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ABSTRACT?

Pater’s (2018) expansive review is a significant contribution towards bridging the
disconnect of generative linguistics with connectionism, and as such, it is an important
service to the field. But Pater’s efforts for inclusion and reconciliation obscure crucial
substantive disagreements on foundational matters. Most connectionist models are
antithetical to the algebraic hypothesis that has guided generative linguistics from its
inception. They eschew the notions that mental representations have formal constituent
structure and that mental operations are structure-sensitive. These representational
commitments critically limit the scope of learning and productivity in connectionist
models. Moving forward, we see only two options: either those connectionist models are
right, and generative linguistics must be radically revised, or they must be replaced by
alternatives that are compatible with the algebraic hypothesis. There can be no integration

without structured representations.
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1. INTRODUCTION. The rise of connectionism in the mid 1980’s (Rumelhart et al. 1986) has
sparked a debate that has been raging for three decades, continuing to this day (e.g., Fodor
& Pylyshyn 1988; Pinker & Prince 1988; Elman et al. 1996; Marcus 2001; Berent 2013;
Frank et al. 2013; Marcus 2018). It is difficult to understate the urgency of those exchanges;
indeed, the stakes could not be higher. Connectionism has challenged the very foundation
of cognitive science--what are mental representations, how do they support productivity,

and how is knowledge acquired.

Language has been right at the heart of those discussions. Yet, surprisingly, this
controversy has had only limited impact on linguistics. Connectionism has contributed to
Optimality Theory (Prince & Smolensky 1993/2004) and inspired analogical models of
language (Pierrehumbert 2001; Bybee & McClelland 2005). But many linguists rarely
consider the connectionist debate and how it speaks to the fundamental theoretical tenets

that shape their daily research practices.

Pater’s (2018) expansive review is a significant step towards bridging the disconnect with
connectionism, and as such, it is an important service to the field. Pater concludes his piece
with a call for integration, collaboration, and fusion, and the appeasing tone is certainly

welcome.

Still, in our view, Pater’s efforts for inclusion and reconciliation may have gone T0O far,
inasmuch as they have obscured crucial substantive disagreements. The gist of Pater’s
article seems to be that the disagreements between connectionism and generative
linguistics are more apparent than real. Pater asserts that the two traditions emerging from
the generative work of Chomsky (1957) and the neural network approach of Rosenblatt
(1957) are distinct, and yet, when he is through, it’s hard to see exactly where he thinks the
difference lies. Evidence to the contrary, as in the work of Pinker and colleagues (Pinker &
Prince 1988; Prasada & Pinker 1993; Kim et al. 1994; Marcus et al. 1995; Berent et al. 1999;
Pinker 1999; Pinker & Ullman 2002) is brushed aside as one that is ‘not inherent to a

generative analysis’ as if differences in opinion are matters of emphasis, not substance.



In our view, the differences are real, and cannot be effectively bridged, unless they are first
understood and acknowledged. Of course, we certainly agree with Pater’s view that both
Chomsky and Rosenblatt are ultimately concerned with the same thing: how complex
behavior emerges from bounded computational systems. But sharing that premise doesn’t

mean the two approaches are aligned in their details.

One way in which the two approaches apparently differ is a red herring; ostensibly,
Rosenblatt’s tradition is more concerned with the neural substrates of cognition. So-called
neural networks are often described as being inspired by the brain, while Chomsky and
researchers in his tradition often make no such claims (other than to note that all linguistic
behavior originates in the brain). But here the difference really is more apparent than real;
as Francis Crick pointed out long ago, most neural networks aren’t all that neural (Crick
1989). There is a school of researchers that try to build models of neural responses that are
deeply rooted in details about neurotransmitters and brain wiring, but the ‘neural
networks’ that try to capture linguistic phenomena do nothing of the sort. Nobody has (yet)
proposed a detailed brain simulation that bridges between, say, syntactic representations
and the detailed mechanisms of synaptic potentiation. [t may be an advance when that

happens, but that’s not what is on the table.

