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Abstract
There is a pressing need to interconnect phys-

ical systems such as power grid and vehicles for 
efficient management and safe operations. Due 
to the diverse features of physical systems, there 
is hardly a one-size-fits-all networking solution 
for developing cyber-physical systems. Network 
slicing is a promising technology that allows net-
work operators to create multiple virtual networks 
on top of a shared network infrastructure. These 
virtual networks can be tailored to meet the 
requirements of different cyber-physical systems. 
However, it is challenging to design secure net-
work slicing solutions that can efficiently create 
end-to-end network slices for diverse cyber-physi-
cal systems. In this article, we discuss the challeng-
es and security issues of network slicing, study 
learning-assisted network slicing solutions, and 
analyze their performance under the denial-of-ser-
vice attack. We also present a design and imple-
mentation of a small-scale testbed for evaluating 
the network slicing solutions. 

Introduction
An essential feature of cyber-physical systems is 
to connect physical devices and infrastructure 
such as autonomous vehicles and micro power 
grid to the Internet for efficient system control, 
management, and monitoring [1]. Since different 
physical systems have diverse requirements of 
network resources, there is hardly a one-size-
fits-all networking solution for cyber-physical sys-
tems. It is also impractical to deploy customized 
network infrastructure and protocols for each 
cyber-physical system. Therefore, how to effi-
ciently connect heterogeneous physical systems 
to the Internet in a cost-effective way is still an 
open problem. 

Network slicing emerges as a promising tech-
nology for serving the specific needs of vertical 
industries [2]. The network slicing technology 
empowers mobile network operators to create 
multiple virtual networks (i.e., network slices) on 
top of shared physical network infrastructure [3]. 
The virtual network can be customized to satisfy a 
variety of requirements of network performance 
and functionality. For instance, a network slice 
can be created to support smart grid communi-
cations with ultra-low latency and high reliability. 
Meanwhile, since smart grid control usually does 
not need to transfer a large amount of data, the 
slice can be customized with low throughput. 

To support compute-intensive applications 
such as machine learning and artificial intelli-

gence, an increasing number of cyber-physical 
systems require powerful computing infra-
structure. For example, autonomous vehicles 
need high computation capability to analyze 
the data collected from various sensors such as 
light detection and ranging (lidar) and cameras 
in a real-time fashion. Since in-vehicle compu-
tation often radiates heat that can dramatical-
ly increase the temperature inside the car, it 
is desirable to offload the compute-intensive 
tasks to edge computing infrastructure [4, 5]. 
Hence, connecting modern physical systems 
usually needs resources from multiple techni-
cal domains such as radio access networks and 
computing servers. 

The main difficulty in network slicing lies in 
how to utilize the physical network and com-
puting infrastructure efficiently, and provide reli-
able and secure connection and computation 
to cyber-physical systems. Many conceptual net-
work slicing frameworks have been proposed 
by researchers from both academia and indus-
try [2, 3, 6–8]. However, only a few papers 
provide in-depth discussion of network slicing 
algorithms [9–11] and present realizable sys-
tem designs [12, 13]. Although these papers 
provide useful insights on network slicing and 
lay foundations for prototyping network slic-
ing solutions, they solely focus on slicing radio 
access networks and do not consider the per-
formance of a network slice that requires mul-
tiple resources (e.g., radio and computation 
resources). Moreover, none of these papers 
design network slicing algorithms and systems 
with consideration of multiple radio access 
points and edge servers. In addition, existing 
works fail to evaluate the reliability and vulnera-
bility of network slicing solutions. 

In this article, we discuss the challenges of 
end-to-end network slicing that involves multi-do-
main resource orchestration for heterogeneous 
cyber-physical systems. Then we study learning-as-
sisted network slicing solutions [14, 15] and ana-
lyze their performance under the denial of service 
(DoS) attack. Finally, we present the software and 
hardware required to develop the network slicing 
testbed. 

