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ABSTRACT

There is a pressing need to interconnect phys-
ical systems such as power grid and vehicles for
efficient management and safe operations. Due
to the diverse features of physical systems, there
is hardly a one-size-fits-all networking solution
for developing cyber-physical systems. Network
slicing is a promising technology that allows net-
work operators to create multiple virtual networks
on top of a shared network infrastructure. These
virtual networks can be tailored to meet the
requirements of different cyber-physical systems.
However, it is challenging to design secure net-
work slicing solutions that can efficiently create
end-to-end network slices for diverse cyber-physi-
cal systems. In this article, we discuss the challeng-
es and security issues of network slicing, study
learning-assisted network slicing solutions, and
analyze their performance under the denial-of-ser-
vice attack. We also present a design and imple-
mentation of a small-scale testbed for evaluating
the network slicing solutions.

INTRODUCTION

An essential feature of cyber-physical systems is
to connect physical devices and infrastructure
such as autonomous vehicles and micro power
grid to the Internet for efficient system control,
management, and monitoring [1]. Since different
physical systems have diverse requirements of
network resources, there is hardly a one-size-
fits-all networking solution for cyber-physical sys-
tems. It is also impractical to deploy customized
network infrastructure and protocols for each
cyber-physical system. Therefore, how to effi-
ciently connect heterogeneous physical systems
to the Internet in a cost-effective way is still an
open problem.

Network slicing emerges as a promising tech-
nology for serving the specific needs of vertical
industries [2]. The network slicing technology
empowers mobile network operators to create
multiple virtual networks (i.e., network slices) on
top of shared physical network infrastructure [3].
The virtual network can be customized to satisfy a
variety of requirements of network performance
and functionality. For instance, a network slice
can be created to support smart grid communi-
cations with ultra-low latency and high reliability.
Meanwhile, since smart grid control usually does
not need to transfer a large amount of data, the
slice can be customized with low throughput.

To support compute-intensive applications
such as machine learning and artificial intelli-

gence, an increasing number of cyber-physical
systems require powerful computing infra-
structure. For example, autonomous vehicles
need high computation capability to analyze
the data collected from various sensors such as
light detection and ranging (lidar) and cameras
in a real-time fashion. Since in-vehicle compu-
tation often radiates heat that can dramatical-
ly increase the temperature inside the car, it
is desirable to offload the compute-intensive
tasks to edge computing infrastructure [4, 5].
Hence, connecting modern physical systems
usually needs resources from multiple techni-
cal domains such as radio access networks and
computing servers.

The main difficulty in network slicing lies in
how to utilize the physical network and com-
puting infrastructure efficiently, and provide reli-
able and secure connection and computation
to cyber-physical systems. Many conceptual net-
work slicing frameworks have been proposed
by researchers from both academia and indus-
try [2, 3, 6-8]. However, only a few papers
provide in-depth discussion of network slicing
algorithms [9-11] and present realizable sys-
tem designs [12, 13]. Although these papers
provide useful insights on network slicing and
lay foundations for prototyping network slic-
ing solutions, they solely focus on slicing radio
access networks and do not consider the per-
formance of a network slice that requires mul-
tiple resources (e.g., radio and computation
resources). Moreover, none of these papers
design network slicing algorithms and systems
with consideration of multiple radio access
points and edge servers. In addition, existing
works fail to evaluate the reliability and vulnera-
bility of network slicing solutions.

In this article, we discuss the challenges of
end-to-end network slicing that involves multi-do-
main resource orchestration for heterogeneous
cyber-physical systems. Then we study learning-as-
sisted network slicing solutions [14, 15] and ana-
lyze their performance under the denial of service
(DoS) attack. Finally, we present the software and
hardware required to develop the network slicing
testbed.

The remainder of the article is organized as
follows. First, we discuss the challenges of end-
to-end network slicing for cyber-physical systems.
Then we present learning-assisted end-to-end net-
work slicing solutions. We next evaluate the per-
formance of the solution under the DoS attack
through simulations. We show the design and
implementation of the proposed solution on a
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FIGURE1. End-to-end network slicing for cyber-physical systems.

small-scale testbed. Then we discuss the future
research directions and conclude the article.

