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ABSTRACT1	

	

Pater’s	(2018)	expansive	review	is	a	significant	contribution	towards	bridging	the	

disconnect	of	generative	linguistics	with	connectionism,	and	as	such,	it	is	an	important	

service	to	the	field.	But	Pater’s	efforts	for	inclusion	and	reconciliation	obscure	crucial	

substantive	disagreements	on	foundational	matters.	Most	connectionist	models	are	

antithetical	to	the	algebraic	hypothesis	that	has	guided	generative	linguistics	from	its	

inception.	They	eschew	the	notions	that	mental	representations	have	formal	constituent	

structure	and	that	mental	operations	are	structure-sensitive.	These	representational	

commitments	critically	limit	the	scope	of	learning	and	productivity	in	connectionist	

models.	Moving	forward,	we	see	only	two	options:	either	those	connectionist	models	are	

right,	and	generative	linguistics	must	be	radically	revised,	or	they	must	be	replaced	by	

alternatives	that	are	compatible	with	the	algebraic	hypothesis.	There	can	be	no	integration	

without	structured	representations.	

	

Key	words:	Algebraic	rules,	structured	representation,	connectionism,	associationism,	the	

computational	theory	of	mind.	
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1.	INTRODUCTION.	The	rise	of	connectionism	in	the	mid	1980’s	(Rumelhart	et	al.	1986)	has	

sparked	a	debate	that	has	been	raging	for	three	decades,	continuing	to	this	day	(e.g.,	Fodor	

&	Pylyshyn	1988;	Pinker	&	Prince	1988;	Elman	et	al.	1996;	Marcus	2001;	Berent	2013;	

Frank	et	al.	2013;	Marcus	2018).	It	is	difficult	to	understate	the	urgency	of	those	exchanges;	

indeed,	the	stakes	could	not	be	higher.	Connectionism	has	challenged	the	very	foundation	

of	cognitive	science--what	are	mental	representations,	how	do	they	support	productivity,	

and	how	is	knowledge	acquired.			

Language	has	been	right	at	the	heart	of	those	discussions.	Yet,	surprisingly,	this	

controversy	has	had	only	limited	impact	on	linguistics.		Connectionism	has	contributed	to	

Optimality	Theory	(Prince	&	Smolensky	1993/2004)	and	inspired	analogical	models	of	

language	(Pierrehumbert	2001;	Bybee	&	McClelland	2005).	But	many	linguists	rarely	

consider	the	connectionist	debate	and	how	it	speaks	to	the	fundamental	theoretical	tenets	

that	shape	their	daily	research	practices.	

Pater’s	(2018)	expansive	review	is	a	significant	step	towards	bridging	the	disconnect	with	

connectionism,	and	as	such,	it	is	an	important	service	to	the	field.		Pater	concludes	his	piece	

with	a	call	for	integration,	collaboration,	and	fusion,	and	the	appeasing	tone	is	certainly	

welcome.	

Still,	in	our	view,	Pater’s	efforts	for	inclusion	and	reconciliation	may	have	gone	TOO	far,	

inasmuch	as	they	have	obscured	crucial	substantive	disagreements.	The	gist	of	Pater’s	

article	seems	to	be	that	the	disagreements	between	connectionism	and	generative	

linguistics	are	more	apparent	than	real.	Pater	asserts	that	the	two	traditions	emerging	from	

the	generative	work	of	Chomsky	(1957)	and	the	neural	network	approach	of	Rosenblatt	

(1957)	are	distinct,	and	yet,	when	he	is	through,	it’s	hard	to	see	exactly	where	he	thinks	the	

difference	lies.	Evidence	to	the	contrary,	as	in	the	work	of	Pinker	and	colleagues	(Pinker	&	

Prince	1988;	Prasada	&	Pinker	1993;	Kim	et	al.	1994;	Marcus	et	al.	1995;	Berent	et	al.	1999;	

Pinker	1999;	Pinker	&	Ullman	2002)	is	brushed	aside	as	one	that	is	‘not	inherent	to	a	

generative	analysis’	as	if	differences	in	opinion	are	matters	of	emphasis,	not	substance.			
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In	our	view,	the	differences	are	real,	and	cannot	be	effectively	bridged,	unless	they	are	first	

understood	and	acknowledged.	Of	course,	we	certainly	agree	with	Pater’s	view	that	both	

Chomsky	and	Rosenblatt	are	ultimately	concerned	with	the	same	thing:	how	complex	

behavior	emerges	from	bounded	computational	systems.	But	sharing	that	premise	doesn’t	

mean	the	two	approaches	are	aligned	in	their	details.		

