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ABSTRACT Widely deployed smart cameras are generating a large amount of video data and capable of
processing frames on devices. Empowered by edge computing, the video data can also be offloaded to edge
servers for processing. By leveraging the on-device processing and computation offloading, we propose a
federated video analytics system named FedVision to efficiently provision video analytics across devices and
servers. The challenge of designing FedVision is to optimally use the computing and networking resources for
video analytics. Since there is no closed-form expression of the system performance, black-box optimization
is employed to optimize the system performance. However, using black-box optimization directly incurs
excessive system queries that lead to very poor system performance. To solve this problem, we design a
new optimization method that integrates black-box optimization with Neural Processes (NPs) as a system
performance approximator. This method allows black-box optimizer to query NPs instead of the real system.
We validate the performance of FedVision and the new optimization method using both numerical results and
experiments with a testbed.

INDEX TERMS Edge computing, black-box optimization, neural process, machine learning, video analytics.

I. INTRODUCTION
Edge computing coupled with advances in 5G is enabling a
plethora of emerging applications, where various smart de-
vices can be connected with each other via the internet and
empowered with data analytics [1], [2]. In particular, a large
number of smart cameras can be connected to the network and
produce a huge volume of video data. To analyze these data
efficiently poses pressing challenges to current networking
and computing architectures. For a video analytics service,
video frames can be either processed on devices or in remote
servers. For frames processed on devices, the analytics ac-
curacy is limited because the computation models, e.g., deep
neural networks (DNNs), are tailored for resource-constrained
devices. Offloading the frame analytics to servers can improve
the accuracy, but the service latency may increase because
of transmission delays in the network. Some works have
discussed dynamic resource allocation in cloud computing
for video analytics and optimization methods for process-
ing video frames on devices [3], [4]. However, to our best

FIGURE 1. An example of video analytics in the FedVision System.

knowledge, none of them discusses how to optimize a
federated video analytics system that enable a cooperative
processing of video frames.

Fig. 1 shows an example of the federated video analytics
system named FedVision. The user queries cars in live video
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streams. Live video frames are streamed from the cameras to
the edge devices. Frames are sampled in the edge devices.
A selection of them are processed on devices, e.g., frames
containing cars are detected and returned to the user from the
edge devices. The other part of sampled frames are transmitted
to the edge server for object detection, i.e., detecting a car.
In the life cycle of processing the video analytics query, the
edge devices and the edge server are federated to provide the
detection results to the user.

A series of configurations on edge devices and remote
servers can be selected to improve the end-to-end performance
of FedVision. Owing to the dynamic network conditions and
computing workloads, it is almost impossible to derive a
closed-form expression of the system performance for differ-
ent configurations. Black-box optimization is usually adopted
to solve the system optimization problem in which the system
performance is considered as a black-box function [5]. The
black-box optimizer (BBO) interacts with the system to find
the optimal configurations. In each iteration of optimization,
the optimizer generates a set of configurations within the
predefined constraints as a query to the system. The system
applies the configurations from the BBO and feeds the perfor-
mance metrics back to the BBO. Based on the (query, feed-
back), the BBO approaches the optimal point gradually. How-
ever, for optimizing the end-to-end performance of FedVi-
sion, changing the configurations and obtaining performance
metrics from the system are time consuming and expensive.
Besides, some of the queries from BBO may lead to very poor
system performance. Hence, it is impractical for the black-box
optimizer (BBO) to query the FedVision system hundreds of
times for the optimal configuration.

In this paper, we design the FedVision system and solve the
end-to-end system optimization problem by a novel method
that integrates black-box optimization and Neural Processes
(NPs). In order to decrease the number of querying the FedVi-
sion system, we use NPs to approximate the system and enable
BBO to interact with NPs during the system optimization.
NPs are designed by using a neural networks to approximate
distributions over functions [6] and it combines the benefits
of neural networks and Gaussian Process (GP). NPs can learn
prior knowledge of the data like GP and be trained by using
the gradient descent method like neural networks. Using NPs
as the system approximator, we can approximate the distri-
bution of the system performance functions that reflect the
system performance under various networking and computing
conditions. Leveraging NPs as an approximator, we can elim-
inate the interactions between BBO and the FedVision system.

The contributions are summarized below.
1) We design a federated video analytics system named

FedVision that optimally uses the computing resources
on edge devices and servers to achieve efficient video
analytics.

2) We develop a new end-to-end system optimization
method that combines the merits of both black-box op-
timization and Neural Processes for efficient and safe
system optimization.

FIGURE 2. FedVision system architecture.

3) We validate the performance of FedVision with the pro-
posed end-to-end system optimization method through
both numerical results and experiments.

The rest of the paper is organized as follows. Section II
explores the architecture of the system. Section III studies
the analytical model for FedVision and formulates the opti-
mization problem. Section IV provides an overview of our
method. Section V explores using Neural Processes in system
performance approximation. Section VI shows the optimiza-
tion pipeline. Section VII discusses details of implementation
of key components in the FedVision system. Section VIII
includes numerical results and system experimental results
based on our testbed. Section IX provides a brief review of
related work. Section X concludes the paper.