CHALLENGES OF END-T0-END NETWORK SLICING

In this section, we discuss the challenges of end-
to-end network slices for cyber-physical systems.
Figure 1 provides an example of network slicing
for three cyber-physical systems: smart grid, con-
nected cars, and networked drones. Here, there
are two parties: service providers and network
operators. The service provider aims to create
network slices to connect its physical systems, and
the network operator owns and manages its net-
work infrastructure. The service provider requests
that the network operator create network slices
and will, once instantiated, manage them. Given
requests from multiple service providers, the net-
work operator instantiates network slices to meet
the diverse requirements of service providers
while optimizing the utilization of the network
infrastructure.

HETEROGENEQUS RESOURCE DEMAND VS. SLICE PERFORMANCE

Modern cyber-physical systems require a vari-
ety of cyber resources from multiple technical
domains. For example, autonomous cars need
communication and computation resources to
transfer and analyze sensor data, respectively.
The fundamental research challenge of slicing
network resources for cyber-physical systems lies
in the difficulty of determining how the resource
allocation in each technical domain impacts the
performance of a network slice. Some cyber-phys-
ical systems (e.g., smart grid) require ultra-reliable
and low-latency transmission but few computa-
tion resources. Some cyber-physical systems such
as connected cars and networked drones need
both low-latency communication connections and
high-performance computation resources. Since
cyber-physical systems have diverse requirements
on different resources, the network operator is
unable to develop a slice performance model
that correctly characterizes the slice performance
vs. the resource allocation in different technical
domains. As a result, it is challenging to orches-
trate multi-domain resources to build a network
slice for a cyber-physical system.

Cyber-physical systems are usually deployed
over a large area, and require a collection of
communication and computation infrastructure
that can cover the area. That is to say, a net-

work slice consists of many radio access points
and edge servers. When creating a network slice,
the network operator needs to consider the spa-
tial diversity of the traffic loads generated from
cyber-physical systems and allocate the resource
properly among radio access points and edge
servers to ensure the performance of cyber-physi-
cal systems and support seamless mobility. Unfor-
tunately, the fact that the traffic and workloads
of cyber-physical systems are time-variant further
complicates the network slicing problem.

SOLATION VS. UTILIZATION

In general, there are two objectives in network
slicing. The first one is to optimize the utilization
of network and computation infrastructure in
order to maximize the profit of network operators.
The second one is to enforce the performance
and functional isolation among network slices in
order to ensure the performance of network slic-
es. The performance isolation guarantees that the
performance of a network slice will not affect or
be affected by other network slices created on
the same network and computation infrastructure,
and the functional isolation allows service provid-
ers to customize their network slices and control
their network operations independently [13].

There is, however, a conflict between isola-
tion and resource efficiency. In wireless com-
munications, it is important to leverage diversity
gains such as frequency diversity and multi-us-
er diversity to improve the efficiency of radio
resources and mitigate dynamic channel fading.
Exploring the diversity gain requires pooling the
resources together. The diversity gain fades away
as the resources are sliced into pieces for iso-
lation. Therefore, functional and performance
isolation may reduce the efficiency of utilizing
the resources.

Functional isolation provides service providers
(i.e., cyber-physical systems) flexibility in managing
their virtual network and computation resources.
As a result, service providers can customize their
slice operations such as traffic load balancing and
user scheduling. Customized slice management
strategies change the demands of communica-
tion and computation resources across network-
ing and computing infrastructure. With functional
isolation, optimizing network slicing requires the
network operator to learn the customized man-
agement strategies and traffic profiles of individual
network slices. Sharing the information about the
management strategies and traffic profiles with
network operators will incur excessive communi-
cation overhead and is not practical.

