in
our simulations are lazy in some sense. However, they still evolve
in time. Since the nuclear motion is taken to be classical here,
with no back-reaction, we are also blind to electron–phonon
inelastic scattering. However, we are not under the illusion that
any simple guess for many-body wave functions can be essentially
exact. What we strive for is something far better than the ABO
Ansatz. We believe the numerical results strongly suggest such a
guess, which we present now.
The present calculation took the s- and p-orbital backbone to

give rise to a set of harmonic interactions, and the pz ⇡-orbital
coefficients were treated exactly within tight binding and the time
dependence induced by classically moving nuclei. The coupled
equations of motion for the ⇡-electron orbital coefficients owes
nothing to the Born-Oppenheimer approximation, The exact
time dependence turns out to be quite well approximated by
the following hybrid of adiabatic and diabatic approximations:
the atomic ⇡ orbitals were taken to be bodily dragged anywhere
the nuclei went; we can say the basis was “atomically adiabatic.”
However, in setting free the coefficients of the orbital expansion
of the molecular wave function, we found that the “molecularly
diabatic” description based on the atomically adiabatic orbitals
is very close to reality.
The division into coexisting adiabatic and diabatic worlds

makes a great deal of sense when one considers relative
timescales: the ability of a closely bound electron to follow a
lone nucleus is given by a short timescale roughly on the order
of ~/esp , where esp the s-p energy splitting. We can also expect
the backbone in-plane molecular orbital system to behave adi-
abatically. It is too much to expect the extended ⇡-electronic
molecular wave function to follow adiabatically, making radi-
cal changes over many units cells for even very small and local
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nuclear displacements happening in a fraction of a vibrational
period. Electronic states become sluggish or lazy compared to
what would need to have been very fast adiabatic changes. This
is a manifestation of the ubiquitous and unrelenting problem of
close avoided crossings in the adiabatic picture. The electrons
begin to track longer time and distance changes, content with
something like average nuclear positions and not their faster fluc-
tuations. If this were not the case, the relevance of the usual high
symmetry, textbook Bloch wave analysis would be suspect.
How do we encode a diabatic nature into an appropri-

ate many-body wave function? Starting with the Bloch wave
function,

 k(r)=
1p
N

X

`

e
ik·R`�(r�R`), [9]

the key is to relax the idea that the nuclear sites Rn in the wave
function above belong only to fixed high-symmetry positions and,
instead, allow the nuclear coordinates within the familiar Bloch
wave function to move, dragging their orbital �(r�Rn) with
them. However, the nuclear positions cannot vary uninhibited:
the nuclear excursions are taken to be moderated by a nuclear
vibrational wave function: �(⌘,R),

 k(r,R)=
e
ik·r

p
N

X

`

�(r�R`)�(⌘,R), [10]

where �(⌘,R) is a normal mode eigenfunction, i.e.,

|�i=
Y

n

|⌘ni , [11]

with

h⇠n |⌘ni=
1p

2⌘n ⌘n !

⇣
m!n

⇡~

⌘1/4
e
�m!n⇠2

n

2~ H⌘n

✓r
m!n

~ ⇠n

◆
,

[12]

and the normal modes ⇠n are known linear combinations of
the R`. Note that with the phase factor e

ik·r, Eq. 10 extends
Bloch Theorem to situations where it does not strictly apply.
We call this the diabatic Bloch wave, or DBW, approach. It is a
specification of diabatic, approximatemany-body eigenfunctions,
introduced here as far superior to traditional ABO states.
The DBW Ansatz is not yet a roadmap for a first principles

many-body approach, because we are addressing only a single
body electronicwave function, togetherwith amany-bodyphonon
basis. Here, only the Bloch orbitals are treated diabatically.

The DBW wave functions form a complete basis with which
to expand more accurate eigenfunctions. Their simple analyti-
cal form makes them easy to work with. The real utility of this
basis will become clear if it (and its extensions) perform well
for spectroscopic matrix elements, bilayer systems, description
of excitons, and beyond. These applications of the DBW remain
for future work.

Summary
In this paper, we examined the time evolution of electronic
states in graphene in the presence of classically modeled nuclear
vibrations. Parameterizing the tight-binding Hamiltonian as a
function of classically time-varying interatomic bond distances,
we find that the electronic states generally tend to preserve
their character over many typical vibrational periods in the
presence of vibrations from many modes. This is diabatic, not
adiabatic, behavior. The electrons may be described as “lazy,”
in that they respond weakly and slowly compared to nuclear
geometry changes. The ABO approximation predicts that near
these avoided crossings, the electronic state would exhibit rapid
changes in character which are not seen in the wave function
calculated from the TDSE.
This is in stark contrast to many small molecules, but other

molecules are sometimes best described by diabatic rather than
adiabatic approximations; there is a substantial literature regard-
ing this (see, for example, ref. 22 and references therein). By
solving the TDSE, the true electronic wave function was pro-
jected onto the ABO basis. We find rapid decay of the adia-
batic states, on the order of one vibrational period, and a few
“revivals” over a short period. Not much insight is gained in the
adiabatic picture; it is likely to become even less informative as
the size of the supercell is taken to be larger. Within the ABO
framework, we see that the inclusion of lattice vibrations leads to
the appearance of numerous avoided crossings in the supercell
band structure.
We have shown that, within one vibrational period, the ABO

approximation breaks down because the actual time evolution
of the electronic state is highly diabatic. A diabatic basis formed
from a superposition of ABO states may provide a much better
starting point spectroscopy, electron–phonon interactions and
scattering, excitons, and more.
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