One	way	in	which	the	two	approaches	apparently	differ	is	a	red	herring;	ostensibly,	

Rosenblatt’s	tradition	is	more	concerned	with	the	neural	substrates	of	cognition.	So-called	

neural	networks	are	often	described	as	being	inspired	by	the	brain,	while	Chomsky	and	

researchers	in	his	tradition	often	make	no	such	claims	(other	than	to	note	that	all	linguistic	

behavior	originates	in	the	brain).	But	here	the	difference	really	is	more	apparent	than	real;	

as	Francis	Crick	pointed	out	long	ago,	most	neural	networks	aren’t	all	that	neural	(Crick	

1989).	There	is	a	school	of	researchers	that	try	to	build	models	of	neural	responses	that	are	

deeply	rooted	in	details	about	neurotransmitters	and	brain	wiring,	but	the	‘neural	

networks’	that	try	to	capture	linguistic	phenomena	do	nothing	of	the	sort.	Nobody	has	(yet)	

proposed	a	detailed	brain	simulation	that	bridges	between,	say,	syntactic	representations	

and	the	detailed	mechanisms	of	synaptic	potentiation.	It	may	be	an	advance	when	that	

happens,	but	that’s	not	what	is	on	the	table.			

The	real	differences,	we	believe,	lie	elsewhere,	in	foundational	matters	related	to	the	

representational	commitments	made	by	the	two	approaches.	Here,	we	articulate	these	

notions	and	demonstrate	their	far-reaching	consequences	with	respect	to	learning	and	

generalization.			
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2.	REPRESENTATIONAL	COMMITMENTS.	Researchers	on	both	sides	of	the	divide	will	agree	

that	speakers	readily	generalize	their	knowledge	to	novel	forms—I	say	blix,	you	pluralize	it	

as	blixes;	I	go	gaga,	tomorrow	you’ll	invent	dada.	The	two	approaches	differ	sharply	in	how	

they	account	for	such	generalizations.	It	is	worth	exploring	at	some	length	how	the	two	

approaches	account	for	language,	given	how	much	is	at	stake.	

The	ALGEBRAIC	approach	(Chomsky	&	Schützenberger	1963;	Fodor	&	Pylyshyn	1988;	Pinker	

&	Prince	1988;	Pinker	1991;	Marcus	2001)	attributes	such	generalizations	to	operation	on	

abstract	categories,	such	as	‘Noun’	and	‘X’	(“any	syllable”).	

The	associationist	approach,	realized	in	many	neural	networks,	denies	that	such	categories	

play	a	causal	role	in	cognition,	and	that	abstract	operations	over	those	categories	(rules)	

play	a	role	in	language.	Instead,	the	associationist	approach	asserts	that	learners	induce	

ONLY	associations	between	specific	lexical	instances	and	their	features—	those	of	dada	and	

blix,	for	instance	(Rumelhart	&	McClelland	1986;	Plunkett	&	Juola	1999;	Ramscar	2002;	

Bybee	&	McClelland	2005).		

Each	of	these	proposals	assumes	that	regularities	are	partly	learned	from	experience,	and	

as	Pater	points	out,	each	form	of	learning	also	commences	with	some	innate	endowment	

and	generates	some	abstract	structure.	There	are	nonetheless	substantive	differences	in	

what	TYPE	of	structure	is	given,	what	is	learned,	and	how	far	knowledge	generalizes	

(discussed	in	detail	in		Marcus	2001).		

1.1	THE	ALGEBRAIC	HYPOTHESIS.	The	algebraic	account	assumes	that	the	CAPACITY	to	operate	on	

abstract	categories	is	available	innately.	This	does	not	necessarily	mean	that	SPECIFIC	

categories	and	principles	(Noun,	the	head	parameter)	are	innate.	Rather,	it	means	that	

learning	mechanisms	that	operate	algebraically,	over	abstract	rules,	are	present	in	advance	

of	learning.	These	algebraic	mechanisms	chiefly	include	the	capacity	to	form	EQUIVALENCE	

CLASSES—abstract	categories	that	treat	all	their	members	alike—and	to	operate	over	such	

classes	using	variables.			
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In	this	view,	algebraic	mechanisms	are	critical	for	generalization.	A	noun	is	a	noun	is	a	

noun,	no	matter	whether	it	is	familiar	or	novel	(e.g.	dog	vs.	blix),	and	indeed,	even	if	some	of	

its	elements	are	entirely	nonnative	to	the	language	(e.g.	Bach).	Because	the	regularities	

extracted	by	the	learner	concern	such	abstract	equivalence	classes,	not	lexical	instances,	

they	are	bound	to	generalize	ACROSS	THE	BOARD,	to	any	potential	member	of	the	class.			

Algebraic	operations	over	variables	also	provide	the	means	to	combine	these	classes	to	

form	a	hierarchical	structure	that	maintains	two	lawful	relations	to	its	components.	One	

relation	is	SYSTEMATICITY.	If	you	know	about	blue	dogs,	and	daxes,	you	can	readily	

understand	alternatives	built	on	similar	bedrock,	as	such	blue	daxes;	likewise,	knowledge	

about	the	well-formedness	of	baba	and	dada	will	readily	allow	you	to	form	gaga.	In	each	

case,	you	extract	a	formal	structure	(Adjective+Noun;	XX)	which	you	can	apply	to	novel	

instances.	Furthermore,	knowledge	of	these	complex	forms	entails	knowledge	of	their	

components.	Knowledge	of	blue	dogs	entails	knowledge	of	dogs,	and	if	a	language	allows	

the	geminate	in	agga,	it	must	also	allow	the	singleton	g	(Berent	2013).	This	relation	

between	complex	forms	and	their	parts	reflects	COMPOSITIONALITY.		