II. SYSTEM DESCRIPTION
In this section, the architecture of FedVision and the specifica-
tion for video analytics services are described.

A. FedVision ARCHITECTURE
FedVision consists of an edge controller and a series of edge
devices and servers as illustrated in Fig. 2. There are two paths
of data flows: data path and control path. A query from a
user will be executed in the workflow across the edge device
and server. A workflow consists a chain of functions such as
encode, decode, compress, sample and detect. In the data path,
video frames are executed from the first function to the last
function in the workflow in sequence. After data are processed
through the workflow, the output results are returned to the
user.

In Fig. 2, video frames are sampled in the sample function.
Then, the sampled frames are resized by the compress func-
tion and sent to the edge server. Before being sent to the edge
server, the frames are encoded in encode in the edge device.
In the edge server, after frames are received and decoded in
the function decode, the detect function will detect the objects
in the frames.

The control path in FedVision is independent of the data
path. Each variable of the functions is configured by the edge
controller. In the control path, every edge device and server
run a control process to communicate with the edge controller.
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The edge controller sends updates of the configuration vari-
ables to the edge device and the edge server via the control
process. The edge controller receives the information of net-
work status from the control process in the edge server.

B. VIDEO ANALYTICS SERVICE SPECIFICATION
For video analytics services in FedVision, several configura-
tion variables can be controlled by the edge controller.

The edge controller controls the detection accuracy and
latency by choosing different neural network (NN) models
running in the edge device. The edge controller controls the
resize rate in the compress function to control the size of
frames transmitted in the network. The controlled variable in
the sample function is the number of frames that are skipped
from sending to the edge server after one frame is sent,
e.g., if the variable equals to two, the edge device skips two
frames for every frame sent to the edge server. The edge
controller updates these configuration variables in the opti-
mization pipeline.

III. PROBLEM FORMULATION
In FedVision, video frames are processed across the edge
device and server. FedVision optimizes the end-to-end perfor-
mance for video analytics services. In this section, we formu-
late the system performance in terms of the end-to-end latency
and object detection accuracy. Both the latency and accuracy
are viewed as functions of the configuration variables x and
the network status l , where x is the vector of all available
configuration variables. The system performance is evaluated
in the unit of session which includes N video frames.

The end-to-end latency T is defined as the average latency
of N frames for each session:

T (x, l ) = 1

N

N∑

i=1

τi = 1

N

N∑

i=1

(ζi + ηi + θi ) (1)

In the equation, ζ is the processing time in the edge device; η

is the network transmission latency; θ is the processing time
in the edge server. For the case that the ith frame is processed
in the edge device, ηi = 0 and θi = 0. Otherwise, ζi = 0.

The object detection accuracy A is defined as the average
detection accuracy of N frames for each session:

A(x, l ) = 1

N

N∑

i=1

αi = 1

N

N∑

i=1

(γi + σi ) (2)

γ and σ are the detection accuracy in the edge device and
server, respectively. For each frame, it is processed in either
the edge device or the edge server.

In FedVision, we aim to ensure that the system performance
meets the requirements given by users. Hence, the optimiza-
tion problem can be formulated as to minimize the difference

FIGURE 3. FedVision controller architecture.

between the system performance and the users’ requirements.

min
x

(Treq − T )2 + (Areq − A)2

s.t. ∀i : τi ≥ 0, 0 ≤ αi ≤ 1,

γiσi = 0, ζi(ηi + θi ) = 0;
x ∈ 	, l ≥ 0 (3)

IV. SOLUTION OVERVIEW
It is challenging to solve the optimization problem. First, the
space of the network status l is unlimited, which makes the
space of the dependent variables (x, l ) infinite. Second, there
are no analytical models to estimate the end-to-end latency
and accuracy under different configurations and network sta-
tus. Thus, we have no closed-form functions of ζ , η, θ, γ , σ

to design optimization algorithms. Third, it is intractable to
query the system performance with different values of config-
uration variables. For most video analytics systems, it takes a
long time to reconfigure the system. Besides, the new config-
uration may deteriorate the system performance if the values
of the configuration variables are not properly chosen.

As shown in Fig. 3, FedVision controller consists of an ap-
proximator and optimizer running in two phases: offline train-
ing described in Section V and online updating in Section VI.
In the offline training stage, we apply different configuration
variables under different levels of network status to attain the
system performances T and A. These configuration and per-
formance pairs are used to train the approximator. In the on-
line updating stage, the optimizer takes the requirements Treq

and Areq in the user’s query as the target for optimization. It
obtains the corresponding approximate system performances
T̂ and Â from the pretrained approximator and then applies
T̂ and Â to evaluate the value of the objective function in
Section III. FedVision controller can adjust the configuration
variables across the edge device and edge server.