The real differences, we believe, lie elsewhere, in foundational matters related to the
representational commitments made by the two approaches. Here, we articulate these
notions and demonstrate their far-reaching consequences with respect to learning and

generalization.



2. REPRESENTATIONAL COMMITMENTS. Researchers on both sides of the divide will agree
that speakers readily generalize their knowledge to novel forms—I say blix, you pluralize it
as blixes; I go gaga, tomorrow you'll invent dada. The two approaches differ sharply in how
they account for such generalizations. It is worth exploring at some length how the two

approaches account for language, given how much is at stake.

The ALGEBRAIC approach (Chomsky & Schiitzenberger 1963; Fodor & Pylyshyn 1988; Pinker
& Prince 1988; Pinker 1991; Marcus 2001) attributes such generalizations to operation on

abstract categories, such as ‘Noun’ and ‘X’ (“any syllable”).

The associationist approach, realized in many neural networks, denies that such categories
play a causal role in cognition, and that abstract operations over those categories (rules)
play a role in language. Instead, the associationist approach asserts that learners induce
ONLY associations between specific lexical instances and their features— those of dada and
blix, for instance (Rumelhart & McClelland 1986; Plunkett & Juola 1999; Ramscar 2002;
Bybee & McClelland 2005).

Each of these proposals assumes that regularities are partly learned from experience, and
as Pater points out, each form of learning also commences with some innate endowment
and generates some abstract structure. There are nonetheless substantive differences in
what TYPE of structure is given, what is learned, and how far knowledge generalizes

(discussed in detail in Marcus 2001).

1.1 THE ALGEBRAIC HYPOTHESIS. The algebraic account assumes that the CAPACITY to operate on
abstract categories is available innately. This does not necessarily mean that SPECIFIC
categories and principles (Noun, the head parameter) are innate. Rather, it means that
learning mechanisms that operate algebraically, over abstract rules, are present in advance
of learning. These algebraic mechanisms chiefly include the capacity to form EQUIVALENCE
CLASSES—abstract categories that treat all their members alike—and to operate over such

classes using variables.



In this view, algebraic mechanisms are critical for generalization. A noun is a noun is a
noun, no matter whether it is familiar or novel (e.g. dog vs. blix), and indeed, even if some of
its elements are entirely nonnative to the language (e.g. Bach). Because the regularities
extracted by the learner concern such abstract equivalence classes, not lexical instances,

they are bound to generalize ACROSS THE BOARD, to any potential member of the class.

Algebraic operations over variables also provide the means to combine these classes to
form a hierarchical structure that maintains two lawful relations to its components. One
relation is SYSTEMATICITY. If you know about blue dogs, and daxes, you can readily
understand alternatives built on similar bedrock, as such blue daxes; likewise, knowledge
about the well-formedness of baba and dada will readily allow you to form gaga. In each
case, you extract a formal structure (Adjective+Noun; XX) which you can apply to novel
instances. Furthermore, knowledge of these complex forms entails knowledge of their
components. Knowledge of blue dogs entails knowledge of dogs, and if a language allows
the geminate in agga, it must also allow the singleton g (Berent 2013). This relation

between complex forms and their parts reflects COMPOSITIONALITY.

Across-the-board generalizations, systematicity, and compositionality are three of the main
hallmarks of algebraic systems. In a seminal paper, Fodor and Pylyshyn (1988) show how
these properties follow from the structure of mental representations and the operations

that manipulate them.

First, representations are discrete symbols, inasmuch as they link form and meaning, akin
to the Saussurean notions of a signifier and a signified—the meaning of DOG is “canine”,
whereas the meaning of a phoneme (/g/) is the information it conveys within the
phonological system. Second, Fodor and Pylyshyn contrast between atomic and complex
representations. The concept of a blue dog, for instance, has complex meaning that is
comprised of two semantic atoms—for blue and dog, respectively. Each such semantic
value, in turn, is expressed by a signifier-- simple or complex. A geminate /gg/ is likewise
semantically complex, distinct from the atomic /g/, akin to the relation between the
complex plural blixes and the simplex base blix. Third, and crucially, the meaning of

complex representations is lawfully linked to its syntactic form. So if we assume that blue



dog has a complex meaning, its form must be likewise complex, rather than atomic; and if
the notion blue is atomic, its form must be atomic as well. The converse--complex meaning
expressed by atomic form, or atomic form expressing complex meaning --are typically
avoided. Finally, mental operations are STRUCTURE-SENSITIVE—they operate only on the form

of representations and ignore their meaning.