VIRTUALIZATION VS. SECURITY

Network slicing may introduce new vulnerabilities
to cyber-physical systems. Network slicing enables
network operators to manage networking and
computing infrastructure, and service providers
to control the operations of individual network
slices. When creating a network slice, network
operators allocate resources from multiple tech-
nical domains to serve a cyber-physical system.
These resources are virtual and instantiated on
physical networking and computing infrastructure.
The service provider (i.e., cyber-physical systems)
manage the virtual resources to maximize their
utilities.
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FIGURE 2. The illustration of network slicing procedures for a) a single network node [14]; b) multiple net-

work nodes [15].

When an attacker launches an attack (e.g.,
DoS) toward the network infrastructure, it is very
difficult for network operators to detect the attack
because they do not know how the service pro-
vider utilizes the resources and whether the traffic
loads are legitimate or not. The service providers
are also unable to detect the attack because they
only manage the virtual resources and have no
information about the mapping from virtual to
physical resources. When the attack happens, the
performance of affected network slices degrades.
However, the service provider may recognize
the attack as a change of mapping from virtual
to physical resources (i.e., the inflation of virtu-
al resources). As a result, service providers may
request more virtual resources from the network
operators.

The network operators may treat such requests
as the traffic load increases in network slices rath-
er than recognizing them as abnormal behaviors
of the network slice.

LEARNING-ASSISTED SECURE NETWORK SLICING

The security vulnerability of network slicing for
cyber-physical systems is due to the lack of infor-
mation sharing between the network operator
and service provider. However, sharing the infor-
mation (e.g., resource management strategies and
traffic load profiles) is not practical because of the
excessive communication and computation over-
head. In this section, we discuss learning-assisted
network slicing methods that allow the network
operator to learn the performance of a network
slice under given resource allocation. The learning
results help the network operator to understand
how the service providers (i.e., cyber-physical sys-
tems) utilize the communication and computation
resources and what the utilities of the network
slice are. The network operator may leverage such
learning results to detect malicious attacks toward
its network infrastructure and adjust its resource
orchestration solutions to mitigate the impact of
the attack on the performance of network slices.
We first study the network slicing solution with
consideration of a single network node and then

extend the solution to create network slices over
multiple network nodes. Here, we assume that a
network node is composed of both networking
and computation resources.

NETWORK SLICING ON A SINGLE NETWORK NODE

The network slicing solution for a single network
node is to efficiently utilize the networking and
computation resources while ensuring the perfor-
mance and functional isolation among network
slices [14]. As shown in Fig. 2a, the network slic-
ing solution consists of two main components: the
learning-assisted resource orchestrator and the
resource hypervisor.

Learning-assisted resource orchestrator: The
resource orchestrator is responsible for orches-
trating the resource allocation in multiple tech-
nical domains to support services in network
slices. Due to the diverse resource demands of
cyber-physical systems, the resource orchestra-
tor is unable to model the relationship between
the slice performance and multi-domain resource
allocation. Therefore, the orchestrator adopts a
probabilistic model to represent the slice perfor-
mance function, fi(x;), of the ith slice under differ-
ent resource allocation, x;, and exploits the model
to learn the properties of the function. Based on
the learning results, the orchestrator estimates the
gradient of the performance function for each
slice and optimizes the resource allocation among
the slices by using the proximal gradient method.

Resource hypervisor: The function of the
resource hypervisor is to map the virtual resourc-
es to communication and computation resourc-
es in the network node. In the virtual-to-physical
resource mapping, the resource hypervisor knows
the channel state information of the users sched-
uled on the virtual resources. Therefore, the
hypervisor can exploit the diversity gains in wire-
less communications to improve the efficiency of
the radio resources.

Network slicing procedure: Figure 2a illustrates
the network slicing procedure on a single network
node. The service providers send slice requests
to the network operator to create network slices.
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By learning the properties of the slice performance function, the resource orchestrator will observe
dramatic changes in the efficiency of the resource utilization in the slice, and thus detect the

DoS attack. Then the resource orchestrator will reduce the resource allocation to the slice
and thus mitigate the impact of the attack.