We apply black-box optimization algorithms in the opti-
mizer. Without knowing either the closed-form expression of
the system performance function, the video analytics system
is viewed as a black box. We choose NPs as the approximator.
NPs are trained on data under a limited number of network
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bandwidth status to learn the distributions of the system per-
formance T and A. BBO can avoid querying the edge device
and server by interacting with NPs.

V. SYSTEM PERFORMANCE APPROXIMATION USING NP
In this section, we discussed the challenges in approximating
the system performance of the FedVision. We detail the design
of the system performance approximator based on NPs.

A. NEURAL PROCESSES BASED APPROXIMATOR
In FedVision, the edge device is connected with the edge
server via a wireless network. To estimate the latency T and
accuracy A of FedVision, we use NPs to approximate the
distributions of the system latency and accuracy. In designing
an approximator for mapping the configurations variables x to
the latency T and accuracy A, the challenge is the dynamic
change in the network between the edge device and the edge
server. When we take the network status l into consideration,
the approximation of T (x, l ) and A(x, l ) requires the approx-
imators to predict values of T and A under different network
status because the predicted T and A for the same values of
the configuration variables are different as the l changes.

One approach is to use Gaussian Processes (GPs) [7] to
learn the distribution of latency T and Accuracy A. GPs pro-
vide a stochastic framework for approximating distributions
by learning distributions over a series of functions. GPs learn
the prior knowledge of the data via kernel functions for ap-
proximating T and A. The kernel functions are predefined.
The choices available for the kernel functions limit the ap-
plicability of GPs in various video analytics systems. At the
inference stage, the predicted T̂ and Â are sampled randomly
over their posterior distributions. The priors are required to
calculate the posteriors. However, the computation of the pri-
ors become intractable as the amount of data increases.

NPs enhance the efficiency of inference in the neural net-
works (NNs) without calculating the priors as GPs do. NPs
can be viewed as models based on NNs framework to approx-
imate a distribution over functions. NPs combine the benefits
of NNs and GPs. In using an NP to learn the distribution, an
NN is used to parameterize the stochastic process with the
latent variable.

In the NP-based approximator, T and A are approximated
by two NPs separately. There are three main computation
modules: encoder, aggregator and decoder. In the computing
schema of an NP as shown in Fig. 4, the encoder h transforms
the input space (x, l, T )i into the representation space ri. The
aggregator a generates a single global representation r from
multiple ri to parameterize the distribution of the latent vari-
able z. The decoder g transforms the unknown data point (x, l )
concatenated with the sampled z and r to obtain the prediction
for T .

B. TRAINING FOR NEURAL PROCESSES
The approximators for T and A use similar training processes.
Here, we take the approximator for T as the example to de-
scribe how to train an NP in FedVision. To train the NPs-based

FIGURE 4. Neural Processes Computing Schema.

approximator, we first prepare the dataset. For each configu-
ration variables vector x, we run a session of N video frames
to get the corresponding latency performance T . The dataset
is collected under different network statuses in terms of low,
mid and high bandwidth. In each data pair, besides x and T ,
we include l to indicate the network bandwidth status. So, the
item in the data set is in the form of (x, l, T ). The network
status is dynamically changing in a continuous space and l
in the training dataset is a factor that varies in the sampled
discrete space. The NP is trained on a limited number of
system performance data points from different distributions
to infer T from x in a relatively wide range of the network
bandwidth space of l . For prediction, l is useful to measure
the distance between data points in different distributions.

The dataset is split into context points and target points:
(xc, lc, Tc), (xt , lt , Tt ). The latent variable z is modelled
by a Gaussian Process which is parameterized via rc =
r(xc, lc, Tc). The NP models the distribution of T below.

P(Tt |xt , lt , xc, lc, Tc) =
∫

P(Tt |xt , lt , z, rc)Q(z|rc)dz (4)

For the neural network model of the encoder h and decoder
g, the parameters are trained via variational approximation,
i.e., maximizing the evidence lower bound objective (ELBO)
below.

logP(Tt |xt , lt , xc, lc, Tc) ≥ EQ(z|rc )[logP(Tt |xt , lt , z, rc)]

− KL(Q(z|rt )||Q(z|rc)) (5)

The first term is the expected log-likelihood over the target
points. The second is the negative Kullback-Leibler diver-
gence between Q(z|rt ) and Q(z|rc).

VI. OPTIMIZATION PIPELINE
In this section, we mainly detail the optimization pipeline in
FedVision. Online updating, consisting of configuration gen-
eration and interaction between the optimizer and the approx-
imators, is the main part of the optimization pipeline.

A. CONFIGURATION GENERATION
The space of configurations for the video analytics system
can be large, depending on the complexity of the system. In
FedVision, we have three configuration variables in the vector
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x to adjust to minimize the single-objective function defined
in Section III.

Black-box optimization includes derivative-free optimiza-
tion methods and heuristic optimization methods. Evolution-
ary Algorithms (EA), or Genetic Algorithms, are popular and
effective heuristic methods [8]. In the EA framework, the
optimizer generates variables vector x to query the fitness
function fbbo for obtaining the value of ybbo = fbbo(x). In
our scenario, the fitness function is the objective function
(Treq − T )2 + (Areq − A)2.