The remainder of the article is organized as 
follows. First, we discuss the challenges of end-
to-end network slicing for cyber-physical systems. 
Then we present learning-assisted end-to-end net-
work slicing solutions. We next evaluate the per-
formance of the solution under the DoS attack 
through simulations. We show the design and 
implementation of the proposed solution on a 
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small-scale testbed. Then we discuss the future 
research directions and conclude the article.

cHAllenges of end-to-end network slIcIng
In this section, we discuss the challenges of end-
to-end network slices for cyber-physical systems. 
Figure 1 provides an example of network slicing 
for three cyber-physical systems: smart grid, con-
nected cars, and networked drones. Here, there 
are two parties: service providers and network 
operators. The service provider aims to create 
network slices to connect its physical systems, and 
the network operator owns and manages its net-
work infrastructure. The service provider requests 
that the network operator create network slices 
and will, once instantiated, manage them. Given 
requests from multiple service providers, the net-
work operator instantiates network slices to meet 
the diverse requirements of service providers 
while optimizing the utilization of the network 
infrastructure.

Heterogeneous resource deMAnd vs. slIce perforMAnce
Modern cyber-physical systems require a vari-
ety of cyber resources from multiple technical 
domains. For example, autonomous cars need 
communication and computation resources to 
transfer and analyze sensor data, respectively. 
The fundamental research challenge of slicing 
network resources for cyber-physical systems lies 
in the diffi  culty of determining how the resource 
allocation in each technical domain impacts the 
performance of a network slice. Some cyber-phys-
ical systems (e.g., smart grid) require ultra-reliable 
and low-latency transmission but few computa-
tion resources. Some cyber-physical systems such 
as connected cars and networked drones need 
both low-latency communication connections and 
high-performance computation resources. Since 
cyber-physical systems have diverse requirements 
on different resources, the network operator is 
unable to develop a slice performance model 
that correctly characterizes the slice performance 
vs. the resource allocation in different technical 
domains. As a result, it is challenging to orches-
trate multi-domain resources to build a network 
slice for a cyber-physical system. 

Cyber-physical systems are usually deployed 
over a large area, and require a collection of 
communication and computation infrastructure 
that can cover the area. That is to say, a net-

work slice consists of many radio access points 
and edge servers. When creating a network slice, 
the network operator needs to consider the spa-
tial diversity of the traffic loads generated from 
cyber-physical systems and allocate the resource 
properly among radio access points and edge 
servers to ensure the performance of cyber-physi-
cal systems and support seamless mobility. Unfor-
tunately, the fact that the traffic and workloads 
of cyber-physical systems are time-variant further 
complicates the network slicing problem. 

IsolAtIon vs. utIlIZAtIon
In general, there are two objectives in network 
slicing. The fi rst one is to optimize the utilization 
of network and computation infrastructure in 
order to maximize the profi t of network operators. 
The second one is to enforce the performance 
and functional isolation among network slices in 
order to ensure the performance of network slic-
es. The performance isolation guarantees that the 
performance of a network slice will not aff ect or 
be affected by other network slices created on 
the same network and computation infrastructure, 
and the functional isolation allows service provid-
ers to customize their network slices and control 
their network operations independently [13].

There is, however, a conflict between isola-
tion and resource efficiency. In wireless com-
munications, it is important to leverage diversity 
gains such as frequency diversity and multi-us-
er diversity to improve the efficiency of radio 
resources and mitigate dynamic channel fading. 
Exploring the diversity gain requires pooling the 
resources together. The diversity gain fades away 
as the resources are sliced into pieces for iso-
lation. Therefore, functional and performance 
isolation may reduce the efficiency of utilizing 
the resources. 

Functional isolation provides service providers 
(i.e., cyber-physical systems) fl exibility in managing 
their virtual network and computation resources. 
As a result, service providers can customize their 
slice operations such as traffi  c load balancing and 
user scheduling. Customized slice management 
strategies change the demands of communica-
tion and computation resources across network-
ing and computing infrastructure. With functional 
isolation, optimizing network slicing requires the 
network operator to learn the customized man-
agement strategies and traffi  c profi les of individual 
network slices. Sharing the information about the 
management strategies and traffic profiles with 
network operators will incur excessive communi-
cation overhead and is not practical. 

vIrtuAlIZAtIon vs. securItY
Network slicing may introduce new vulnerabilities 
to cyber-physical systems. Network slicing enables 
network operators to manage networking and 
computing infrastructure, and service providers 
to control the operations of individual network 
slices. When creating a network slice, network 
operators allocate resources from multiple tech-
nical domains to serve a cyber-physical system. 
These resources are virtual and instantiated on 
physical networking and computing infrastructure. 
The service provider (i.e., cyber-physical systems) 
manage the virtual resources to maximize their 
utilities. 