Based on the available resources and service level
agreement, the network operator admits selected
slice requests. Then the learning-assisted resource
orchestrator allocates multi-domain resources
to network slices to support their services. The
resources allocated to network slices are virtual
resources. Service providers can customize their
resource management strategies and schedule
traffic loads on the virtual resources. Afterward,
the resource hypervisor maps the virtual resourc-
es to networking and computing infrastructure.
Security analysis: The learning-assisted
resource orchestrator is able to detect a DoS
attack by tracking the properties of the slice per-
formance function. When a network slice expe-
riences a DoS attack, given the same resource
allocation, the performance of the slice will be
degraded. By learning the properties of the slice
performance function, the resource orchestrator
will observe dramatic changes in the efficiency
of the resource utilization in the slice, and thus
detect the DoS attack. Then the resource orches-
trator will reduce the resource allocation to the
slice and thus mitigate the impact of the attack.

NETWORK SLICING OVER MuLTIPLE NETWORK NODES

With consideration of multiple network nodes,
the network operator needs to properly allocate
resources to each network node to meet the cov-
erage requirements of cyber-physical systems and
support mobility. To this end, we design a new
network slicing solution that integrates the alter-
nating direction method of multipliers (ADMM),
a learning-assisted optimization algorithm and the
multi-domain resource hypervisor [15]. In the solu-
tion, the network slicing problem is decomposed
into subproblems that can be solved by individual
network nodes based on the ADMM. Since the
total amount of resources can be allocated to a
network slice is determined by the service level
agreement, a multi-node resource coordinator is
designed to coordinate resource orchestration
among network nodes and enforce the service
level agreement.

Multi-node resource coordinator: The coordi-
nator controls the multi-domain resource orches-
tration in network nodes and enforces network
slices to be served based on their service level
agreement with the network operator. As shown
in Fig. 2b, the multi-node resource coordinator
learns the performance of network slices on each
network node via the resource allocation report,
X, and controls the resource orchestration by
adapting the auxiliary variables, Z, and the vari-
ables, U. On each network node, the learning-as-
sisted resource orchestrator incorporates Z and U
in allocating resources to network slices.

Security analysis: The multi-node resource
coordinator helps mitigate the impact of malicious
attacks toward a network node by controlling the
resource allocation to the node. For example, if
a network experiences a DoS attack, the auxilia-

ry variables, Z, and the variables, U, reported by
the learning-assisted resource orchestrator will be
changed. In general, such a change informs the
multi-node resource coordinator that allocating
resources to the network does not improve the
performance of the network slices. As a result,
the multi-node resource coordinator will reduce
the resource allocation to the network node and
re-balance the resource distribution among other
network nodes that can meet the requirements
of the network slices. Eventually, no network slice
subjected to the DoS attack will be hosted on the
network node.

SLICE PERFORMANCE UNDER D0S ATTACK

In this section, we perform network simulations to
evaluate the performance of the learning-assisted
network slicing solution under a DoS attack. In
the simulation, there are five network nodes, and
each node consists of five users. For supporting
cyber-physical systems, a network slice is com-
posed of three types of resources: uplink and
downlink radio, and computation resources. The
total amount of each resource is 100 units. We
assume that the utility function of the ith slice in
the jth network node is

1. =2k€]€ak "X jx)

where x;; is the kth resource of the ith slice in
the jth network node. oy is the weight for the kth
resource and generated according to a uniform
distribution ranging from 1 to 10. We compare
the performance of the learning-assisted algo-
rithm with a baseline algorithm that allocates all
resources evenly among all the network slices and
distributes the resources of a network slice evenly
to all network nodes.