We choose (1+1) EA [9] which is the most simple evolu-
tionary algorithm. In each iteration of (1+1) EA, it applies the
replacement strategy of choosing the best between one parent
and one offspring. The mutation is adaptively updated by the
1/5 rule [10]. If xn is the parent, the offspring x̂n = xn +
σt N (0, I ). If y(x̂n) is better than y(xn), the child becomes the
parent for the next iteration, i.e., xn+1 = x̂n. In the meantime,
the mutation step size increases as σn+1 = 1.5σn. Otherwise,
if the offspring is worse than the parent, the mutation step size
σ decreases as σn+1 = 1.5−1/4σn. xn will continue to be the
parent. After a certain number of iterations, the configuration
x∗ = argmax fbbo(x, l ) is obtained. Here, the output of the
optimizer is x and the input to the fitness function is (x, l ).

B. BLACK-BOX OPTIMIZER WITH NEURAL PROCESSES
We notice that, in the black-box optimization, the BBO needs
to query the fitness function to search for the optimal point.
However, in FedVision, we cannot get the exact form of the
fitness function fbbo because the function T and the function
A are not obtainable. Instead, we use two NPs to approximate
T and A respectively. In the online updating stage, we use
the NP-based approximator as part of the fitness function to
interact with the BBO.

The user initiates the Treq and Areq for the video query. The
network status variable l is updated before the optimization
starts. In each optimization iteration, the BBO initiates con-
figuration variables vector x. We query the prediction at the
unknown point (x, l ) in NPs for T and A, respectively. Based
on the query point, the NPs can predict corresponding values
of T̂ and Â with conditioning on the number of randomly
chosen context points and the latent variable z. Then, the value
of ybbo can be calculated from T̂ and Â. Once the limit of
the budget is reached, the BBO outputs the current optimal
configuration variables vector x∗ and sends it to the edge
devices and the edge server.

The update mechanism in the edge controller is associated
with the dynamic change in the network. We have an interface
between the approximator and edge server. Network status l
is logged in the edge server. The edge controller fetches the
network status l from the edge server periodically when Fed-
Vision is running. 
l̂ is in a tolerable range of the disturbance
of network status l . When the disturbance 
l > 
l̂ , it will
trigger the online updating in the edge controller. Besides, the
interaction of BBO and NPs can be triggered when the user’s
requirements for Treq and Areq change.

VII. IMPLEMENTATION
In this section, we discuss the implementation details of key
components in FedVision.

Video process pipeline: we execute federated video ana-
lytics across the edge device and the edge server. The edge
device and the edge server are connected through a wireless
link. We use the edge device with the embedded GPU and the
edge server with the standard workstation GPU. In the edge
device, the processing results of video frames are put into a
queue in the form of (metadata, framedata). The metadata
contains the processing results such as frame id, frame size,
processing time, accuracy and timestamp. The framedata is
the encoded and compressed image data of each frame. The
NN model running in the device is optimized to perform infer-
ence at lower precision (FP16 and INT8) by TensorRT [11]. In
the edge server, the network transmission latency is calculated
from the timestamps recorded in the frame metadata. The edge
controller controls three configuration variables in FedVision:
1. NN model on the device; 2. ratio of frames in each session
processed in the edge server; 3. resize ratio of the frames
transmitted.

Neural Processes instances: Two NPs are implemented:
one to predict latency T and the other for accuracy A. We
notice the trade-off between T and A. We define the objec-
tive function to minimize the difference between the real T
and the requirement Treq along with the difference between
and the real A and the requirement Areq. We focus on the
distribution of T (x, l ) and A(x, l ) separately rather than on
the distribution of (T, A). So, we implement two NPs in-
stead of one NP. For preparing training data for NPs, data
are collected under different network bandwidths. We use the
SQM-QoS tool in the OpenWRT to limit the download and
upload speed in order to adjust the bandwidth available in the
network.

Interface between NP and BBO: One BBO in the op-
timizer and two NPs in the approximator are implemented
in the edge controller. The query point (x, l ) includes the
configuration variables vector x generated by the BBO and
the network status l . To improve the prediction accuracy
on the query point, we randomly choose 15 context points
with similar network status l as the query points for infer-
ring on the NPs. The BBO is implemented by using Nev-
ergrad [12]. The NPs are implemented in the TensorFlow
framework [13].

VIII. EVALUATION
In this section, we first evaluate the performance of the ap-
proximator and optimizer in the edge controller with the test
functions and the analytical models. This initially proves the
feasibility of our methodology for applying the neural process
for the black-box optimizer. Then, we illustrate the details of
our experiment setup in the testbed for the video analytics
application in FedVision. Finally, we analyze the experimental
results of FedVision in two scenarios.
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A. APPROXIMATOR AND OPTIMIZER SIMULATION
In this part, to evaluate the integration of approximator and
optimizer, we use three common test functions and one sim-
plified analytical model for the edge vision system.