Across-the-board	generalizations,	systematicity,	and	compositionality	are	three	of	the	main	

hallmarks	of	algebraic	systems.	In	a	seminal	paper,	Fodor	and	Pylyshyn	(1988)	show	how	

these	properties	follow	from	the	structure	of	mental	representations	and	the	operations	

that	manipulate	them.		

First,	representations	are	discrete	symbols,	inasmuch	as	they	link	form	and	meaning,	akin	

to	the	Saussurean	notions	of	a	signifier	and	a	signified—the	meaning	of	DOG	is	“canine”,	

whereas	the	meaning	of	a	phoneme	(/g/)	is	the	information	it	conveys	within	the	

phonological	system.	Second,	Fodor	and	Pylyshyn	contrast	between	atomic	and	complex	

representations.	The	concept	of	a	blue	dog,	for	instance,	has	complex	meaning	that	is	

comprised	of	two	semantic	atoms—for	blue	and	dog,	respectively.	Each	such	semantic	

value,	in	turn,	is	expressed	by	a	signifier--	simple	or	complex.		A	geminate	/gg/	is	likewise	

semantically	complex,	distinct	from	the	atomic	/g/,	akin	to	the	relation	between	the	

complex	plural	blixes	and	the	simplex	base	blix.	Third,	and	crucially,	the	meaning	of	

complex	representations	is	lawfully	linked	to	its	syntactic	form.	So	if	we	assume	that	blue	
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dog	has	a	complex	meaning,	its	form	must	be	likewise	complex,	rather	than	atomic;	and	if	

the	notion	blue	is	atomic,	its	form	must	be	atomic	as	well.	The	converse--complex	meaning	

expressed	by	atomic	form,	or	atomic	form	expressing	complex	meaning	--are	typically	

avoided.	Finally,	mental	operations	are	STRUCTURE-SENSITIVE—they	operate	only	on	the	form	

of	representations	and	ignore	their	meaning.		

In	light	of	these	assumptions	about	structure-sensitive	operations,	systematicity,	

compositionality,	and	unbounded	generalizations	follow	automaticity.	Knowledge	of	the	

semantically	complex	blue	dog	entails	knowledge	of	the	atomic	dog	(and	blue)	because	the	

latter	is	literally	part	and	parcel	of	the	former.	And	because	brown	dog	and	blue	dog	have	

identical	structure,	and	it	is	this	structure	that	determines	their	semantic	interpretation,	

knowledge	of	brown	dog	will	automatically	allow	you	to	envision	what	the	novel	blue	dog	

means.	The	same	holds	for	gaga	and	blixes—each	is	a	symbol	with	a	complex	meaning	and	

a	complex	form	(XX,	and	Noun+Splural)	respectively,	and	for	this	reason,	knowledge	of	the	

complex	form	entails	knowledge	of	its	constituents.	In	fact,	this	consequence	is	guaranteed-

-it	follows	mechanically	from	the	structure	of	the	representations.	In	other	words,	the	

structure	of	representations	plays	a	CAUSAL	role	in	computations.	

Linguists	readily	recognize	many	of	these	assumptions	in	their	own	work:	the	constituent	

structure	of	representation	matters	precisely	because	it	is	the	putative	cause	of	linguistic	

processes.	And	it	is	for	this	reason	that	linguists	carefully	attend	to	the	formal	structure	of	

their	accounts.	Fodor	and	Pylyshyn	articulate	why	structure	is	necessary:	form	ensures	

that	semantic	relations	between	mental	representations	are	preserved	by	the	brain--a	

physical	machine.	How	the	brain	encodes	form	(or	meaning,	for	that	matter)	is	unknown	

(Gallistel	2017),	but	it	is	not	unreasonable	to	assume	that	the	brain	represents	formal	

structure	(for	specific	proposals,	Marcus	2001).	And	if	these	categories	are	open-ended,	

then	this	machinery	also	ensures	productivity.	So	if	linguistic	operations	are	sensitive	to	

the	constituent	structure	of	forms,	then	it	is	possible	to	envision	how,	in	principle,	the	brain	

could	give	rise	to	linguistic	productivity,	systematicity,	and	compositionality.		It	is	this	

innate	capacity	to	exhibit	structure-sensitive	operations	over	equivalence	classes	that	we	

refer	to	as	ALGEBRAIC,	following	Marcus	(2001).	The	view	is	distilled	in	1.	
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(1)	 The	algebraic	hypothesis.	

a.	Structured	representations.	

(i)	Categories	(e.g.,	Noun)	form	equivalence	classes,	distinct	from	their	members	

(e.g.,	dog)	

(ii)	Mental	representations	are	symbols	(either	simple	or	complex).	

(iii)	The	meaning	of	complex	representations	depends	on	the	syntactic	structure	of	

their	form	and	the	meaning	of	their	simple	constituents.		

b.	Structure	sensitive	processes	

(i)	Mental	processes	manipulate	the	syntactic	form	of	representation	in	a	manner	

that	is	blind	to	their	semantic	content.		

(ii)	Mental	processes	operate	on	variables.		