FIGURE 1. End-to-end network slicing for cyber-physical systems.
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When an attacker launches an attack (e.g., 
DoS) toward the network infrastructure, it is very 
diffi  cult for network operators to detect the attack 
because they do not know how the service pro-
vider utilizes the resources and whether the traffi  c 
loads are legitimate or not. The service providers 
are also unable to detect the attack because they 
only manage the virtual resources and have no 
information about the mapping from virtual to 
physical resources. When the attack happens, the 
performance of aff ected network slices degrades. 
However, the service provider may recognize 
the attack as a change of mapping from virtual 
to physical resources (i.e., the inflation of virtu-
al resources). As a result, service providers may 
request more virtual resources from the network 
operators. 

The network operators may treat such requests 
as the traffi  c load increases in network slices rath-
er than recognizing them as abnormal behaviors 
of the network slice.

leArnIng-AssIsted secure network slIcIng
The security vulnerability of network slicing for 
cyber-physical systems is due to the lack of infor-
mation sharing between the network operator 
and service provider. However, sharing the infor-
mation (e.g., resource management strategies and 
traffi  c load profi les) is not practical because of the 
excessive communication and computation over-
head. In this section, we discuss learning-assisted 
network slicing methods that allow the network 
operator to learn the performance of a network 
slice under given resource allocation. The learning 
results help the network operator to understand 
how the service providers (i.e., cyber-physical sys-
tems) utilize the communication and computation 
resources and what the utilities of the network 
slice are. The network operator may leverage such 
learning results to detect malicious attacks toward 
its network infrastructure and adjust its resource 
orchestration solutions to mitigate the impact of 
the attack on the performance of network slices. 
We first study the network slicing solution with 
consideration of a single network node and then 

extend the solution to create network slices over 
multiple network nodes. Here, we assume that a 
network node is composed of both networking 
and computation resources. 

network slIcIng on A sIngle network node
The network slicing solution for a single network 
node is to efficiently utilize the networking and 
computation resources while ensuring the perfor-
mance and functional isolation among network 
slices [14]. As shown in Fig. 2a, the network slic-
ing solution consists of two main components: the 
learning-assisted resource orchestrator and the 
resource hypervisor. 

Learning-assisted resource orchestrator: The 
resource orchestrator is responsible for orches-
trating the resource allocation in multiple tech-
nical domains to support services in network 
slices. Due to the diverse resource demands of 
cyber-physical systems, the resource orchestra-
tor is unable to model the relationship between 
the slice performance and multi-domain resource 
allocation. Therefore, the orchestrator adopts a 
probabilistic model to represent the slice perfor-
mance function, fi(xi), of the ith slice under diff er-
ent resource allocation, xi, and exploits the model 
to learn the properties of the function. Based on 
the learning results, the orchestrator estimates the 
gradient of the performance function for each 
slice and optimizes the resource allocation among 
the slices by using the proximal gradient method.  

Resource hypervisor: The function of the 
resource hypervisor is to map the virtual resourc-
es to communication and computation resourc-
es in the network node. In the virtual-to-physical 
resource mapping, the resource hypervisor knows 
the channel state information of the users sched-
uled on the virtual resources. Therefore, the 
hypervisor can exploit the diversity gains in wire-
less communications to improve the effi  ciency of 
the radio resources. 

Network slicing procedure: Figure 2a illustrates 
the network slicing procedure on a single network 
node. The service providers send slice requests 
to the network operator to create network slices. 