1) TEST FUNCTIONS
We evaluate our proposed method by a collection of com-
monly used test functions for the BBO. Generally, test func-
tions are used to evaluate characteristics of optimization al-
gorithms such as convergence rate and precision [14]. During
optimization, the test function works as the fitness function to
interact with the optimizer.

The first test function is Gramacy-Lee Function [15], a con-
tinuous unimodal not-convex function defined on 1-dimension
space x ∈ [0.5, 2.5].

f (x) = sin(10πx)

2x
+ (x − 1)4 (6)

The function has one local minimum f (x∗) = −0.86901
where x∗ = 0.54856.

The second test function is Ackley Function [16], a contin-
uous multimodal not-convex function defined on 2-dimension
space x1, x2 ∈ [−2, 2].

f (x1, x2)

= −20 exp

[
−0.2

√
0.5(x2

1 + x2
2 )

]

− exp [0.5(cos 2πx1 + cos 2πx2)] + e + 20 (7)

The function has one global minimum f (x∗) = 0 where x∗ =
(0, 0).

The third test function is Wolfe Function [17], a continu-
ous multimodal differentiable not-convex function defined on
3-dimension space x1, x2, x3 ∈ [0, 2].

f (x1, x2, x3) = 4

3
(x2

1 + x2
2 − x1x2)0.75 + x3 (8)

The global minima f (x∗) = 0 where x∗ = (0, 0, 0).
For each test function, the optimization problem is defined

as min f (x), s.t. x ∈ 	.

2) ANALYSIS OF TEST FUNCTIONS RESULTS
We mainly focus on two aspects. One is how close the NP can
approximate the real test function distribution. The other is
comparing the NP with standard fitness functions in the black-
box optimization.

Each test function is sampled randomly to build the dataset
respectively. The dataset is split into the context and target set
for training the neural process. We use the target negative log
likelihood (NLL) to evaluate how well the NP is trained. The
target NLL is defined as −(EQ(z|rc )[logP(Tt |xt , lt , z, rc)] −
KL(Q(z|rt )||Q(z|rc))) In the upper half of Fig. 5, we plotted
the target NLL of the NPs for the test functions. The orange
line is the 1-D test function’s target NLL while the blue line is
the 2-D’s. In the three figures on the lower half, we show the

FIGURE 5. Test functions: simulation results.

TABLE 1. Test Function

relation between the target NLL and how NP is approximating
the test function. In these three figures, we plot the prediction
on the 1-dimensional Gramacy-Lee Function as the training
iterates from 0 to 80000. Ten points are selected as context
points randomly while 100 test points are chosen evenly from
0.5 to 1 for plotting. The orange line in each figure is the line
of the mean predicted value of the test points x. At iteration
0 which is the random start point with the error of 1.03, the
predicted values of function are far away from the true val-
ues. At iteration 40000 with error of −0.47, the approximate
values of test points near the context points are pretty close to
the true values. When the iteration number reaches 80000, the
error goes down to −1.32 and the approximate function can fit
the test function very well. After 80000 iterations, the target
NLL bounces around −1.3 in a small range. Once the value of
the error enters the range around −1.2, the NP is considered
well trained.

Now we test the optimization results of the BBO with the
NP. Once target NLL of the NP do not vary too much, we use
the trained NP to predict the value of the test function at the
test point x. In each optimization iteration, the BBO queries
for a new set of configuration variables and obtains a feedback
value from the test environment. (x∗, y∗) is the optimal point
in the domain for each test function. (x̂np, ŷnp) is the optimal
point obtained after the BBO queries the NP for 100 iterations.
In comparison, (x̂ f unc, ŷ f unc) is the optimal point obtained
from interacting with the test function for 100 iterations. The
results for three test functions are listed in the Table 1. For
the one-dimension Gramacy function, x∗ = 0.54856 and the
optimal point found by our method is x̂np = 0.54592. The
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difference of x̂np and x∗ is less than 0.01. For the two-
dimension Ackley function, the difference of (x̂np and x∗
is larger than the difference of x̂ f unc and x∗. This is partly
because the start point of the BBO is the same as the optimal
point of the test function. When the dimension of test func-
tions increases to two or three, the differences become larger.
This is related to the space of context points for training the
NP.

3) ANALYTICAL MODELS
We build a simplified analytical model to test our proposed
method. This model consists of the functions for ζ , η, θ in T
and γ , σ in A.

a) Computing Performance Model: The computing perfor-
mance A includes two parts. For the first part, the computing
model for the edge device, γi = f (xk

i ) is the function of the
services xk available in the edge device. xk

i is the kth service
provided to the ith application request. Here, we suppose there
are more than one single service available in the edge device,
which is closer to a realistic situation.