	

Notice	that	the	notion	of	algebraic	operations	(or	algebraic	rules)	is	broader	than	the	

standard	notion	of	‘rules’	in	linguistics.	While	linguists	typically	use	‘rules’	to	refer	to	

‘recipes’	for	mapping	inputs	(a	head	and	a	complement)	onto	outputs	(an	X-bar),	algebraic	

rules	also	encompass	structure	sensitive	constraints	on	outputs	(‘A	projection	has	a	head’).	

Both	views	commonly	assume	equivalence	classes,	structured	representations,	and	

structure-sensitive	operations,	as	summarized	in	0.	

	

1.2.	ASSOCIATIONISM.	Associationism	outright	rejects	each	of	the	foundational	assumptions	in	

1.		For	example,	in	Rumelhart	and	McClelland’s	past	tense	model,	learning	begins	with	two	

arrays	of	feature-triplets,	one	serving	as	input,	and	one	serving	as	output,	and	a	set	of	

connections	between	the	input	and	output	layers.	By	design,	as	part	of	the	challenge	to	

classical	approaches,	there	are	no	systematic	links	between	the	form	of	representations	

and	their	meaning:	the	form	of	liked	(semantically	complex)	is	no	different	from	the	form	of	

like	(simple)	or	the	irregular	went—so	called	because,	in	the	algebraic	account,	the	

meaning	of	went	is	complex,	but	its	form	isn’t.	In	the	associationist	hypothesis,	distilled	in	

2,	these	representations	do	not	differ	in	kind:	
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(2)	 The	associationist	hypothesis.	

a.	Mental	operations	consist	of	associations	between	inputs	and	outputs,	induced	by	

experience.	

b.	No	abstract	categories	distinct	from	their	instances.		

c.	No	systematic	links	between	the	structure	of	mental	representations	and	their	

meaning.	

	

This	is	not	to	say	that	associationism	singlehandedly	rejects	all	forms	of	‘abstraction’	and	

‘structure’.	As	Pater	points	out,	the	past	tense	model	includes	abstract	features	(not	

sensory	impressions	or	motor	commands),	and	the	model	also	has	some	measure	of	

structure	(e.g.	the	triplet	structure	of	its	representation,	and	the	learned	associations	

between	inputs	and	outputs).	What	is	critically	eliminated	from	this	account	is	the	

systematic	link	between	syntactic	form	and	meaning	along	with	structure	sensitive	

operations.		

Additionally,	not	all	forms	of	connectionism	subscribe	to	associationism,	just	like	not	all	

‘generativist’	models	are	algebraic.	Outside	of	neural	networks,	associationism	has	inspired	

linguists	to	explore	other	computational	approaches	that	seek	to	induce	knowledge	of	

language	by	relying	on	minimal	innate	structure.	For	example,	Hayes	and	Wilson’s	2008	

Maximum	Entropy	model	induces	phonological	constraints	from	strings	of	feature	

matrices;	there	are	otherwise	no	innately	structured	representations	or	operations	over	

variables.	But	despite	the	elimination	of	algebraic	mechanisms,	these	associationist	

networks	(connectionist	or	otherwise)	have	been	shown	to	learn	and	generalize.		

How	is	this	possible?	How	could	minimalist	representations	give	rise	to	such	powerful	

learning	outcomes?	Rumelhart	and	McClelland	believe	that	the	answer	lies	in	the	richness	

of	linguistic	experience—a	claim	that	deliberately	challenges	Chomsky’s	assertions	

regarding	the	poverty	of	the	input.	Indeed,	Rumelhart	and	McClelland	envision	that	their	

research	program	will	ultimately	eliminate	any	innate	linguistic	knowledge	altogether.	

We	chose	the	study	of	acquisition	of	past	tense	in	part	because	the	phenomenon	of	

regularization	is	an	example	often	cited	in	support	of	the	view	that	children	do	
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respond	according	to	general	rules	of	language.	Why	otherwise,	it	is	sometimes	

asked,	should	they	generate	forms	that	they	have	never	heard?	The	answer	we	

offer	is	that	they	do	so	because	the	past	tenses	of	similar	verbs	they	are	learning	

show	such	a	consistent	pattern	that	the	generalization	from	these	similar	verbs	

outweighs	the	relatively	small	amount	of	learning	that	has	occurred	on	the	

irregular	verb	in	question.	We	suspect	that	essentially	similar	ideas	will	prove	

useful	in	accounting	for	other	aspects	of	language	acquisition.	We	view	this	work	

on	past-tense	morphology	as	a	step	toward	a	revised	understanding	of	language	

knowledge,	language	acquisition,	and	linguistic	information	processing	in	general.	

(Rumelhart	&	McClelland	1986,	p.	267-8).	

The	apparent	success	of	connectionist	models	should	give	linguists	reasons	to	pause	and	

ponder.	If	a	model	that	eschews	the	algebraic	machinery,	that	is	standard	to	generative	

models,	can	learn	and	generalize,	then	perhaps	there	are	no	structured	representation—

syntactic	constituents,	syllables	or	morphemes,	and	no	rules	or	constraints.	And	if	such	

structural	representations	are	eliminated	from	the	initial	state	of	learning,	then	learners	

obviously	could	not	encode	innate	universal	constraints	on	language	structure	either.	