In light of these assumptions about structure-sensitive operations, systematicity,
compositionality, and unbounded generalizations follow automaticity. Knowledge of the
semantically complex blue dog entails knowledge of the atomic dog (and blue) because the
latter is literally part and parcel of the former. And because brown dog and blue dog have
identical structure, and it is this structure that determines their semantic interpretation,
knowledge of brown dog will automatically allow you to envision what the novel blue dog
means. The same holds for gaga and blixes—each is a symbol with a complex meaning and
a complex form (XX, and Noun+Syiural) respectively, and for this reason, knowledge of the
complex form entails knowledge of its constituents. In fact, this consequence is guaranteed-
-it follows mechanically from the structure of the representations. In other words, the

structure of representations plays a CAUSAL role in computations.

Linguists readily recognize many of these assumptions in their own work: the constituent
structure of representation matters precisely because it is the putative cause of linguistic
processes. And it is for this reason that linguists carefully attend to the formal structure of
their accounts. Fodor and Pylyshyn articulate why structure is necessary: form ensures
that semantic relations between mental representations are preserved by the brain--a
physical machine. How the brain encodes form (or meaning, for that matter) is unknown
(Gallistel 2017), but it is not unreasonable to assume that the brain represents formal
structure (for specific proposals, Marcus 2001). And if these categories are open-ended,
then this machinery also ensures productivity. So if linguistic operations are sensitive to
the constituent structure of forms, then it is possible to envision how, in principle, the brain
could give rise to linguistic productivity, systematicity, and compositionality. It is this
innate capacity to exhibit structure-sensitive operations over equivalence classes that we

refer to as ALGEBRAIC, following Marcus (2001). The view is distilled in 1.



(1)  The algebraic hypothesis.
a. Structured representations.
(i) Categories (e.g., Noun) form equivalence classes, distinct from their members
(e.g., dog)
(ii) Mental representations are symbols (either simple or complex).
(iii) The meaning of complex representations depends on the syntactic structure of
their form and the meaning of their simple constituents.
b. Structure sensitive processes
(i) Mental processes manipulate the syntactic form of representation in a manner
that is blind to their semantic content.

(ii) Mental processes operate on variables.

Notice that the notion of algebraic operations (or algebraic rules) is broader than the
standard notion of ‘rules’ in linguistics. While linguists typically use ‘rules’ to refer to
‘recipes’ for mapping inputs (a head and a complement) onto outputs (an X-bar), algebraic
rules also encompass structure sensitive constraints on outputs (‘A projection has a head’).
Both views commonly assume equivalence classes, structured representations, and

structure-sensitive operations, as summarized in 0.

1.2. ASSOCIATIONISM. Associationism outright rejects each of the foundational assumptions in
1. For example, in Rumelhart and McClelland’s past tense model, learning begins with two
arrays of feature-triplets, one serving as input, and one serving as output, and a set of
connections between the input and output layers. By design, as part of the challenge to
classical approaches, there are no systematic links between the form of representations
and their meaning: the form of liked (semantically complex) is no different from the form of
like (simple) or the irregular went—so called because, in the algebraic account, the
meaning of went is complex, but its form isn’t. In the associationist hypothesis, distilled in

2, these representations do not differ in kind:



(2)  The associationist hypothesis.
a. Mental operations consist of associations between inputs and outputs, induced by
experience.
b. No abstract categories distinct from their instances.
c. No systematic links between the structure of mental representations and their

meaning.