FIGURE 2. The illustration of network slicing procedures for a) a single network node [14]; b) multiple net-
work nodes [15].
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Based on the available resources and service level 
agreement, the network operator admits selected 
slice requests. Then the learning-assisted resource 
orchestrator allocates multi-domain resources 
to network slices to support their services. The 
resources allocated to network slices are virtual 
resources. Service providers can customize their 
resource management strategies and schedule 
traffic loads on the virtual resources. Afterward, 
the resource hypervisor maps the virtual resourc-
es to networking and computing infrastructure. 

Security analysis: The learning-assisted 
resource orchestrator is able to detect a DoS 
attack by tracking the properties of the slice per-
formance function. When a network slice expe-
riences a DoS attack, given the same resource 
allocation, the performance of the slice will be 
degraded. By learning the properties of the slice 
performance function, the resource orchestrator 
will observe dramatic changes in the efficiency 
of the resource utilization in the slice, and thus 
detect the DoS attack. Then the resource orches-
trator will reduce the resource allocation to the 
slice and thus mitigate the impact of the attack. 

Network Slicing over Multiple Network Nodes
With consideration of multiple network nodes, 
the network operator needs to properly allocate 
resources to each network node to meet the cov-
erage requirements of cyber-physical systems and 
support mobility. To this end, we design a new 
network slicing solution that integrates the alter-
nating direction method of multipliers (ADMM), 
a learning-assisted optimization algorithm and the 
multi-domain resource hypervisor [15]. In the solu-
tion, the network slicing problem is decomposed 
into subproblems that can be solved by individual 
network nodes based on the ADMM. Since the 
total amount of resources can be allocated to a 
network slice is determined by the service level 
agreement, a multi-node resource coordinator is 
designed to coordinate resource orchestration 
among network nodes and enforce the service 
level agreement. 

Multi-node resource coordinator: The coordi-
nator controls the multi-domain resource orches-
tration in network nodes and enforces network 
slices to be served based on their service level 
agreement with the network operator. As shown 
in Fig. 2b, the multi-node resource coordinator 
learns the performance of network slices on each 
network node via the resource allocation report, 
X, and controls the resource orchestration by 
adapting the auxiliary variables, Z, and the vari-
ables, U. On each network node, the learning-as-
sisted resource orchestrator incorporates Z and U 
in allocating resources to network slices.

Security analysis: The multi-node resource 
coordinator helps mitigate the impact of malicious 
attacks toward a network node by controlling the 
resource allocation to the node. For example, if 
a network experiences a DoS attack, the auxilia-

ry variables, Z, and the variables, U, reported by 
the learning-assisted resource orchestrator will be 
changed. In general, such a change informs the 
multi-node resource coordinator that allocating 
resources to the network does not improve the 
performance of the network slices. As a result, 
the multi-node resource coordinator will reduce 
the resource allocation to the network node and 
re-balance the resource distribution among other 
network nodes that can meet the requirements 
of the network slices. Eventually, no network slice 
subjected to the DoS attack will be hosted on the 
network node.

Slice Performance under DoS Attack
In this section, we perform network simulations to 
evaluate the performance of the learning-assisted 
network slicing solution under a DoS attack. In 
the simulation, there are five network nodes, and 
each node consists of five users. For supporting 
cyber-physical systems, a network slice is com-
posed of three types of resources: uplink and 
downlink radio, and computation resources. The 
total amount of each resource is 100 units. We 
assume that the utility function of the ith slice in 
the jth network node is

ri, j = αkk∈K∑ ⋅ (xi, j,k )  
where xi,j,k is the kth resource of the ith slice in 
the jth network node. ak is the weight for the kth 
resource and generated according to a uniform 
distribution ranging from 1 to 10. We compare 
the performance of the learning-assisted algo-
rithm with a baseline algorithm that allocates all 
resources evenly among all the network slices and 
distributes the resources of a network slice evenly 
to all network nodes.