As for the edge server, the performance is relevant to certain
factors. Here, we suppose only one kind of service available
for one application request in the edge server. The computing
performance in the edge server is defined as σi = λ(zi )g(ak

i ),
where ak

i is the ith service available in the edge server for
the kth application request. We notice that not all application
requests are processed in the edge server. If the edge server is
involved, higher computing performance is expected. Other-
wise, a satisfactory performance with a faster response can be
achieved. We use a decision factor λ(zi ) to indicate whether a
request will be sent to the edge server for further processing or
not. λ(zi ) is equal to 1 or 0 in terms of zi. The request will be
processed in the edge server if λ(zi ) = 1 and zero otherwise.
In this way, the edge computing system introduces flexibility
in the configuration space for end-to-end optimization.

b) Computing Latency Model: Following the computing
model defined in the previous part, we define the computing
latency model for functions running across the edge device
and the edge server. Computing latency includes both the
edge device processing time and the edge server processing
time. First, the edge device latency model is formulated as
ζi = h(xk

i ), where h(xk
i ) is the function of edge processing

time of the ith service for the kth application request. Here,
we model the edge server processing latency θi = j(y3

i ) as a
function of the cube of yi which is related to both computing
performance and latency.

c) Network Transmission Latency Model: As described in
the performance model, xi and zi have influence on the com-
puting performance. Here in the following equation, w(y2

i ) is a
function of the square of yi to represent a positively correlated
function to the network transmission latency. Let m(li ) be
the function of the network bandwidth which is negatively
correlated to the network transmission latency. Now, we have

the latency model ηi = λ(zi )
w(y2

i )
m(li )

for computing and trans-
mission.

FIGURE 6. System performance simulation results.

4) ANALYSIS OF ANALYTICAL MODELS RESULTS
Based on the analytical model, the end-to-end latency τi and
the computing performance αi for a single application request
are defined below.

αi = (1 − λ(zi )) f (xi ) + λ(zi )g(ak
i ) (9)

τi = (1 − λ(zi ))h(xi ) + λ(zi )

(
j(y3

i ) + w(y2
i )

m(li )

)
(10)

For this analytical model simulation, we showcase a numeri-
cal instance of τ and α. In this instance, we have f (x) = (x −
0.5)/(4.5 − 0.5), g(ak

i ) = 1, h(x) = 1.5x + 2.5, j(y) = 24y3,
w(y) = 5y2, m(l ) = 2l . Here, we choose the target Treq = 20
and Areq = 0.8. We formulate the problem below.

min
x,y,z

(20 − T )2 − (0.8 − A)2

s.t. ∀i : τi ≥ 0, 0 ≤ αi ≤ 1;
x ∈ [2.5, 4.0], y ∈ [0.25, 1.0],

z ∈ [0, 3] (11)

For each session, T = (1.5x + 2.5)(1 − 1/(z + 1)) +
(24y3 + 5y2/2l )/(z + 1), A = (1 − 1/(z + 1))(x − 0.5)/3 +
1/(z + 1). We set the iteration budget to 100. We use one
NP for approximating the distribution of T and the other NP
for A. In each iteration, we set l = 1. The BBO updates the
optimal point (x, y, z)∗ after querying the NPs for getting
(T, A)i to calculate the feedback in the objective function.

To evaluate how well our method solves the optimization
problem in the analytical model, we compare the performance
of our method to the baseline method. In the baseline method,
The value of T and A are obtained from the numerical model
defined above. The value of the fitness function is calculated
from the same objective function in our method.

In Fig. 6, after about 50 iterations, our method can optimize
T to 20 and A to 0.8. In contrast, the baseline method can meet
the requirement Treq after around 20 iterations but A is stuck
at the point above 0.9 which is far away from the Areq. The
trade-off is between T and A. It may be because the BBO
changes y to make the first part in the objective function but A
is not the function of y in the second part.

In Fig. 7, the left part (a) shows the change of the value
of the objective function during the optimization. The right
part (b) shows the update of the optimal point in the BBO for
both methods. We notice that there is a slight increase in our
method at iteration 23. This is because the prediction of the
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FIGURE 7. Objective function simulation results.

NP on the query point is not always accurate but varying in
a small range. If the variation is within a tolerated range, the
optimizer works as well as the baseline method.

B. EXPERIMENT SETUP
In the previous two parts, the performance of our method is
evaluated in an analytical way. After obtaining some initial
results from conducting the analytical simulation, we want
to showcase the feasibility of our method in an edge-assisted
video analytics system. In this part, we describe the experi-
ment setup in our testbed for federated video analytics.

We utilize Nvidia Jetson TX2 [18] for the edge device in the
system. Nvidia Jetson TX2 is available in the market with two
Nvidia Pascal GPU, 128 CUDA cores each. Along with the
embedded GPU, a quad-core ARM Cortex-A57 contributes
multi-threading to the device alongside a dual-core Nvidia
Denver 2 for high single-thread performance with dynamic
code optimization. This combination of embedded GPU and
high-performance CPU enables the edge device to perform
at a speed of more than one TFLOP/s. The small size of the
device and the capability of running DNN make it suitable
in our testbed setup to deploy on-device AI processing and
stream videos to the edge server for further processing.