This is not to say that associationism singlehandedly rejects all forms of ‘abstraction’ and
‘structure’. As Pater points out, the past tense model includes abstract features (not
sensory impressions or motor commands), and the model also has some measure of
structure (e.g. the triplet structure of its representation, and the learned associations
between inputs and outputs). What is critically eliminated from this account is the
systematic link between syntactic form and meaning along with structure sensitive

operations.

Additionally, not all forms of connectionism subscribe to associationism, just like not all
‘generativist’ models are algebraic. Outside of neural networks, associationism has inspired
linguists to explore other computational approaches that seek to induce knowledge of
language by relying on minimal innate structure. For example, Hayes and Wilson’s 2008
Maximum Entropy model induces phonological constraints from strings of feature
matrices; there are otherwise no innately structured representations or operations over
variables. But despite the elimination of algebraic mechanisms, these associationist

networks (connectionist or otherwise) have been shown to learn and generalize.

How is this possible? How could minimalist representations give rise to such powerful
learning outcomes? Rumelhart and McClelland believe that the answer lies in the richness
of linguistic experience—a claim that deliberately challenges Chomsky’s assertions
regarding the poverty of the input. Indeed, Rumelhart and McClelland envision that their

research program will ultimately eliminate any innate linguistic knowledge altogether.

We chose the study of acquisition of past tense in part because the phenomenon of

regularization is an example often cited in support of the view that children do



respond according to general rules of language. Why otherwise, it is sometimes
asked, should they generate forms that they have never heard? The answer we
offer is that they do so because the past tenses of similar verbs they are learning
show such a consistent pattern that the generalization from these similar verbs
outweighs the relatively small amount of learning that has occurred on the
irregular verb in question. We suspect that essentially similar ideas will prove
useful in accounting for other aspects of language acquisition. We view this work
on past-tense morphology as a step toward a revised understanding of language
knowledge, language acquisition, and linguistic information processing in general.

(Rumelhart & McClelland 1986, p. 267-8).

The apparent success of connectionist models should give linguists reasons to pause and
ponder. If a model that eschews the algebraic machinery, that is standard to generative
models, can learn and generalize, then perhaps there are no structured representation—
syntactic constituents, syllables or morphemes, and no rules or constraints. And if such
structural representations are eliminated from the initial state of learning, then learners
obviously could not encode innate universal constraints on language structure either.
Associationism would thus deny the learner the representational mechanisms necessary to
represent Universal Grammar. On this view, the entire research program of generative

linguistics is seriously off track.

3. ISASSOCIATIONISM A MERE NOTATIONAL VARIANT OF ALGEBRAIC RULES? Although
people have often imagined that the algebraic and associationist hypotheses are mutually
incompatible, Pater seems to believe that the distance between the generative and
connectionist traditions is not as large. Referring to ElIman’s associationist RNN model of

syntax, Pater notes that:

A hidden layer can form abstract representations of the data, and there are

some hints in Elman’s results that those representations may do the work of
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explicit categories and constituent structure, but much research remains to

be done, even today, to determine the extent to which they can (p. 23).

The key to bridging the gulf separating the two traditions is presented by the promise of
‘emergentism’. On this view, the initial state of learning does not encode structured
representations and rules. Thus, as an account of the initial state of learning, this view sides
with associationism, and sharply differs from the algebraic hypothesis. But this may not be
the case for the final state. On Pater’s formulation, as we understand it, algebraic

mechanisms might spontaneously EMERGE.

It is for this reason that Pater presents the contrast between ‘innatism’ (in the algebraic
hypothesis) and ‘emergentism’ (in ‘associationism’) as a false dichotomy. And if algebraic
mechanisms can spontaneously arise, then the two hypotheses—algebraic and
associationist—would be not only compatible and complementary; they would also be
essentially isomorphic. Pater, then, would certainly be right to encourage the fusion of the
two traditions. As an account of the final state, associationism would be merely a notational

variant of algebraic rules.