Associationism	would	thus	deny	the	learner	the	representational	mechanisms	necessary	to	

represent	Universal	Grammar.	On	this	view,	the	entire	research	program	of	generative	

linguistics	is	seriously	off	track.			

	

3.	IS	ASSOCIATIONISM	A	MERE	NOTATIONAL	VARIANT	OF	ALGEBRAIC	RULES?	Although	

people	have	often	imagined	that	the	algebraic	and	associationist	hypotheses	are	mutually	

incompatible,	Pater	seems	to	believe	that	the	distance	between	the	generative	and	

connectionist	traditions	is	not	as	large.	Referring	to	Elman’s	associationist	RNN	model	of	

syntax,	Pater	notes	that:	

	

A	hidden	layer	can	form	abstract	representations	of	the	data,	and	there	are	

some	hints	in	Elman’s	results	that	those	representations	may	do	the	work	of	



	 	 	10	

explicit	categories	and	constituent	structure,	but	much	research	remains	to	

be	done,	even	today,	to	determine	the	extent	to	which	they	can	(p.	23).		

		

The	key	to	bridging	the	gulf	separating	the	two	traditions	is	presented	by	the	promise	of	

‘emergentism’.	On	this	view,	the	initial	state	of	learning	does	not	encode	structured	

representations	and	rules.	Thus,	as	an	account	of	the	initial	state	of	learning,	this	view	sides	

with	associationism,	and	sharply	differs	from	the	algebraic	hypothesis.	But	this	may	not	be	

the	case	for	the	final	state.	On	Pater’s	formulation,	as	we	understand	it,	algebraic	

mechanisms	might	spontaneously	EMERGE.		

	

It	is	for	this	reason	that	Pater	presents	the	contrast	between	‘innatism’	(in	the	algebraic	

hypothesis)	and	‘emergentism’	(in	‘associationism’)	as	a	false	dichotomy.	And	if	algebraic	

mechanisms	can	spontaneously	arise,	then	the	two	hypotheses—algebraic	and	

associationist—would	be	not	only	compatible	and	complementary;	they	would	also	be	

essentially	isomorphic.	Pater,	then,	would	certainly	be	right	to	encourage	the	fusion	of	the	

two	traditions.	As	an	account	of	the	final	state,	associationism	would	be	merely	a	notational	

variant	of	algebraic	rules.		

	

But	as	we	will	show,	the	promise	of	‘emergentism’	does	not	seem	to	materialize,	and	

associationism	does	not	beget	rules.	When	one	looks	carefully	at	the	nature	of	linguistic	

generalizations,	it	becomes	apparent	that	associationist	networks	systematically	fail	to	

capture	the	empirical	facts.		
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4.	THE	SCOPE	OF	LINGUISTIC	GENERALIZATIONS.	Generalization	presents	the	

quintessential	test	of	learning,	and	it	initially	appeared	that	associationist	models	passed	it	

with	flying	colors.	When	Rumelhart	and	McClelland	first	presented	their	model	with	mate--	

a	regular	verb	that	the	model	has	not	previously	encountered--the	model’s	most	frequent	

response	was	mated	–	generalization	without	algebraic	representation.	And	as	Pater	points	

out,	subsequent	models,	with	improved	(more	realistic)	phonological	representations	

produced	even	better	outcomes.	These	results	would	seem	to	suggest	that	an	algebraic	

machinery	‘emerges’	during	the	learning	process.	But	a	closer	inspection	suggests	that	this	

conclusion	was	premature.		

The	hallmark	of	algebraic	rules	is	not	simply	the	capacity	to	generalize.	Rules	generalize	

ACROSS	THE	BOARD.	They	can	extend	generalizations	to	any	member	of	a	category,	

irrespective	of	its	similarity	to	training	items,	and	they	obey	systematicity	and	

compositionality.	For	example,	a	model	trained	on	the	English	past	tense	should	be	able	to	

generalize	regular	inflection	not	only	to	jake	(similar	to	the	regular	verbs	bake,	fake)	but	

also	to	[x]ake	(with	a	nonnative	English	phoneme)—an	exemplar	that	is	dissimilar	to	

English	verbs.	Similarly,	a	reduplication	model	trained	on	[ba]	([ba]à[baba])	will	

generalize	[xa]	to	[xaxa].			

Why	are	algebraic	rules	so	powerful?	The	reason	is	simple,	and,	as	noted	earlier,	it	follows	

directly	from	the	representational	commitments	of	algebraic	models.	Because	algebraic	

representations	are	systematically	structured	(e.g.,	baked	and	[x]aked	share	the	same	

syntactic	form,	Verb+suffix)	and	compositional	(the	–ed	suffix	makes	the	same	contribution	

to	baked	and	[x]aked),	and	because	mental	operations	are	structure	sensitive,	

generalizations	depend	ONLY	on	the	structure	of	mental	representations;	they	are	literally	

blind	to	the	idiosyncrasies	of	bake	and	[x]ake.	Across	the	board	generalizations,	then,	are	

the	inevitable	reflex	of	algebraic	machinery.		