The edge server in our setup is implemented in the Dell
XPS 8930 workstation which is equipped with an Intel core
i7-8700 12-Core Processor, Nvidia GeForce GTX 1080, and
32GB RAM. For the scalability and flexibility of the deploy-
ment of services, we deploy the services for video analytics in
dockers. Since we need to access the GPU in the workstation
for running DNN at a higher speed, we use the GPU-enabled
Docker container, nvidia-docker. The nvidia-docker can limit
the numbers of CPU cores and specific network interface
bound while the GPU resources are not allowed to be lim-
ited in the docker. These features are convenient for running
multiple different services in the same edge server separately.
We initiate one nvidia-docker with 4 cores and 2.5GB memory
assigned.

The edge controller is connected to a router with the edge
server. The edge device is connected wirelessly through the
router to the edge server and the edge controller. The time
of the video frames streaming from the device to the server
makes up most of the network transmission latency in Fed-
Vision. The network transmission latency is relevant to the
data size transmitted and the available bandwidth of the link.
Fig. 8(b) shows the normalized network latency of transmit-
ting same frames under network bandwidths varying from

FIGURE 8. Configuration variables and network bandwidth analysis.

240 kbps to 3840 kbps. Fig. 8(c) shows the relation between
the resize factor on the frame transmitted and the scaled net-
work latency.

In a video processing system, object detection is an es-
sential function in the video analytics services. As for the
algorithms of object detection in video frames, the locations
of the objects and the kinds of objects in the frame are the
main benchmarks to evaluate the performance of the algo-
rithms. Another factor is the speed of detection. The pro-
cessing latency is associated with the NN model’s size. We
investigate four detection models for the edge device and one
detection model for the edge server. In Fig. 8(a), we compare
these five existing object detection models trained on coco
dataset [19]. D4 and D3 are tiny-yolo-v3 model [20] with in-
put frame size of 224 × 224 and 320 × 320, respectively. D2
is ssdlite-mobilenet-v2 with input frame size of 224 × 224.
D1 is ssd-inception-v2 with input frame size of 300 × 300.
In the edge server, we use the ssd-resnet-50-fpn model. The
NN model running in the edge server has the higher accuracy
and larger latency as compared to the models in the edge
device. These three pretrained SSD models are available in the
TensorFlow model zoo [21]. The accuracy shown in Fig. 8 is
the mAP scaled to one. The choice of the detector has a great
impact on the system’s end-to-end performance. The higher
the accuracy is, the bigger the latency is. Besides the native
characteristics of the object detectors, several techniques are
available for specialized NNs in the edge device. The main
outcome of these methods is to decrease the number of frames
to be processed and the processing time for each frame. As a
result, the gap between accuracy and latency is eliminated.
For instance, in Fig. 8(d), without considering the frame con-
tents and other techniques, the accuracy will be deteriorated
as the sample rate decreases. These methods can benefit the
end-to-end performance. We consider these methods in the
experiments but these are not our focus. Instead, we view all
these methods as the configuration variables for the system.

In the experiments done in the following, we have three
configuration variables x1, x2, x3 to adjust. x1 is the choice
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FIGURE 9. Neural Processes for latency and accuracy prediction.

of the detector on the device. x2 is the resize rate of the
frames. x3 is the number of frames to skip for offloading.
For the end-to-end latency T , both computing latency and net-
work transmission latency are considered. For the computing
performance A, we use the object detection accuracy as our
metrics. The accuracy of one frame would be only determined
by the on-device detector if the frame is not offloaded to the
server. Otherwise, the accuracy would be determined by the
accuracy in the server. We use the video dataset from [4] to
detect the object, car, in the video frames.

C. ANALYSIS OF FedVision EXPERIMENTAL RESULTS
In our experiments, we evaluate our optimization pipeline in
two cases. (1) Given the performance requirements by the
user, FedVision starts with the initial configuration. We study
the performance of our method for optimizing end-to-end
accuracy and latency with respect to the requirements when
the network status changes dramatically. (2) After the system
starts, we study the case that our method updates the con-
figuration variables when the user changes the performance
requirements.

We train two NPs for the approximator in the edge con-
troller. The context data (X, l,Y ) for training NP is in the
form of (x1, x2, x3, l,Y ). l is the bandwidth factor calculated
by averaging network latency over 1800 frames. Y in the NP
for approximating system accuracy is A, while the other Y for
the latency is T . The dataset for training NPs is collected by
processing one-minute video with different configurations in
various network bandwidths.