Figure 3a shows the performance of the learn-
ing-assisted algorithm under a DoS attack. The 
attack is launched toward one node at the 20th 
time slot. In the beginning, the learning-assisted 
algorithm appropriates the same resource allo-
cation as the baseline algorithm does. Then the 
learning-assisted algorithm gradually learns the 
slice performance functions and improves the 
overall utilities by optimizing the resource allo-
cation among nodes and slices. The learning-as-
sisted algorithm converges after the 6th time slot 
time and obtains 1.17 performance improve-
ment compared to the baseline algorithm. Once 
an attack on a node occurs, the performance of 
network slices significantly decreases under both 
the learning-assisted algorithm and baseline algo-
rithm. The algorithm is able to learn the chang-
es of the resource utilization efficiency on each 
node with respect to the slice performance. The 
learned results help to detect the attack on nodes 
and further adjust the resource allocation among 
nodes. For example, the algorithm allocates more 
resources toward the nodes with higher resource 
utilization efficiency and decreases the resource 
provision of nodes with lower resource utilization 
efficiency. In this way, the malicious attack on the 
node can be excluded from the network. Since 
the resources are favorably allocated to high effi-
ciency nodes, the learning-assisted algorithm mit-
igates the impact of the DoS attack and restores 
nearly 98 percent of the performance of the net-
work slices. In addition, under the DoS attack, the 

By learning the properties of the slice performance function, the resource orchestrator will observe 
dramatic changes in the efficiency of the resource utilization in the slice, and thus detect the  

DoS attack. Then the resource orchestrator will reduce the resource allocation to the slice  
and thus mitigate the impact of the attack.
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slice performance with the learning-assisted algo-
rithm is 1.45 better than that with the baseline 
algorithm.

Figure 3b shows the performance of the net-
work slices when the number of network nodes 
instigated by the DoS attack increases. The total 
number of network nodes in the simulation is 
10. Without attacks, the learning-assisted algo-
rithm obtains 1.39 better performance than the 
baseline algorithm. When the number of network 
nodes experiencing the DoS attack increases, 
the performance of the network slices decreases 
under both algorithms. However, the learning-as-
sisted algorithm is able to minimize the impact 
of the attack on the performance of the network 
slices. For example, when eight network nodes 
are attacked, the learning-assisted algorithm can 
identify the under-attack nodes and adjust the 
resource allocation among nodes to exclude the 
malicious attacks in the network. As a result, the 
slice performance obtained by the learning-assist-
ed algorithm is 4.63 better than that with the 
baseline algorithm. 

These simulation results validate the learn-
ing-assisted network slicing solution’s ability to 
mitigate the impact of the DoS attack on the per-
formance of the network slices. In other words, 
the learning-assisted network slicing solution can 
create network slices that are reliable and secure 
for cyber-physical systems. 

sYsteM prototYpIng And results
In this section, we present the design of a small-
scale prototype for evaluating the end-to-end net-
work slicing solutions. 

prototYpe desIgn
System Hardware: In the prototype, we consider the 
radio communication network and GPU computing 
platform as the main components. As shown in Fig. 
4, the prototype consists of two network nodes, and 
each node has both radio and computing resourc-
es. The radio access network and core network 
are implemented based on the OpenAirInterface 
(OAI)1 LTE platform and openair-cn,respectively. 
We deploy two eNodeBs in different places to 
emulate a cellular network with limited co-chan-
nel interference. The computing platform is built 
based on the NVIDIA CUDA-enabled GPU.2 We 
use a computer with two NVIDIA GTX 1080Ti as 
the computing platform. Ettus USRP B210 SDR is 

adopted as the RF front-end of an eNodeB, and 
LTE dongles are used to emulate mobile users.

Radio Resource Hypervisor: The radio 
resource hypervisor maps the virtual radio 
resources to physical radio resources in LTE net-
works, that is, physical resource blocks (PRBs) 
of physical uplink/downlink shared channels 
(PUSCH/PDSCH). Here, we define the virtual 
resource as radio bandwidth that can be fl exibly 
allocated to users by network slices (e.g., 360 
kHz). We let network slices on a node share the 
same control plane following the LTE standards, 
and focus on allocating the uplink/downlink 
PRB resources in the user plane. As illustrated 
in Fig. 4b, the radio resource hypervisor maps 
users’ virtual radio resources to PRBs. Since the 
user information (i.e., channel condition and vir-
tual resources) is known during the mapping, 
we leverage the information to maximize the 
network throughput. In particular, we greedily 
select the user with the best channel condition 
for each PRB.