Generalizations,	then,	offer	a	concrete	litmus	test	for	computational	properties	of	a	model.	

If	algebraic	machinery	could	‘emerge’	spontaneously	in	connectionist	models,	then	such	

models	should	not	merely	generalize;	they	should	generalize	across	the	board,	irrespective	

of	whether	test	items	are	similar	or	dissimilar	to	training	items,	and	these	generalizations	
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should	respect	systematicity	and	compositionality.	On	the	other	hand,	if	these	models	track	

the	statistical	structure	of	specific	instances	(in	line	with	associationism),	then	

generalizations	should	depend	on	the	similarity	of	test	items	to	training	items.		

Before	we	proceed	to	evaluate	this	prediction,	however,	we	need	a	more	precise	definition	

of	‘similarity’.	And	indeed,	what	counts	as	‘similar’	critically	depends	on	the	phonological	

representation	employed	by	the	model	and	the	properties	of	the	training	and	test	items.	To	

see	this,	compare	the	generalization	of	the	reduplication	function	to	two	novel	test	items—

[pa]	and	[xa]	in	two	conditions.	In	both	conditions,	the	model	is	trained	on	the	same	two	

items,	[ba]	and	[ta].	But	in	one	condition,	these	items	are	represented	using	segments,	

whereas	in	the	other,	the	representation	encodes	features	(for	simplicity,	we	consider	only	

a	small	subset	of	the	consonantal	features).	The	potential	challenge	to	the	learner	in	the	

two	cases	is	vastly	different.	

(3)	 	Generalization	based	on	segmental	representations.	

		 		 b	 t	 p	 x	

Train	 [ba]	 +	
	 	 	

	
[ta]	

	
+	

	 	
Test	 [pa]	 		 		 0	 		

		 [xa]	 		 		 		 0	

When	the	representation	is	segmental,	[pa]	and	[xa]	are	equally	similar	to	training	items	

(see	3);	this	is	evident	from	the	overlap	between	test	items	and	training	items	(shared	

elements	are	indicated	by	a	plus	sign;	elements	that	are	not	shared	are	marked	by	0).	The	

potential	challenge	to	the	learner	changes	drastically	if	the	same	items	are	encoded	using	

features	(see	4).	Now,	[pa]	can	be	exhaustively	described	by	features	that	have	all	been	

trained	on,	so	this	item	is	quite	similar	to	the	training	items.	In	contrast,	[xa]	includes	a	

feature	that	was	never	encountered	during	training,	so	this	test	item	is	far	less	similar	to	

the	training	set.	Marcus	(1998;	2001)	refers	to	the	former	test	item	([pa])	as	one	that	is	

situated	within	the	training	space,	whereas	the	latter	([xa])	falls	outside	the	training	space.		
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(4)	 Generalizations	based	on	featural	representations.	

		 		 Labial	 Voicing	 Velar	 Fricative	

Train	 [ba]	 +	
	 	 	

	
[ta]	

	
+	

	 	
Test	 [pa]	 +	 +	 		 		

		 [xa]	 		 +	 0	 0	

For	the	algebraic	hypothesis,	the	notion	of	the	training	space	is	irrelevant—generalization	

depends	only	on	whether	or	not	the	test	item	belongs	to	the	relevant	class	(X=syllable),	and	

the	answer,	in	both	cases,	is	decidedly	‘yes’.		But	if	the	model	only	extracts	the	statistical	co-

occurrence	between	the	features	encountered	during	training,	then	performance	in	the	

cases	should	differ.	An	associationist	model	should	be	able	to	generalize	within	the	training	

space,	but	fail	to	extend	generalization	to	test	items	that	fall	outside	it.	And	these	

contrasting	predictions	allow	us	to	determine	whether	algebraic	rules	can	emerge	in	the	

course	of	learning.	

Marcus	(1998;	2001)	systematically	evaluated	this	question	in	various	associationist	

connectionist	models	(feedforward	network	and	simple	recurrent	network)	using	two	

distinct	functions—reduplication	and	the	past	tense.	Recent	research	by	Loula,	Baroni,	and	

Lake	(Lake	&	Baroni	2017;	Loula	et	al.	2018)	extended	this	investigation	to	explore	the	

capacity	of	various	recurrent	connectionist	networks	to	exhibit	systematicity	and	

compositionality.	One	set	of	simulations	examined	whether	a	network	trained	on	‘jump	

twice’	and	‘sing	twice’	will	systematically	generalize	to	‘dax	twice’	(Lake	&	Baroni	2017).	

Another	set	of	experiments	examined	whether	knowledge	of	complex	forms,	such	as	‘jump	

around	right’	entails	knowledge	of	its	component	‘jump	right’	(Loula	et	al.	2018).	

The	results	across	these	distinct	models	and	numerous	case	studies	were	quite	clear.	