But as we will show, the promise of ‘emergentism’ does not seem to materialize, and
associationism does not beget rules. When one looks carefully at the nature of linguistic
generalizations, it becomes apparent that associationist networks systematically fail to

capture the empirical facts.
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4. THE SCOPE OF LINGUISTIC GENERALIZATIONS. Generalization presents the
quintessential test of learning, and it initially appeared that associationist models passed it
with flying colors. When Rumelhart and McClelland first presented their model with mate--
aregular verb that the model has not previously encountered--the model’s most frequent
response was mated - generalization without algebraic representation. And as Pater points
out, subsequent models, with improved (more realistic) phonological representations
produced even better outcomes. These results would seem to suggest that an algebraic
machinery ‘emerges’ during the learning process. But a closer inspection suggests that this

conclusion was premature.

The hallmark of algebraic rules is not simply the capacity to generalize. Rules generalize
ACROSS THE BOARD. They can extend generalizations to any member of a category,
irrespective of its similarity to training items, and they obey systematicity and
compositionality. For example, a model trained on the English past tense should be able to
generalize regular inflection not only to jake (similar to the regular verbs bake, fake) but
also to [x]ake (with a nonnative English phoneme)—an exemplar that is dissimilar to
English verbs. Similarly, a reduplication model trained on [ba] ([ba]—=>[baba]) will

generalize [xa] to [xaxa].

Why are algebraic rules so powerful? The reason is simple, and, as noted earlier, it follows
directly from the representational commitments of algebraic models. Because algebraic
representations are systematically structured (e.g., baked and [x]aked share the same
syntactic form, Verb+suffix) and compositional (the -ed suffix makes the same contribution
to baked and [x]aked), and because mental operations are structure sensitive,
generalizations depend ONLY on the structure of mental representations; they are literally
blind to the idiosyncrasies of bake and [x]ake. Across the board generalizations, then, are

the inevitable reflex of algebraic machinery.

Generalizations, then, offer a concrete litmus test for computational properties of a model.
If algebraic machinery could ‘emerge’ spontaneously in connectionist models, then such
models should not merely generalize; they should generalize across the board, irrespective

of whether test items are similar or dissimilar to training items, and these generalizations
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should respect systematicity and compositionality. On the other hand, if these models track
the statistical structure of specific instances (in line with associationism), then

generalizations should depend on the similarity of test items to training items.

Before we proceed to evaluate this prediction, however, we need a more precise definition
of ‘similarity’. And indeed, what counts as ‘similar’ critically depends on the phonological
representation employed by the model and the properties of the training and test items. To
see this, compare the generalization of the reduplication function to two novel test items—
[pa] and [xa] in two conditions. In both conditions, the model is trained on the same two
items, [ba] and [ta]. But in one condition, these items are represented using segments,
whereas in the other, the representation encodes features (for simplicity, we consider only
a small subset of the consonantal features). The potential challenge to the learner in the

two cases is vastly different.

(3) Generalization based on segmental representations.
b t p X
Train [ba] +
[ta] +
Test [pa] 0
[xa] 0

When the representation is segmental, [pa] and [xa] are equally similar to training items
(see 3); this is evident from the overlap between test items and training items (shared
elements are indicated by a plus sign; elements that are not shared are marked by 0). The
potential challenge to the learner changes drastically if the same items are encoded using
features (see 4). Now, [pa] can be exhaustively described by features that have all been
trained on, so this item is quite similar to the training items. In contrast, [xa] includes a
feature that was never encountered during training, so this test item is far less similar to
the training set. Marcus (1998; 2001) refers to the former test item ([pa]) as one that is

situated within the training space, whereas the latter ([xa]) falls outside the training space.
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(4)  Generalizations based on featural representations.

Labial = Voicing Velar Fricative
Train [ba] +
[ta] +
Test [pa] + +
[xa] + 0 0

For the algebraic hypothesis, the notion of the training space is irrelevant—generalization
depends only on whether or not the test item belongs to the relevant class (X=syllable), and
the answer, in both cases, is decidedly ‘yes’. But if the model only extracts the statistical co-
occurrence between the features encountered during training, then performance in the
cases should differ. An associationist model should be able to generalize within the training
space, but fail to extend generalization to test items that fall outside it. And these
contrasting predictions allow us to determine whether algebraic rules can emerge in the

course of learning.