Figure 3a shows the performance of the learn-
ing-assisted algorithm under a DoS attack. The
attack is launched toward one node at the 20th
time slot. In the beginning, the learning-assisted
algorithm appropriates the same resource allo-
cation as the baseline algorithm does. Then the
learning-assisted algorithm gradually learns the
slice performance functions and improves the
overall utilities by optimizing the resource allo-
cation among nodes and slices. The learning-as-
sisted algorithm converges after the 6th time slot
time and obtains 1.17x performance improve-
ment compared to the baseline algorithm. Once
an attack on a node occurs, the performance of
network slices significantly decreases under both
the learning-assisted algorithm and baseline algo-
rithm. The algorithm is able to learn the chang-
es of the resource utilization efficiency on each
node with respect to the slice performance. The
learned results help to detect the attack on nodes
and further adjust the resource allocation among
nodes. For example, the algorithm allocates more
resources toward the nodes with higher resource
utilization efficiency and decreases the resource
provision of nodes with lower resource utilization
efficiency. In this way, the malicious attack on the
node can be excluded from the network. Since
the resources are favorably allocated to high effi-
ciency nodes, the learning-assisted algorithm mit-
igates the impact of the DoS attack and restores
nearly 98 percent of the performance of the net-
work slices. In addition, under the DoS attack, the

40

|EEE Network - May/June 2020

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 22,2020 at 18:45:03 UTC from IEEE Xplore. Restrictions apply.



—&—Learming-Assisted|

Normalized Reward

0.7f|—a— Baseline
0 5 10 15 20 25 30 35 40
Time
(a)

Normalized Reward

—6—Leaming-Assisted

i I 1 s Baseline
0 2 4 6 8
The number of attacked nodes
(b)

FIGURE 3. The simulation results: a) the performance vs. time; b) the performance vs. the number of attacked

nodes.

slice performance with the learning-assisted algo-
rithm is 1.45x better than that with the baseline
algorithm.

Figure 3b shows the performance of the net-
work slices when the number of network nodes
instigated by the DoS attack increases. The total
number of network nodes in the simulation is
10. Without attacks, the learning-assisted algo-
rithm obtains 1.39x better performance than the
baseline algorithm. When the number of network
nodes experiencing the DoS attack increases,
the performance of the network slices decreases
under both algorithms. However, the learning-as-
sisted algorithm is able to minimize the impact
of the attack on the performance of the network
slices. For example, when eight network nodes
are attacked, the learning-assisted algorithm can
identify the under-attack nodes and adjust the
resource allocation among nodes to exclude the
malicious attacks in the network. As a result, the
slice performance obtained by the learning-assist-
ed algorithm is 4.63x better than that with the
baseline algorithm.

These simulation results validate the learn-
ing-assisted network slicing solution’s ability to
mitigate the impact of the DoS attack on the per-
formance of the network slices. In other words,
the learning-assisted network slicing solution can
create network slices that are reliable and secure
for cyber-physical systems.

SYSTEM PROTOTYPING AND RESULTS

In this section, we present the design of a small-
scale prototype for evaluating the end-to-end net-
work slicing solutions.

PROTOTYPE DESIGN

System Hardware: In the prototype, we consider the
radio communication network and GPU computing
platform as the main components. As shown in Fig.
4, the prototype consists of two network nodes, and
each node has both radio and computing resourc-
es. The radio access network and core network
are implemented based on the OpenAirinterface
(OANT LTE platform and openair-cn,respectively.
We deploy two eNodeBs in different places to
emulate a cellular network with limited co-chan-
nel interference. The computing platform is built
based on the NVIDIA CUDA-enabled GPU.2 We
use a computer with two NVIDIA GTX 1080Ti as
the computing platform. Ettus USRP B210 SDR is

adopted as the RF front-end of an eNodeB, and
LTE dongles are used to emulate mobile users.

Radio Resource Hypervisor: The radio
resource hypervisor maps the virtual radio
resources to physical radio resources in LTE net-
works, that is, physical resource blocks (PRBs)
of physical uplink/downlink shared channels
(PUSCH/PDSCH). Here, we define the virtual
resource as radio bandwidth that can be flexibly
allocated to users by network slices (e.g., 360
kHz). We let network slices on a node share the
same control plane following the LTE standards,
and focus on allocating the uplink/downlink
PRB resources in the user plane. As illustrated
in Fig. 4b, the radio resource hypervisor maps
users’ virtual radio resources to PRBs. Since the
user information (i.e., channel condition and vir-
tual resources) is known during the mapping,
we leverage the information to maximize the
network throughput. In particular, we greedily
select the user with the best channel condition
for each PRB.