Associationist	models	were	able	to	generalize	within	the	training	space,	but	consistently	

failed	to	systematically	generalize	to	items	that	fall	beyond	it.	For	example,	in	the	study	of	

Loula	and	colleagues	(Loula	et	al.	2018),	a	network	trained	on	jump	around	left,	jump	left	

and	walk	around	right	readily	generalized	to	jump	around	right.	This	is	only	expected,	given	
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that	all	components	of	the	test	item	(e.g.	__around	right)	formed	part	of	the	training	set.	But	

when	this	specific	bit	of	information	was	withheld	(e.g.,	when	trained	on	jump	left,	jump	

around	left,	walk	right),	generalization	accuracy	(to	jump	around	right)	dropped	to	2.46%.	

It	thus	appears	that	these	models	have	not	induced	an	algebraic	rule.	When	test	items	differ	

markedly	from	the	training	items,	generalization	fails.	

As	Pater	correctly	reminds	us,	connectionist	networks	are	certainly	able	to	implement	

algebraic	mechanisms	that	are	hardwired	in	the	model	‘innately’,	in	advance	of	learning.	

For	example,	Smolensky	(2006)	has	shown	how	the	tensor	product	could	be	used	to	

represent	syllable	structure	in	a	connectionist	model.	Models	equipped	with	operations	

over	variables	are	demonstrably	able	to	extend	generalizations	beyond	the	training	space	

(Marcus	2001).	On	the	other	hand,	associationist	models	that	are	not	connectionist	are	not	

guaranteed	to	succeed.	For	example,	the	original	Maxent	model	(Hayes	&	Wilson	2008)	

lacked	the	capacity	to	operate	over	variables,	and	for	this	reason,	it	failed	to	extend	

generalizations	across	the	board.	Once	this	capacity	was	added	to	the	model,	across-the-

board	generalizations	followed	(Berent	et	al.	2012).		

Summarizing	then,	generalizations	are	not	all	alike.	While	test	items	that	fall	within	the	

training	space	can	be	readily	mastered	by	associationist	models,	generalizations	outside	

the	training	space	present	a	serious	challenge	for	such	models.		

5.	MOVING	FORWARD.	Pater’s	review	calls	for	a	fusion	of	generative	linguistics	with	

connectionism.	He	believes	that	the	historic	tensions	between	these	two	research	

traditions	reflect	mere	differences	in	focus	(on	structured	representations	vs.	learning,	

respectively),	that	the	two	perspectives	are	complementary,	and	that	their	integration	

could	be	fruitful.		

In	our	view,	these	two	approaches	are	largely	antithetical.	Most	current	connectionist	

models	reject	the	fundamental	representational	commitments	of	generative	linguistics.	

They	eschew	the	notions	that	mental	representations	have	formal	constituent	structure	

and	that	mental	operations	are	structure-sensitive.	These	assumptions	concerning	the	

initial	state	shape	the	scope	of	learning.	There	is	no	hierarchical	organization	of	sentences,	
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morphemes,	or	syllables;	such	formal	constituents	play	no	causal	role	in	mental	processes.	

Instead,	learners	only	extract	the	statistical	structure	of	the	lexicon.	Productivity,	then,	is	

limited	to	lexical	analogies;	no	linguistic	generalizations	can	extend	across	the	board.	It	is	

difficult	to	see	how	such	mutually	exclusive	perspectives	could	be	integrated.	

Moving	forward,	we	see	only	two	options:	either	associationism	(in	the	strong	sense	of	an	

alternative	to	algebraic	rules)	is	right,	and	generative	linguistics	must	be	radically	revised,	

or	the	strong	associationism	hypothesis	must	be	replaced	by	a	weaker	version	that	is	

compatible	with	the	algebraic	hypothesis	that	has	guided	the	generativist	tradition.	To	

adjudicate	between	these	possibilities,	there	is	a	need	for	both	computational	and	

empirical	research	effort.	

At	the	computational	level,	we	need	a	more	targeted	investigation	of	generalization.		Most	

researchers	still	evaluate	their	models	by	examining	WHETHER	they	can	generalize	to	new	

test	items,	rather	than	examining	in	detail	which	generalizations	are	and	are	not	made.	The	

results	of	Marcus	(1998;	2001)	and	his	followers	(Berent	et	al.	2012;	Lake	&	Baroni	2017;	

Loula	et	al.	2018)	suggest	that	this	is	too	coarse	of	a	test.	Generalizations	falling	within	the	

training	space	are	no	guarantee	that	a	model	can	freely	generalize.	So	to	evaluate	the	

algebraic	hypothesis,	the	SCOPE	of	generalizations	is	paramount,	and	so	is	the	investigation	

of	SYSTEMATICITY	and	COMPOSITIONALITY.	It	is	only	through	such	a	targeted	research	program	

that	one	could	determine	whether	algebraic	machinery	is	emergent	(as	implied	by	Pater)	

or	whether	it	must	be	hardwired	in	the	model	innately,	in	advance	of	learning	(as	

suggested	by	Marcus).		