Marcus (1998; 2001) systematically evaluated this question in various associationist
connectionist models (feedforward network and simple recurrent network) using two
distinct functions—reduplication and the past tense. Recent research by Loula, Baroni, and
Lake (Lake & Baroni 2017; Loula et al. 2018) extended this investigation to explore the
capacity of various recurrent connectionist networks to exhibit systematicity and
compositionality. One set of simulations examined whether a network trained on jump
twice’ and ‘sing twice’ will systematically generalize to ‘dax twice’ (Lake & Baroni 2017).
Another set of experiments examined whether knowledge of complex forms, such as jump

around right’ entails knowledge of its component ‘jump right’ (Loula et al. 2018).

The results across these distinct models and numerous case studies were quite clear.
Associationist models were able to generalize within the training space, but consistently
failed to systematically generalize to items that fall beyond it. For example, in the study of
Loula and colleagues (Loula et al. 2018), a network trained on jump around left, jump left

and walk around right readily generalized to jump around right. This is only expected, given
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that all components of the test item (e.g. __around right) formed part of the training set. But
when this specific bit of information was withheld (e.g., when trained on jump left, jump
around left, walk right), generalization accuracy (to jump around right) dropped to 2.46%.
It thus appears that these models have not induced an algebraic rule. When test items differ

markedly from the training items, generalization fails.

As Pater correctly reminds us, connectionist networks are certainly able to implement
algebraic mechanisms that are hardwired in the model ‘innately’, in advance of learning.
For example, Smolensky (2006) has shown how the tensor product could be used to
represent syllable structure in a connectionist model. Models equipped with operations
over variables are demonstrably able to extend generalizations beyond the training space
(Marcus 2001). On the other hand, associationist models that are not connectionist are not
guaranteed to succeed. For example, the original Maxent model (Hayes & Wilson 2008)
lacked the capacity to operate over variables, and for this reason, it failed to extend
generalizations across the board. Once this capacity was added to the model, across-the-

board generalizations followed (Berent et al. 2012).

Summarizing then, generalizations are not all alike. While test items that fall within the
training space can be readily mastered by associationist models, generalizations outside

the training space present a serious challenge for such models.

5. MOVING FORWARD. Pater’s review calls for a fusion of generative linguistics with
connectionism. He believes that the historic tensions between these two research
traditions reflect mere differences in focus (on structured representations vs. learning,
respectively), that the two perspectives are complementary, and that their integration

could be fruitful.

In our view, these two approaches are largely antithetical. Most current connectionist
models reject the fundamental representational commitments of generative linguistics.
They eschew the notions that mental representations have formal constituent structure
and that mental operations are structure-sensitive. These assumptions concerning the

initial state shape the scope of learning. There is no hierarchical organization of sentences,



15

morphemes, or syllables; such formal constituents play no causal role in mental processes.
Instead, learners only extract the statistical structure of the lexicon. Productivity, then, is
limited to lexical analogies; no linguistic generalizations can extend across the board. It is

difficult to see how such mutually exclusive perspectives could be integrated.

Moving forward, we see only two options: either associationism (in the strong sense of an
alternative to algebraic rules) is right, and generative linguistics must be radically revised,
or the strong associationism hypothesis must be replaced by a weaker version that is
compatible with the algebraic hypothesis that has guided the generativist tradition. To
adjudicate between these possibilities, there is a need for both computational and

empirical research effort.

At the computational level, we need a more targeted investigation of generalization. Most
researchers still evaluate their models by examining WHETHER they can generalize to new
test items, rather than examining in detail which generalizations are and are not made. The
results of Marcus (1998; 2001) and his followers (Berent et al. 2012; Lake & Baroni 2017;
Loula et al. 2018) suggest that this is too coarse of a test. Generalizations falling within the
training space are no guarantee that a model can freely generalize. So to evaluate the
algebraic hypothesis, the SCOPE of generalizations is paramount, and so is the investigation
of SYSTEMATICITY and COMPOSITIONALITY. It is only through such a targeted research program
that one could determine whether algebraic machinery is emergent (as implied by Pater)
or whether it must be hardwired in the model innately, in advance of learning (as

suggested by Marcus).