In Fig. 9, each NP is trained for 20,000 iterations. For every
1000 iterations, the target NLL is plotted in the top half of the
figure and the query point will be queried in both NPs for the
corresponding latency and accuracy. We choose a configura-
tion vector (2,1,0) with a measured bandwidth factor equal to
1.325. From the bottom half of the figure, we can tell that after

FIGURE 10. Configuration update as network status changes.

about 10,000 iterations, the values of the query become stable.
Specifically, the predicted latency is bouncing around the real
value at 1.4427. The predicted accuracy is close to the real
number of 1.0 based on the accuracy of models implemented
in the devices and the server. In this set of configuration, every
frame is processed in the edge server. With the well-trained
NPs, we intend to solve the problem defined in the Section III
for FedVision.

In the first case of the our experiment, we plot the per-
formance of accuracy and latency in four stages in Fig. 10.
From stage 0, the system starts working with the performance
requirement pair (Treq, Areq ) in (0.8, 0.8), i.e., the accuracy is
supposed to be around 0.8 and latency around 0.8. At stage
0, the optimizer generates a configuration vector (2, 0.25, 0)
with a bandwidth factor measured at 0.5. From 0 to 1, the
actual latency is 0.6233 and the accuracy is 1.0. We find
the gap between the actual performance and the requirements
is big. This is partially attributed to the chosen requirement
being relatively relaxed for the trade-off between accuracy and
latency. At stage 1, we change the network bandwidth limit for
links between the edge device and the edge server. As a result,
the measured bandwidth factor changes from 0.5 to 1.7. In our
setup, the accuracy is irrelevant to the change of bandwidth
and so it remains the same in stage 1 while the end-to-end
latency surges from 0.6233 to 1.8226. This triggers the edge
controller to start generating a new configuration vector to
meet the performance requirement of (0.8,0.8). At stage 2, the
new configuration vector, (2,1,1), is applied. Both accuracy
and latency are closer to the requirements. The accuracy drops
from 1.0 to 0.81 and latency drops from 1.8226 to 0.92. We
see the gap becomes smaller as the network status becomes
more critical to the end-to-end performance. Although 0.92
of latency is slightly larger than 0.8, it is only about half
of the latency without configuration update. FedVision can
efficiently update the system configurations for optimizing
the end-to-end latency and accuracy as the network changes
dramatically.

For the second case, as shown in Fig. 11, the requirement is
changed from (0.8, 0.8) to (0.2,0.7) at the stage one. This use
case shows how FedVision may strive for much lower latency
at the slightest expense of accuracy. At stage 2, the system
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FIGURE 11. Configuration update as performance requirements change.

is updated to (2, 0.75, 3) with a bandwidth factor of 0.5.
Then, the latency drops to 0.18 below 0.2 and the accuracy
turns out to be 0.715 which is closer to the requirement 0.7.
Technically, the performance is satisfactory as compared to
the performance without configuration update. In this case, we
require a more critical latency. We can see the new require-
ment can still be met by adjusting the configurations within
the constraints. In other words, we can test the limit of the
system by imposing more extreme requirements. When the
requirement is out of the limit, our method would not meet the
requirement either. Then, we can have the approximate limit
of the system performance.

In this part, we have tested our optimization method in
FedVision from two perspectives. The first is to show that our
method can adapt to the network dynamics in optimizing the
configurations. The second is to show that our method can
optimize the configurations to meet the user’s requirement
change. From the results in both cases, we validate the perfor-
mance of FedVision using our proposed optimization method.

IX. RELATED WORK
Distributed multi-camera systems have been deployed in big
cities around the world. In [22], a pervasive smart camera
prototype based on standard hardware and Linux software
architecture was implemented. In the applications of video
analytics, object detection is widely implemented as a fun-
damental function. The combination of the neural network
partition, data compression, and differential communication
was proposed and evaluated for video analytics [23]. A wide-
area visual surveillance system integrated with automated
video analytics ability is presented [24]. A scheme was pro-
posed to minimize the data transmission for geo-distributed
data analytics [25]. A scheduler was designed to automat-
ically partition Neural Network computation between edge
and cloud [26]. A reinforcement learning based method was
used to decide when and where to migrate tasks among
edge servers [27]. These works investigated the multi-camera
video analytics system from system architecture perspective
to the computer vision perspective. Techniques for accelerat-
ing video frames processing and tailoring neural networks for
both edge devices and cloud servers are illustrated. However,

they ignored the influence of the dynamic change in the net-
work on the system end-to-end performance. We find that the
dynamic changes in network is unpredictable and have direct
influence on the video anlytics system performance. In FedVi-
sion, we utilize some of the techniques from these papers as
configuration variables, and we propose a new optimization
method to automatically configure the system for desired per-
formance. We address the problem of how the configurations
of the system can be adjusted based on network dynamics.

X. CONCLUSION
In this paper, we have designed the federated video analytics
system named FedVision and developed a new method for
end-to-end performance optimization in the FedVision system.
Our method integrates Neural Processes and the Black-box
optimization to optimize the latency and accuracy of queried
video analytics. Our method allows the black-box optimizer to
optimize the system performance via querying the NPs instead
of the real edge computing system. The evaluation results
show that the proposed method can adapt to network dynam-
ics in optimizing the configuration variables and meeting the
latency and accuracy requirements.
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