Computing Resource Hypervisor: The com-
puting resource hypervisor maps virtual comput-
ing resources to the GPU computing resources.
In the prototype, we use the CUDA programming
model, in which an application can invoke multi-
ple kernels, and executing each kernel requires a
number of CUDA threads. To manage the com-
puting resource, we develop a token-based ker-
nel scheduler to control the execution of kernels.
Here, the number of tokens reflect the amount
of virtual computing resources. That is, a user
with more tokens is able to use more comput-
ing resources. As illustrated in Fig. 4c, the kernel
scheduler dispatches the kernels according to
the available tokens of users. We develop a Ker-
nelSpawn function to manage users’ kernels as
a first-in first-out (FIFO) queue. Once a user has
sufficient tokens, the user’s kernel is pulled out of
the queue and executed.

EXPERIMENTAL RESULTS

With the system prototype, we evaluate the per-
formance of the learning-assisted algorithm under
a DosS attack. In the experiment, we create three
network slices over two network nodes to serve
six mobile users. Each network node hosts three
network slices, and one user is associated with a
network slice on a network node. In the experi-
ment, a DoS attack is launched toward network

1 OpenAirinferace is an open

source platform and imple-

mentation of 3rd Generation

Partnership Project (3GPP)
cellular networks; https:git-
lab.eurecom.fr/oai

2 CUDA is a GPU parallel
computing architecture
developed by NVIDIA.
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FIGURE 5. The performance of network slicing solutions under a DoS$ attack.

slices 1 and 3 on network nodes 2 and 1, respec-
tively (Fig. 4).

Figure 5 shows resource allocated to network
slices on different nodes with the baseline and
learning-assisted algorithms. Figure 5a shows that
all resources of network slices 1 and 3 are allocat-
ed by the learning-assisted algorithm to network
nodes 1 and 2, respectively. This result verifies
that the learning-based algorithm can identify the
under-attack node by deriving from the resource
utilization efficiency. With the learned results, the
learning-based algorithm allocates resources to
the high-efficiency nodes to obtain higher perfor-
mance. As a result, the performance of the net-
work slices will not be degraded significantly. This
result verifies that the learning-assisted algorithm
can mitigate the impact of the DoS attack by
controlling the resource allocation. On the other
hand, the baseline algorithm is unable to adjust
the resource allocation under the DoS attack, as
shown in Fig. 5b.

ConcLusion AND FuTURE WORK

In this article, we have discussed the needs and
challenges of supporting cyber-physical systems
with virtual network slices. By providing network
slices with functional and performance isola-
tion to various vertical services, the attack on
a single slice may not affect the performance
of others. The desired virtualization techniques
should be able to isolate the effect of attacks on
the virtual resource layer without affecting the
physical infrastructures. Furthermore, we have
identified the security vulnerability of network
slicing caused by the multi-domain resource vir-

tualization. Given the numerous attack types
(e.g., DoS and man-in-the-middle) and the com-
plicated influence on cyber-physical systems
(e.g., performance degradation), intelligent solu-
tions for identifying attacks, isolating attacks’
influence, and excluding attacks from the net-
work are highly desired. Since machine learning
(ML) techniques have been successfully applied
in various areas such as computer vision and
robot control, utilizing emerging ML and devel-
oping learning-based algorithms is promising to
tackle various attacks on cyber-physical systems.
To address the security issue, we have presented
the learning-assisted network slicing solution and
analyzed the performance of the network slices
under DoS attacks. The simulation results show
that the learning-assisted network slicing solution
is able to mitigate the impact of a DoS attack
on network slices. We have also presented the
development of a small-scale testbed for evalu-
ating network slicing solutions for cyber-physical
systems.
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