Equally important is the evaluation of generalizations in human learners. Informed by their
own intuitions, generativist linguists have assumed that humans can generalize freely,
beyond the training space. But analytical judgments obtained leisurely, off-line, hardly
demonstrate that people can extend such generalizations systematically in on-line language
processing. While there is a handful of results that are consistent with this possibility
(Berent et al. 2002a; Berent et al. 2014; Berent & Dupuis 2018), the scope of linguistic
generalizations is rarely considered. This remains an urgent question for further empirical

evaluation.
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Before closing, we wish to briefly touch on innateness. Pater seems to brush the innateness
question aside, suggesting that all models assume some measure of innateness, and in a
sense, he is of course right. But this truism doesn’t mean that the innateness question is
inconsequential; what is innate matters. Associationist systems typically assume only some
intrinsic phonological features along with machinery for analyzing correlation, and wind
up unable to capture the richness of compositionality; generative approaches typically
presume that, at the very minimum, the machinery of compositionality is innate, and seek

to understand nuanced linguistic relationships as a function of such machinery.

Where the associationist approach has yielded relatively little in the way of specific
characterizations of the sort of linguistic phenomena that are the bread and butter of
generative linguistics, one might well wonder where the attraction to the more
impoverished associationist view lies; in our view, it lies in an oft-held allergy to nativism.
Researchers such as Elman (1996) Everett (2016) and Evans (2014) often suggest that
innate ideas (of any kind) are biologically implausible, and so are innate linguistic
primitives and constraints. Associationism eliminates the tensions surrounding innateness.
If there are no rules, then there could be no innate universal rules either. And although de
facto, connectionist networks encode linguistic knowledge, not brain activity, much of the
excitement surrounding connectionism has to do with the hope of reducing the cognitive

(mentalistic) level of explanation to the body—either the brain or sensory organs.

We do not believe that these concerns have any scientific merit. The notion of innate ideas
is perfectly compatible with modern biology (Marcus 2004), and it is in line with the large
literature on infant core cognition (Bloom 2004; Spelke & Kinzler 2007; Bloom 2013). In
fact, a recent line of research suggests that the resistance to innate ideas could well be
grounded in core cognition itself (Berent et al. 2018). To be clear, this does not show that
scientists are biased, and it certainly doesn’t demonstrate that language is innate. But these
results do suggest that the promise of connectionism to minimize innate knowledge and

ground it in the body resonates with common biases that lie deep within the human mind.

Finally, some words about integration. Our discussion so far has considered

associationism—a view that, by definition, is incompatible with the algebraic hypothesis.
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But a weaker claim that SOME linguistic generalizations are formed by associations could
certainly live side by side with the algebraic view—this is precisely the approach presented

by Pinker and colleagues.

In our view, this integration is not only possible but necessary. The large literature on
statistical learning shows that humans (including young infants) can generalize by relying
on mechanisms that are clearly NOT algebraic (MacDonald et al. 1994; Saffran et al. 1996).
For example, people demonstrably generalize irregular inflection to novel forms (e.g.
bouse-bice). As Pater notes, one could, of course, try to capture these generalizations by
rules (Chomsky & Halle 1968; Yang 2002; Albright & Hayes 2003), but this move seems
unmotivated. Irregular generalizations are exquisitely sensitive to similarity—the greater
the phonological and semantic similarity to mouse the more likely people are to choose bice
(Prasada & Pinker 1993; Berent et al. 2002b; Ramscar 2002). Such generalizations have all
the hallmarks of an associative, rather than an algebraic, process; the distinct neural

underpinnings are also in line with this view (Sahin et al. 2009).

A full account of linguistic productivity would likely require the synthesis of associative
mechanisms along with algebraic rules. But this unification must maintain the
representational commitments of the algebraic hypothesis that have guided the generative
tradition from its inception. Without such structured representations as a bedrock, there

can be no adequate integration.
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