Equally	important	is	the	evaluation	of	generalizations	in	human	learners.	Informed	by	their	

own	intuitions,	generativist	linguists	have	assumed	that	humans	can	generalize	freely,	

beyond	the	training	space.	But	analytical	judgments	obtained	leisurely,	off-line,	hardly	

demonstrate	that	people	can	extend	such	generalizations	systematically	in	on-line	language	

processing.	While	there	is	a	handful	of	results	that	are	consistent	with	this	possibility	

(Berent	et	al.	2002a;	Berent	et	al.	2014;	Berent	&	Dupuis	2018),	the	scope	of	linguistic	

generalizations	is	rarely	considered.	This	remains	an	urgent	question	for	further	empirical	

evaluation.		
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Before	closing,	we	wish	to	briefly	touch	on	innateness.	Pater	seems	to	brush	the	innateness	

question	aside,	suggesting	that	all	models	assume	some	measure	of	innateness,	and	in	a	

sense,	he	is	of	course	right.	But	this	truism	doesn’t	mean	that	the	innateness	question	is	

inconsequential;	what	is	innate	matters.	Associationist	systems	typically	assume	only	some	

intrinsic	phonological	features	along	with	machinery	for	analyzing	correlation,	and	wind	

up	unable	to	capture	the	richness	of	compositionality;	generative	approaches	typically	

presume	that,	at	the	very	minimum,	the	machinery	of	compositionality	is	innate,	and	seek	

to	understand	nuanced	linguistic	relationships	as	a	function	of	such	machinery.	

Where	the	associationist	approach	has	yielded	relatively	little	in	the	way	of	specific	

characterizations	of	the	sort	of	linguistic	phenomena	that	are	the	bread	and	butter	of	

generative	linguistics,	one	might	well	wonder	where	the	attraction	to	the	more	

impoverished	associationist	view	lies;	in	our	view,	it	lies	in	an	oft-held	allergy	to	nativism.	

Researchers	such	as	Elman	(1996)	Everett	(2016)	and	Evans	(2014)	often	suggest	that	

innate	ideas	(of	any	kind)	are	biologically	implausible,	and	so	are	innate	linguistic	

primitives	and	constraints.	Associationism	eliminates	the	tensions	surrounding	innateness.	

If	there	are	no	rules,	then	there	could	be	no	innate	universal	rules	either.	And	although	de	

facto,	connectionist	networks	encode	linguistic	knowledge,	not	brain	activity,	much	of	the	

excitement	surrounding	connectionism	has	to	do	with	the	hope	of	reducing	the	cognitive	

(mentalistic)	level	of	explanation	to	the	body—either	the	brain	or	sensory	organs.	

We	do	not	believe	that	these	concerns	have	any	scientific	merit.	The	notion	of	innate	ideas	

is	perfectly	compatible	with	modern	biology	(Marcus	2004),	and	it	is	in	line	with	the	large	

literature	on	infant	core	cognition	(Bloom	2004;	Spelke	&	Kinzler	2007;	Bloom	2013).	In	

fact,	a	recent	line	of	research	suggests	that	the	resistance	to	innate	ideas	could	well	be	

grounded	in	core	cognition	itself	(Berent	et	al.	2018).	To	be	clear,	this	does	not	show	that	

scientists	are	biased,	and	it	certainly	doesn’t	demonstrate	that	language	is	innate.	But	these	

results	do	suggest	that	the	promise	of	connectionism	to	minimize	innate	knowledge	and	

ground	it	in	the	body	resonates	with	common	biases	that	lie	deep	within	the	human	mind.	

Finally,	some	words	about	integration.	Our	discussion	so	far	has	considered	

associationism—a	view	that,	by	definition,	is	incompatible	with	the	algebraic	hypothesis.	
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But	a	weaker	claim	that	SOME	linguistic	generalizations	are	formed	by	associations	could	

certainly	live	side	by	side	with	the	algebraic	view—this	is	precisely	the	approach	presented	

by	Pinker	and	colleagues.	

In	our	view,	this	integration	is	not	only	possible	but	necessary.	The	large	literature	on	

statistical	learning	shows	that	humans	(including	young	infants)	can	generalize	by	relying	

on	mechanisms	that	are	clearly	NOT	algebraic	(MacDonald	et	al.	1994;	Saffran	et	al.	1996).	

For	example,	people	demonstrably	generalize	irregular	inflection	to	novel	forms	(e.g.	

bouse-bice).	As	Pater	notes,	one	could,	of	course,	try	to	capture	these	generalizations	by	

rules	(Chomsky	&	Halle	1968;	Yang	2002;	Albright	&	Hayes	2003),	but	this	move	seems	

unmotivated.	Irregular	generalizations	are	exquisitely	sensitive	to	similarity—the	greater	

the	phonological	and	semantic	similarity	to	mouse	the	more	likely	people	are	to	choose	bice	

(Prasada	&	Pinker	1993;	Berent	et	al.	2002b;	Ramscar	2002).	Such	generalizations	have	all	

the	hallmarks	of	an	associative,	rather	than	an	algebraic,	process;	the	distinct	neural	

underpinnings	are	also	in	line	with	this	view	(Sahin	et	al.	2009).			

A	full	account	of	linguistic	productivity	would	likely	require	the	synthesis	of	associative	

mechanisms	along	with	algebraic	rules.	But	this	unification	must	maintain	the	

representational	commitments	of	the	algebraic	hypothesis	that	have	guided	the	generative	

tradition	from	its	inception.	Without	such	structured	representations	as	a	bedrock,	there	

can	be	no	adequate	integration.	
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