Computing Resource Hypervisor: The com-
puting resource hypervisor maps virtual comput-
ing resources to the GPU computing resources. 
In the prototype, we use the CUDA programming 
model, in which an application can invoke multi-
ple kernels, and executing each kernel requires a 
number of CUDA threads. To manage the com-
puting resource, we develop a token-based ker-
nel scheduler to control the execution of kernels. 
Here, the number of tokens reflect the amount 
of virtual computing resources. That is, a user 
with more tokens is able to use more comput-
ing resources. As illustrated in Fig. 4c, the kernel 
scheduler dispatches the kernels according to 
the available tokens of users. We develop a Ker-
nelSpawn function to manage users’ kernels as 
a first-in first-out (FIFO) queue. Once a user has 
suffi  cient tokens, the user’s kernel is pulled out of 
the queue and executed.

eXperIMentAl results
With the system prototype, we evaluate the per-
formance of the learning-assisted algorithm under 
a DoS attack. In the experiment, we create three 
network slices over two network nodes to serve 
six mobile users. Each network node hosts three 
network slices, and one user is associated with a 
network slice on a network node. In the experi-
ment, a DoS attack is launched toward network 

FIGURE 3. The simulation results: a) the performance vs. time; b) the performance vs. the number of attacked 
nodes.

1 OpenAirInferace is an open 
source platform and imple-
mentation of 3rd Generation 
Partnership Project (3GPP) 
cellular networks; https:git-
lab.eurecom.fr/oai

2 CUDA is a GPU parallel 
computing architecture 
developed by NVIDIA.
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slices 1 and 3 on network nodes 2 and 1, respec-
tively (Fig. 4).

Figure 5 shows resource allocated to network 
slices on different nodes with the baseline and 
learning-assisted algorithms. Figure 5a shows that 
all resources of network slices 1 and 3 are allocat-
ed by the learning-assisted algorithm to network 
nodes 1 and 2, respectively. This result verifies 
that the learning-based algorithm can identify the 
under-attack node by deriving from the resource 
utilization effi  ciency. With the learned results, the 
learning-based algorithm allocates resources to 
the high-effi  ciency nodes to obtain higher perfor-
mance. As a result, the performance of the net-
work slices will not be degraded signifi cantly. This 
result verifi es that the learning-assisted algorithm 
can mitigate the impact of the DoS attack by 
controlling the resource allocation. On the other 
hand, the baseline algorithm is unable to adjust 
the resource allocation under the DoS attack, as 
shown in Fig. 5b. 

conclusIon And future work
In this article, we have discussed the needs and 
challenges of supporting cyber-physical systems 
with virtual network slices. By providing network 
slices with functional and performance isola-
tion to various vertical services, the attack on 
a single slice may not affect the performance 
of others. The desired virtualization techniques 
should be able to isolate the eff ect of attacks on 
the virtual resource layer without affecting the 
physical infrastructures. Furthermore, we have 
identified the security vulnerability of network 
slicing caused by the multi-domain resource vir-

tualization. Given the numerous attack types 
(e.g., DoS and man-in-the-middle) and the com-
plicated influence on cyber-physical systems 
(e.g., performance degradation), intelligent solu-
tions for identifying attacks, isolating attacks’ 
influence, and excluding attacks from the net-
work are highly desired. Since machine learning 
(ML) techniques have been successfully applied 
in various areas such as computer vision and 
robot control, utilizing emerging ML and devel-
oping learning-based algorithms is promising to 
tackle various attacks on cyber-physical systems. 
To address the security issue, we have presented 
the learning-assisted network slicing solution and 
analyzed the performance of the network slices 
under DoS attacks. The simulation results show 
that the learning-assisted network slicing solution 
is able to mitigate the impact of a DoS attack 
on network slices. We have also presented the 
development of a small-scale testbed for evalu-
ating network slicing solutions for cyber-physical 
systems.
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